
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

Finding (Recently) Frequent Items in Distributed Data
Streams

Amit Manjhi Vladislav Shkapenyuk Kedar Dhamdhere
Christopher Olston

April 2004
CMU-CS-04-12U

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

« J I t t I h , t > ^ \J \"*i

Keywords: Streams and Stream-based Processing, Optimization and Performance

Abstract

We consider the problem of maintaining frequency counts for items occurring frequently in the union of multiple dis-
tributed data streams. Naive methods of combining approximate frequency counts from multiple nodes tend to result in
excessively large data structures that are costly to transfer among nodes. To minimize communication requirements,
the degree of precision maintained by each node while counting item frequencies must be managed carefully. We
introduce the concept of a precision gradient for managing precision when nodes are arranged in a hierarchical com-
munication structure. We then study the optimization problem of how to set the precision gradient so as to minimize
communication, and provide optimal solutions that minimize worst-case communication load over all possible inputs.
We then introduce a variant designed to perform well in practice, with input data that does not conform to worst-
case characteristics. We verify the effectiveness of our approach empirically using real-world data, and show that our
methods incur substantially less communication than naive approaches while providing the same error guarantees on
answers.

In addition, we extend techniques for maintaining frequency counts of high-frequency items in one or more streams by
making them time-sensitive. Time-sensitivity is achieved by associating weights with items that decay exponentially
with time. We analyze the error bounds and worst-case space bounds for the extended algorithms.

1 Introduction

The problem of identifying frequently occurring items in continuous data streams has attracted significant attention
recently [4,8,10,13,17,20]. Potential applications include identifying large network flows [10], answering iceberg
queries [11], computing iceberg cubes [15] and finding frequent itemsets and association rules [1].

However, earlier work on identifying frequent items in data streams and estimating their occurrence frequencies
falls short of meeting the needs of the many real-world applications that exhibit one or both of the following two
properties:

1. Distributed streams. Streams originate from multiple distributed sources. The data needs to be aggregated to
arrive at the final result, as in the distributed streams model of [12]. This situation occurs, for example, if we wish to
detect frequent events in a sensor network environment.

2. Time sensitivity. Recent data is more important than older data. For example, in telecommunications, most
processing focuses on recent call records [7].

We briefly describe two real-world applications exhibiting the properties just mentioned:

Detecting DDoS Attacks. Early detection of Distributed Denial of Service (DDoS) attacks is an important topic in
network security. While a DDoS attack typically targets a single "victim" node or organization, there is generally no
common path that all packets take. In fact, even packets sent to the same destination and originating from within the
same organization may follow different routes, due to so-called "hot potato" routing [3]. This property makes it very
difficult to detect distributed denial of service attacks effectively by only considering the traffic passing through any
single monitoring point, and motivates a distributed monitoring approach. Furthermore, techniques that weigh recent
data more than past data may help in early detection of attacks.

Usage Monitoring in Large-scale Distributed Systems. Web content providers using the services of a Content
Delivery Network (CDN) like Akamai [2] may wish to monitor recent access frequencies of content served (e.g.,
HTML pages/images), to keep tabs on current "hot spots." The CDN may serve requests from any of a number of
cache nodes (Akamai currently has over 10,000 such nodes); typically requests are served by the cache node closest
to the end-user making the request in order to minimize latency. Hence, keeping tabs on overall access frequencies
requires distributed monitoring across many CDN cache nodes.

1.1 Problem Variants

Both applications outlined above require algorithms for identifying recent high-frequency items in the union of many
distributed streams, and estimating the corresponding occurrence frequencies. In general, we can classify applica-
tions of frequent item counting into four categories, in terms of whether they require time-sensitivity and distributed
monitoring capability, as shown in Table 1. We briefly describe each problem variant:

(1) Finding frequent items in a single stream: A single node sees an ordered stream of possibly repeating items.
The goal is to maintain frequency counts of items whose frequency currently exceeds a user-supplied fraction of the
size of the overall stream seen so far.

(2) Finding recently frequent items in a single stream: In this variant recent occurrences of items in the stream are
considered more important than older occurrences of items. At any given time, a numeric weight is associated with
each item occurrence in the stream that is a function of the amount of time that has elapsed since the appearance of
the item in the stream. A commonly-used weighting scheme is exponential decay [6], in which weights are assigned
according to a negative-exponential function of elapsed time. The goal is to identify items whose cumulative weighted
frequency currently exceeds a user-supplied fraction of the total across all items, and provide an estimate of the
cumulative weighted frequencies of any such items.

(3) Finding frequent items in the union of distributed streams: In this variant there are m ordered streams
S\, 5*2, •. •, Sm, each produced at a different node in a distributed environment and consisting of a sequence of item
occurrences. The goal is the same as in Variant (1), except that item frequencies are computed over the union of
streams Si, $ 2 , . . . , 5 m , instead of over a single stream.

Table 1; Problem variants.

Time-insensitive

Time-sensitive

Single Stream
(1)

(2)

Distributed Streams
(3)

(4)

(4) Finding recently frequent items in the union of distributed streams: This variant represents the natural combi-
nation of Variants (2) and (3).

Of these four variants, only Variant (1) has been studied in prior work. Algorithms for time-insensitive frequency
counting over a single stream include those presented in [8,17,20]. While it is relatively straightforward to extend
these algorithms to handle Variant (2), the effect on the space bounds and error guarantees of the resulting algorithms
in some cases is nonobvious. In this paper we provide rigorous analysis of these aspects.

Variants (3) and (4) present a larger challenge. As we will show, simple adaptations of existing frequency counting
algorithms to work in a distributed setting incur excessive communication. In this paper we present a new framework
for distributed frequency counting that minimizes communication requirements. Before outlining our approach we
first provide a formal problem statement that unifies the four variants listed above.

1.2 Unified Problem Statement

Our problem statement extends that of [20]. There are m > 1 ordered data streams Si, S 2 , . . . , Sm . Each stream Si
consists of a sequence of item occurrences with time-stamps: (on,tn), (o ^ t e) * etc. Each item occurrence o^ is
drawn from a fixed set U of items, i.e., Vz, j , Oij E U. Arbitrary repetition of item occurrences in streams is allowed.
Each stream S; is monitored by a corresponding monitor node Mi, of which there are m. Monitored frequency counts
for high frequency items are to be supplied to a central wot node R, which may or may not be the same as one of the
monitor nodes.

Let S be the sequence preserving union of streams Si, S 2 , . . . , Sm . Further, let c(u) be the frequency of occurrence
of item u in S up to the current time, weighted by recency of occurrence in an exponentially decaying fashion.
Mathematically,

c(u) = ^ ^

where tnow denotes the current time, and a and T are user-supplied parameters. The parameter a G (0,1] controls the
aggressiveness of exponential weighting. As a special case, setting a = 1 causes all item occurrences to be weighted
equally, regardless of age (as in Variants (1) and (3) of Section 1.1). The parameter T > 0 controls the frequency with
which answers are reported, and also the granularity of time-sensitivity. A time period of T time units is referred to as
an epoch.

The objective is to supply, at the end of every epoch (i.e., every T time units), an estimate c(u) of c(u) for items
occurring in S whose true time-weighted frequency c(u) exceeds a support threshold T. T is defined as the product
of a user-supplied support parameter s € [0,1], and the sum of the weighted item occurrences seen so far on all input
streams, N = Sw€t/c(it), i.e., T = s-N. The amount of allowable inaccuracy in the frequency estimates c(u) is
governed by a user-supplied parameter e. It is required that 0 < e < s (usually, e < 5). Each time an answer is
produced, it must adhere to the following guarantees:

1. All items whose true time-weighted frequency exceeds s -N are output.

2. No item whose true time-weighted frequency is less than (s — e) • N is output.

3. Each estimate c(u) supplied in the answer satisfies: max {0, c(u) — e-N} < c(u) < c(u).

A useful data structure for storing intermediate answers is an (e, a)-synopsis of item frequencies over a stream or
union of several streams. An (e, a)-synopsis S consists of a (possibly empty) set of time-weighted frequency estimates
each denoted S:c(u), where each c(u) estimate satisfies max {0, c(u) - c-S:n} < c(u) < c(u). S:n denotes the total
time-weighted frequency of all items in the synopsis (S:n = J2ueu c(w))- The salient property of an (e, a)-synopsis
is that items with weighted frequency below e-S:n need not be stored, resulting in a reduced-size representation.

1.3 Overview of this Paper

Finding recently frequent items (Section 2): To begin, we show how to extend two recent frequency counting
algorithms that produce (e, l)-synopses to produce (e, a)-synopses, for any a e (0,1], to achieve Variant 2 of Table 1.
We analyze the correctness and space requirements of the resulting algorithms. In particular, we show that the worst-
case size of time-sensitive synopses is bounded by a time-independent constant.

Finding (recently) frequent items in distributed streams (Section 3): There are two obvious, simple strategies for
adapting single-stream frequency counting algorithms to a distributed setting to achieve Variants 3 and 4 of Table 1,
and both have serious drawbacks:

SSI: Periodically, at the end of every epoch, each monitor node Mi sends to the root node R the exact frequency
counts of all items occurring in Si over the last T time units. Node R then combines the counts received from
the monitor nodes with (possibly time-decayed) counts maintained over prior epochs, and outputs items whose
overall weighted counts exceed the support threshold T.

SS2: Each monitor node Mi maintains an (e, l)-synopsis Si over the recent portion of its local stream Si. Intuitively,
the (e, l)-synopsis is a reduced summary of item frequencies that does not include items whose frequency in
Si is small. Periodically, at the end of every epoch, each Mi sends its local synopsis Si to node R. Upon
receiving all local synopses, node R combines them into a single unified (e, l)-synopsis containing estimated
item frequencies for the union of the contents of all input streams in the most recent epoch. This synopsis is then
combined additively with an (e, a)-synopsis containing estimated weighted counts from previous epochs, after
multiplying those synopsis counts by a, to generate a new (e, a)-synopsis valid for the current epoch. Lastly,
items whose estimated time-decayed counts exceed the support threshold T (after taking into account the error
tolerance) in this synopsis are output1.

Clearly, strategy SSI is likely to incur excessive communication because frequency counts for all items, including
rare ones, must be transmitted over the network. Furthermore, the root node R must process a large number of
incoming counts. While strategy SS2 alleviates load on the root node to some extent, in the presence of a large number
of monitor nodes and rapid incoming streams, the root node may still represent a significant bottleneck. To further
reduce the load on the root node, nodes can be arranged in a hierarchical communication structure (see Figure 1),
in which synopses are combined additively at intermediate nodes as they make their way to the root. In this setting
SS2 compresses data (by dropping small counts) as much as possible at each leaf node without violating the e error
bound. Consequently no further compression can be performed as synopses are combined on their way to the root or
at the root node itself, making it impossible to eliminate counts for items whose frequency exceeds e fraction of one
or more individual streams but does not exceed e fraction in the union of the streams whose synopses are combined
at a non-leaf node. Hence, if input streams have different distributions of item occurrences, counts for items of small
frequency may reach the root node unnecessarily under strategy SS2.
There are thus two main disadvantages of using SS2:

1. High communication load on root node R.

2. High space requirement on R.

Suppose that, instead of applying maximal synopsis compression at the leaf nodes, some compression capability is
reserved until synopses of multiple incoming streams are combined at non-leaf nodes. If that is done, more aggressive

1 Note that in both strategies time-sensitivity is only introduced at node R. It is not possible to introduce time-sensitivity in data before it is sent
to R, since all item frequencies in the most recent epoch have weight 1 in our formulation.

Output: (e, a)-synopsis

level 0 (Root)

level 1

level 1-1
(Leaves)

Input streams: S1 S2

V 1)-synopses

e2, 1)-synopses

Figure 1: Hierarchical communication structure.

compression can be performed by non-leaf nodes by taking into account the distributions of item frequencies over a
larger set of input streams. As a result, the synopses reaching the root (and the synopsis maintained over previous
epochs at the root) will likely be significantly smaller than in SS2. On the other hand, the synopses passed from the
leaf nodes to their parents may be larger than in SS2, which is an undesirable side-effect.

Indeed, to avoid excessive communication load on any particular node or link, the amount of compression per-
formed by each node while creating or combining synopses must be managed carefully. In hierarchically-structured
monitoring environments we can configure the amount of compression performed, and consequently, the amount of
error introduced at each level so that synopses follow a precision gradient as they flow from leaves to the root. It turns
out that worst-case communication load on any link is minimized by using a gradual precision gradient, rather than
either deferring the introduction of error entirely until data reaches the root (as in SSI), or introducing the maximum
allowable error at the leaf nodes (as in SS2). Still, the best gradual precision gradient to use is not obvious.

In this paper we study the problem of how best to set the precision gradient formally. We first show how use of a
gradual precision gradient alleviates storage requirements at the root node R. Then, we derive optimal settings of the
precision gradient under two objectives: (a) minimize load on the root node R, and (b) minimize maximum load on
any single communication link under worst-case input behavior. We then introduce a variant that aims to achieve low
load on all links in practice, when input data may not exhibit worst-case characteristics, by exploiting a small sample
of the expected input data obtained in advance.

Remainder of paper: In Section 4 we confirm our analytical findings of Sections 2 and 3 through extensive experi-
mental evaluation on three real-world data sets. Our experiments demonstrate that naive methods of finding frequent
items in distributed streams (SSI and SS2) can incur high communication and storage costs compared with our meth-
ods. Related work is discussed in Section 5, and we summarize the paper in Section 6.

2 Finding Recently Frequent Items
Given a simple frequency counting algorithm that maintains a (0, l)-synopsis, i.e., one with exact, time-insensitive
frequency counts for all items, it is straightforward to add time-sensitivity in the form of exponential weighting by
some desired a € (0,1]. By multiplying each count in the synopsis by a once every T time units, we achieve a
(0, a)-synopsis. It is tempting to apply the same method to extend approximate frequency counting algorithms such
as [8,17,20] that maintain (e, l)-synopses to instead maintain (e, a)-synopses. However, in each instance care must
be taken to ensure that the error guarantees specified in Section 1.2 hold for the modified algorithms.

We study the effect of adding time-sensitivity to two recent approximate frequency counting algorithms: lossy

counting [20] and the essentially identical algorithms of [8] and [17], which we refer to as majority* counting. The
two algorithms (lossy counting and majority+ counting) use slightly different, although not unrelated, techniques to
compute an (e, l)-synopsis over a single stream. In lossy counting, all frequency counts in the synopsis are periodically
decremented by 1. The period of time between decrement operations is carefully chosen so that the resulting synopsis
is guaranteed to be an (e, l)-synopsis. In contrast, in majority"1" counting all frequency counts in the synopsis are
decremented by 1 whenever the synopsis size (measured in terms of the number of frequency counts) exceeds a
predetermined threshold that depends on e. It has been shown analytically that majority"1" counting produces a (e, 1)-
synopsis [8,17]. In Appendix A.I we prove that by adding exponentially decaying weighting to majority4" counting
we arrive at an algorithm that maintains an (e, a)-synopsis conforming to the error guarantees specified in Section 1.2.

Turning to lossy counting, it is relatively easy to show that by adding exponential weighting to lossy counting (and
taking care to "catch up" by decrementing frequency estimates at epoch boundaries) we achieve a correct algorithm
for maintaining an (e, a)-synopsis; we omit the simple proof (The modified algorithm is provided in Appendix A.2.).
However, analysis of the space bound of the resulting synopsis is nontrivial. In Appendix A.2 we show that a time-
independent space bound proportional to the logarithm of the maximum stream rate holds. Hence, the maximum size
of an exponentially decayed lossy counting synopsis does not increase over time as long as the stream rate remains
steady. In contrast, in the original lossy counting approach (i.e., using a = 1), the synopsis can grow logarithmically
with time.

3 Finding Frequent Items in Distributed Streams

In this section we show how to maintain approximate time-sensitive frequency counts for frequent items in a distributed
setting, and study how to set the precision gradient so as to minimize communication. Recall that in our scenario, m
monitor nodes Mi, M 2 , . . . , Mm relay data periodically, once every T time units, to a central root node R. Data may
be relayed through a hierarchy of nodes interposed between the monitor nodes and the central root node, as illustrated
in Figure 1. Let / > 2 denote the number of levels in the hierarchy. We number the levels from root to leaf, with
the root node R of the communication hierarchy representing level 0, its children representing level 1, etc., and the
monitor nodes M i , . . . , Mm representing level (/ - 1). Let d > 2 denote the fanout of all non-leaf nodes in the
hierarchy, i.e., the number of child nodes relaying data to each internal node.2

In this hierarchical communication structure, we associate with each non-root level 1 < i < (I — 1) of the
communication hierarchy an error tolerance e*. For correctness it must be ensured that e > ei > . . . > e\-\ > 0,
which gives rise to a precision gradient along the communication hierarchy.3 Any values of e i , . . . , Q_I satisfying
the above constraints can be used, and the guarantees of Section 1.2 will hold. The manner in which the precision
gradient (i.e., e i , . . . , e\-\ values) is set determines the size of the synopsis that must be stored persistently at R, as
well as the amount of communication that must be performed during frequency counting. For now, let us assume that
some precision gradient has been decided upon. We return to the issue of how best to set the precision gradient in
Section 3.1.

Given a precision gradient, our procedure for computing time-sensitive frequency counts for items occurring fre-
quently in S = Si U 52 U . . . U 5m is as follows. Recall that time is divided into equal epochs of length T. During
each epoch, each monitor node Mi invokes a single-stream approximate frequency counting algorithm [8,17,20] using
error parameter €/_i to generate an (e/_i, l)-synopsis for the portion of stream Si seen so far during the current epoch.
Each monitor node then sends its (Q _ I , l)-synopsis to its parent in the communication hierarchy, which combines the
d (ej_i, l)-synopses it receives from its d children into a single (Q _ 2 , l)-synopsis using Algorithm I4. The same
process is repeated until each of iTs children combines the d (e2, l)-synopses they receive into an (ei, l)-synopsis
which is then sent to R.

The root node R maintains at all times a single (e, a)-synopsis SA, from which the answer is derived. When, at

2For simplicity we assume all internal nodes of the communication hierarchy have the same fanout.
3For simplicity we assume that all nodes at the same level in the hierarchy use the same error tolerance.
4Algorithm 1 is based on lossy counting [20]. Alternatively, an algorithm based on majority"1" counting [8,17], in which e is substituted by

(ei — ej+i), can be used for the same purpose. It can easily be shown that the corresponding algorithm based on majority"1" counting never results
in smaller synopses than Algorithm 1.

the end of each epoch, R receives d (ei, l)-synopses from its children, R updates SA using Algorithm 25. Then, R
generates the new answer to be output for the current epoch by finding items in SA whose approximate count in SA
exceeds (s — e) -SA*n.

Algorithm 1: Combine synopses from children (executed by nodes other than leaves and root)

Inputs: d (e*+i, l)-synopses Si, S2, - -, Sd

Output: single (e*, 1)-synopsis S

d
1. Set <S:n:=

d d

2. For each ue U SJ9 set S:c(u) := Yl Sjic(u)

3. For each u G S, set S:c(u) := S:c(u) — (ê - e;+i)-5:n

Algorithm 2: Update the answer synopsis (executed at the root node R)

Input: d (ei, 1)-synopses S i , . . . , S^, S^
Output: new answer (e, a)-synopsis SA

1. For each n G S^, set SA:C(W) := a-SA'c(u)

2. SetS^:n := a-S^:n

<i

3. For each uG U S7-, set S^ :c(u) := «Ŝ :c(w) + E^=1Sj :c(u)
j=i J

5. For each u G SA, set SA'-C(U) := SA-C(U) — (e - ei)-Ef_1S,-:n

3.1 Setting the Precision Gradient

Our approach is to first set e\ based on space considerations at node R (using worst-case analysis), and then set the
remaining error tolerance values e2 , . . . , t\-\ so as to minimize communication.

The value of ei determines the maximum size of the synopsis *S^ that must be stored by node R at all times.
Assuming a gradual precision gradient is used such that ei < e, analysis of the maximum size of SA is similar to the
analysis of [20] and our analysis in [19] of time-sensitive lossy counting over a single-stream. If no time-sensitivity is
employed (a = 1), the size of SA is at most ln((e~^)-5^:n) counts (formula adapted from [20]); for a < 1, the size
is at most (i+g-€i)-(3+in(2-/c-/3+fc)) c o u n t s ? where /? = [log A (1 + 7^7)1 + 1 and /c denotes the maximum number of
item occurrences on any input stream during any single epoch. Using e\ < e, the synopsis SA does not grow with

5Algorithm 2 is based on lossy counting [20]. Alternatively, an algorithm based on majority4" counting [8,17], in which e is substituted by
(e — ei), can be used for the same purpose. The space used by such an algorithm is always l / (c — €1). However, as pointed out in [20], for common
input streams (in particular, when input streams are Zipfian), the space requirement for an algorithm based on lossy-counting is significantly smaller
than l / (e - ci).

Output: (e, cc)-synopsis

Root node: (R

Monitor nodes: (M

Input streams: S1

v 1)-synopses

(e2, 1)-synopses

Figure 2: Example topology.

Table 2: Communication loads in example scenario.

€2

0
0.03
0.05

Load on
root node R

2
2

54

Maximum load on any link
excluding links to R

27

14

14

Maximum load
on any link

27
14
27

time after reaching a steady-state size,as long as stream rates remain steady. In contrast, when e\ = e (as in strategy
SS2), the space requirement is much greater as we demonstrate empirically in Section 4.3. Our approach is to set ei
such that the worst-case size of SA (under the maximum possible stream rate k) is below any space constraint at R.

Given a value for e1? the remaining error tolerance values €2, . . . , €/_i making up the precision gradient determine
the communication load incurred. We illustrate the effect of the precision gradient on communication using the
following rather contrived but simple example that highlights the effect clearly; our experimental results presented
later in Section 4 are conducted over real-world data.

3.1.1 Motivating Example

Figure 2 shows the communication topology we use for our example. Suppose the overall user-specified error tolerance
e = 0.05, and for simplicity assume e\ w e = 0.05. Suppose that during one epoch 100 items occur on each of
Si, £2, S3 and 54, drawn from a universe of 27 distinct items. For ease of comprehension, we partition the 27 distinct
items into three categories: A, B, and C. Category A contains one item and categories B and C each contain 13. The

Table 3: Link loads in example scenario.

0

0.03

0.05

Mi ->/i

category

A
B
C
A
B
A

B

and M3 —> I2

frequency

estimate

9
6
1

6
3

4

1

M2-+I1

category

A
B
C
A

C

A

C

and M4 —> I2

frequency
estimate

9
1
6
6
3

4

1

/1 -* R and I2 -> R
category

A

A

A

B

C

frequency
estimate

8

8

8

1

1

frequency of occurrence in each input stream of items in each category is given in the shaded region of Table 3. The
single item in category A occurs nine times in each of Si, £2, S3 and S4. Each item in category B occurs six times
each in Si and S3 but only once each in S2 and S4. The opposite is true for items in category C: each occurs once in
each of Si and S3 but six times in each of S2 and S4.

Table 2 summarizes the effects of varying e2, which determines the amount of error introduced at level 2 (nodes
Mi — M4), assuming lossy counting with per-epoch batch processing is used to produce the initial synopses at the
leaf nodes. Three measures of communication load are reported: (1) load on the root node R, (2) maximum load
on any link excluding links to R, and (3) maximum load on any link. In all cases, communication load is measured
in terms of the number of frequency counts transmitted during the epoch. Setting e2 = 0.05 corresponds to simple
strategy SS2 outlined in Section 1.3. (We do not report measurements for SSI, in which ei = 0 and €2 = 0, since
communication load is higher than under any of our three example strategies under all three metrics.)

To understand how these numbers come about, consider Table 3, which shows, for each setting of e2, shows the
frequency estimate for items of each category sent along each link. In the case in which €2 = 0, the estimated counts
sent from leaf nodes Mi — M4 to nodes I\ and I2 (shown with shaded background) are exact. All other values in
Table 3 are underestimates. We focus on the case in which €2 = 0.03 to illustrate how these underestimates are
computed. At each leaf node, when €2 = 0.03 application of the lossy counting algorithm leads to undercounting of
each item's frequency by e2*100 = 0.03100 = 3. Hence, estimated counts transmitted in synopses from the leaf nodes
Mi — M4 to nodes 7i and I2 are less than their actual counts by 3; some counts fall below zero and are eliminated.
Once these synopses are received at nodes I\ and I2, Algorithm 1 is invoked, in which synopsis counts received from
leaf nodes are first combined additively, and then decremented by (ei — 62) • 200 = 0.02-200 = 4. For the single
item in Category A, leaf nodes Mi and M2 each supply a count of 6 to node / 1 , for a combined count of 12, which is
then decremented by 4 for a final estimated count of 8 to be sent to node R. Items in Categories B and C each have
combined counts of 3 at / 1 , which fall below zero when decremented by 4 and thus are not transmitted to R.

From Table 2 we observe a tradeoff between communication load on the root node R and load on links not
connected to R. Furthermore, in this particular case (although not always true in general), of our three example
strategies, the strategy of using a gradual precision gradient (62 = 0.03) is best with respect to all three metrics. To
see why, consider that if error tolerances are made large for levels of the communication hierarchy close to the leaves
(in the most extreme case, by setting ej_i = e, as in SS2), some locally-infrequent items are eliminated early, thereby
reducing communication near the leaves. However, an undesirable side-effect arises in the presence of items just
frequent enough at one or more leaf nodes to survive elimination locally, but not frequent enough overall to exceed
the error threshold (as with items in categories B and C in our example). Counts for such items may avoid being
eliminated until very late (or, worse, may never be eliminated), thus resulting in increased communication near the
root. Hence, there is a tradeoff between high communication among non-root nodes and heavy load on the root node
R.

The best way to set the precision gradient depends on the application scenario. For some applications the most
important criterion may be to minimize load on the root node R where the answers are generated, which may need
to devote the majority of its resources to other critical tasks for the application, even if that means increased load on
the nodes responsible for monitoring streams and merging synopses. For other applications, it is most important to
minimize the maximum load on any link to ensure that large volumes of input data can be handled without overloading
network resources.

Next, we study the optimization problem of how best to set the precision gradient to achieve one of two objectives:
(1) minimize communication load on the root node R, or (2) minimize worst-case communication load on the most
heavily-loaded link in the hierarchy. Communication load is measured in terms of the number of frequency counts
transmitted during one epoch. We study each optimization objective in turn in Sections 3.1.2 and 3.1.3, and provide
optimal settings of the error tolerances e 2 , . . . , e/_i making up the precision gradient. Then, since real-world data is
unlikely to exhibit worst-case behavior, in Section 3.1.4 we propose a variant that seeks to achieve low load on the
most heavily-loaded link, under non-worst-case inputs for which estimated data distributions are available.

3.1.2 Minimizing Total Load on the Root Node

Setting €i = 0 for all 2 < i < I — 1, whereby all decrementing and elimination of synopsis counts is performed
by children of node R, minimizes communication load on the root node R under any input streams. We term this

precision gradient setting MinRootLoad.

Lemma 1 Given a value for €\,for any input streams no values of62,..., Q_i satisfying e\ > 62 > . . . > ei-i result
in lower total communication load on node R than the values 62 = 63 = . . . = e/_i = 0 .

Proof: Consider node X, an arbitrary child of the root node R. Let Sx denote the union of all streams arriving at
the monitor nodes belonging to the subtree rooted at X during one epoch. Algorithm 1 ensures that, for any setting
of 62, . . . , 6/_i, counts for all items v with frequency c(v) > e\ • \Sx | are sent over the link from X to R (here, \Sx \
denotes the number of item occurrences in Sx)> Using €2 = £3 = . •. = Q-i = 0, it is easy to see that an item u will
be sent over the link from X to R only if c(u) > ei • \Sx |- Therefore, this setting of 62, . . . , e*_i results in the smallest
possible number of counts sent over the link from X to R. Since this property holds for any child X of R, strategy
MinRootLoad minimizes the total communication load on R, for any input streams. •

3.1.3 Minimizing Worst-Case Maximum Load on Any Link

In this section we show how to set 62, . . . , Q-i to minimize the maximum load on any communication link, in the
worst case over all possible input streams. Our analysis assumes lossy counting is used to generate the local synopsis
at each monitor node. We assume the buffer each monitor node uses for lossy counting is large enough to store
frequency counts of all items arriving on the input stream during any one epoch. As we later confirm in Section 4, this
assumption poses no problem in practice, particularly if the epoch duration is small.

For our worst-case analysis, we extend the set of possible inputs in two minor ways:

1. The occurrence frequency of an item arriving on an input stream can be a rational number.

2. Associated with each item u is a weight wu G [0,1], In an epoch, at most one item occurrence per input stream
can be an occurrence of an item of weight less than 1. The cost of transmitting the count of item u with weight
wu is wu. In a synopsis, S:n = Y2C(U)'W(U)-

As will become clear later, both of these enhancements allow load on a link to be expressed as a continuous function,
which in turn simplifies our worst-case analysis. Neither enhancement alters the worst-case input significantly. First,
during an epoch, at most one item occurrence per input stream can have non-integral weight. Second, any input with
fractional item frequencies can be transformed into an input with integral frequencies that yields identical results by
multiplying each frequency by a large number, and dividing all answers produced by the same number.

For notational ease, we transform the problem of setting 62, . . . , Q_I to that of setting A 2 , . . . , A/_i, where for
all 2 < i < I — 2, Aj = €{ - 6j+i and A/_i = 6/_i. It is required that A* > 0 for all 2 < i < I — 1, and that
£*~2^ < 61. Ai denotes the precision margin at level z, i.e., the difference between the error tolerances at level i and
leveH + 1. _

Let the vector A = (A2, A 3 , . . . , A/_i). Let / denote the contents of all input streams S\,..., Sm during a single
epoch. Let X denote the set of all possible instances of / .

Given an input_7, a communication hierarchy T (defined by degree d and number of levels /), and a setting of the
precision gradient A, let w represent the maximum load on any link in the communication hierarchy:

w(I,T,A)= max Uoad(k)}
kelinks(r)

Worst-case load W is defined as:

iex

Given a communication hierarchy T, the objective is to set A such that the worst-case load W(T, A) is minimized.
We denote such a value of A by Awc, defined as:

Awc = argmin{W(T,~K)}
A

We first show that it is sufficient to consider a specific subset of all instances of the general problem for worst-case
analysis. Then we find precision gradient values A values that cause the worst-case load under any of these instances
to be minimal.

There exists a subset XA of the set of all input instances X such that for all instances I el — 1A, there exists an
instance V e I A such that for any T, A, w(I\ T, A) > w(I> T, A). Hence, XA denotes the set of worst-case inputs.
Instance / is a member of XA if and only if it satisfies each of the following three properties:

• PI: For any two input streams Si and Sj, there is no item occurrence common to both S{ and Sj.

• P2: For any input stream S*, all items occurring in Si occur with equal frequency.

• P3: For any two input streams S; and Sj, both the number of item occurrences, and the number of distinct items,
in Si and Sj are equal.

Lemma 2 Forfixed T and A, given any input instance 7, it is find possible to find an input instance I' € XA such
that w(V,T', A) > w(J ,T, A).

Our proof of Lemma 2 is rather involved, and is provided in Appendix B.
From Lemma 2 we know it is sufficient to consider the set XA for worst-case communication load. Hence, we can

rewrite our expression for W(T, A) as:

W(T,~K) = max{w(/,T, A)}
1^1

Property P3 of XA implies that the total number of item occurrences at any leaf node is the same. Let n denote this
number (\Si\ = n for all 1 < i < m). Let tc(j) denote the total number of item occurrences arriving on streams
monitored by at the leaf nodes of a subtree rooted at a node at level j. It is easy to see that tc(j) = d^l~l~^ • n, where
I is the number of levels in the communication hierarchy and d is the fanout of all non-leaf nodes. The next lemma
shows that worst-case inputs induce a high degree of symmetry on the resulting synopses.

Lemma 3 For any input instance I E XA> the following two properties hold for the d^ (e0;, 1)-synopses relayed by the
dj level-j nodes to their parents:

• No item is present in more than one synopsis.

• The estimated frequency counts corresponding to any two items, even if present in two different synopses, have
the same value.

Proof: We prove Lemma 3 by induction on j.
Base Case (j'> = I — 1): First, any input instance from the set XA satisfies properties PI and P3. Furthermore,

recall that we assume each leaf node buffers stream contents for an entire epoch before reducing counts using the lossy
counting algorithm. Hence, each leaf node reduces the frequency estimate corresponding to each item by the same
amount: tc(l — 1) • Aj_i. Thus, it is easy to see that Lemma 3 holds for j = (I — 1).

Induction Step: Assume the lemma holds for level j. At level j — 1, the frequency estimate for each item is
reduced by the same amount, tc(j — 1) • Aj_i, in Step (3) of Algorithm 1 (for convenience, we use Ai to denote
€i - X^=2 A^. Therefore, Lemma 3 holds for level j - 1. •

Due to the high degree of symmetry formalized in Lemma 3, the count for each item is eliminated (due to being
decremented and falling below zero) at the same level of the communication hierarchy. Let us call this level x. If all
counts are dropped at the leaf level, then x = I — 1. If all counts are retained through the entire process and are sent
to the root node R (level 0), then x = 0. Otherwise, all counts are dropped at some intermediate level 1 < x < I — 2.

The most heavily loaded link(s) are the ones leading to level x. To see why, consider that no data is transmitted on
subsequent links and previous links have lower load since data is spread more thinly (in any communication hierarchy
T, the number of links between levels decreases monotonically as data moves from leaves to the root).

When synopses are combined at nodes of level i using Algorithm 1, the frequency count estimate of each item is
decremented by the quantity tc(i) • A* (let Ai = c\ — S^~2 A*). Hence, the true frequency count of any item occurring

10

on some input stream must be C = S j = i+ i (tc(j) • A^) + 6, where S is a small quantity6. The number of items present
in each input stream is thus g?7. Since synopses for dl~1~x input streams are transmitted through a node at level x,
the load on the most heavily loaded link(s) is L(x) = dl~l~x • g. Clearly, the maximum value of L(x) is achieved
when 5 —> 0. The expression for L(x) can be simplified to:

Now, our expression for the worst-case load on any link can be reduced to:

W{T,~K)= _max {L(x)}

We desire to minimize W(T, A) subject to the constraints A 2 , . . . , A/_i > 0 and E^^Aj < ei. It is easy to show
that this minimum is achieved when L(0) = L(l) = • • • = L(l — 2).

Solving for A 2 , . . . , Aj_i, we obtain: A» = ci • ^4*^4+2 ' 2 < i < / - 2 and Aj_i = ex • ld_f[_dJr2. Translating

to error tolerances, we set a = ei - d+^Jl7-rf+2~^ for all 2 < z < / - 1. This setting of e 2 , . . . , e/_i minimizes the

worst-case communication load on any link. 8 We term this strategy MinMaxLoad.WC.

3.1.4 Good Precision Gradients for Non-Worst-Case Inputs

Real data is unlikely to exhibit worst-case characteristics. Consequently, strategies that are optimal in the worst case
may not always perform well in practice. In terms of minimizing the maximum communication load on any link, the
worst-case inputs are ones in which the set of items occurring on each input stream are disjoint. When this situation
arises, a gradual precision gradient is best to use (as shown in Section 3.1.3). Using a gradual precision gradient, some
of the pruning of frequency counts is delayed until a better estimate of the overall distribution is available closer to
the root, thereby enabling more effective pruning. In the opposite extreme, when all input streams contain identical
distributions of item occurrences, there is no benefit to delaying pruning, and performing maximal pruning at the leaf
nodes (as in strategy SS2) is most effective at minimizing communication. In fact, it is easy to show that SS2 is the
optimal strategy for minimizing the maximum load on any link when all input streams are comprised of identical
distributions; we omit a formal proof. (Note, however, that SS2 still incurs a high space requirement on the root node
R since it sets ei = e.)

We posit that most real-world data falls somewhere between these two extremes. To determine where exactly a data
set lies with regard to the two extremes, we estimate the commonality between input streams Si,..., Sm by inspecting
an epoch worth of data from each stream. We compute a commonality parameter 7 G [0,1] as 7 = —Yl^i T1* where
Gi and Li are defined over stream Si as follows. The quantity Gi is defined as the number of distinct items occurring
in Si that occur at least e-\Si\ times in Si and also at least e-15| times in S = S\ U S2 U • • • U Sm , where \S\ denotes
the number of item occurrences in S during the epoch of measurement. The quantity Li is defined as the number of
distinct items occurring in Si that occur at least c-\Si\ times in Si. Hence, commonality parameter 7 measures the
fraction of items frequent enough in one input stream to be included in a leaf-level synopsis by strategy SS2 that are
also at least as frequent globally (in the union of all input streams).

A natural hybrid strategy is to use a linear combination of MinMaxLoad_WC and SS2, weighted by 7. The strategy
is as follows: sete* = (1 -7)-(ei • ^^JlV^+g""^) + r (c) for 2 < i < (/ -2) , ande/_i = {l-^)'Ui- ld_f_d+2\ +
7*(e). We term this hybrid strategy MinMaxLoad_NWC (for non-worst-case). Commonality parameter 7 = 1 implies
that locally frequent items are also globally frequent, and SS2 (modified to use e\ < e) is a good choice. Conversely,
7 = 0 indicates that MinMaxLoadJWC is a good choice. For 0 < 7 < 1, a weighted mixture of the two strategies is
best.

6Recall that we allow the frequency of an item to be a real number.
7More precisely, each stream contains L^J items of weight 1 each and one item of weight = -^ — [§J - Note that each input stream contains

at most one item with weight less than 1, as stipulated earlier.
8Lastly, we note that MinMaxLoadJWC remains the optimal precision gradient setting for minimizing the worst-case communication load on

any link even if different nodes on the same level can have different e values. We omit a formal proof.

11

Table 4: Summary of precision gradient settings studied.
Strategy

Simple Strategy I (SSI)
Simple Strategy (SS2)

MinRootLoad
MinMaxLoad.WC
MinMaxLoad_NWC

Description

Transmits raw data to root node R
Reduces data maximally at leaf nodes

Minimizes total load on root in all cases
Minimizes worst-case maximum load on any link
Variant for achieving low load on most
heavily-loaded link, under non-worst-case inputs

Section Introduced

1.3
1.3

3.1.2
3.1.3
3.1.4

— S S 1 H&-SS2 •#• MinRootLoad
»MinMaxLoad_WC -#»MinMaxLoad_NWC

Tree level (i)
2

Figure 3: Precision gradients (e = 0.001; we assume 7 = 0.5 for MinMaxLoad_NWC).

3.2 Summary

We now summarize the methods we introduced in Section 3.1 for setting the precision gradient, which consists of a set
of error tolerance values e > e i > . . . € / _ i > 0 associated with each level in the communication hierarchy. First, in all
cases ei should be set according to any space limitations at the root node R, which must persistently store a synopsis
of recent item frequencies. The remaining error tolerances e 2 , . . . , ej_i may then be set so as to minimize the overall
load on the root node or, alternatively, to minimize load on the most heavily-loaded communication link.

To minimize overall load on the root node, we introduced strategy MinRootLoad in Section 3.1.2, which delays all
decrementing and elimination of frequency counts until immediately before data reaches the root node, in order to min-
imize the number of counts reaching the root. We also proposed two strategies aimed at minimizing communication
load on the most heavily-loaded link: MinMaxLoad.WC (Section 3.1.3) and MinMaxLoad-NWC (Section 3.1.4). The
former is guaranteed to minimize worst-case communication load on any link, whereas the latter aims to achieve low
load in the presence of data that does not exhibit worst-case characteristics, and is therefore parameterized by certain
high-level characteristics of the expected input data. Our strategies for setting the precision gradient are summarized
in Table 4, and sample precision gradients are illustrated in Figure 3.

4 Experimental Evaluation

In this section we evaluate the performance of our newly-proposed strategies for setting the precision gradient, using
the two naive strategies suggested in Section 1 as baselines. We begin in Section 4.1 by describing the real-world
data and simulated distributed monitoring environment we used. Then, in Section 4.2, we analyze the data using our
model of Section 3.1.4 to derive appropriate parameters for our MinMaxLoad_NWC strategy that is geared toward
performing in the presence of non-worst-case data. We report our measurements of space utilization on node R in

12

Table 5: Configurations of web application benchmarks.
Benchmark
AUCTION

BBOARD

DB size
489 MB

429 MB

Details
100,000 users
33,667 items
500,000 users

213,292 comments

Section 4.3, and provide measurements of communication load in Section 4.4.

4.1 Data Sets

As described in Section 1, our motivating applications include detecting DDoS attacks and monitoring "hot spots" in
large-scale distributed systems. For the first type of application, we used traffic logs from Internet2 [16], and sought to
identify hosts receiving large numbers of packets recently. For the second type, we sought to identify frequently-issued
SQL queries in two dynamic Web application benchmarks configured to execute in a distributed fashion.

The INTERNET2 [16] traffic traces were obtained by collecting anonymized netflow data from nine core routers of
the Abilene network. Data were collected for one full day of router operation and were broken into 288 five-minute
epochs. To simulate a larger number of nodes, we divided the data from each router in a random fashion. We simulated
an environment with 216 network nodes, which also serve as monitor nodes.

For the web applications, we used Java Servlet versions of two publicly available dynamic Web application bench-
marks: RUBiS [23] and RUBBoS [22]. RUBiS is modeled after eBay [9], an online auction site, and RUBBoS is
modeled after slashdot [21], an online bulletin-board, so we refer them as AUCTION and BBOARD, respectively. We
used the suggested configuration parameters for each application (given in Table 5), and ran each benchmark for 40
hours on a single node.We then partitioned the database requests into 216 groups in a round-robin fashion, honoring
user session boundaries. We simulated a distributed execution of each benchmark with 216 nodes each executing one
group of database requests and also serving as a monitor node.

For all data sets, we simulated an environment with 216 monitoring nodes (m = 216) and a communication
hierarchy of fanout six (d = 6). Consequently, our simulated communication hierarchy consisted of four levels
including the root node (7 = 4). We set s = 0.01, e = 0.1 • s, and ei = 0.9 • e. Our simulated monitor nodes used
lossy counting [20] in batch mode, whereby frequency estimates were reduced only at the end of each epoch (in all
cases, less than 64KB of buffer space was used), to create synopses over local streams. The epoch duration T was set
to 5 minutes for the INTERNET2 data set and 15 minutes for the other two data sets.

4.2 Data Characteristics

Using samples of each of our three data sets, we estimated the commonality parameter 7 for each data set. Recall
that we use 7 to parameterize our strategy MinMaxLoad_NWC presented in Section 3.1.4. We obtained 7 values of
0.675 0.839 and 0.571 for the INTERNET2, AUCTION and BBOARD data sets respectively. Hence, the AUCTION data
set exhibited the most commonality among all three data sets. Results presented in Section 4.4 show that AUCTION
indeed has the most commonality.

4.3 Space Requirement on Root Node

Figure 4 plots space utilization at the root node R as a function of time (in units of epochs), for different values of the
decay parameter a, using two different strategies for the precision gradient. The plots shown are for the INTERNET2
data set. The y-axis of each graph plots the current number of counts stored in the (e, a)-synopsis SA maintained
by the root node R. Figure 4a plots synopsis size under our MinMaxLoad_WC strategy under three different values
of a: 0.6, 0.9 and 1. As predicted by our analysis of Appendix A.I, when a < 1 the size of SA remains roughly
constant after reaching steady-state, whereas when a = 1 synopsis size increases logarithmically with time (similar
results were obtained for the non-distributed single-stream case). In contrast, when SS2 is used to set the precision

13

41 61
Time (epoch #)

81

(a) MinMaxLoad-WC (b) SS2

Figure 4: Space needed at node R to store answer synopsis SA*

gradient (Figure 4b), the space requirement is almost an order of magnitude greater. This difference in synopsis size
occurs because in SS2 frequency counts are only pruned from synopses at leaf nodes, so counts for all items that are
locally frequent in one or more local streams reach the root node. No pruning power is reserved for the root node,
and therefore no count in SA is ever discarded (irrespective of the a value). This result underscores the importance of
setting 6i < e in order to limit the size of SA, as discussed in Section 3.1.

4.4 Communication Load

Figure 5 shows our communication measurements under each of our two metrics, for each of our three data sets, under
each of the five strategies for setting the precision gradient listed in Table 4. First of all, as expected, the overhead of
SSI is excessive under both metrics. Second, by inspecting Figure 5a we see that strategy MinRootLoad does indeed
incur the least load on the root node R in all cases, as predicted by our analysis of Section 3.1.2. Under this metric,
MinRootLoad outperforms both simple strategies SSI and SS2 by a factor of five or more in all cases measured.
However, MinRootLoad performs poorly in terms of maximum load on any link, as shown in Figure 5b because no
early elimination of counts for infrequent items is performed and, consequently, synopses exchanged near the leaf
nodes tend to be quite large. As expected, MinMaxLoad_NWC performs best under that metric on all data sets. For
the AUCTION data set, even though SS2 outperforms MinMaxLoad_WC (to be expected because of the high 7 value),
our hybrid strategy MinMaxLoadJSfWC is superior to SS2 by over a factor of two. For the INTERNET2 and BBOARD
data sets, the improvement over SS2 is more than a factor of three.

5 Related Work
Most prior work on identifying frequent items in streams, e.g., [8,17,20], only considers the single-stream case, and
does not incorporate time-sensitivity. Recently, Arasu et al. [4] proposed a technique for finding frequent items in a
sliding window over a single stream, which is a method of achieving time-sensitivity. Other recent work by Golab et
al. [14] concentrates on specialized networking applications and proposes techniques for maintaining exact frequency
counts over sliding windows, again over a single stream. In this paper we explore an alternative to sliding windows
for achieving time-sensitivity, exponential weighting, and our primary focus is on distributed streams.

While we are not aware of any work on maintaining frequency counts for frequent items in a distributed stream
setting, work by Babcock et al. [5] does address a related problem. In [5] the problem is to monitor continuously
changing numerical values, which could represent frequency counts, in a distributed setting. The objective is to
maintain a list of the top k aggregated values, where each aggregated value represents the sum of a set of individual

14

ESS1 QSS2 I
DMinMaxLoad_WC • MinMaxLoad_NWC

IMinRootLoad

247k 10k 296k 132k 20k

INTERNET2 AUCTION BBOARD

ESS1 DSS2 I
• MinMaxl_oad_WC • MinMaxLoad_NWC

I MinRootLoad

43k 21k 52k 19k 23k 7k

8 3500

§"3000

^ 2 5 0 0

1 2000

I 1500

£ 1000

I 500
8 0

INTERNET2 AUCTION BBOARD

(a) Load on root node R (b) Maximum load on any link

Figure 5: Communication measurements ("k" denotes thousands).

values, each of which is stored on a different node. The work of [5] assumes a single-level communication topology
and does not consider how to manage synopsis precision in hierarchical communication structures using in-network
aggregation, which is the main focus of this paper.

6 Summary

In this paper we studied ways to extend algorithms for finding frequent items in a single data stream to incorporate
time-sensitivity and work in a distributed setting. We began by analyzing the effect of applying exponentially decaying
weighting to achieve time-sensitivity, and showed that the maximum space requirement becomes constant with respect
to time.

We then turned to the problem of finding frequent items in the union of multiple distributed streams. The central
issue is how best to manage the degree of approximation performed as partial synopses from multiple nodes are
combined. We characterized this process for hierarchical communication topologies in terms of a precision gradient
followed by synopses as they are passed from leaves to the root and combined incrementally. We studied the problem of
finding the optimal precision gradient under two alternative and incompatible optimization objectives: (1) minimizing
load on the central node to which answers are delivered, and (2) minimizing worst-case load on any communication
link. We then introduced a heuristic designed to perform well for the second objective in practice, when data does not
conform to worst-case input characteristics. Our experimental results on three real-world data sets showed that our
methods of setting the precision gradient are greatly superior to naive strategies under both metrics, on all data sets
studied.

References
[1] AGRAWAL, R., AND SRIKANT, R. Fast algorithms for mining association rules. In Proceedings of the Twentieth International

Conference on Very Large Data Bases (1994).

[2] AKAMAI TECHNOLOGIES, I. Akamai, h t t p : / /www.akamai . com/.

[3] AKELLA, A., BHARAMBE, A., REITER, M., AND SESHAN, S. Detecting DDoS attacks on ISP networks. In Proceedings
of the Twenty-Second ACM SIGMOD/PODS Workshop on Management and Processing of Data Streams (2003).

[4] ARASU, A., AND MANKU, G. S. Approximate quantiles and frequency counts over sliding windows. In Proceedings of the
Twenty-Third ACM SIGACT-S1GMOD-SIGART Symposium on Principles of Database Systems (2004).

15

[5] BABCOCK, B., AND OLSTON, C. Distributed top-k monitoring. In Proceedings of the 2003 ACM SIGMOD International
Conference on Management of Data (2003).

[6] COHEN, E., AND STRAUSS, M. Maintaining time-decaying stream aggregates. In Proceedings of the Twenty-Second ACM
SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems (2003).

[7] DATAR, M., GIONIS, A., INDYK, P., AND MOTWANI, R. Maintaining stream statistics over sliding windows. SIAM Journal
on Computing (2002).

[8] DEMAINE, E. D., LOPEZ-ORTIZ, A., AND MUNRO, J. I. Frequency estimation of internet packet streams with limited
space. In Proceedings of the Eleventh Annual European Symposium on Algorithms (2003).

[9] EBAY INC. eBay, http: / /www. ebay. com.

[10] ESTAN, C, AND VARGHESE, G. New directions in traffic measurement and accounting. In Proceedings of the ACM SIG-
COMM 2002 Conference on Applications, Technologies, Architectures, and Protocols for Computer Communication (2002).

[11] FANG, M., SHIVAKUMAR, N., GARCIA-MOLINA, H., MOTWANI, R., AND ULMANN, J. Computing iceberg queries

efficiently. In Proceedings of the Twenty-Fourth International Conference on Very Large Data Bases (1998).

[12] GIBBONS, P., AND TIRTHAPURA, S. Estimating simple functions on the union of data streams. In Proceedings of the
Thirteenth Annual ACM Symposium on Parallel Algorithms and Architectures (2001).

[13] GIBBONS, P. B., AND MATIAS, Y. New sampling-based summary statistics for improving approximate query answers. In
Proceedings of the 1998 ACM SIGMOD International Conference on Management of Data (1998).

[14] GOLAB, L., DEHANN, D., DEMAINE, E., A LOPEZ-ORTIZ, AND MUNRO, J. Identifying frequent items in sliding windows
over on-line packet streams. In Proceedings of the Internet Measurement Conference (2003).

[15] HAN, J., PEI, J., DONG, G., AND WANG, K. Efficient computation of iceberg queries with complex measures. In Proceed-
ings of the 2001 ACM SIGMOD International Conference on Management of Data (2001).

[16] INTERNET2. Internet2 Abilene Network, h t t p : / / a b i l e n e . i n t e r n e t 2 . edu.

[17] KARP, R. M., SHENKER, S., AND PAPADIMITRIOU, C. H. A simple algorithm for finding frequent elements in streams and
bags. ACM Trans. Database Syst. 28, 1 (2003), 51-55.

[18] KREYSZIG, E. Advanced Engineering Mathematics, Eighth ed. John Wiley and Sons, New York, 1999.

[19] MANJHI, A., SHKAPENYUK, V., DHAMDHERE, K., AND OLSTON, C. Finding (recently) frequent items in distributed data
streams. Tech. Rep. CMU-CS-04-121, Carnegie Mellon University, 2004.

[20] MANKU, G., AND MOTWANI, R. Approximate frequency counts over data streams. In Proceedings of the Twenty-Eighth
International Conference on Very Large Data Bases (2002).

[21] OPEN SOURCE DEVELOPMENT NETWORK INC. Slashdot. h t t p : / / s l a s h d o t . org.

[22] RUBBoS. Rice University Bulletin Board System, h t t p : / / rubbos . obj ectweb. org/ .

[23] RUBlS. Rice University Bidding System, h t t p : / / r u b i s . ob j ectweb. org/ .

A Analysis of Time-Sensitive Extensions

A.I Proof that Time-Sensitive Extension to Majority* Counting Ensures Error Guarantees

To make majority+ counting [8,17] time-sensitive, we extend it in a straight-forward fashion: each count in the
synopsis is multiplied by a whenever a new epoch begins. For completeness, we provide the extended algorithm as
Algorithm 3. We prove that this algorithm ensures the error guarantees specified in Section 1.2, i.e., for any item u9 if,
as before, c(u) denotes the weighted frequency of occurrence of item u, and S: c(u) denotes its estimate produced by
Algorithm 3, then {c(u) - e-^2weU c(w)) < S:c(u). This inequality follows from the following lemma:

Lemma 4
Wu £ U, (c(u) - S:c(u)) < e- ^2 (c(™) ~ S:c(w))

16

Algorithm 3: Time-Sensitive Majority4" Counting —• maintaining (e, a)-synopsis S

Initially, S:n = 0

On arrival of a new item u:

1. If S:c(u) exists, set S:c(u) := S:c(u) + 1. Else, create S:c(u); set S:c(u) := 1

2. If \S\ > 1/e, for each ueS, set S:c(u) := <S:c(u) - 1; if 5:c(w) < 0, eliminate count S:c(u)

3. Set<S:n:=<S:n+l

On start of a new epoch:

1. For each u e S, set S:c(u) := a-S:c(u)

2. Set*S:n := a-*S:n

Proof: We prove this inequality by induction on j, the number of epochs completed (recall that an epoch consists of
T time units). For each item, let Cj(u) and S:CJ{U) denote the actual and estimated weighted frequencies at the end
of epoch j .

Base case 0 = 1)' The left-hand side of the inequality represents the total number of times the count for item
u was decremented by 1 during the first epoch. Each time item u was decremented (Step 3 of Algorithm 3), a
total of |"^] counts (including w's count) were decremented by 1. Therefore, the total undercounting whenever u is
decremented is at least (^ M - j ^ M ? . j \ ^ s quantity cannot exceed the total number of undercounting across all items
CLweu (c iW ~ Sicxiw))). Hence, for epoch 1, (d(u) - S:ci(u)) < e> £ {ci{w) - S : c\(w)).

weu
Inductive step: Assume that Lemma 4 holds for epoch j , i.e., (CJ(U) — S:CJ{U)) < e-EweU(cj(w) — S:CJ(W)).

By adapting the argument made in the base case (j = 1), we obtain:

',)-a'Cj(u))-(S:cj+i(u)-a-S:cj(u)))< a- ^ S:6j(w) + ^ (CJ+I(W) - a>Cj{w)) I - 2^«S:Cj+i(u;) (1)
\ wet/ weu / weu

The term (CJ+I(U) — a-Cj(u)) on the left-hand side in the above inequality, is the number of times item u occurred in
epoch (j + 1). Similarly, (S:CJ+I(U) — a-S:Cj(u))) represents the increase in item u's count during epoch (j + 1).
Therefore, the difference of the two quantities, ((CJ+I(U) — a-Cj{u)) — (S:CJ+I(U) — a-S :CJ(U))), represents the
number of times the count for item u was decremented by 1 during epoch j + 1. Each time item u was decremented,
a total of f̂ "| counts (including u\ count) were decremented. The left-hand side of Inequality (1) represents the
minimum value of the total undercounting whenever u was decremented during epoch (j -j- 1). This quantity cannot
exceed the total amount of undercounting across all items during epoch (j + 1), the right-hand side of Inequality (1).
The first term on the right-hand side is the initial sum of all counts at the end of epoch j, multiplied by a, plus the
number of items that arrived during epoch (j +1) . The second term is the sum of all counts at the end of epoch (j +1).

Combining Inequality (1) with the statement of the lemma for epoch j, we obtain:

1 _ ^

weu

a

A.2 Derivation of Space Bound for Time-Sensitive Extension to Lossy Counting

In the original lossy counting algorithm [20], there is a single type of decrement operation: each count is decremented
by 1 whenever \l/e] items arrive. In the time sensitive extension to lossy counting that we propose (for completeness,

17

Algorithm 4: Time-Sensitive Lossy Counting — maintaining (e, a)-synopsis S

Initially, num = 0, and S:n = 0
On arrival of a new item u:

1. If S:c(u) exists, set S:c(u) := S:c(u) + 1 . Else, create S:c(u)\ set S:c(u) := 1

2. Set<S:n:=«S:n+l

3. Set num := num + 1

4. If num = [i"|:

(a) Set num := 0

(b) For each u e 5, set «S:c(u) := 5:c(u) - 1

(c) If S:c(u) < 0, eliminate count <S:c(w)

On start of a new epoch:

1. For each u G S\

(a) Set <S:c(u) := S:c(u) - ^

(b) If S:c(u) < 0, eliminate count S:c(u)

(c) Set5:c(^) := a-S:c(u)

2. Set num := 0

3. Set iS:n := a-«S:n

we provide the extended algorithm as Algorithm 49), frequency estimates are reduced in value when either (a) a new
epoch starts, or (b) [^1 items have arrived since the last count reduction operation. We provide detailed analysis of
the worst-case space requirement for our time-sensitive extension to lossy counting. Before proceeding, we introduce
some notation.

Let Tj = \{(ui,ti) e S | j-T < U < (j + 1) -T}\ denote the number of items arriving on stream S in epoch j.
Let P = [logjL(l + -)1 + 1 and let tnow denote the current time and let p = [^r^J denote the number of epochs

ex ^

completed at time tnow. Let k = max {TJ} denote the maximum number of items arriving on 5 in any epoch. We

assume a < 1 throughout this section.
Lemma 5 With k defined as abovey the maximum weighted frequency count of any item is bounded from above as
follows: max(c(w)) < yz^-

Proof: Recall from Section 1.2 that by definition, c(u) =]C<Mi,t<)€S,u<=u ^^ *lj • U s i n g t h e definition of fe,

c(u) < k'Y^ap-j <YZT^

•
As a result of the count reduction operations (mentioned at the start of this Section), any item occurrence within

the current epoch results in a TTT reduction in the frequency count of each item. Since TTT > yr^, any occurrence of

9 Algorithm 4 can be modified in a straightforward way to achieve constant worst-case processing time.

18

an item within the current epoch results in the frequency count of each item being reduced by at least j ^ . Using this
observation, we show in the next lemma that we can discount old occurrences of items from our calculations.

L e m m a 6 Assume a count reduction operation has just been carried out. If item u is not among the k-P most recent
item occurrences in S, then S: c(u) = 0.

Proof: Let /3± epoch boundaries occur during the last k-/3 item occurrences. Since at most k items can appear on S in
any epoch, (5\ > {(3 — 1).

Let S:cf(u) denote the value of item us count before the k •/? occurrences. There are p\ epoch boundaries since
item u's count was S: cr(u)\ and each epoch boundary scales down the count value by a. Moreover, arrival of any
item r epochs before, results in a scaled-down decrement by ar. Therefore, the minimum decrement due to k-/3 item
occurrences is ^ '2Zj=pi/?f ~1(k '&p~j)- Therefore, S:c(u) can be bounded from above as:

5 : C («) < / ^ : C ' (M) - ^ . } ^ k-ap~3

Using Lemma 5, the expression for S:c(u) becomes:

S:c(u) < a01 k-A ; ^
1 - a 1 + e 1 - a

(since a^-^<l and a? < a?'1)

= 0 (substituting a@~l = , follows from definition of (3)

Since S:c{u) < 0, S:c(u) must have been dropped from the synopsis. •
To help us analyze the maximum number of counts required, we associate a position with each item occurrence.

We use this information to label the frequency counts present in the synopsis at time tnow. The label of a frequency
count is i if it was created just after the ith most recent item occurrence arrived. Let d{ denote the number of counts in
the synopsis with label i. Lemma 7 and Lemma 8 bound d^ which is eventually used to bound the maximum number
of counts used by our time-sensitive extension to lossy counting.

Lemma 7 Immediately after a count reduction operation is carried out,

Proof: At tnow, Step (5) and l(a) of Algorithm 4 ensure that each count with label i is decremented by at least
j^ -i. Therefore, counts with labels up to j for any j € {1, 2,. . .} are decremented by at least ^ • T,Ji=1i-di. If we
consider the last j item occurrences, the maximum possible addition to all counts with labels at most j is j. Hence,
l fe-E? = i (w*i)<J V j e { l , 2 , . . . } .

•
Lemma 8 Immediately after a count reduction operation is carried out,

1 + 6 i = l i=lZ

19

Proof: This proof is similar to the proof in [20] for bounding the maximum number of counts that time-insensitive
lossy counting maintains.

Base case (j = 1): Follows from Lemma 7.
Inductive step (j = r): Let Lemma 8 hold for j = 1,2,.. . , r — 1. Adding Lemma 7 for j = r to (r — 1) instances

of Lemma 8 (one each for r varying from 1 to r — 1) gives

which evaluates to r • y ~ • D •L1d; < r • E[= 1 A. Thus, lemma 8 holds for j = r. •

Theorem 1 77ie (e, a)-synopsis maintained by our time-sensitive extension to the lossy counting algorithm contains
at most (l+^3+lnJ2'hP+k)) non-zero entries.

Proof: We first analyze the maximum number of counts maintained by our time-sensitive extension to lossy counting
at an instant just after a count reduction operation, as characterized at the beginning of this section.

Let x denote the number of item occurrences on 5 in the current epoch. Consider 2 • k • (3 + x most recent items.
As before, let di denote the number of counts in the synopsis with label i. Let D = 2(j>2.fc-/M-z)dj»
Lemma 8 implies:

_ i o 2'k • 3 -\- x 1 C2^\

Any count in the synopsis with label greater than 2-k-/3 + x must occur more than (k-j3 + x)- j ^ times in the last

2-k'(3 + x items (This is because even if the value of each of the counts had the maximum possible value immediately

after the (2-k-f3 + x)th most recent element arrived, it would have decayed to zero by the time (fa(3 + x)th most recent

element arrived (Lemma 6), and after that the count value is decremented by (k -(3 + x) • ~^)« Therefore, reasoning

similar to Lemma 7, we get:

2_^ i'di + (k'l3 + x)'D) <2-k-f3-

By rearranging, we arrive at:

2-fc-/3+x-l

(3)

By induction step similar to that employed in proof of Lemma 8, we obtain:

c + D/2) < 1±1 . V j (4)

Adding 2-ks+x ^mes Inequah'ty (3) to Inequality (4), we obtain:

2-fc-/M-z+l 2-fc-^+a;

Number of counts in the synopsis = ^ d{ < ——-(1+ ^ ^ - -•(2 + ln(2-fe-i8 +fe)) (5)
i=l € i=l e

The above proof holds for instants immediately after a count decrement operation is performed. However, between
any two consecutive count decrement operations, at most \^\ items can arrive. Therefore, at any time the number of
counts in the synopsis can be at most (1 + e > (3 + 1 " (2 ^ + f c)) , where /? = flogi (1 + f)] + 1. •

Note that this space bound is independent of time. Hence, when a < 1 the worst-case space requirement does not
increase with time as long as stream rates remain steady.

20

B Proof of Lemma 2
We prove Lemma 2 in three steps. First, we show how to transform any input instance / into an instance V that satisfies
Property PI and has w(If,T, A) > w(I,T, A). Then, we show how to transform an input instance V satisfying
Property PI into an instance J" so that it satisfies both Properties PI and P2 and has w(I", T, A) > w(I', T, A).
Lastly, we show how to transform an input instance I" satisfying Properties PI and P2 into an instance V" that
satisfies all three Properties PI, P2 and P3 (hence, / " ' G I A) and has w{I"f, T, A) > w(I", T, A).
Step 1: For any input instance /, let the node that transmits on the most heavily loaded link be node Z, whose
level we denote by z. Let Tz be the subtree of which node Z is the root. Let us partition the input instance /
into two parts: (a) Iz denoting the part of / arriving at leaf nodes in Tz, and (b) I-^z denoting the rest of / after
excluding Iz (I = Iz U I-^z)- Since T is a hierarchical communication structure, the load that Z sends on its
outgoing link (recall that load is measured in terms of the number of counts transmitted) depends only on Iz. This
observation leads naturally to a two-part procedure for transforming any input / into V such that instance /' satisfies
Property PI and has w(I\ T, A) > w(I, T, A) : (a) transform Iz into I'z so that Vz satisfies Property PI and has
w(I'z U I-.z,T, A) > w(iVT, A), and (b) transform I-,z into I'^z so that Vz U I^z = V satisfies Property PI and
has w(I', T, A) > w(I, T, A).
Step l(a):To ensure that no item occurs at more than one leaf node in Tz, for each item u that occurs at j different
leaf nodes Mi, M 2 , . . . , Mj with frequency counts ci, C2,... , Cj respectively, we create j new items u\, U2,..., Uj.
Instead of item u, item Uk is included in the input stream Sk with weight Ck/ ^2i Q and frequency ^ C{.

While this operation might reduce the load on links inside Tz, it does not change the load on any link outside
Tz. Hence, the load on the link from node Z to its parent remains unchanged. Thus, the resulting input instance Iz

satisfies Property PI and has w(Iz U /_,z, T, A) > w(I, T, A).

Step l(b): The only two reasons why Iz U I-,z might not satisfy Property PI are (a) an item that occurs in Iz also
occurs in I-,z, or (b) an item occurs at more than one leaf in I-,z> To remedy either of (a) or (b), any conflicting item
in /-,£ can be renamed to a new item. Thus, the resulting input instance V (= Iz U I'-,z) satisfies Property PI.

As with Step 1, we proceed in two parts in Steps 2 and 3.
Step 2(a): I'z satisfies Property PI. Consider an item u that arrives at a leaf node Y of subtree Tz. For any level j,
node Y has an unique level-j ancestor. For each such level-j ancestor node X, let tc(j) denote the total number of
item occurrences in the the leaf nodes of the subtree rooted at node X. Since u does not occur at any other leaf node
(Property PI), it is part of the synopsis node Z sends to its parent if and only if its occurrence frequency at Y is greater
than y = Ej=l_xAj • tc(j). Furthermore, the total number of item occurrences at node Y is tc(l — 1). Therefore, no
more than tc(l — 1)/(y + S) items that traverse the link from node Z to its parent could have arrived at node Y, for
small S > 0. To transform Iz into Iz, we replace all item occurrences at node Y with tc(l - l)/(y + S) new items,
each of frequency (y + 5). We repeat this procedure for all other leaf nodes of the subtree Tz. Input instance Iz thus
obtained satisfies Properties PI and P2, and w(Iz U I'^z, T, A) > w(I', T, A).

Step 2(b): The input I^z can easily be transformed so that Iz U / " z satisfies Properties PI and P2 by replacing each
item that occurs at any leaf node in I'_,z with a new item with occurrence frequency equal to 0, for any constant (/>.
The resulting input instance /" (= Iz U I"z) satisfies Properties PI and P2.

Step 3 (a): Iz satisfies properties PI and P2. We first prove the following hypothesis: If the input Iz satisfies
Properties PI and P2, the load on the link from a node X, an ancestor of Z, to its parent due to Iz is maximal when
all leaf nodes in Tz have the same number of item occurrences and the same number of distinct items. We prove this
by induction on the height of Tz.

Base Case (Z is a leaf node): Induction hypothesis is trivially true.
Induction Step: Let Yu Y2,..., Yd denote the d children of Z, and let each Yj contribute pj to the total count at

node X. Assume that the hypothesis holds for each of Yi, Y2,..., Yd. Let us term the subtrees of which some Y{ is
a root child-subtrees. Each child-subtree satisfies all three properties PI, P2 and P3. The load on the link from node
X to its parent due to Iz is ^ = l A / ^ + A / where Ar = El

jl\+1d^1^~j Aj and A depends on precision gradient of
nodes between node Z and node X. This expression, E^=1 A , 1_j_A , subject to pi 4- P2 + • • • + Pd = 1 attains its
maximum (it can be seen for example, using the technique of Lagrange Multipliers [18]) when all pj are equal. Hence,
the induction hypothesis holds for node Z.

21

I'z can be obtained by multiplying the frequency counts of each item in the subtree rooted at Yj by d/wj. The
resulting instance Iz satisfies all three properties PI, P2 and P3 and has w(Iz U J" z , T, A) > iu(J", T, A).

Step 3(b): Since Vz satisfies Properties PI, P2 and P3, let t items occur with frequency c each, at any leaf node in
Tz. We transform V^z into I'l^z as follows: at any leaf node not belonging to 7^, we create t distinct items each with
occurrence frequency c. Thus, the resulting input instance I"1 (= Vz U J" z) satisfies Properties PI, P2 and P3.

Finally, we note that if two items u and v with weights wu and wv in some input stream have the same frequency,
we can replace them by a single item y with weight wy = wu + wv and same frequency as that of u and v. This
transformation does not change the behavior of our algorithm or the load on any link. By applying this procedure
repeatedly to / '" , we can ensure that there is at most one item with weight less than 1 on each input stream. •

22

