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Abstract

We explore the concept of a "black-box" stochastic system, and propose an algorithm for verifying proba-
bilistic properties of such systems based on very weak assumptions regarding system dynamics. The prop-
erties are expressed using a variation of PCTL, the Probabilistic Computation Tree Logic. We present a
general model of stochastic discrete event systems, which encompasses both discrete-time and continuous-
time processes, and we provide a semantics for PCTL interpreted over this model. Ow presentation is both
a generalization of and an improvement over some recent work by Sen et al. on probat stic verification of
"black-box" systems.



 



1 Introduction

Stochastic processes are used to model phenomena in nature that involve an element of chance, such as
the throwing of a die, or are too complex to fully capture in a deterministic fashion, such as the duration
of a call in a telephone system. Certain classes of stochastic processes have been studied extensively in
the performance evaluation and model checking communities. Numerous temporal logics, such as TCTL
(Alur et al. 1991), PCTL (Hansson and Jonsson 1994), and CSL (Aziz et al. 2000; Baier et al. 2003), exist
for expressing interesting properties of various types of stochastic processes. Model checking algorithms
have been developed for verifying properties of discrete-time Markov chains (Hansson and Jonsson 1994),
continuous-time Markov chains (Baier et al. 2003; Kwiatkowska et al. 2002), semi-Markov processes (In-
fante Lopez et al. 2001), generalized semi-Markov processes (Alur et al. 1991), and stochastic discrete event
systems in general (Younes and Simmons 2002).

Given a stochastic process, we are often interested in knowing if certain probabilistic properties hold.
For a computer network, we may want to know that the probability of exhausting bandwidth over a com-
munication link is below some threshold. We can also associate a deadline with a probabilistic property,
for example that a message arrives at its destination within 15 seconds after it is sent out with probability
at least 0.9. Properties of this type can be verified using either numerical or statistical solution techniques,
as discussed by Younes et al. (2004). Numerical techniques provide highly accurate results, but rely on
strong assumptions regarding the dynamics of the systems they are used to analyze. Statistical techniques
only require that the dynamics of a system can be simulated, and can therefore be used for a larger class of
stochastic processes. The result produced by a statistical method is only probabilistic, however, and attaining
high accuracy tends to be costly.

For some systems, it may not even be feasible to assume that we can simulate their behavior. Sen et al.
(2004) consider the model checking problem for such "black-box" systems. It is assumed of a "black-
box" system that it cannot be controlled to generate execution traces, or trajectories, on demand starting
from arbitrary states. This is a reasonable assumption for a system that has already been deployed, and for
which we are only given a set of trajectories generated during actual execution of the system. We are then
asked to verify a probabilistic property of the system based on the information provided to us as a fixed set
of trajectories. Statistical solution techniques are certainly required to solve this problem. The statistical
method for probabilistic model checking proposed by Younes and Simmons (2002) cannot be used for
verification of "black-box" systems, however, because it depends on the ability to generate trajectories on
demand.

Sen et al. (2004) present an alternative solution method for verification of "black-box" systems based
on statistical hypothesis testing with fixed sample sizes. We improve upon their algorithm in several ways,
for example by making sure to always accept the most likely hypothesis, and we present a procedure for
verifying nested probabilistic properties, which unlike that of Sen et al. actually works. The differences
between the two competing approaches are discussed in detail towards the end of this paper, where we
also make an effort to explain why Sen et al.'s comparison of their algorithm with the statistical model
checking procedure used by Younes et al. (2004) is misguided. These two solution methods, while both
based on statistical hypothesis testing, are simply not comparable in a meaningful way because the "black-
box" approach does not give any a priori correctness guarantees.

We start by presenting a general model of stochastic discrete event systems that encompasses both
discrete-time and continuous-time processes. We give a clear definition of a "black-box" system in terms of
this model, and we define the syntax and semantics of a logic for expressing properties of general discrete
event systems. Our logic has essentially the same syntax as Hansson and Jonsson's (1994) PCTL, and



we call it PCTL as well because it includes the original version of the logic as a special case, but it also
includes CSL (without the steady-state operator) as defined by Baier et al. (2003). The algorithm we present
for verification of "black-box" systems can handle the full logic, including properties without finite time
bounds, although the accuracy of the result for such properties may very well be poor. Our algorithm, like
that of Sen et al. (2004), does in fact make no guarantees regarding accuracy. Instead of respecting some a
priori bounds on the probability of error, the algorithm computes a p-value for the result, which is a measure
of confidence. This is really the best we can do, provided that we cannot generate trajectories for the system
as we see fit and instead are restricted to use a predetermined set of trajectories.

2 Stochastic Discrete Event Systems

A stochastic process is in principle any process that evolves over time, and whose evolution we can follow
and predict in terms of probability (Doob 1942, 1953). At any point in time, a stochastic process is said to
occupy some state. If we attempt to observe the state of a stochastic process at a specific time, the outcome
of such an observation is governed by some probability law.

A stochastic discrete event system is a specific type of stochastic process that can be thought of as
occupying a single state for some duration of time until an event causes an instantaneous state transition to
occur. The canonical example of such a process is a queuing system with the state being the number of items
currently in the queue. The state changes at the occurrence of an event representing the arrival or departure
of an item. We call this a discrete event system because the state change is discrete rather than continuous
and is caused by the triggering of an event.

2.1 Trajectories

Mathematically, we define a stochastic process as a family of random variables X — {Xt \ t G T}. The
index set T represents time and is typically the set of non-negative integers, Z*, for discrete-time stochastic
processes and the set of non-negative real numbers, [0, oo), for continuous-time stochastic processes. For
each t G T we have a random variable Xt representing the chance experiment of observing the stochastic
process at time t. The range of Xt is a set S of states that the stochastic process can occupy, which can
be infinite or even uncountable. A trajectory or sample path of a stochastic process is any realization
{xt G 5 | t G T} of the family of random variables X.

The trajectory of a stochastic discrete event system is piecewise constant and can therefore be repre-
sented as a sequence a = {(so,£o), (si?*i)> • • •}> w i t h s* e S a n d U € T\ {0}. Figure 1 plots part of a
trajectory for a simple queuing system. Let

0 if i = 0
( 1 ) T i = ^ ^ - _ U i f i > o- {
i.e. T{ is the time at which state S{ is entered and U is the duration of time for which the process remains in
S{ before an event triggers a transition to state Si+i. A trajectory a is then a realization of X with xt = Si
for Ti < t < Ti + U. According to this definition, trajectories of stochastic discrete event systems are
right-continuous. A finite trajectory is a sequence a = {(so, to),..., (sn , oo)} where sn is an absorbing
state, meaning that no events can occur in sn and that xt = sn for all t > ^27=0 ^-

Note that if Ylt^o ** < °° ^or an infinite trajectory a, which is possible if T is the non-negative rational
or real numbers, then xt is not well-defined for all t G T. For this to happen, however, an infinite sequence of
events must occur in a finite amount of time, which is unrealistic for any physical system. Hoel et al. (1972)
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Figure 1: A trajectory for a simple queuing system with arrival events occurring at ti, ^2 and £3 and a departure event
occurring at t±. The state of the system represents the number of items in the queue.

use the term explosive to describe processes for which such sequences can occur with non-zero probability.
It is common to assume time divergence for infinite trajectories of real-time systems (cf. Alur and Dill 1994),
i.e. that the systems are non-explosive, and most finite-state systems satisfy this property by default.

2.2 Probability Space and "Black-Box" Probabilistic Systems

A prefix of a trajectory a — {(sn?*o)> (si,*i), • • •} is a sequence a<T = {(sQ,tf
0),..., (sk,tk)}9 with s^ = Si

for all i < k9 Yli=o *i = T' *«' = ** ^or a^ * < ^» anc* ^k < *&• ^ e t Poih{a<T) denote the set of trajectories
with common prefix <r<r. This set must be measurable for probabilistic model checking to make sense,
and we assume that a probability measure /1 over the set of trajectories with common prefix exists. This
is hardly a severe restriction as such a measure can be defined for systems of practical interest, although
the precise definition thereof is not required for the approach to probabilistic model checking considered in
this paper. In fact, the lack of knowledge of the probability measure over sets of trajectories can be seen
as the defining characteristic of a "black-box" probabilistic system. If we had complete knowledge of this
probability measure, then the system under consideration would not be a black box to us. This leads us to
make the following definition.

Definition 1 ("Black-box" probabilistic system). A stochastic discrete event system for which the proba-
bility measure JJL over sets of trajectories with common prefix is unknown and cannot even be sampled from
is called a "black-box" probabilistic system.

A measurable space is a set ft with a a-algebra FQ of subsets of ft (Halmos 1950). A probability space
is a measurable space (fi,^h) and a probability measure \i that assigns a value in the interval [0,1] to the
elements of T^ with /x(0) = 0, /i(fi) = 1, and ji(E) = Yli^i^i) ^ ^ b ^ 2 > . . . are countably many
pairwise disjoint sets in T^\ and E is their union. When we say that a set Q must be measurable, we really
mean that there must be a a-algebra for the set. The elements of this a-algebra are the measurable subsets
of a

A stochastic discrete event system is measurable if the sets 5 and T are measurable. We can show
this by defining a cr-algebra over the set of trajectories with common prefix <j<r = {(50, to ) , . . . , (sk, tk)}9

denoted Path(a<r), as follows. Let Ts be a a-algebra over the state space 5, and let TT be a a-algebra
over the index set T of the stochastic process. Such a-algebras exist if S and T are measurable sets, which
by assumption they are. Then C(a<r, Jfe,Sfc+i,... , / n - i , 5 n ) , with Si G Fs and I{ e TT, denotes the



set of trajectories a = {(sf
0,i/0), (s[,t[),...} such that s'{ = s* for i < k9 s• G S; for fc < i < n,

£• = if for i < fc, ^ > ife, and £• G /2 for fe < i < n. In other words, C((j<T, Jfc,Sfc+i,... , Jn_i,Sn)
is a subset of Path(a<T). The sets C(a<T, Ik, S^+i,..., J n - i , £n) are the elements of a a-algebra over
the set Path(a<T) with set operations applied element-wise, for example C(a<r, Ik, Sfc+i,..., Jn_i, Sn) U

3 Properties of Stochastic Discrete Event Systems

A stochastic discrete event system can be specified as a triple (5, T, //), where 5 is a set of states, T is a time
domain, and \x is a probability measure over sets of trajectories with common prefix. We typically assume
a factored representation of 5, with a set of state variables SV and a value assignment function V(s,x)
providing the value of x G SV in state s. The domain of rr is the set Dx = [JsesV(six) °f possible
values that x can take on. We define the syntax of PCTL for a factored stochastic discrete event system
M = (S ,T, / i ,Sy ,y)as

* ::= x ~ i; | -«* | * A * | P^^ [X7 *] \V^e[^>U1^} ,

where a G SY, v G A,, ~ G { < , = , > } , 0 G [0,1], IXI G {<,>}, and I c T. Additional PCTL
formulae can be derived in the usual way. For example, _L = (x = v) A -y(x — v) for some x G SV and
u G D j j E ^ i V ^ E i ( - . $ A -i*), $ -> * = -.$ V * , P^^ [<E> W *] = ^ ^ [$ ^ T * ] , and

The standard logic operators have their usual meaning. V^e [if] asserts that the probability measure
over the set of trajectories satisfying the path formula <p is related to 6 according to M. Path formulae are
constructed using the temporal path operators X1 ("next") and U1 ("until"). The path formula X1 $ asserts
that the next state transition occurs t G / time units into the future and that $ holds in the next state, while
$ U1 \P asserts that * becomes true t G / time units into the future while $ holds continuously prior to t.

The validity of a PCTL formula, relative to a factored stochastic discrete event system Ai9 is defined in
terms of a satisfaction relation \=M between trajectory prefixes and PCTL formulae:

\=M x~v if£V(sk,x) ~v

A * iff (a<r h^r *) A (a<r \=M

M^ M iff/x({a G Path(a<T) \ a, r

The above definition relies on a satisfaction relation a, r [=^ ^ such that (a, r, y?) G (=^ iff 0" satisfies </?
starting at time r. This satisfaction relation for path formulae is defined as follows:

a , r K M X1 $ iff 3k G N.((rfc-i < r) A (r < Tk) A (Tfc - r G J) A (a<Tfc K M *))

^r^W1* iff 3< G J.((<7<T-K h ^ *) A W G r .(( t ; < t) -> (a<T+t/ NA^ *)))

Note that the semantics of $ U1 * requires that $ holds continuously, i.e. at all time points, along a
trajectory until * is satisfied. This is consistent with the semantics of time-bounded until for TCTL defined
by Alur et al. (1991). Depending on the probability measure /x, $ may very well hold immediately at the
entry of a state 5 and also immediately after a transition from s to s\ but still not hold continuously while
the system remains in 5. Conversely, * may hold at some point in time while the system remains in s, and



not hold immediately upon entry to s nor immediately after a transition from s to s'. It is therefore not
sufficient, except in special cases, to verify $ and \& at discrete points along a trajectory.

If $ and \£ are both free of any probabilistic operators, then it is always sufficient to verify the two
formulae once in each state along a trajectory in order to verify <3> U1 *. The same holds true if

(2) ^Path({(s0, to>,..., (sk,**)})) = n(Paih({(sk,0)}))

for all trajectory prefixes {(so, to),..., (sk, tk)}. This is the case if M is a Markov chain as (2) simply is
a formulation of the Markov property. Our semantics for PCTL interpreted over general stochastic discrete
event systems therefore coincides with the semantics for PCTL interpreted over discrete-time Markov chains
(Hansson and Jonsson 1994) and CSL interpreted over continuous-time Markov chains (Baier et al. 2003),
provided we choose the time domain T appropriately.

A PCTL model checking problem is typically specified as a triple (M, s, <E>), with the problem being to
verify if <E> holds for M provided that execution starts in state s, i.e. {(s, 0)} \=M $• We often use s \= $
as a short form for the latter, leaving out M. when it is clear from the context which system is involved in
the model checking problem.

4 Statistical Model Checking for "Black-Box" Stochastic Systems

We refer to a stochastic discrete event system At as a "black-box" system if we lack an exact definition of
the probability measure \x over sets of trajectories of M. We assume that we cannot even sample trajectories
according to /JL as earlier stated in Definition 1. Thus, in order to solve a model checking problem s \= $ for
a "black-box" system M, we must rely on an external source to provide us with a set of trajectories for M
that start in state s. We assume that trajectories cannot be generated on demand, but that we are provided
with a finite set of n trajectories. This sample of size n must of course be representative of the probability
measure /j,(Path({(s,Q)})), and we must trust our external source to provide us with a representative set
of trajectories. We further assume that we are only provided with truncated trajectories, because infinite
trajectories would require infinite memory to store.

We will use statistical hypothesis testing to solve a model checking problem s (= $ given a sample of n
truncated trajectories. Since we rely on statistical techniques, we will typically not know with certainty if the
result we produce is correct. The method we present below computes a p-value for a model checking result,
which is a value in the interval [0,1] with values closer to 0 representing higher confidence in the result and a
p-value of 0 representing certainty (Hogg and Craig 1978, pp. 255-256). We start by assuming that $ is free
of nested probabilistic operators. Later on, we consider PCTL formulae with nested probabilistic operators,
which as it turns out cannot be handled in a meaningful way without making rather strong assumptions
regarding the dynamics of the "black-box" system.

4.1 PCTL without Nested Probabilistic Operators

Given a state s, verification of a PCTL formula x ~ v is trivial. We consider the remaining three cases in
more detail, starting with the probabilistic operator V^e [•]• Recall that the objective is to produce a Boolean
result annotated with a p-value.

4.1.1 Probabilistic Operator

Consider the problem of verifying the PCTL formula V^e M in state s of a stochastic discrete event system
M. Let Xi be a random variable representing the verification of the path formula cp over a trajectory for



M drawn according to the probability measure fJ>(Path({(s,0)})). If we choose Xi — 1 to represent
the fact that <p holds over a random trajectory, and Xi = 0 to represent the opposite fact, then Xi is a
Bernoulli variate with parameter p = ^({cr G Path({(s,0)}) | j , 0 (= </?}), i.e. PrpQ = 1] = p and
Pr[X^ = 0] = 1 - p. In order to verify V^e [<p]9 we can make observations of Xi and use statistical
hypothesis testing to determine if p ixi 8 is likely to hold. An observation of X^ denoted xu is the verification
of ip over a specific trajectory a*. If a^ satisfies the path formula <£>, then 2^ = 1, otherwise #$ = 0.

In our case, we are given n truncated trajectories for a "black-box" system that we can use to generate
observations of X\. Each observation is obtained by verifying the path formula <p over one of the truncated
trajectories. This is straightforward given a truncated trajectory {(sOj to), • • •, (sfc-i,*fc-i), «&}> provided
that </? does not contain any probabilistic operators. For <p = X1 $, we just check if to G / and s± |= $.
For </? = $ Z^7 \E>, we traverse the trajectory until we find a state s2 such that one of the following conditions
holds, with T\ defined as in (1) to be the time at which state Si is entered:

1. (Si t= -.*) A((Ti £ / ) v (si f=

2. (Ti el) A (si \= * )

3. ^

In the first case, &U1 ^ does not hold over the trajectory, while in the second two cases the time-bounded
until formula does hold. Note that we may not always be able to determine the value of (p over all trajectories
because the trajectories that are provided to us are assumed to be truncated.

We consider the case V> $ [<p] in detail, noting that V< o [<p] can be handled in the same way simply by
reversing the value of each observation. We want to test the hypothesis Ho : p > 8 against the alternative
hypothesis Hi : p < 6 by using the n observations x\,..., xn of the Bernoulli variates Xi,...,Xn. To
do so, we specify a constant c. If YH=i xi *s g r e a t e r than c, then hypothesis Ho is accepted, i.e. V> e [f] is
determined to hold. Otherwise, if the given sum is at most c, then hypothesis Hi is accepted meaning that
V> $ [(p] is determined not to hold. The constant c should be chosen so that it becomes roughly equally likely
to accept Ho as if i if p equals 6. The pair (n, c) is typically called a single sampling plan in the quality
control literature (Montgomery 1991).

The probability distribution of a sum of n Bernoulli variates with parameter p is a binomial distribution
with parameters n and p, denoted B(n,p). The probability of 5ZILi Xi being at most c is therefore given
by the cumulative distribution function for B(n,p):

(3) F^n^^
t=o

Thus, with probability F(c;n,p) we accept hypothesis Hi using a single sampling plan (n,c), and con-
sequently hypothesis ifo is accepted with probability 1 - F(c;n,p) by the same sampling plan. Ideally,
we should choose c such that F(c; n, 9) = 0.5, but it is not always possible to attain equality because the
binomial distribution is a discrete distribution. The best we can do is to choose c such that \F(c; n, 6) - 0.5|
is minimized. We can readily compute the desired c using (3).

We now have a way to decide whether to accept or reject the hypothesis that V> Q [</?] holds, but we also
want to report a value reflecting the confidence in our decision. For this purpose, we compute the p-value
for a decision. The p-value is defined as the probability of the sum of observations being at least as extreme
as the one obtained provided that the hypothesis that was not accepted holds. The p-value for accepting
if0 when £?=i x{ = d is P r E I L i X{ > d \ p < 0] < F(n - d]n,l - 8) = 1 - F(d - l ;n,0), while



Figure 2: A simple two-state continuous-time Markov chain.

the p-value for accepting Hi is P r E ^ = 1 X{ < d \ p > 9] < F(d;n,0). The following theorem provides
justification for our choice of the constant c.

Theorem 1 (Minimization of p-value). By choosing c to minimize |F(c; n, 0) — 0.5| when testing Ho : p >
9 against H\ : p < 9 using a single sampling plan (n^c)f the hypothesis with the lowest p-value is always
accepted.

Proof. Hypothesis H\ is only accepted if d < c, which means that the p-value for Hi under these circum-
stances is at most F(c; n, 0). The p-value for Ho if d < c would be at least 1 - F(c — 1; ra, 0). We know that
F ( c - l ; n , 0 ) < F(c;n,9) and by assumption that \F(c- l ;n ,0)-O.5 | > |F(c;n,0)-O.5|. It follows that
F(c; n, 9) < 1 - F(c - 1; n, 9) as required. For d > c, the p-value for acceptance of Hi would be at least
F(c + 1; n, 9). The p-value for acceptance of Ho when d > c, on the other hand, is at most 1 - F(c; n, 0).
We know that F ( c + l ; n , 0 ) > F(c;n,9) and by assumption that |F (c+ l ;n ,0 ) - 0 . 5 | > |F(c;n,0)-O.5|.
Consequently, 1 - F(c; n, 0) < F(c+1; n, 0) and our choice of c ensures that the hypothesis with the lowest
p-value is always accepted. •

In the analysis so far we have been assuming that the value of cp can be determined over all n truncated
trajectories that we are given. Now, consider the case when we are unable to verify the path formula </?
over some of the n truncated trajectories. This would happen if we are verifying $ U1 ^ over a trajectory
that has been truncated before either -•$ V ^ is satisfied or time exceeds all values in /. We cannot simply
ignore such trajectories: it is assumed that the entire set of n trajectories is representative of the measure /i,
but the subset of truncated trajectories for which we can determine the value of <p is not guaranteed to be a
representative sample for this measure.

For example, consider the problem of verifying the PCTL formula $ = P^o.9 [T Z^'0'100! x=l] in a
state satisfying x=0 for a "black-box" system that in reality is the continuous-time Markov chain shown
in Figure 2. The probability measure of trajectories starting in state x=0 and satisfying T i^I0'100! x=l is
1 - e"1 « 0.63 for this system, so the PCTL formula does not hold, but we would of course not know this
unless we had access to the model. Assume that we are provided with a set of 100 truncated trajectories
for the system, and that all trajectories have been truncated before time 50. Some of these trajectories, on
average roughly 39 in every 100, will satisfy the path formula T ZVl0'100! x=l9 while the remaining truncated
trajectories will not contain sufficient information for us to determine the validity of the path formula over
these trajectories. An analysis based solely on the trajectories over which the path formula can be decisively
verified would be severely biased. If the number of positive observations is exactly 39, with 61 undetermined
observations, we would wrongly conclude that $ holds with p-value 1 - F(38; 39,0.9) « 0.0164, which
implies a fairly high confidence in the result.

Let nf be the number of observations whose value we can determine and let d! be the sum of these n'
observations. We then know that the sum of all observations, d, is at least d! and at most d! + n — n', i.e.
d e [d!,df + n — nr\. If d! > c, then hypothesis Ho can be safely accepted. Instead of a single p-value, we
associate an interval of possible y -̂values with the result: [F(n'—d'\ n, 1—0), F(n—df; n, 1—0)]. Conversely,
if d! + n - nf < c, then hypothesis Hi can be accepted with p-value in the interval [F(d'\ n, 0), F{d! + n-
n'; n, 0)]. If, however, d! < c and d! + n-n' > c, then it is not clear which hypothesis should be accepted.



We could in this case say that we do not have enough information to make an informed choice. Alternatively,
we could accept one of the hypotheses with its associated p-value interval. We prefer to always make some
choice, and we recommend choosing Ho if F(n - d!\ n, 1 - 0) < F(df + n-n'; n, 0) and H\ otherwise.
This strategy minimizes the maximum possible p-value. Alternatively, we could minimize the minimum
possible p-value by instead choosing Ho if F(nf — d!\n, 1 - 0) < F(d\n,0) and H\ otherwise. Note
that this way of treating truncated trajectories makes our approach work even for unbounded until formulae
$ U \I>, although we would typically expect the result to be highly uncertain for such formulae.

Consider the same problem as before, with 39 positive and 61 undetermined observations and assuming
the system behaves like the Markov chain shown in Figure 2. The p-value interval for accepting the PCTL
formula $ = V>0.9 [T U^100^ x=l] as true is [F(0; 100,0.1),F(61,100,0.1)] « [2.65 • 10~5,1 - 3.77 •
10~15]. For the opposite decision, we get the p-value interval [F(39; 100,0.9), F(100; 100,0.9)] w [1.59 •
10~35,1]. Both intervals are almost equally uninformative, so no matter what decision we make, we will
have a high uncertainty in the result. We would accept 3> as true if we prefer to minimize the maximum
possible p-value, and we would reject $ as false if we instead prefer to minimize the minimum possible
p-value, but in both cases we have a maximum p-value well above 0.5. This is in sharp contrast to the faulty
analysis suggested earlier, which lead to an acceptance of $ as true with a low p-value.

4.1.2 Negation

To verify ->$, we first verify $. If we conclude that $ has a certain truth-value with p-value pv9 then we
conclude that ->$ has the opposite truth-value with the same p-value. To motivate this, consider the case
-^V>o [<p]. To verify V>e [ip], we test the hypothesis Ho : p > 6 against Hi : p < 0 as stated above.
Note, however, that ~^V>o [<p] = V<e [y>], which could be posed as the problem of testing the hypothesis
H'o : p < 0 against H[ : p> 0. Since Hf

0 = Hi and H[ = Ho, we can simply negate the result of verifying
V> e [y>\ while maintaining the same p-value.

4.1.3 Conjunction

For a conjunction $ A \£, we have to consider four cases. First, if we verify $ to hold with p-value pv$ and
\I/ to hold with p-value pv^, then we conclude that $ A \I> holds with p-value Ynax(pv^Jpv^). Second, if
we verify $ not to hold with p-value pv9 while verifying that * holds, then we conclude that $ A * does
not hold with p-value pv. The third case is analogous to the second with $ and ^ interchanged. Finally, if
we verify $ not to hold with p-value pv$ and * not to hold with p-value pv^, then we conclude that $ A \I>
does not hold with p-value min(pi/$,pv^).

Before deriving the given expressions for the p-values associated with the verification result of a con-
junction, let us give an intuitive justification. In order for $ A * to hold, both $ and * must hold, so we
cannot be anymore confident in the result for $ A ^ than we are in the result for the individual conjuncts,
thus the maximum in the first case. To conclude that $ A * does not hold, however, we only need to be
convinced that one of the conjuncts does not hold. In case we think exactly one of the conjuncts holds,
then the result for the conjunction will be based solely on this conviction and the p-value for the conjunct
we think holds should not matter. This covers the second and third cases. In the fourth case, we have two
sources (not necessarily independent) telling us that the conjunction is false. We therefore have no reason
to be less confident in the result for the conjunction than in the result for each of the conjuncts, hence the
minimum in this case.

For a mathematical derivation of the given expressions, we consider the formula V> e1 [<Pi] A V> o2 [^2]-
Let d{ denote the number of trajectories that satisfy ty. Provided we accept the conjunction as true, which



means we accept each conjunct as true, the p-value for this result is

n n

(4) Pr[]T X\l) > d! A <]

To compute this p-value, we consider the three ways in which p\ < 6\ V p2 < 02 can be satisfied (cf. Sen
et al. 2004). We know from elementary probability theory that

(5) Vr[A H B] < min(Pr[i4],Pr[B])

for arbitrary events A and B. From this fact, and assuming that pv{ is the p-value associated with the
verification result for V> $i [<pi\9 we derive the following:

i x ? >diA Eti Xf >d2\pi<01Ap2< 62] = jrnn{pvljPv2)

2- P r E ? = i X? > di A E I L i Xl2) >d2\pi<e1AP2> 02] = m i n ( ^ 1 ? 1) = pv1

3. P r E L i X? >diA Zti Xi2) >d2\pi>0iAp2< 02) = min(l,pv2) = pv2

We take the maximum over these three cases to obtain a bound for (4), which gives us max(pv1, pv2).
For the same formula, but now assuming we have verified both conjuncts to be false, we compute the

p-value as

n n

(6) P r [ ^ X\1] < di A ] T X\2) <d2\p1>61AP2> 62] .

It follows immediately from (5) that m i n Q ^ , pv2) is a bound for (6), which is the desired result.

4.2 PCTL with Nested Probabilistic Operators

If we allow nested probabilistic operators, PCTL model checking for "black-box" stochastic discrete event
systems becomes much harder. Consider the formula V>$ [T ZY'°'10°] V>ef [<p]]- In order to verify this
formula, we must test if V>of [<p] holds at some time t G [0,100] along the set of trajectories that we are
given. Unless the time domain T is such that there is a finite number of time points in a finite interval, then
we potentially have to verify V> e> [<p] at an infinite or even uncountable number of points along a trajectory,
which clearly is infeasible. Even if T = Z*, so that we only have to verify nested probabilistic formulae at
a finite number of points, we still have to take the entire prefix of the trajectory into account at each time
point. We are given a fixed set of trajectories, and we can only use the subset of trajectories with a matching
prefix to verify a nested probabilistic formula. This means that we will have very few trajectories available
to use for the verification of nested probabilistic formulae, most likely only one if the prefix is long, in which
case the uncertainty in the result will be overwhelming.

Only if we assume that the "black-box" system is a Markov chain, which is a rather strong assumption
to make, can we hope to have a significant number of trajectories available for the verification of nested
probabilistic formulae. This is because, under the Markov assumption, we only have to take the last state
along a trajectory prefix into consideration. Consequently, any suffix of a truncated trajectory starting at
a specific state s, in the set provided to us by an external source, can be regarded as representative of the
probability measure



Another complicating factor in the verification of V> $ [<p]9 where <p contains nested probabilistic opera-
tors, is that we cannot verify (p over trajectories without some uncertainty in the result. This means that we
do no longer obtain observations of the random variables X\ as defined above, but instead we observe some
other random variables Y{ with quite different distributions. We accept V>$ [</?] as true if YA=I ^ > c f° r

some constant c, and we reject the same formula as false otherwise. We can choose c as previously, but what
is the p-value of the decision?

To compute a p-value for nested verification we assume that Pr[Y; = 0 | a, r \= (p] < a and Pr[Yj =
I | a, r \fi ip] < (3. We can make this assumption if we introduce indifference regions in the verification
of probabilistic formulae that are part of (p. Under the given assumption, we can use the total probability
formula to derive bounds for P r [^ = 1]: p(l - a) < Pr[Y* = 1] < 1 - (1 - p)(l - /?). The p-value for
accepting V>e [p] as true when the sum of the observations is d is P rE^Li Y% > d \ p < 9] < F(n —
d;n, (1-(9) (1-/3)). The p-value for the opposite decision is PT[Y%=1 Y% < d \ p > 9] < F(d;n,9(l-a)).
Since F{d\n,p) increases as p decreases, we see that the p-value increases as the error bounds a and (3
increase, which makes perfect sense. While we said that c can be chosen as previously, this choice does no
longer guarantee that the hypothesis with the lowest p-value is accepted. To minimize the p-value of the
result, we can simply compute the p-values of the two hypotheses and accept the hypothesis with the lowest
p-value.

We can let the user specify a parameter So that controls the relative width of the indifference regions.
A probabilistic formula V>$ [<p] is verified with indifference region of half-width 5 = 8$9 if 9 < 0.5 and
5 = So(l - 9) otherwise. The verification is carried out using acceptance sampling as before, but with
hypotheses Ho : p > 9 + 5 and Hi : p < 9 — 8. Instead of reporting a p-value, we report bounds for the
type I error probability of the sampling plan in use if Hi is accepted and the type II error probability if Ho
is accepted. The type I error of a sampling plan is defined as the maximum probability of accepting Hi
when Ho holds, while the type II error is defined as the maximum probability of accepting Ho when Hi
holds. In our case, assuming a sampling plan (n, c) is used, the type I error is F(c; n, 9 + 5) and the type
II error is F(c; n,9 — 5). The error probabilities can be used in the same way as p-values to obtain error
probabilities for compound state formulae. A path formula can be treated as a compound state formula, as
suggested by Younes and Simmons (2002), which allows us to derive error bounds for the verification of
path formulae over trajectories as well. As error bounds for the computation of the p-value for a top-level
probabilistic operator we simply take the maximum error bounds for the verification of the path formula
over all trajectories.

5 Related Work

The idea of using statistical hypothesis testing for probabilistic model checking of "black-box" systems was
recently proposed by Sen et al. (2004). Their work is the inspiration for the current paper, although mostly
for the wrong reasons. It is in fact the many hidden assumptions, outright errors, and misleading empirical
evaluation of Sen et al.'s presentation that has prompted our interest in the subject.

First, consider the verification of a probabilistic formula V>e [ip]. Their approach is essentially the
same as ours: given a constant c, accept if YH=i Xi > c and reject otherwise. Their choice of c is different,
however, and is essentially based on De Moivre's (1738) normal approximation for the binomial distribution.
Their acceptance condition is Y12=i %-i > n9, which corresponds to choosing c to be \n&\ — 1. The mean
of the binomial distribution B(n, 9) is n0, so this would be the right thing to do if YA=I

 xi c a n b e assumed
to have a normal distribution. De Moivre showed that this is approximately the case for large n if X{
are Bernoulli variates, but the approximation is poor for moderate values of n or if 9 is not close to 0.5.
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Their algorithm, as a consequence, will under some circumstances accept a hypothesis with a larger p-value
than the alternative hypothesis. By choosing c as we do, without relying on the normal approximation,
we guarantee that the hypothesis with the smallest p-value is always accepted (The« :em 1). Consider the
formula P>o.oi M> for example, with n = 501 and d = 5. Our procedure would accept the formula as
true with p-value 0.562, while the the algorithm of Sen et al. would reject the formula as false with p-value
0.614. The difference is not of great significance, but it is still worth pointing out because it demonstrates the
danger of using the normal approximation for the binomial distribution. With today's fast digital computers,
it is hard to motivate the use thereof. Our procedure is therefore an improvement over the algorithm of Sen
etal.

The second improvement over the method presented by Sen et al. is in the calculation of the p-value for
the verification of a conjunction <J> A \I/ when both conjuncts have been verified to be false. They state that
the p-value is pv$> + pv^, but this is too conservative. There is no reason to believe that the confidence in
the result for $ A ^ would be lower (i.e. the p-value higher) if we are convinced that both conjuncts are
false. We have shown that the p-value in this case is bounded by m i n ^ ^ , ^ ^ ) , which intuitively makes
more sense.

Sen et al.'s handling of nested probabilistic operators is just plain wrong. They confuse the p-value
with the probability of accepting a false hypothesis (generally referred to as the type I or II error of a
sampling plan). The p-value is not a bound on the probability of a certain test procedure accepting a false
hypothesis. In fact, the test that both they and we use does not provide a useful bound on the probability of
accepting a false hypothesis. Their analysis relies heavily on the ability to bound the probability of accepting
a false hypothesis, so it breaks down completely. We have proposed a way to cope with this by introducing
indifference regions for nested probabilistic operators.

In addition to getting the verification of nested probabilistic operators wrong, Sen et al. are very vague
regarding the assumptions necessary to make their approach produce a reliable answer. The fact that they
treat any portion of a trajectory starting in s, regardless of the portion preceding s, as a sample from the same
distribution, hides a rather strong assumption regarding the dynamics of their "black-box" systems. As we
have pointed out, this is not a valid assumption unless we know that the system being studied is a Markov
chain. It also appears as if they only consider truncated trajectories over which they can fully verify a path
formula, and this can introduce a bias that very well may invalidate the conclusion they reach regarding
the truth-value of a probabilistic formula. We have made this quite clear in our exposition, and we have
presented a sound procedure for handling the fact that the value of a path formula may not be determined
over all truncated trajectories that are presented to us.

Finally, the empirical analysis offered by Sen et al. is misleading. They give the reader the impression
that a certain p-value can be guaranteed for a verification result simply by increasing the sample size. This
violates the premise of a "black-box" system stated by the authors themselves earlier in their paper, namely
that trajectories cannot be generated on demand. More important, though, is the fact that a certain p-value
never can be guaranteed. The p-value is not a property of a test, but simply a function of a specific set
of observations. If we are unlucky, we may make observations that give us a large p-value even in cases
when this is unlikely. It is therefore misleading to say that their algorithm is "faster" than the statistical
model checking algorithm used by Younes et al. (2004), as the latter algorithm is properly designed to
realize a certain performance characteristic. Their empirical results can in fact not be replicated reliably
because there is no fixed procedure by which they can determine the sample size required to achieve a certain
accuracy. Their results give the false impression that their procedure is sequential, i.e. that the sample size
automatically adjusts to the difficulty of attaining a certain p-value, when in reality they selected the reported
sample sizes manually based on prior empirical testing (K. Sen, personal communication, May 20, 2004).
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6 Discussion

Sen et al. (2004) were first to consider the problem of CSL verification for "black-box" systems. We have
generalized this idea to a wider class of probabilistic systems that can be characterized as stochastic discrete
event systems. Our most important contribution is to have given a clear definition of what constitutes a
"black-box" system, and to have made explicit any assumptions making feasible the application of statistical
hypothesis testing as a solution technique for verification of such systems. We have extended the logic PCTL
to enable the expression of properties of general stochastic discrete event systems. The algorithm we have
presented for verifying PCTL properties of "black-box" systems is an improvement over a similar but flawed
algorithm proposed by Sen et al.

The algorithm presented in this paper should not be thought of as an alternative to the statistical model
checking algorithm proposed by Younes and Simmons (2002) and empirically evaluated by Younes et al.
(2004). The two algorithms are complementary rather than competing, and are useful under disparate sets of
assumptions. If we cannot generate trajectories for a system on demand, then the algorithm presented here
allows us to still reach conclusions regarding the behavior of the system. If, however, we know the dynamics
of a system well enough to enabled simulation, then we are better off with the alternative approach as it gives
full control over the probability of obtaining an incorrect result.
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