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Abstract

We explore the concept of a "black-box" stochastic system, and propose an algorithm for verifying proba-
biligtic properties of such systems based on very weak assumptions regarding system dynamics. The prop-
erties are expressed using a variaion of PCTL, the Probabilistic Computation Tree Logic. We present a
general modd of stochastic discrete event systems, which encompasses both discrete-time and continuous-
time processes, and we provide a semantics for PCTL interpreted over this model. Ow presentation is both
ageneralization of and an improvement over some recent work by Sen et a. on probat  gtic verification of
"black-box" systems.






1 Introduction

Stochastic processes are used to moddl phenomena in nature that involve an element of chance, such as
the throwing of a die, or are too complex to fully capture in a deterministic fashion, such as the duration
of acdl in atelephone system. Certain classes of stochastic processes have been studied extensively in
the performance evduation and mode checking communities. Numerous temporal logics, such as TCTL
(Alur et d. 1991), PCTL (Hansson and Jonsson 1994), and CSL (Aziz et al. 2000; Baier et a. 2003), exist
for expressing interesting properties of various types of stochastic processes. Model checking agorithms
have been developed for verifying properties of discrete-time Markov chains (Hansson and Jonsson 1994),
continuous-time Markov chains (Baier et a. 2003; Kwiatkowska et a. 2002), semi-Markov processes (In-
fante Lopez et a. 2001), generdized semi-Markov processes (Alur et al. 1991), and stochastic discrete event
systems in general (Younes and Simmons 2002).

Given a stochastic process, we are often interested in knowing if certain probabilistic properties hold.
For a computer network, we may want to know that the probability of exhausting bandwidth over a com-
munication link is below some threshold. We can also associate a deadline with a probabilistic property,
for example that a message arrives at its destination within 15 seconds after it is sent out with probability
at least 0.9. Properties of this type can be verified using either numerical or statistical solution techniques,
as discussed by Younes et al. (2004). Numerical techniques provide highly accurate results, but rely on
strong assumptions regarding the dynamics of the systems they are used to analyze. Statistical techniques
only require that the dynamics of a syssem can be simulated, and can therefore be used for a larger class of
stochastic processes. The result produced by a statistical method is only probabilistic, however, and attaining
high accuracy tends to be costly.

For some systems, it may not even be feasible to assume that we can smulate their behavior. Sen et al.
(2004) consider the mode checking problem for such "black-box" systems. It is assumed of a "black-
box" system that it cannot be controlled to generate execution traces, or trajectories, on demand starting
from arbitrary states. This is a reasonable assumption for a system that has aready been deployed, and for
which we are only given a st of trgjectories generated during actua execution of the system. We are then
asked to verify a probabilistic property of the system based on the information provided to us as a fixed st
of trgjectories. Statistical solution techniques are certainly required to solve this problem. The satistical
method for probabilistic mode checking proposed by Younes and Simmons (2002) cannot be used for
verification of "black-box" systems, however, because it depends on the ability to generate trgectories on
demand.

Sen et a. (2004) present an dternative solution method for verification of "black-box" systems based
on datistical hypothesis testing with fixed sample sizes. We improve upon their algorithm in several ways,
for example by making sure to aways accept the most likely hypothesis, and we present a procedure for
verifying nested probabilistic properties, which unlike that of Sen et a. actually works. The differences
between the two competing approaches are discussed in detail towards the end of this paper, where we
also make an effort to explain why Sen et al.'s comparison of their agorithm with the Statistical model
checking procedure used by Younes et a. (2004) is misguided. These two solution methods, while both
based on gsatistical hypothesis testing, are smply not comparable in a meaningful way because the "black-
box" approach does not give any apriori correctness guarantees.

We start by presenting a general mode of stochastic discrete event systems that encompasses both
discrete-time and continuous-time processes. We give a clear definition of a"black-box" system in terms of
this model, and we define the syntax and semantics of a logic for expressing properties of genera discrete
event systems. Our logic has essentidly the same syntax as Hansson and Jonsson's (1994) PCTL, and



we call it PCTL as wdl because it includes the original version of the logic as a special case, but it dso
includes CSL (without the steady-state operator) as defined by Baier et a. (2003). The agorithm we present
for verification of "black-box" systems can handle the full logic, including properties without finite time
bounds, although the accuracy of the result for such properties may very well be poor. Our algorithm, like
that of Sen et al. (2004), does in fact make no guarantees regarding accuracy. Instead of respecting some a
priori bounds on the probability of error, the agorithm computes ap-value for the result, which is a measure
of confidence. Thisis redly the best we can do, provided that we cannot generate trgjectories for the system
as we see fit and instead are restricted to use a predetermined set of trgjectories.

2 Stochagtic Discrete Event Systems

A stochastic process is in principle any process that evolves over time, and whose evolution we can follow
and predict in terms of probability (Doob 1942, 1953). At any point in time, a stochastic process is said to
occupy some state. If we attempt to observe the state of a stochastic process at a specific time, the outcome
of such an observation is governed by some probability law.

A stochastic discrete event system is a specific type of stochastic process that can be thought of as
occupying a single state for some duration of time until an event causes an instantaneous state transition to
occur. The canonical example of such a process is aqueuing system with the state being the number of items
currently in the queue. The state changes at the occurrence of an event representing the arrival or departure
of an item. We call this a discrete event system because the state change is discrete rather than continuous
and is caused by the triggering of an event.

21 Trajectories

Mathematically, we define a stochastic process as a family of random variables X = {X; \'t G T}. The
index sat T represents time and is typically the set of non-negative integers, Z*, for discrete-time stochastic
processes and the set of non-negative real numbers, [0, 00), for continuous-time stochastic processes. For
eacht G T we have arandom variable X; representing the chance experiment of observing the stochastic
process a time t. The range of X; is a s&t S of dates that the stochastic process can occupy, which can
be infinite or even uncountable. A trajectory or sample path of a stochastic process is any redlization
{% G5]|tG T} of the family of random variables X.

The trgjectory of a stochastic discrete event system is piecewise constant and can therefore be repre-
sented as a sequence a = {(S,,£0), (i?*i)> o » 4> "It € gand y € T\ {0}. Figure 1 plots part of a
trgjectory for a simple queuing system. Let

_ 0 ifi=0
(1) T'-={Agj_uu ifi>o 7

i.e. T{ isthe time at which state § is entered and U is the duration of time for which the process remainsin
S before an event triggers atransition to state S+i. A trgectory a is then aredization of X withx, = S
for Ti <t < Ti + U. According to this definition, trgjectories of stochastic discrete event systems are
right-continuous. A finite trgjectory is a sequence a = {(so, to),..., (S, 00)} where s, is an absorbing
state, meaning that no events can occur in s, and that x, = s, for al t >_’\27="d -

Note that if YItho ** = °° A% @ infinite trgjectory a, which is possible if T is the non-negative rational
or real numbers, then x; is not well-defined for al t G T. For this to happen, however, an infinite sequence of
events must occur in afinite amount of time, which is unrealistic for any physical system. Hoel et a. (1972)
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Figure 1: A trgectory for a smple queuing system with arriva events occurring at ti, 2 and £3 and a departure event
occurring a t+. The dtate of the system represents the number of items in the queue.

use the term explosive to describe processes for which such sequences can occur with non-zero probability.
It is common to assume time divergence for infinite trgjectories of rea-time systems (cf. Alur and Dill 1994),
i.e. that the systems are non-explosive, and most finite-state systems satisfy this property by default.

2.2 Probability Space and " Black-Box" Probabilistic Systems

A prefix of atrgectory a = {(S0)> (si,*i), * * ¢} isasequence a<r = {(SQ,t)...., (5uth)}o Withs* = S
foral i < ko YIIEQ#i =T #d = %% A0Tan » "< ny, @6k A < g A Pojhfac ) denote the set of trajectories
with common prefix <r<. This s&t must be measurable for probabilistic modd checking to make sense,
and we assume that a probability measure /1 over the sat of trgjectories with common prefix exists. This
is hardly a severe restriction as such a measure can be defined for systems of practical interest, athough
the precise definition thereof is not required for the approach to probabilistic model checking considered in
this paper. In fact, the lack of knowledge of the probability measure over sets of trgjectories can be seen
as the defining characteristic of a "black-box™" probabilistic system. If we had complete knowledge of this
probability measure, then the system under consideration would not be a black box to us. This leads us to
make the following definition.

Definition 1 (" Black-box" probabilistic system). A stochagtic discrete event system for which the proba-
bility measure JJL over sets of trgjectories with common prefix is unknown and cannot even be sampled from
is cdled a"black-box" probabilistic system.

A measurable space is a st ft with a a-algebra FQ of subsets of ft (Hamos 1950). A probability space
is a measurable space (fi,”h) and a probability measure \i that assigns a value in the interval [0,1] to the
elements of T with /x(0) = O, /i(fi) = 1, and ji(E) = YIiNiN) ~ *b"2>... are countably many
pairwise digoint setsin T\ and E is their union. When we say that a set Q must be measurable, we redly
Crr]lefa\n that there must be a a-algebra for the set. The elements of this a-algebra are the measurable subsets

a

A dochastic discrete event system is measurable if the sets 5 and T are measurable. We can show
this by defining a cr-algebra over the set of trgjectories with common prefix < = {(50, to),..., (S« t)}e
denoted Path(a<,), as follows. Let Ts be a a-algebra over the state space 5, and let TT be a a-agebra
over theindex set T of the stochastic process. Such a-algebras exist if Sand T are measurable sets, which
by assumption they are. Then C(a<;, J,Sfc+i,... ,/n-1,5,), With S G Fs and I; e Ty, denotes the
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set of trajectories o = {(sg,(),(s1,11),...} such that s, = s; fori < k, s, € S; fork < i < n,
t; = t; fori < k, t, > tg, and t; € I; for k < ¢ < n. In other words, C(o<r, Ix, Skt1,- -+, In-1,Sn)
is a subset of Path(o<,). The sets C(o<r,Ix,Sk+1,---,In—1,Sn) are the elements of a o-algebra over
the set Path(ox,) with set operations applied element-wise, for example C(o<r, Ix, Sk+1, - - -y In—1, Sn) U
Clo<ry Iy Skqrs -+ 5 L1, Sp)= Clo<r, [k U T, S U Sy g, -0 It U T, 1, Sn U SH).

3 Properties of Stochastic Discrete Event Systems

A stochastic discrete event system can be specified as a triple (S, T, 1), where S is a set of states, 7" is a time
domain, and p is a probability measure over sets of trajectories with common prefix. We typically assume
a factored representation of S, with a set of state variables SV and a value assignment function V' (s, z)
providing the value of z € SV in state s. The domain of z is the set D, = |J,c5V (s, ) of possible
values that z can take on. We define the syntax of PCTL for a factored stochastic discrete event system
M= (8T,u,SV,V)as

Pu=a~v| @ | QAP | Prg [XT @] | Pg [PU" D]

where x € SV, v € Dy, ~ € {<,=,>2},0 € [0,1], x € {<,>}, and I C T. Additional PCTL
formulae can be derived in the usual way. For example, | = (z = v) A =(z = v) for some z € SV and
VE D, T=-L,®VU=~(-®A-T), D> V=DV, P [@U V] = Prgg [@UT ], and
P<o el = —Pxo ¢

The standard logic operators have their usual meaning. P.g [¢] asserts that the probability measure
over the set of trajectories satisfying the path formula ¢ is related to 6 according to ><. Path formulae are
constructed using the temporal path operators X I (“next”) and U! (“until”). The path formula X I & asserts
that the next state transition occurs ¢ € I time units into the future and that ® holds in the next state, while
® U W asserts that U becomes true ¢ € I time units into the future while ® holds continuously prior to .

The validity of a PCTL formula, relative to a factored stochastic discrete event system M, is defined in
terms of a satisfaction relation =4 between trajectory prefixes and PCTL formulae:

{(s0,t0),- -+, (Skstk)} EM T~V iff V(sg,z) ~v
ocr Em @ iffocr Em @
ocr FEm PAY iff (0<r FEm @) A (0<r FEMm ¥)
oer bt Paslel it ({0 € Path(ozr) | o7 Far ) 50

The above definition relies on a satisfaction relation o, 7 = ¢ such that (o, 7, ) € [=aq iff o satisfies ¢
starting at time 7. This satisfaction relation for path formulae is defined as follows:

oTEM X @ iff 3k € N.((Th—1 S T)A (T < Ti) A (T — 7 € I) A (o<1, EMm D))
o, T EMm UL U iff 3t € I.((0<rt Eam O)AVE € T.((' < t) = (0crit FEra @)))

Note that the semantics of ® U! W requires that ® holds continuously, i.e. at all time points, along a
trajectory until W is satisfied. This is consistent with the semantics of time-bounded until for TCTL defined
by Alur et al. (1991). Depending on the probability measure 1, ® may very well hold immediately at the
entry of a state s and also immediately after a transition from s to s’, but still not hold continuously while
the system remains in s. Conversely, ¥ may hold at some point in time while the system remains in s, and



not hold immediately upon entry to s nor immediately after a transition from s to s. It is therefore not
sufficient, except in special cases, to verify $ and \& at discrete points aong a trgjectory.

If $ and \E are both free of any probabilistic operators, then it is dways sufficient to verify the two
formulae once in each state along a trgjectory in order to verify & U *. The same holds true if

@) *Path({(so, to>,..., (S0**)})) = n(Paih({(s.0)}))

for dl trgectory prefixes {(so, t0),..., (S, t}. This is the case if M is a Markov chain as (2) smply is
aformulation of the Markov property. Our semantics for PCTL interpreted over generd stochastic discrete
event systems therefore coincides with the semantics for PCTL interpreted over discrete-time Markov chains
(Hansson and Jonsson 1994) and CSL interpreted over continuous-time Markov chains (Baier et al. 2003),
provided we choose the time domain T appropriately.

A PCTL modd checking problem is typically specified as atriple (M, s, <, with the problem being to
veify if € holds for M provided that execution sarts in state s, i.e. {(s,0)} \=M $ Weoftenuses \= $
as a short form for the latter, leaving out M. when it is clear from the context which system is involved in
the mode checking problem.

4 Satistical Modd Checking for " Black-Box" Stochastic Systems

We refer to a stochastic discrete event system At as a "black-box" system if we lack an exact definition of
the probability measure \x over sets of trgectories of M. We assume that we cannot even sample trgjectories
according to /JL as earlier stated in Definition 1. Thus, in order to solve amode checking problem s \= $ for
a "black-box" system M, we must rely on an externa source to provide us with a set of trgjectories for M
that start in state s. We assume that trgectories cannot be generated on demand, but that we are provided
with afinite st of n trgjectories. This sample of size n must of course be representative of the probability
measure /j,(Path({(s,Q)})), and we must trust our external source to provide us with a representative st
of trajectories. We further assume that we are only provided with truncated trajectories, because infinite
trgjectories would require infinite memory to store.

We will use statistical hypothesis testing to solve amode checking problem s (= $ given asample of n
truncated trgectories. Since we rely on statistical techniques, we will typically not know with certainty if the
result we produce is correct. The method we present below computes ap-value for amoded checking result,
which isavdueintheinterva [0,1] with values closer to O representing higher confidence in the result and a
p-value of O representing certainty (Hogg and Craig 1978, pp. 255-256). We start by assuming that $ is free
of nested probabilistic operators. Later on, we consider PCTL formulae with nested probabilistic operators,
which as it turns out cannot be handled in a meaningful way without making rather strong assumptions
regarding the dynamics of the "black-box" system.

4.1 PCTL without Nested Probabilistic Operators

Given a state s, verification of a PCTL formula x ~ v is trivial. We consider the remaining three cases in
more detail, starting with the probabilistic operator Ve [ Recall that the objective is to produce a Boolean
result annotated with a p-value.
4.1.1 Probabilistic Operator
Consider the problem of verifying the PCTL formula Ve M in Sate s of a stochastic discrete event system
M. Let Xi be arandom variable representing the verification of the path formula cp over a trgectory for
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M drawn according to the probability measure fJ>(Path({(s,0)})). If we choose Xi —— 1 to represent
the fact that <p holds over a random trgectory, and Xi = O to represent the opposite fact, then Xi is a
Bernoulli variate with parameter p = ~{cr G Path({(s0)}) | j,0 (= <?), i.e PrpQ = 1] = p and
Pr[X~» = Q] = 1 -p. In order to verify Ve [<p]s We can make observations of Xi and use statistical
hypothesis testing to determineif p ixi 8islikely to hold. An observation of X" denoted xu is the verification
of ip over a specific trgjectory & . If & satifies the path formula <€; then 2* = 1, otherwise #$ = 0.

In our case, we are given n truncated trgjectories for a "black-box" system that we can use to generate
observations of X\. Each observation is obtained by verifying the path formula <p over one of the truncated
trgjectories. This is straightforward given a truncated trgjectory { (So; to),  « *, (sfc-i,*fc-i), «&}> provided
that <? does not contain any probabilistic operators. For <p = X' $, wejust check ifto G / and s+ |= $.
For < = $ ZV B, we traverse the trgjectory until we find a state s, such that one of the following conditions
holds, with T\ defined asin (1) to be the time at which state S is entered:

1 (s &= -*)A(Ti £/) v (8 f=~¥))
2. (Ti ) A (s \= *)
B AT T)NI MA(si ERIA (s )

In the first case, & U ” does not hold over the trgectory, while in the second two cases the time-bounded
until formula does hold. Note that we may not aways be able to determine the value of (p over al trgectories
because the trgjectories that are provided to us are assumed to be truncated.

We consider the case V> $[<p] in detail, noting that V< o [<p] can be handled in the same way simply by
reversing the value of each observation. We want to test the hypothesis Ho : p > 8 againgt the alternative
hypothesis Hi : p < 6 by using the n observations X\,..., x, of the Bernoulli variates Xi,....X,. To
do so, we specify a congtant c. If YH=i"i ** g"***" than c, then hypothesis Ho is accepted, i.e. V> e[f] is
determined to hold. Otherwise, if the given sum is at most ¢, then hypothesis Hi is accepted meaning that
V> $[(p] isdetermined not to hold. The constant ¢ should be chosen so that it becomes roughly equaly likely
to accept Ho as if i if p equals 6. The pair (n, ¢) is typicaly caled a single sampling plan in the quaity
control literature (Montgomery 1991).

The probability distribution of a sum of n Bernoulli variates with parameter p is abinomial distribution
with parameters n and p, denoted B(n,p). The probability of 5ZILi Xi being at most ¢ is therefore given
by the cumulative distribution function for B(n,p):

3 FAmv g: (T) Pl -p

Thus, with probability F(c;n,p) we accept hypothesis Hi using a single sampling plan (n,c), and con-
sequently hypothesis ifo is accepted with probability 1 - F(c;n,p) by the same sampling plan. Idedly,
we should choose ¢ such that F(c; n, 9) = 0.5, but it is not always possible to attain equality because the
binomid distribution is a discrete distribution. The best we can do is to choose ¢ such that \F(c; n, 6) - 0.5]
is minimized. We can readily compute the desired c using (3).

We now have away to decide whether to accept or reject the hypothesis that V> Q [</7 holds, but we also
want to report a vaue reflecting the confidence in our decision. For this purpose, we compute the p-value
for adecision. Thep-value is defined as the probability of the sum of observations being at least as extreme
as the one obtained provided that the hypothesis that was not accepted holds. The p-value for accepting
ifo when £2=i x, = disPrEILi X, > d\p< 0] < F(n-dnl -8 = 1- F(d - I;n,0), while
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Figure2: A ample two-gtate continuous-time Markov chain.

the p-value for accepting Hi isPrE”-; X; <.d \ p > 9] < F(d;n,0). The following theorem provides
justification for our choice of the constant c.

Theorem 1 (Minimization of p-value). By choosing ¢ to minimize |F(c; n, 0) —0.5| when testing Ho : p >
9 against H\ : p < 9 using a single sampling plan (n"*c); the hypothesis with the lowest p-value is always
accepted.

Proof. Hypothesis H\ is only accepted if d < ¢, which means that the p-value for Hi under these circum-
stancesis at most F(c; n, 0). Thep-vaue for Ho if d < cwould be at least 1 - F(c— 1;ra,0). Weknow that
F(c-1;n,0) < F(c;n,9) and by assumption that \F(c- I;n,0)-0.5| > |F(c;n,0)-0.5|. It follows that
F(c;n,9) < 1-F(c- 1;n,9) asrequired. Ford > c, the p-value for acceptance of Hi would be at least
F(c + 1; n,9). The p-vaue for acceptance of Ho when d > ¢, on the other hand, is a most 1 - F(c; n, 0).
We know that F(c+1;n,0) > F(c;n,9) and by assumption that |[F(c+1;n,0) -0.5] > |F(c;n,0)-0.5|.
Consequently, 1-F(c; n,0) < F(c+1; n, 0) and our choice of ¢ ensures that the hypothesis with the lowest
p-vaue is dways accepted. .

In the analysis so far we have been assuming that the value of cp can be determined over dl n truncated
trgjectories that we are given. Now, consider the case when we are unable to verify the path formula <
over some of the n truncated trajectories. This would happen if we are verifying $ U* ” over a trgjectory
that has been truncated before either -+$ V ” is satisfied or time exceeds dl vaues in /. We cannot smply
ignore such trajectories: it is assumed that the entire set of n trgectories is representative of the measure /i,
but the subset of truncated trgjectories for which we can determine the value of <p is hot guaranteed to be a
representative sample for this measure.

For example, consider the problem of verifying the PCTL formula $ = P*0.9 [T ZA%*® x=1] in a
dsate saisfying x=0 for a "black-box" system that in redlity is the continuous-time Markov chain shown
in Figure 2. The probability measure of trgjectories starting in state x=0 and satisfying T i21%% x=| is
1 - e"! « 0.63 for this system, so the PCTL formula does not hold, but we would of course not know this
unless we had access to the model. Assume that we are provided with a set of 100 truncated trgectories
for the system, and that al trgjectories have been truncated before time 50. Some of these trgjectories, on
average roughly 39 in every 100, will satisfy the path formula T ZVI**™ x=14 while the remaining truncated
trgjectories will not contain sufficient information for us to determine the validity of the path formula over
these trgjectories. An analysis based solely on the trgjectories over which the path formula can be decisively
verified would be severely biased. If the number of positive observations is exactly 39, with 61 undetermined
observations, we would wrongly conclude that $ holds with p-value 1 - F(38; 39,0.9) « 0.0164, which
implies afairly high confidence in the result.

Let n' be the number of observations whose value we can determine and let d' be the sum of these n'
observations. We then know that the sum of al observations, d, isat least d! and at mogt d! + n—n', i.e.
de[d,d +n—n\. Ifd > c, then hypothesis Ho can be safely accepted. Instead of a single p-value, we
associate an interval of possible y™-vaues with the result: [F(n'—d'\ n, 1—0), F(n—df; n, 1—0)]. Conversdy,
ifdl +n-n' < c, then hypothesis Hi can be accepted with p-value in the interval [F(d'\ n, 0), F{d! + n-
n'; n, 0)]. If, however, d! < cand d! + n-n" > ¢, then it is not clear which hypothesis should be accepted.



We could in this case say that we do not have enough information to make an informed choice. Alternatively,
we could accept one of the hypotheses with its associated p-value interval. We prefer to always make some
choice, and we recommend choosing H, if F(n - d'\ n, 1 - 0)_< F(d" + n-n"; n, 0) and H\ otherwise.
This strategy minimizes the maximum possible p-value. Alternatively, we could minimize the minimum
possible p-value by instead choosing H, if F(n"" — d!\n, 1 - 0) < F(d\n,0) and H\ otherwise. Note
that this way of treating truncated trajectories makes our approach work even for unbounded until formulae
$ U \I>, dthough we would typically expect the result to be highly uncertain for such formulae.

Consider the same problem as before, with 39 positive and 61 undetermined observations and assuming
the system behaves like the Markov chain shown in Figure 2. The p-value interval for accepting the PCTL
formula $ = V>.9 [T UM x=1] astrueis [F(0; 100,0.1),F(61,100,0.1)] « [2.65 « 10~°,1 - 3.77 »
10~°]. For the opposite decision, we get the p-value interval [F(39; 100,0.9), F(100; 100,0.9)] w [159 «
10~%*,1]. Both intervals are dmost equally uninformative, so no matter what decision we make, we will
have a high uncertainty in the result. We would accept 3> as true if we prefer to minimize the maximum
possible p-value, and we would reject $ as fdse if we instead prefer to minimize the minimum possible
p-value, but in both cases we have a maximum p-value well above 0.5. Thisisin sharp contrast to the faulty
analysis suggested earlier, which lead to an acceptance of $ as true with alow p-value.

4.1.2 Negation

To verify ->$, we first verify $. If we conclude that $ has a certain truth-value with p-value pvy then we
conclude that ->$ has the opposite truth-value with the same p-value. To motivate this, consider the case
V>0 [<p]. To verify V>e[ip], we test the hypothesis Ho : p.> 6 againgt Hi : p < 0 as stated above.
Note, however, that ~*V>o [<p} = V<e [y>], which could be posed as the problem of testing the hypothesis
H', : p < Oagainst H[ : p> 0. Since H's = Hi and H[ = Ho, we can simply negate the result of verifying
V> e[y>\ whilemaintaining the samep-value.

4.1.3 Conjunction

For a conjunction $ A \£, we have to consider four cases. Firgt, if we verify $ to hold with p-value pv$ and
\I/ to hold with p-value pv*, then we conclude that $ A > holds with p-value Ynax(pv";pv?). Second, if
we verify $ not to hold with p-value pve while verifying that * holds, then we conclude that $ A * does
not hold with p-value pv. The third case is andogous to the second with $ and » interchanged. Findly, if
we verify $ not to hold with p-value pv$ and * not to hold with p-value pv®, then we conclude that $ A \>
does not hold with p-value min(pi/$,pv”*).

Before deriving the given expressions for the p-values associated with the verification result of a con-
junction, let us give an intuitive justification. In order for $ A * to hold, both $ and * must hold, so we
cannot be anymore confident in the result for $ A ~ than we are in the result for the individual conjuncts,
thus the maximum in the first case. To conclude that $ A * does not hold, however, we only need to be
convinced that one of the conjuncts does not hold. In case we think exactly one of the conjuncts holds,
then the result for the conjunction will be based solely on this conviction and the p-value for the conjunct
we think holds should not matter. This covers the second and third cases. In the fourth case, we have two
sources (not necessarily independent) telling us that the conjunction is false. We therefore have no reason
to be less confident in the result for the conjunction than in the result for each of the conjuncts, hence the
minimum in this case.

For amathematical derivation of the given expressions, we consider theformulaV> e, [<Pi] A V> 0, [*2]-
Let d{ denote the number of trgjectories that satisfy ty. Provided we accept the conjunction as true, which



means we accept each conjunct as true, the p-value for this result is

n n
@) PI'[EXi(I) >d /\in(z) > do |p1 <01 Vpr < 92] .

i=1 i=1

To compute this p-value, we consider the three ways in which p; < 61 V p2 < 02 can be satisfied (cf. Sen
et al. 2004). We know from elementary probability theory that

%) Pr[A N B] < min(Pr[A],Pr[B])

for arbitrary events A and B. From this fact, and assuming that pv; is the p-value associated with the
verification result for P> g, [¢;], we derive the following:

1. Pr[30, Xfl) >diAY X;z) > dy | p1 < 61 A pa < 6] = min(pvq, pvy)
2. Py, x> d Ay, X? > dy | p1 < 81 Apay > 6o) = min(puy, 1) = pu,
3. Pr[Z:-;l Xz-(l) >di Ay Xi(Q) > dy | p1 > 61 Ap2 < 02) = min(1, pvy) = pu,

We take the maximum over these three cases to obtain a bound for (4), which gives us max(pv;, pvs).
For the same formula, but now assuming we have verified both conjuncts to be false, we compute the
p-value as

n n
©6) Prd XV <ai S XP <y [p1 261 Ap2> 6]

i=1 =1

It follows immediately from (5) that min(pv,, pv,) is a bound for (6), which is the desired result.

4.2 PCTL with Nested Probabilistic Operators

If we allow nested probabilistic operators, PCTL model checking for “black-box” stochastic discrete event
systems becomes much harder. Consider the formula Ps g [T U119 Py o []]. In order to verify this
formula, we must test if P> ¢ [] holds at some time ¢ € [0,100] along the set of trajectories that we are
given. Unless the time domain 7" is such that there is a finite number of time points in a finite interval, then
we potentially have to verify P> ¢/ [¢] at an infinite or even uncountable number of points along a trajectory,
which clearly is infeasible. Even if 7' = Z*, so that we only have to verify nested probabilistic formulae at
a finite number of points, we still have to take the entire prefix of the trajectory into account at each time
point. We are given a fixed set of trajectories, and we can only use the subset of trajectories with a matching
prefix to verify a nested probabilistic formula. This means that we will have very few trajectories available
to use for the verification of nested probabilistic formulae, most likely only one if the prefix is long, in which
case the uncertainty in the result will be overwhelming.

Only if we assume that the “black-box” system is a Markov chain, which is a rather strong assumption
to make, can we hope to have a significant number of trajectories available for the verification of nested
probabilistic formulae. This is because, under the Markov assumption, we only have to take the last state
along a trajectory prefix into consideration. Consequently, any suffix of a truncated trajectory starting at
a specific state s, in the set provided to us by an external source, can be regarded as representative of the
probability measure u({(s,0)}).



Another complicating factor in the verification of V> $ [ <p] s where <p contains nested probabilistic opera-
tors, is that we cannot verify (p over trgectories without some uncertainty in the result. This means that we
do no longer obtain observations of the random variables X\ as defined above, but instead we observe some
other random variables Y{ with quite different distributions. We accept V>$ [ as true if ¥a=1 » = © f°'
some constant ¢, and we rgject the same formula as false otherwise. We can choose ¢ as previoudy, but what
is the p-value of the decision?

To compute ap-value for nested verification we assume that Pr[Y; = 0 | a,r \= (p] < aand Pr[Y] =
| | ar \fi ip] < (3. We can make this assumption if we introduce indifference regions in the verification
of probahilistic formulae that are part of (p. Under the given assumption, we can use the total probability
formula to derive bounds for Pr[~ = 1]: p(l - @) < P[Y* = 1] . < 1- (1 - p)(l - /7). The p-value for
accepting V>e [p] as true when the sum of the observationsisdisPrE~Li Y% > d\ p < 9] < F(h—
d;n, (1-(9) (1-/3)). The p-value for the opposite decision is PT[Y%., Y% < d \ p > 9] < F(d;n,9(I-a)).
Since F{d\n,p) increases as p decreases, we see that the p-value increases as the error bounds a and (3
increase, which makes perfect sense. While we said that ¢ can be chosen as previoudly, this choice does no
longer guarantee that the hypothesis with the lowest p-value is accepted. To minimize the p-value of the
result, we can smply compute the p-values of the two hypotheses and accept the hypothesis with the lowest
p-value.

We can let the user specify a parameter So that controls the relative width of the indifference regions.
A probabilistic formula V>$ [<p] is verified with indifference region of half-width 5 = 8$9if 9 < 0.5 and
5= Sl - 9) otherwise. The verification is carried out using acceptance sampling as before, but with
hypotheses Ho : p> 9+ 5and Hi : p < 9 — 8. Instead of reporting a p-value, we report bounds for the
type | error probability of the sampling plan in use if Hi is accepted and the type Il error probability if Ho
is accepted. The type | error of a sampling plan is defined as the maximum probability of accepting Hi
when Ho holds, while the type Il error is defined as the maximum probability of accepting Ho when Hi
holds. In our case, assuming a sampling plan (n, ¢) is used, the type | error is F(c; n, 9 + 5) and the type
Il error is F(c; n,9 — 5). The error probabilities can be used in the same way as p-values to obtain error
probabilities for compound state formulae. A path formula can be trested as a compound state formula, as
suggested by Younes and Simmons (2002), which alows us to derive error bounds for the verification of
path formulae over trgjectories as well. As error bounds for the computation of the p-value for a top-level
probabilistic operator we simply take the maximum error bounds for the verification of the path formula
over al trgjectories.

5 Redated Work

The idea of using statistical hypothesis testing for probabilistic model checking of "black-box" systems was
recently proposed by Sen et a. (2004). Their work is the inspiration for the current paper, athough mostly
for the wrong reasons. It isin fact the many hidden assumptions, outright errors, and mideading empirical
evaluation of Sen et al.'s presentation that has prompted our interest in the subject.

First, consider the verification of a probabilistic formula V>e [ip]. Their approach is essentialy the
same as ours. given acongtant ¢, accept if YH=i Xi > ¢ and rgect otherwise. Their choice of c is different,
however, and is essentially based on De Moivre's (1738) normal approximation for the binomial distribution.
Their acceptance condition is Y12=i %-i_> n9, which corresponds to choosing cto be \n&\ — 1. The mean
of the binomial distribution B(n, 9) is n0, so this would be the right thing to do if $a=1" " "¢ assumed
to have a norma distribution. De Moivre showed that this is approximately the case for large n if X{
are Bernoulli variates, but the approximation is poor for moderate values of n or if 9 is not close to 0.5.
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Their algorithm, as a consequence, will under some circumstances accept a hypothesis with alarger p-value
than the dternative hypothesis. By choosing ¢ as we do, without relying on the normal approximation,
we guarantee that the hypothesis with the smallest p-value is always accepted (Thex :em 1). Consider the
formula P>0.0i M> for example, with n = 501 and d = 5. Our procedure would accept the formula as
true with p-value 0.562, while the the algorithm of Sen et al. would reject the formula as false with p-value
0.614. The difference is not of great significance, but it is still worth pointing out because it demonstrates the
danger of using the normal approximation for the binomid distribution. With today's fagt digital computers,
it is hard to motivate the use thereof. Our procedure is therefore an improvement over the algorithm of Sen
etal.

The second improvement over the method presented by Sen & al. isin the calculation of the p-value for
the verification of a conjunction <& A \I/ when both conjuncts have been verified to be fase. They state that
the p-value is pv$> + pv*, but thisis too conservative. There is no reason to believe that the confidence in
the result for $ A ~ would be lower (i.e. the p-value higher) if we are convinced that both conjuncts are
fase. We have shown that the p-value in this case is bounded by min”#~ ,A4) | which intuitively makes
more sense.

Sen et a.'s handling of nested probabilistic operators isjust plain wrong. They confuse the p-value
with the probability of accepting a fase hypothesis (generadly referred to as the type | or Il error of a
sampling plan). The p-value is not a bound on the probability of a certain test procedure accepting a fase
hypothesis. In fact, the test that both they and we use does not provide a useful bound on the probability of
accepting afalse hypothesis. Their analysis relies heavily on the ability to bound the probahility of accepting
afase hypothesis, so it breaks down completely. We have proposed a way to cope with this by introducing
indifference regions for nested probabilistic operators.

In addition to getting the verification of nested probabilistic operators wrong, Sen et a. are very vague
regarding the assumptions necessary to make their gpproach produce a reliable answer. The fact that they
treat any portion of a trgjectory starting in s, regardless of the portion preceding s, as a sample from the same
distribution, hides a rather strong assumption regarding the dynamics of their "black-box" systems. Aswe
have pointed out, this is not a valid assumption unless we know that the syssem being studied is a Markov
chain. It also appesars as if they only consider truncated trgjectories over which they can fully verify a path
formula, and this can introduce a bias that very well may invdidate the conclusion they reach regarding
the truth-value of a probabilistic formula. We have made this quite clear in our exposition, and we have
presented a sound procedure for handling the fact that the value of a path formula may not be determined
over all truncated trgjectories that are presented to us.

Finaly, the empirica analysis offered by Sen et al. is mideading. They give the reader the impresson
that a certain p-value can be guaranteed for a verification result smply by increasing the sample size. This
violates the premise of a "black-box" system gtated by the authors themselves earlier in their paper, namely
that trgjectories cannot be generated on demand. More important, though, is the fact that a certain p-value
never can be guaranteed. The p-value is not a property of a test, but smply a function of a specific set
of observations. If we are unlucky, we may make observations that give us a large p-value even in cases
when this is unlikely. It is therefore mideading to say that their agorithm is "faster” than the dtatitical
model checking algorithm used by Younes et al. (2004), as the latter algorithm is properly designed to
redlize a certain performance characteristic. Their empirical results can in fact not be replicated reliably
because there is no fixed procedure by which they can determine the sample size required to achieve acertain
accuracy. Their results give the false impression that their procedure is sequentia, i.e. that the sample size
automatically adjusts to the difficulty of attaining a certain p-vaue, when in redlity they sdected the reported
sample sizes manually based on prior empirical testing (K. Sen, personal communication, May 20, 2004).



6 Discusson

Sen et al. (2004) were firg to consider the problem of CSL verification for "black-box" systems. We have
generalized this ideato a wider class of probabilistic systems that can be characterized as stochastic discrete
event systems. Our most important contribution is to have given a clear definition of what condtitutes a
"black-box" system, and to have made explicit any assumptions making feasible the application of statistical
hypothesis testing as a solution technique for verification of such systems. We have extended the logic PCTL
to enable the expression of properties of general stochastic discrete event systems. The agorithm we have
presented for verifying PCTL properties of "black-box" systems is an improvement over asimilar but flawed
agorithm proposed by Sen et al.

The dgorithm presented in this paper should not be thought of as an aternative to the statistica model
checking algorithm proposed by Younes and Simmons (2002) and empirically evauated by Younes et al.
(2004). The two algorithms are complementary rather than competing, and are useful under disparate sets of
assumptions. If we cannot generate trgjectories for a system on demand, then the algorithm presented here
alows usto till reach conclusions regarding the behavior of the system. If, however, we know the dynamics
of a system well enough to enabled simulation, then we are better off with the alternative approach asit gives
full control over the probability of obtaining an incorrect result.

References

Alur, Rgeev, Costas Courcoubetis, and David L. Dill. 1991. Model-checking for probabilistic real-time
systems. In Proceedings ofthe 18th International Colloquium on Automata, Languages and Program-
ming, edited by J. Leach Albert, B. Monien, and M. Rodriguez Artalgjo, vol. 510 of Lecture Notes in
Computer Science, 115-126, Madrid, Spain. Springer.

Alur, Rgeev and David L. Dill. 1994. A theory of timed automata. Theoretical Computer Science 126,
no. 2: 183-235.

Aziz, Adnan, Kumud Sanwal, Vigyan Singhal, and Robert Brayton. 2000. Model-checking continuous-
time Markov chains. ACM Transactions on Computational Logic 1, no. 1: 162-170.

Baier, Christel, Boudewijn R. Haverkort, Holger Hermanns, and Joost-Pieter Katoen. 2003. Model-
checking agorithms for continuous-time Markov chains. |EEE Transactions on Software Engineering
29, no. 6: 524-541. '

De Moivre, A. 1738. A method of approximating the sum of the terms of the binomial (a + b)" expanded
into a series, from whence are deducted some practical rules to estimate the degree of assent which is
to be given to experiments. In The Doctrine of Chances: or> A Method of Calculating the Probabilities
of Events in Play, 235-243. 2nd ed. London, UK: H. Woodfall.

Doob, J. L. 1942. What is a stochagtic process? The American Mathematical Monthly 49, no. 10: 648-653.
. 1953. Sochastic Processes. New York, NY: John Wiley & Sons.
Hamos, Paul R. 1950. Measure Theory. New York, NY: Van Nostrand Reinhold Company.

Hansson, Hans and Bengt Jonsson. 1994. A logic for reasoning about time and reliability. Formal Aspects
of Computing 6, no. 5: 512-535.

Hodl, Paul G., Sidney C. Port, and Charles J. Stone. 1972. Introduction to Stochastic Processes. Boston,
MA: Houghton Mifflin Company.

12



Hogg, Robert V. and Allen T. Craig. 1978. Introduction to Mathematical Statistics. 4th ed. New York, NY:
Macmillan Publishing Co.

Infante Ldpez, Gabriel G., Holger Hermanns, and Joost-Pieter Katoen. 2001. Beyond memoryless distri-
butions: Model checking semi-Markov chains. In Proceedings ofthe 1st Joint International PAPM-
PROBMIV Workshop, edited by Luca de Alfaro and Stephen Gilmore, vol. 2165 of Lecture Notes in
Computer Science, 57-70, Aachen, Germany. Springer.

Kwiatkowska, Marta, Gethin Norman, and David Parker. 2002. Probahilistic symbolic model checking
with PRISM: A hybrid approach. In Proceedings ofthe 8th International Conference on Toolsand
Algorithmsfor the Construction and Analysis of Systems, edited by Joost-Pieter Katoen and Perdita
Stevens, vol. 2280 of Lecture Notes in Computer Science, 52-66, Grenoble, France. Springer.

Montgomery, Douglas C. 1991. Introduction to Statistical Quality Control. 2nd ed. New York, NY: John
Wiley & Sons.

Sen, Koushik, Mahesh Viswanathan, and Gul Agha. 2004. Statistical modd checking of black-box proba-
biligtic systems. In Proceedings ofthe 16th International Conference on Computer Aided Verification,
edited by Rgeev Alur and Doron A. Peled, vol. 3114 of Lecture Notes in Computer Science, 202-215,
Boston, MA. Springer.

Younes, Hakan L. S., Marta Kwiatkowska, Gethin Norman, and David Parker. 2004. Numerica vs. statisti-
ca probabilistic modd checking: An empirical study. In Proceedings ofthe 10th International Confer-
ence on Tools and Algorithmsfor the Construction and Analysis of Systems, edited by Kurt Jensen and
Andreas Podelski, vol. 2988 of Lecture Notes in Computer Science, 46-60, Barcelona, Spain. Springer.

Younes, H&an L. S. and Reild G. Simmons. 2002. Probabilistic verification of discrete event systems using
acceptance sampling. 1n Proceedings ofthe 14th International Conference on Computer Aided Verifi-
cation, edited by Ed Brinksma and Kim Guldstrand Larsen, vol. 2404 of Lecture Notes in Computer
Science, 223-235, Copenhagen, Denmark. Springer.






