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Abstract 
In this paper we use combinatorial techniques to solve recurrence relations in 

two variables of the form 
T(N,k) = 2 T(N/2,k) + T(N,k-l) + f(N) 

and related recurrences. These recurrences arise in the analysis of algorithms 
based on a paradigm called "multidimensional divide-and-conquer". The analyses 
that we present are interesting from a combinatorial view, and show that certain 
algorithms are very efficient. 
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1 . Introduction 

In this paper we shall study the problem of (exactly) analyzing Multidimensional 
Divide-and-Conquer (MDC) algorithms described by Bentley [1978]. The execution costs of 
these algorithms are usually described by recurrence relations in two variables of the form 

T(N,k) « a T(N/2,k) 4 b T(N,k-l) + f(N) 
or 

T(N,k) = a T(N/2,k) + b T(N/2,k-l) + f(N) 
with initial values 

T(l,k) = 0( l ) and T(N,2) = g(N) 
where a and b are integers, and f and g are functions of N. These recurrences have only 
been roughly solved for fixed k. The purpose of this paper is to solve these recurrences 
exactly using combinatorial techniques. The exact analysis gives us the constant factor in the 
expression of T(N,k) as a function of k, and also the ability to compare MDC algorithms with 
more obvious algorithms. 

In Section 2 we sketch a particular MDC algorithm and derive the recurrence describing its 
running time. We solve that recurrence precisely in Section 3, and in Section 4 we use the 
combinatorial solution to describe the behavior of the algorithm. Section 5 is a collection of 
MDC recurrences and their solutions. In Section 6 we extend the solution method to more 
general recurrences, and conclusions are offered in Section 7. 

2. The All-Points ECDF Algorithm 

In this section we shall investigate a particular MDC algorithm and show how its recurrence 
can be derived; this algorithm is due to Bentley and Shamos and is described in Bentley 
[1978]. Our purpose in this section is not to learn all the details of the algorithm, but rather 
to understand how its recurrence arises. We say that a point X=(xj^..,xk) in an Euclidian 
k-space dominates point V iff Xj z y{ for all i. The rank r(X) of a point X is the number of 
points dominated by X. Given N points in k-space, the All-Points ECDF Problem is to compute 
the rank of each. The following is a sketch of Algorithm ECDFk described by Bentley [1978] 
for solving this problem on a set S of N points in k-space. 

1 -If the number of points, N, in S is one, then solve the problem in 0(1) time; if the 
dimension, k, of the point set is two, then solve the problem in 0(N Ig N) time. If 
either of these conditions holds, return to the caller; otherwise continue to Step 
2. 

2.Using a hyperplane normal to one of the coordinate axes (say the x-axis), divide 
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S in two subsets A and B, each containing N/2 points. 

3.Recursively solve the all-points ECDF problem on A and B (each problem of N/2 
points in k-space). 

4.Remarking that any point of B dominates each point of A in x-coordinate, we may 
remove this coordinate and solve the reduced problem (of finding for each point 
in B how many points of A it dominates) on the N points projected in 
(k-l)-space. 

Let us denote by T(N,k) the time for solving the all-points ECDF problem on a set of N 
points in k-space. Since Step 2 can be performed in time 0(N), we find the recurrence 

relation 

From Step 1 we have the boundary conditions^ 

T(N,2)=0(N log N) 
T< 1,10-0(1). 

To analyze the above recurrence we must remove the "thetas". We will therefore solve the 
related recurrence 

T(N,k)=2 T(N/2,k)+T(N,k-l)+N (2) 
T(N,2)=N log N 
T< 1,10-1. 

The solution of the Equation 2 is always within a constant factor of solution of Equation 1, 
and therefore is precise enough for our purposes. 

3. Combinatorial Solution 

We shall first solve Equation 2 assuming that N =» 2P. For this purpose, we define 

B(p,k)=T(2P,k)/2P . 
Dividing both sides of Equation 2 by N and substituting this definition of B gives the reduced 

T(N,k)=2 T(N/2,k)+T(N,k-l)+0(N). (1) 

system 
B(p,k)~B(p-l,k)+B(p,k-l)+l 
B(p,2)=p 
B(0,k)=l. 

(3) 

We may easily verify that the solution to Equation 3 is 

Her© I* N denotes always ! o * 2 N. 
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The solution of Equation 2 is now immediate; it is 

f f lgN+(k-2) \ AlgN+(k-3)\ "I m > 
J,k) = N L 2 1 k-2 I + \ k-1 / - 1 J. ( 5 > T(N,I 

We know now what the solution is; we do not, however, know why it is so. To achieve a 
more intuitive understanding of this solution, we shall transform Equation 3 by defining 
A(p,k)=B(p,k)+l and find a combinatorial interpretation of the new recurrence 

A(p,k)=A(p-l,k)+A(p,k-l) (6) 
A(p,2)=p-.-l 
A(0,k)=2. 

Let us consider the net of Figure 1. The number W( a b)(p,k) of ways from (a,b) to (p,k) using 
only edges in the network satisfies the recurrence 

W b(p,k)=W b (p -1 ,k>+W b(p,k-1) 
W a b <P,0 )= l 
w a ; b ( o , k ) = i 

which is the same as Recurrence 6, except for the bounds. Clearly, to go from (a,b) to (p,k) 
we must choose (p-a) horizontal steps from a total of (p-a)+(k-b) steps (the other k-b being 
vertical). This immediately yields 

fp-a+k-b\ 
(p,k) = V k-a /. 

W a , b 

We therefore build the net corresponding to Equation 6 and expand it on the line k« l ; this is 
depicted in Figure 2. It is now easy to interpret A(p,k) in terms of counting paths, and we 
find that 

A(p,k) = 2 W 0 > 2(p,k) 4 W 2 > 1(p,k) 
which yields Equation 4. 

In the next section, we shall study several other recurrences using this method, which we 
can summarize as follows. 

-Manipulate the initial recurrence until obtaining a form similar to Equation 6. 

-Build the corresponding net, and (if possible) expand it to make the bounds 

[p+k-2\ fp+k-3\ . . . 
B(p,k) = 2 V k-2 / + [ k-1 / - 1. w 
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Figure 1: A very simple ret 
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Figure 2: Net associated with Recurrence 6 

"more simple". 

-Interpret the recurrence in terms of paths and solve it. 

4. Interpretation of the Solution 

In the previous section we found that the running time of Algorithm ECDFk on a set of N 
points in k-space, for N a power of two, is given by the expression 

T fig N +(k-2)\ fig N +(k-3)\ 1 
T(N,k) = N L 2 V k-2 } + [ k-1 j - 1 J. (7) 

In this section we shall interpret this solution to see what it tell us about Algorithm ECDFk. 
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In many applications of the algorithm, we are interested in the case that k is fixed and N 
grows; we can then use the approximation 

T(N,k) = N + * N lgk"2N). ( 8 ) 

This approximation is based on the fact that (£ ) = p k /k! + ^(p^" 1) when k is fixed and p 

grows. It is interesting to remark that the factor l / (k- l ) ! in the expression of T(N,k) was still 

unknown, and that it explains in part the efficiency of MDC. 

The above analysis holds only for N a power of two. The running time of Algorithm ECDFk 
on a general set of N points in k-space is given by the recurrence 

T(N,k) « T (FN /2 l ,k) + T(lN/2J,k) +T(N,k-l) + N (9) 
T(N,2) = N Ig N 
T(l,k) = 1. 

Note that when N is a power of two, Equation 9 reduces to precisely Equation 2 of Section 3. 
We shall now show that the approximation of Equation 8 applies also to this general 
recurrence. For this, we define the first and second differences of the function T as 

AT(N,k) = T(N9k) - T(N-l ,k-l) 
A 2T(N,k) = AT(N,k) - AT(N-l ,k- l ) . 

Using the recurrence defining the function T, it is easy to find the recurrence relations 

defining the differences. It becomes 

AT(N,k) = AT(N,k-l) + AT(FL\l/2l,k) + 1 
A 2 T(N,k) = A 2 T(N,k-1) for even N 
A 2T(N,k) = A 2 T(N,k- l ) + AT<RN/2l,k) for odd N 

We shall prove by induction on k and N that AT(N,k) is positive for all N>1 and k>2. For k=2 

we verify this easily for ALL N since the function N Ig N increases with N. When N=2, we have 

AT(2,k) = T(2,k) - T(l,k) = T(l,k) + T(2,k-1) + 1 > 0. 
Assume that the first difference is positive in dimension k-1 for any N. Then a sufficient 
condition for AT(N,k) to be positive is that AT(FN/2l,k) is positive, and so on until we need 

AT(2,k) to be positive, which is true. We have therefore proved that for any k the function 

T(N,k) increases with N. 

Usinf the same argument it is easv to orove that the second difference is alway$ positive, 
since N Ig N is a concave function of N and A 2T(2,k) = A 2T(2,2) > 0. So T(N,k) is itself a 
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concave function of N for any fixed k. The previous results will be sufficient to prove that 
Equation 8 holds for all N and for any fixed k. For this purpose, we shall find upper and lower 
bounds of T(N,k) which are both of the form of Equation 8. Assuming that 2 p < N < 2 p + * , and 
using the concavity of the function T(N,k), we may bound T(N,k) by S and I, as shown in 
Figure 3. Both values are found using linear interpolations of T between consecutive powers 
of two. The slopes of these linear interpolations being very close, we find for S and 1 
expressions which are equivalent to the first order to 

n k - l 

S = I = N + »((N+2P) p k" 2) 

and since p < Ig N < p+1, the expressions of S and I are identical to the approximation of 
T(N,k) in Equation 8. Hence we have proved that Equation 8 holds for any N>1 and k>2. 

T (H ,k) a 

Figure 3: Approximation of T(IM,k) using the concavity of the function. 

This allows us to compare Algorithm ECDFk with the naive ECDF algorithm that compares all 
pairs of ooints. which we call the senuential searching (SS) algorithm. The comolexitv of this 
algorithm is 0(k N^). For fixed k and large enougi. N it is clear that ECDFk is better than SS, 
since 0(N lgk""l|M) < In some applications, however, the number of dimensions is too 
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large to enable us to u*e tjie a ^ r o x i m a t i o n o f Equation 8. We then approximate the 
complexity of ECDFk by c N ( 8

 k ) and the complexity of SS by k N 2 . Figure 4 shows in 
which domains each algorithm is faster, for various values of the parameter c Since problems 
involving more than 2 8 0 (or about lO 2 ^) points will probably never be processed, Figure 4 
covers the actual domain of values for k and 

) l I — , ^ r J c = 1 Q Q I 1 1 1 « - J - -» 

0 10 20 30 40 SO 60 70 80 
p « Ig(Number of points) 

Figure 4 : Comparison of ECDFk and SS algorithms. 

In the next section we shall analyze other MDC algorithms and find similar expressions for 
their attributes. The same interpretation as we have presented for this problem can be done 
for the problems we will see, and will yield similar conclusions. 

5* Examples 

The following examples analyze the preprocessing time, storage and query time of two 
important algorithms, the Maxima Searching and the ECDF Searching Problems. A description 
of these algorithms may be found in Bentley [1978]. 
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5 . 1 . M A X I M A SEARCHING 

The first problem that we shall analyze is that of the maxima searching data structure. 
There are three attributes of this data structure to be analyzed: its preprocessing time (how 
long it takes to build the structure), its query time (how long it takes to search in the 
structure), and its storage (how much space is required to represent the structure). The first 
attribute that we shall analyze is the preprocessing time, which is given by the recurrence 

P(N,k)=2 P(N/2,k)+P(N,k-l)+0(N> 
P(N,2)=0(N) 
P(l,k)=0(l). 

We can transform this recurrence using 
B(p,k)=P(2P,k)/2P + 1 

into the following system 
B(p,k)=B(p-i,k)+B(p,k-l) 
B(p,2)=2 
B(0,k)=2 

which corresponds to a net similar to that of Figure 1 with somewhat different boundary 
conditions. The solution is 

fp+k-2\ 
B(p,k) = 2 \ k-2 } 

and we find the preprocessing time to be equal to 

fig N +(k-2)\ 
P(N,k) = 2 N \ k-2 J - N. 

For fixed k, as N grows, we may approximate P(N,k) by 

P(N,k) = 2 N + KN lg k ' 3N) 

We now turn our attention to the storage requirements, which are defined by 
S(N,k)=2 S(N/2,k)+S(N/2,k-l) 
S(N,2)=N 
S( l ,k)=l . 

We transform, as before, by 
B(p,k)=S(2P,k) 
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and we have to solve the system 
B(p,k>=2 B(p-l,k)+B(p-l,k-l) 
B(p,2)=2P 
B(0,k)=l. 

The associated net is drawn in Figure 5. 

27 = 5 81 1 3 = | 9 

/ / / / 
27 = 2 80 

/ / / / 
26 = 2 72 

/ / / / 
8 = ^ 2 0 I = £ 48 1 = s 

/ / / / 
2 I = £ 4 8 16 

B (P,k) 

(10) 

Figure 5: Net associated with Recurrence 10 

Clearly, a way from (0,0) to (p,k) in such a net is a sequence of k diagonal steps and of p-k 
horizontal ones, each horizontal one chosen among two possibilities. So the number of ways 
from (0,0) to (p,k) is 

2P"k (k). 

Returning to the recurrence, we find that 
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2<i<k 

- Z 2P" i ( i ) 
0<i£k-2 

and the storage is 

S(N,k) = N Z 2 - ( l 8 i N ) . 
0<i<k-2 

We may remark that when k > Ig N +2, the equation becomes 

S(N,k) = Z 2 i ( ' g i N ) = 3 '« N = N ' « 3 . 
0<i<k-2 

by the binomial theorem. An intuitive explanation of this fact is that for k large enough, we 

may equate S(N,k) and S(N,k-l) and write 
S(N,k) = 2 S(N/2,k) + S(N/2,k-l) = 3 S(n/2,k) 

whose solution is precisely S(N,k) = 3*8 N = N lg 3_ 

At the opposite end of the spectrum, for fixed k and increasing N, we have 

The last attribute of the maxima searching data structure is the query time. Its associated 

Q<N,k)=Q(N/2,k)+Q(N/2,k-1 )+0< 1) 
Q<N,2Hg N 
Q(l ,k)=l . 

The tranformation 
B(p,k)=Q(2P,k)+l 

yields 
B(p,k)=B(p-l,k)+B(p-l,k-l) 
B(p,2)=p+1 
B(0,k)=2. 

The corresponding net is similar to Figure 5, but there is only one way for each diagonal 

S(N,k) = N 
lg k- 2N + 9(N lgk"3N). 
(k-2)! 

system is 
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step. So we find 

B(p,k) = ( k - l ) + 2 Z ( ? ) 
0<i<k-2 

and the query time is 

Q(N,k) 
fig N -1 

l,k) = L k-1 1.2 Z (V)-
0<i<k-2 

For fixed k, as N grows, we have 

Q(N,k) = lgk-*N 
(k-1)! + »(lg k- 2N). 

We must remark that the query time admits an interpretation similar to that of Section 4, and 
similar conclusion as for the comparison with the obvious SS algorithm. At the opposite, the 
storage and the preprocessing time are 0(N k) for SS, and hence better than those of the 
MDC Maxima Searching algorithms. 

5.2. ECDF Searching 

The second problem that we shall study is the ECDF searching; it is described by the same 
three attributes. 

The preprocessing time and the storage are described by exactly the same recurrences, so 
we shall restrict our attention to the preprocessing given by 

P(N,k)=2 P(N/2,k)+P(N/2,k-l)+0(N) 
P(N,2)=N Ig N 
P(l ,k)=l . 

The function 
B(p,k)=P(2P,k)+2P 

gives us the new system 
B(p,k)=2 B(p-l,k)+B(p-l,k-l) 
B(p,2)=(p+1) 2P 
B(0,k)=2 

whose net is similar to Figure 5. We can expand the net by B(p,l)*2P' f^ for p>0. The 
solution is 
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B(p,k) - 2"- k * 2 ( k - l ) + 2 Z 2P"j (?). 
0si<k-2 

The preprocessing time and storage are given by 

P(N,k) = N 2 2 " k { k-l ) + 2 Z 2 H I i ) - 1 . 
OsiSk-2 

Note that if k < Ig N +2, then P(N,k) = 2 N'& 3 - N. For fixed k and large N the following 
approximation holds 

P(N,k) = N | ^ + *(N lgk"2N). 

The last parameter to be analyzed is the query time. It is described by the system 
Q(N,k)=Q(N/2,k)+Q(N/2,k-1) 
Q<N,2)=lg2 N 
( X I , k M . 

We use the new function 
B(p,k)=Q(2P,k)+l 

and we have to solve 
B(p,k)=B(p-1 ,k)+B(p-1 ,k-1) 
B(p,2)=p 2+) 
B(0,k)=2. 

For this purpose, we expand the corresponding net by noticing that B(p,l) - 2p+l and 
B(p,0)=2 are convenient for p>l. It now becomes 

B(p,k) = 3 ( k - l ) + 2 ( P k 1 ) + 2 Z ( k - i ) . 
2<i<k 

•2(1) A l l ) , 2 z (?) 
0<i<k-2 

We substitute this expression in the initial equation to find 

( lgN \ ( l g N - l \ ^ / | g N \ 
Q(N,k) = 2 l k M k-l J + 2 Z I i J-l. 

0<i<k-2 

Again, we may remark that if k > Ig N, then Q(N,k)=2'g N = N. As usual, when k is fixed and N 
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grows we find 

Q(N,k) = 2 ^ + Wg^N) . 

6. More General Recurrences 

We shall now study how we can solve the general reduced recurrence of the form 

B(p,k) = a B<p-l,k) + b B(p-€,k-l) 

where € = 0 or 1 . The values of B(p,k) are initially definite on a boundary EQ , and we assume 

that this bound is of the form of that in Figure 6 . If this is necessary, we just consider a 

subset of E Q of this form. 

s : element of 

r : element of Ej 

t 
r 

t \ 
. r v 

vtu N  

\ S S - 4 - > r 

\ s s s 
\ 

Figure 6 : The sets EQ and Ej associated to a net. 

We now define the set Ej to be the set of points which are not in EQ and which can be 
reached from E Q in one step. Then, for any point (p,k) not in EQ* the function B(p,k) is the 
sum of the number of ways from Ej to (p,k), each way weighted by the value of B at its 
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7. Conclusions 

In this section we will briefly review the contributions of this paper. One of the main 
contributions has been the detailed analysis of the Multidimensional Divide-and-Conquer 
algorithms described by Bentley [1978]. We have exhibited precise analyses for many of 
those algorithms, accurate to within an (implementation-dependent) constant factor. These 
analyses show that the algorithms are more efficient than previously thought (it was not 
known that the constant of proportionality is the very small function l/(k!)). 

In addition to analyzing particular algorithms, we have seen a set of general tools 
applicable to the analysis of algorithms in two variables. The primary analytical tools are a 
set of useful transforms and an isomorphism of recurrences and path-counting problems on 
networks. We have also seen a number of tools for the interpretation of recurrences; these 
include a technique for showing the "smoothness" of the resulting function (between powers 

For example, in the recurrences of Section 5 

starting point rj=(pj,Kj) in Ej . So we find the general solution 

B(p,k) = Z W^pWWppk.) 

As in the Section 3, W( r s )(p,k) denotes the number of ways from (r,s) to (p,k) in the current 
net. We may remark that the sum in the previous equation is finite, because W( r > s)(p,k) is null 
out of a finite sub-net, for fixed (p,k). 

It may happen that the values of B are sufficiently regular on EQ for allowing us to expand 
the net, and this sometimes reduces to a sum involving only a constant number of terms in 
the expression of B(p,k).^ 

Another problem is now to reduce the recurrences that appear in MDC-problems to the 
previous form. The general paradigm (divide N by 2 and solve the problem in a k-1 space) 
shows that the natural variables are Ig N and k; so the primary change of variables is to use 
p » Ig N. We therefore solve 

B(p,k) = a B(p-l,k) + b B(p~«,k-1) + f(p,k) 
B(p,k) » known on a bound. 

The problem is to find a particuliar solution A(p,k), in order to solve the reduced equation 
verified by B-A. The only way seems to be luck and trick, and no general method can be 
exhibited here. 
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of two) and a method for comparing sophisticated algorithms with more straightforward 
solutions. The methods that we have seen are applicable to all of the algorithms described 
by Bentley [1978], as well as other many others (such as in Lee and Wong [1979]). 
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