
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

CMU-CS-79-126

Combinatorial Solutions
of Multidimensional

Divide-and-Conquer Recurrences

Louis Monier
Iria-Laboria

78 Rocquencourt, France

29 May 1979

Abstract
In this paper we use combinatorial techniques to solve recurrence relations in

two variables of the form
T(N,k) = 2 T(N/2,k) + T(N,k-l) + f(N)

and related recurrences. These recurrences arise in the analysis of algorithms
based on a paradigm called "multidimensional divide-and-conquer". The analyses
that we present are interesting from a combinatorial view, and show that certain
algorithms are very efficient.

^ h i s work was done while the author was visiting the Departement of Computer Science at Carnegte-MeMon
Universi ty end was supported in part by the Office of Naval Research under Contract N 0 0 0 1 4 - 7 6 - C - 0 3 7 0 .

29 May 1979 Combinatorial Solutions of Recurrences - 1 -

1 . Introduction

In this paper we shall study the problem of (exactly) analyzing Multidimensional
Divide-and-Conquer (MDC) algorithms described by Bentley [1978]. The execution costs of
these algorithms are usually described by recurrence relations in two variables of the form

T(N,k) « a T(N/2,k) 4 b T(N,k-l) + f(N)
or

T(N,k) = a T(N/2,k) + b T(N/2,k-l) + f(N)
with initial values

T(l,k) = 0(l) and T(N,2) = g(N)
where a and b are integers, and f and g are functions of N. These recurrences have only
been roughly solved for fixed k. The purpose of this paper is to solve these recurrences
exactly using combinatorial techniques. The exact analysis gives us the constant factor in the
expression of T(N,k) as a function of k, and also the ability to compare MDC algorithms with
more obvious algorithms.

In Section 2 we sketch a particular MDC algorithm and derive the recurrence describing its
running time. We solve that recurrence precisely in Section 3, and in Section 4 we use the
combinatorial solution to describe the behavior of the algorithm. Section 5 is a collection of
MDC recurrences and their solutions. In Section 6 we extend the solution method to more
general recurrences, and conclusions are offered in Section 7.

2. The All-Points ECDF Algorithm

In this section we shall investigate a particular MDC algorithm and show how its recurrence
can be derived; this algorithm is due to Bentley and Shamos and is described in Bentley
[1978]. Our purpose in this section is not to learn all the details of the algorithm, but rather
to understand how its recurrence arises. We say that a point X=(xj^..,xk) in an Euclidian
k-space dominates point V iff Xj z y{ for all i. The rank r(X) of a point X is the number of
points dominated by X. Given N points in k-space, the All-Points ECDF Problem is to compute
the rank of each. The following is a sketch of Algorithm ECDFk described by Bentley [1978]
for solving this problem on a set S of N points in k-space.

1 -If the number of points, N, in S is one, then solve the problem in 0(1) time; if the
dimension, k, of the point set is two, then solve the problem in 0(N Ig N) time. If
either of these conditions holds, return to the caller; otherwise continue to Step
2.

2.Using a hyperplane normal to one of the coordinate axes (say the x-axis), divide

29 May 1979 Combinatorial Solutions of Recurrences - 2 -

S in two subsets A and B, each containing N/2 points.

3.Recursively solve the all-points ECDF problem on A and B (each problem of N/2
points in k-space).

4.Remarking that any point of B dominates each point of A in x-coordinate, we may
remove this coordinate and solve the reduced problem (of finding for each point
in B how many points of A it dominates) on the N points projected in
(k-l)-space.

Let us denote by T(N,k) the time for solving the all-points ECDF problem on a set of N
points in k-space. Since Step 2 can be performed in time 0(N), we find the recurrence

relation

From Step 1 we have the boundary conditions^

T(N,2)=0(N log N)
T< 1,10-0(1).

To analyze the above recurrence we must remove the "thetas". We will therefore solve the
related recurrence

T(N,k)=2 T(N/2,k)+T(N,k-l)+N (2)
T(N,2)=N log N
T< 1,10-1.

The solution of the Equation 2 is always within a constant factor of solution of Equation 1,
and therefore is precise enough for our purposes.

3. Combinatorial Solution

We shall first solve Equation 2 assuming that N =» 2P. For this purpose, we define

B(p,k)=T(2P,k)/2P .
Dividing both sides of Equation 2 by N and substituting this definition of B gives the reduced

T(N,k)=2 T(N/2,k)+T(N,k-l)+0(N). (1)

system
B(p,k)~B(p-l,k)+B(p,k-l)+l
B(p,2)=p
B(0,k)=l.

(3)

We may easily verify that the solution to Equation 3 is

Her© I* N denotes always ! o * 2 N.

29 May 1979 Combinatorial Solutions of Recurrences - 3 -

The solution of Equation 2 is now immediate; it is

f f lgN+(k-2) \ AlgN+(k-3)\ "I m >
J,k) = N L 2 1 k-2 I + \ k-1 / - 1 J. (5 > T(N,I

We know now what the solution is; we do not, however, know why it is so. To achieve a
more intuitive understanding of this solution, we shall transform Equation 3 by defining
A(p,k)=B(p,k)+l and find a combinatorial interpretation of the new recurrence

A(p,k)=A(p-l,k)+A(p,k-l) (6)
A(p,2)=p-.-l
A(0,k)=2.

Let us consider the net of Figure 1. The number W(a b)(p,k) of ways from (a,b) to (p,k) using
only edges in the network satisfies the recurrence

W b(p,k)=W b (p -1 ,k>+W b(p,k-1)
W a b <P,0)= l
w a ; b (o , k) = i

which is the same as Recurrence 6, except for the bounds. Clearly, to go from (a,b) to (p,k)
we must choose (p-a) horizontal steps from a total of (p-a)+(k-b) steps (the other k-b being
vertical). This immediately yields

fp-a+k-b\
(p,k) = V k-a /.

W a , b

We therefore build the net corresponding to Equation 6 and expand it on the line k« l ; this is
depicted in Figure 2. It is now easy to interpret A(p,k) in terms of counting paths, and we
find that

A(p,k) = 2 W 0 > 2(p,k) 4 W 2 > 1(p,k)
which yields Equation 4.

In the next section, we shall study several other recurrences using this method, which we
can summarize as follows.

-Manipulate the initial recurrence until obtaining a form similar to Equation 6.

-Build the corresponding net, and (if possible) expand it to make the bounds

[p+k-2\ fp+k-3\ . . .
B(p,k) = 2 V k-2 / + [k-1 / - 1. w

29 May 1979
A

k

Combinatorial Solutions of Recurrences - 4

— > 5 — > 15 — > 35 — > 70

^ ^ ^ ^ ^

— > 4 — > 10 — > 20 — > 3 5

^ ^ ^ ^

-> 3 > 6 — > 10 — > 15

t t t T î
1 — > 2 — > 3 — > 4 — > 5

^ ^ ^\ ^

-> 1 — > 1 — > 1 — > 1

Figure 1: A very simple ret

29 May 1979 Combinatorial Solutions of Recurrences

2 —> 8 —> 21 — > 45

î î t t
2 — > 6 — > 13 — > 24

î t t t
2 — > 4 — > 7 — > 11

f t î f

85

t
40

t
- > 16

2 — > 2 — > 3

î î
1 — > 1

t
5

t

A(P,k)

Figure 2: Net associated with Recurrence 6

"more simple".

-Interpret the recurrence in terms of paths and solve it.

4. Interpretation of the Solution

In the previous section we found that the running time of Algorithm ECDFk on a set of N
points in k-space, for N a power of two, is given by the expression

T fig N +(k-2)\ fig N +(k-3)\ 1
T(N,k) = N L 2 V k-2 } + [k-1 j - 1 J. (7)

In this section we shall interpret this solution to see what it tell us about Algorithm ECDFk.

29 May 1979 Combinatorial Solutions of Recurrences - 6 -

In many applications of the algorithm, we are interested in the case that k is fixed and N
grows; we can then use the approximation

T(N,k) = N + * N lgk"2N). (8)

This approximation is based on the fact that (£) = p k /k! + ^(p^" 1) when k is fixed and p

grows. It is interesting to remark that the factor l / (k- l) ! in the expression of T(N,k) was still

unknown, and that it explains in part the efficiency of MDC.

The above analysis holds only for N a power of two. The running time of Algorithm ECDFk
on a general set of N points in k-space is given by the recurrence

T(N,k) « T (FN /2 l ,k) + T(lN/2J,k) +T(N,k-l) + N (9)
T(N,2) = N Ig N
T(l,k) = 1.

Note that when N is a power of two, Equation 9 reduces to precisely Equation 2 of Section 3.
We shall now show that the approximation of Equation 8 applies also to this general
recurrence. For this, we define the first and second differences of the function T as

AT(N,k) = T(N9k) - T(N-l ,k-l)
A 2T(N,k) = AT(N,k) - AT(N-l ,k- l) .

Using the recurrence defining the function T, it is easy to find the recurrence relations

defining the differences. It becomes

AT(N,k) = AT(N,k-l) + AT(FL\l/2l,k) + 1
A 2 T(N,k) = A 2 T(N,k-1) for even N
A 2T(N,k) = A 2 T(N,k- l) + AT<RN/2l,k) for odd N

We shall prove by induction on k and N that AT(N,k) is positive for all N>1 and k>2. For k=2

we verify this easily for ALL N since the function N Ig N increases with N. When N=2, we have

AT(2,k) = T(2,k) - T(l,k) = T(l,k) + T(2,k-1) + 1 > 0.
Assume that the first difference is positive in dimension k-1 for any N. Then a sufficient
condition for AT(N,k) to be positive is that AT(FN/2l,k) is positive, and so on until we need

AT(2,k) to be positive, which is true. We have therefore proved that for any k the function

T(N,k) increases with N.

Usinf the same argument it is easv to orove that the second difference is alway$ positive,
since N Ig N is a concave function of N and A 2T(2,k) = A 2T(2,2) > 0. So T(N,k) is itself a

29 May 1979 Combinatorial Solutions of Recurrences - 7 -

concave function of N for any fixed k. The previous results will be sufficient to prove that
Equation 8 holds for all N and for any fixed k. For this purpose, we shall find upper and lower
bounds of T(N,k) which are both of the form of Equation 8. Assuming that 2 p < N < 2 p + * , and
using the concavity of the function T(N,k), we may bound T(N,k) by S and I, as shown in
Figure 3. Both values are found using linear interpolations of T between consecutive powers
of two. The slopes of these linear interpolations being very close, we find for S and 1
expressions which are equivalent to the first order to

n k - l

S = I = N + »((N+2P) p k" 2)

and since p < Ig N < p+1, the expressions of S and I are identical to the approximation of
T(N,k) in Equation 8. Hence we have proved that Equation 8 holds for any N>1 and k>2.

T (H ,k) a

Figure 3: Approximation of T(IM,k) using the concavity of the function.

This allows us to compare Algorithm ECDFk with the naive ECDF algorithm that compares all
pairs of ooints. which we call the senuential searching (SS) algorithm. The comolexitv of this
algorithm is 0(k N^). For fixed k and large enougi. N it is clear that ECDFk is better than SS,
since 0(N lgk""l|M) < In some applications, however, the number of dimensions is too

29 May 1979 Combinatorial Solutions of Recurrences - 8 -

large to enable us to u*e tjie a ^ r o x i m a t i o n o f Equation 8. We then approximate the
complexity of ECDFk by c N (8

 k) and the complexity of SS by k N 2 . Figure 4 shows in
which domains each algorithm is faster, for various values of the parameter c Since problems
involving more than 2 8 0 (or about lO 2 ^) points will probably never be processed, Figure 4
covers the actual domain of values for k and

) l I — , ^ r J c = 1 Q Q I 1 1 1 « - J - -»

0 10 20 30 40 SO 60 70 80
p « Ig(Number of points)

Figure 4 : Comparison of ECDFk and SS algorithms.

In the next section we shall analyze other MDC algorithms and find similar expressions for
their attributes. The same interpretation as we have presented for this problem can be done
for the problems we will see, and will yield similar conclusions.

5* Examples

The following examples analyze the preprocessing time, storage and query time of two
important algorithms, the Maxima Searching and the ECDF Searching Problems. A description
of these algorithms may be found in Bentley [1978].

29 May 1979 Combinatorial Solutions of Recurrences - 9 -

5 . 1 . M A X I M A SEARCHING

The first problem that we shall analyze is that of the maxima searching data structure.
There are three attributes of this data structure to be analyzed: its preprocessing time (how
long it takes to build the structure), its query time (how long it takes to search in the
structure), and its storage (how much space is required to represent the structure). The first
attribute that we shall analyze is the preprocessing time, which is given by the recurrence

P(N,k)=2 P(N/2,k)+P(N,k-l)+0(N>
P(N,2)=0(N)
P(l,k)=0(l).

We can transform this recurrence using
B(p,k)=P(2P,k)/2P + 1

into the following system
B(p,k)=B(p-i,k)+B(p,k-l)
B(p,2)=2
B(0,k)=2

which corresponds to a net similar to that of Figure 1 with somewhat different boundary
conditions. The solution is

fp+k-2\
B(p,k) = 2 \ k-2 }

and we find the preprocessing time to be equal to

fig N +(k-2)\
P(N,k) = 2 N \ k-2 J - N.

For fixed k, as N grows, we may approximate P(N,k) by

P(N,k) = 2 N + KN lg k ' 3N)

We now turn our attention to the storage requirements, which are defined by
S(N,k)=2 S(N/2,k)+S(N/2,k-l)
S(N,2)=N
S(l ,k)=l .

We transform, as before, by
B(p,k)=S(2P,k)

29 May 1979 Combinatorial Solutions of Recurrences - 10 -

and we have to solve the system
B(p,k>=2 B(p-l,k)+B(p-l,k-l)
B(p,2)=2P
B(0,k)=l.

The associated net is drawn in Figure 5.

27 = 5 81 1 3 = | 9

/ / / /
27 = 2 80

/ / / /
26 = 2 72

/ / / /
8 = ^ 2 0 I = £ 48 1 = s

/ / / /
2 I = £ 4 8 16

B (P,k)

(10)

Figure 5: Net associated with Recurrence 10

Clearly, a way from (0,0) to (p,k) in such a net is a sequence of k diagonal steps and of p-k
horizontal ones, each horizontal one chosen among two possibilities. So the number of ways
from (0,0) to (p,k) is

2P"k (k).

Returning to the recurrence, we find that

29 May 1979 Combinatorial Solutions of Recurrences - 11 -

2<i<k

- Z 2P" i (i)
0<i£k-2

and the storage is

S(N,k) = N Z 2 - (l 8 i N) .
0<i<k-2

We may remark that when k > Ig N +2, the equation becomes

S(N,k) = Z 2 i (' g i N) = 3 '« N = N ' « 3 .
0<i<k-2

by the binomial theorem. An intuitive explanation of this fact is that for k large enough, we

may equate S(N,k) and S(N,k-l) and write
S(N,k) = 2 S(N/2,k) + S(N/2,k-l) = 3 S(n/2,k)

whose solution is precisely S(N,k) = 3*8 N = N lg 3_

At the opposite end of the spectrum, for fixed k and increasing N, we have

The last attribute of the maxima searching data structure is the query time. Its associated

Q<N,k)=Q(N/2,k)+Q(N/2,k-1)+0< 1)
Q<N,2Hg N
Q(l ,k)=l .

The tranformation
B(p,k)=Q(2P,k)+l

yields
B(p,k)=B(p-l,k)+B(p-l,k-l)
B(p,2)=p+1
B(0,k)=2.

The corresponding net is similar to Figure 5, but there is only one way for each diagonal

S(N,k) = N
lg k- 2N + 9(N lgk"3N).
(k-2)!

system is

29 May 1979 Combinatorial Solutions of Recurrences - 12 -

step. So we find

B(p,k) = (k - l) + 2 Z (?)
0<i<k-2

and the query time is

Q(N,k)
fig N -1

l,k) = L k-1 1.2 Z (V)-
0<i<k-2

For fixed k, as N grows, we have

Q(N,k) = lgk-*N
(k-1)! + »(lg k- 2N).

We must remark that the query time admits an interpretation similar to that of Section 4, and
similar conclusion as for the comparison with the obvious SS algorithm. At the opposite, the
storage and the preprocessing time are 0(N k) for SS, and hence better than those of the
MDC Maxima Searching algorithms.

5.2. ECDF Searching

The second problem that we shall study is the ECDF searching; it is described by the same
three attributes.

The preprocessing time and the storage are described by exactly the same recurrences, so
we shall restrict our attention to the preprocessing given by

P(N,k)=2 P(N/2,k)+P(N/2,k-l)+0(N)
P(N,2)=N Ig N
P(l ,k)=l .

The function
B(p,k)=P(2P,k)+2P

gives us the new system
B(p,k)=2 B(p-l,k)+B(p-l,k-l)
B(p,2)=(p+1) 2P
B(0,k)=2

whose net is similar to Figure 5. We can expand the net by B(p,l)*2P' f^ for p>0. The
solution is

I

29 May 1979 Combinatorial Solutions of Recurrences - 13 -

B(p,k) - 2"- k * 2 (k - l) + 2 Z 2P"j (?).
0si<k-2

The preprocessing time and storage are given by

P(N,k) = N 2 2 " k { k-l) + 2 Z 2 H I i) - 1 .
OsiSk-2

Note that if k < Ig N +2, then P(N,k) = 2 N'& 3 - N. For fixed k and large N the following
approximation holds

P(N,k) = N | ^ + *(N lgk"2N).

The last parameter to be analyzed is the query time. It is described by the system
Q(N,k)=Q(N/2,k)+Q(N/2,k-1)
Q<N,2)=lg2 N
(X I , k M .

We use the new function
B(p,k)=Q(2P,k)+l

and we have to solve
B(p,k)=B(p-1 ,k)+B(p-1 ,k-1)
B(p,2)=p 2+)
B(0,k)=2.

For this purpose, we expand the corresponding net by noticing that B(p,l) - 2p+l and
B(p,0)=2 are convenient for p>l. It now becomes

B(p,k) = 3 (k - l) + 2 (P k 1) + 2 Z (k - i) .
2<i<k

•2(1) A l l) , 2 z (?)
0<i<k-2

We substitute this expression in the initial equation to find

(lgN \ (l g N - l \ ^ / | g N \
Q(N,k) = 2 l k M k-l J + 2 Z I i J-l.

0<i<k-2

Again, we may remark that if k > Ig N, then Q(N,k)=2'g N = N. As usual, when k is fixed and N

2 9 May 1 9 7 9 Combinatorial Solutions of Recurrences - 1 4 -

grows we find

Q(N,k) = 2 ^ + Wg^N) .

6. More General Recurrences

We shall now study how we can solve the general reduced recurrence of the form

B(p,k) = a B<p-l,k) + b B(p-€,k-l)

where € = 0 or 1 . The values of B(p,k) are initially definite on a boundary EQ , and we assume

that this bound is of the form of that in Figure 6 . If this is necessary, we just consider a

subset of E Q of this form.

s : element of

r : element of Ej

t
r

t \
. r v

vtu N

\ S S - 4 - > r

\ s s s
\

Figure 6 : The sets EQ and Ej associated to a net.

We now define the set Ej to be the set of points which are not in EQ and which can be
reached from E Q in one step. Then, for any point (p,k) not in EQ* the function B(p,k) is the
sum of the number of ways from Ej to (p,k), each way weighted by the value of B at its

I

29 May 1979 Combinatorial Solutions of Recurrences - 15 -

7. Conclusions

In this section we will briefly review the contributions of this paper. One of the main
contributions has been the detailed analysis of the Multidimensional Divide-and-Conquer
algorithms described by Bentley [1978]. We have exhibited precise analyses for many of
those algorithms, accurate to within an (implementation-dependent) constant factor. These
analyses show that the algorithms are more efficient than previously thought (it was not
known that the constant of proportionality is the very small function l/(k!)).

In addition to analyzing particular algorithms, we have seen a set of general tools
applicable to the analysis of algorithms in two variables. The primary analytical tools are a
set of useful transforms and an isomorphism of recurrences and path-counting problems on
networks. We have also seen a number of tools for the interpretation of recurrences; these
include a technique for showing the "smoothness" of the resulting function (between powers

For example, in the recurrences of Section 5

starting point rj=(pj,Kj) in Ej . So we find the general solution

B(p,k) = Z W^pWWppk.)

As in the Section 3, W(r s)(p,k) denotes the number of ways from (r,s) to (p,k) in the current
net. We may remark that the sum in the previous equation is finite, because W(r > s)(p,k) is null
out of a finite sub-net, for fixed (p,k).

It may happen that the values of B are sufficiently regular on EQ for allowing us to expand
the net, and this sometimes reduces to a sum involving only a constant number of terms in
the expression of B(p,k).^

Another problem is now to reduce the recurrences that appear in MDC-problems to the
previous form. The general paradigm (divide N by 2 and solve the problem in a k-1 space)
shows that the natural variables are Ig N and k; so the primary change of variables is to use
p » Ig N. We therefore solve

B(p,k) = a B(p-l,k) + b B(p~«,k-1) + f(p,k)
B(p,k) » known on a bound.

The problem is to find a particuliar solution A(p,k), in order to solve the reduced equation
verified by B-A. The only way seems to be luck and trick, and no general method can be
exhibited here.

29 May 1979 Combinatorial Solutions of Recurrences - 16 -

of two) and a method for comparing sophisticated algorithms with more straightforward
solutions. The methods that we have seen are applicable to all of the algorithms described
by Bentley [1978], as well as other many others (such as in Lee and Wong [1979]).

8« Acknowledgements

At first, I should like to express my gratitude to Jon Bentley. By his help, advice and
abundant encouragement he was a constant and efficient support. My thanks also to all the
members of the Department of Computer Science at CMU who introduced me to the tools this
paper has been prepared with, especially Don Cohen, Kevin Brown and Charles Leiserson. I
want lastly to tell of my enjoyment for working in the CMU atmosphere.

References

Bentley, J.L. [1978] "Multidimensional Divide-and Conquer", to appear in CACM.

Lee, D.T. and Wong, C.K. [1979] "Quintary Trees: A File Stucture for Multi-dimensional

Database System", to appear in ACM Transactions on Database Systems.

U N C L A S S I F I E D
S E C U R I T Y C L A S S I F I C A T I O N OF T H I S P A G - ('4**0 Dot* Entered)

R E P O R T D O C U M E N T A T I O N P A G E
R E A D I N S T R U C T I O N S

B E F O R E C O M P L E T I N G F O R M

1. R E P O R T N U M B E R
CMU-CS-79-126

2. GOVT ACCESSION NO.

4. T I T L E (and Subtitle)

COMBINATORIAL SOLUTIONS OF MULTIDIMENSIONAL DIVIDE-

AND-CONQUER RECURRENCES

7. A U T H O R f * ;

LOUIS MONIER

9. P E R F O R M I N G O R G A N I Z A T I O N N A M E AND ADDRESS

C a r n e g i e - M e l l o n U n i v e r s i t y
C o m p u t e r S c i e n c e D e p a r t m e n t
P i t t s b u r g h , PA 1 5 2 1 3

11. C O N T R O L L I N G O F F I C E NAME AND ADDRESS

O f f i c e o f N a v a l R e s e a r c h
A r l i n g t o n , VA 2 2 2 1 7 •

U . M O N I T O R I N G A G E N C Y N A M E & ADDRESSf / / different from Controlling Office)

1. R E C I P I E N T ' S C A T A L O G N U M B E R

5. T Y P E O F R E P O R T & P E R I O D C O V E R E D

I n t e r i m

6. P E R F O R M I N G O R G . R E P O R T N U M B E R

e. C O N T R A C T OR G R A N T N U M ö E R f t ;

N 0 0 0 1 4 - 7 6 - C - 0 3 7 0

10. P R O G R A M E L E M E N T . P R O J E C T , TASK
A R E A à WORK U N I T N U M B E R S

12. R E P O R T D A T E

May 2 9 , 1 9 7 9
13. N U M E F. P. O F P A G E S

18
15. S E C U R I T Y CLASS, (of thta report)

U N C L A S S I F I E D
15«. D E C L A S 'i ! FI C A T IO N / DOWNGRADING

S C K L O U L E

16. D I S T R I B U T I O N S T A T E M E N T (of this Report)

A p p r o v e d f o r p u b l i c r e l e a s e ; d i s t r i b u t i o n u n l i m i t e d

17. D I S T R J B U T I O N S T A T E M E N T (of the abstract entered in Block 20, If different from Report)

18. S U P P L E M E N T A R Y N O T E S

19. K E Y WORDS (Continue on reverse aide it neceaaary arid identify by block number)

20. A B S T R A C T (Continue on reverae aide It neceaaary and Identity by block number)

DD t J AN 73 1473 E D I T I O N OF 1 NOV f.5 ,S O B S O L E T E U N C L A S S I F I E D
S / N 0 1 0 2 - 0 1 4 - 6 6 0 1 I

S E C U R I T Y C L A S S I F I C A T I O N OF THIS P A G E (»n*n Data Entered)

