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1 Introduction

This paper considers the formation of singularities of the solution of the

Cauchy problem for the Hamilton-Jacobi equation

ut + / ( u x ) = 0, (x,t) e Rn x R, i > 0 , (1.1)

where </>,/€ C°°(jRn). The initial value problem (P) is well-posed in the

sense of viscosity solutions introduced by Crandall and Lions [11]. For small

time t the viscosity solution is determined by using the classical method of

characteristics. There is, in general, a critical time at which the characteris-

tics start crossing and we can assign different values at the same point as a

solution. Thus, the function given as the solution of (P) via the method of

characteristics is multi-valued. Therefore, we expect that the globally defined

viscosity solution is not C°°. Indeed, singularities appear, i.e. discontinuities

in the derivatives of the solution accross a set of surfaces (shock waves).

In the present work we continue the program started in [16] and we inves-

tigate how the shocks are generated in higher dimensions. The Hamiltonian

function / may be neither convex nor concave. We first study the way the

characteristics cross. We present two alternative approaches. The first one

is based on the theory of caustics developed by Arnold [1] (see also [5], [7],

[3], [6], [4]); the second uses techniques of the theory of critical points of
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smooth mappings presented in [19]. We then study the multi-valuedness of

the function v given as the solution of (P) by means of the classical method of

characteristics. We finally choose the proper single-valued branch as solution

and prove that this is actually the viscosity solution. The theory of caustics

describes the different ways the caustics may bifurcate in lower dimensions.

The information can be used to study how the shocks propagate further and

undergo catastrophe.

In the case where / is convex, Fleming [13] has proved that, except for

a set of lower dimension, the set of singularities lies on the union of n-

dimensional manifolds. Assuming that the convex function / is only con-

tinuous, Cannarsa and Soner [8] have proved some regularity properties of

the Lipschitz continuous viscosity solution. The complete structure of the

shock curves in the case n = 1 has been investigated in [16] (see also refer-

ences cited there). The method of constructing the solution by selecting a

single-valued branch of the function given by the method of characteristics

is originated in Tsuji [21], who has investigated the case of a semi-concave

solution corresponding to a convex Hamiltonian / . In particular, [21] ex-

amines the two-dimensional problem using the theory of critical points of

smooth mappings from a plane to a plane obtained by Whitney [22]. A rig-

orous proof for the case of a conservation law in higher dimensions has been

obtained by Nakane [19]. The author uses the characterization of critical



points of smooth mappings from JRn to JR71 given by Morin [18].

In this work we study the propagation of shock waves for the correct

class of generalized solutions of (P), that is, the viscosity solutions. We also

establish the proper setting for studying the way the characteristics cross,

which is along the lines of the theory of caustics developed by Arnold [1].

The paper is organized as follows: In Section 2 we review the basic facts

about the method of characteristics and viscosity solutions. We show that

the viscosity criterion across a shock surface holds provided that the graph of

the Hamiltonian / lies below or above the line segment defined by the jump

across the shock. In Section 3 we study the way the characteristics cross.

In Section 4 we study the multi-valuedness of the function v. The viscosity

solution is constructed in Section 5. Finally, in Section 6, we discuss how the

shock waves propagate and interact, for n = 2.

By the time this work was completed, the author has received Nakane

[20], which uses the techniques presented in [19] to study the formation of

shocks for the semi-concave solution of (P) corresponding to a convex Hamil-

tonian / .
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2 Preliminaries

2.1 Method of characteristics

The classical method of characteristics for the Cauchy problem (P) reduces

the solution of the partial differential equation to solving the following ordinary-

differential initial value problem

. ar(O) = y,p(0) = <j>'(y),v(0) = #y) , y € JR".

In the sequel a vector will be considered as a (n, 1) matrix and its transpose

will be denoted by a superscript (.T). The operation of multiplication is taken

in the sense of matrices. The equations (2.1) are the characteristic equations

related to (P) and their solutions are given explicitly by the equations

(2.2)

ht) = <l>(y), v(y, t) = t{-f(<f)f(y)) + (<j>'(y))T • f\<t>\y))} + <f*(y)- (2.3)

Suppose that we want to find the value of the solution u of (P) at the

point (x, t) using the classical method of characteristics. Then for a fixed time

£, t sufficiently small, there exists a unique characteristic line (2.2) passing

through the point (x,t) originating from the point (j/,0). Indeed consider

the mapping

xt : y -* x = xt(y) = x(y,t).

Then for t near zero,

dy ^ ° '
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dx
where I • I denotes the determinant of the matrix -5— and xt is a C°°-

oy
diffeomorphism. If

: x

is the inverse of xt, then the solution of (P) is given by

u(x,t) = v(xt
1(x),t).

In general, there is a critical time to beyond which

dxt(y)
dy

= 0, y € E? C lRn,

where E^ ^ 0 is the set of critical points of xt. We denote by ££ the image

of Ejf under the mapping xt. For t > t0 the characteristic lines (2.2) start

crossing and xjx becomes multi-valued. Therefore, the map

is also multi-valued. The folds of its graph, however, have a certain form due

to the Hamiltonian structure of the characteristic equations.
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2.2 The notion of viscosity solution

Since the characteristics cross, it is not possible, in general, to have a globally

defined smooth solution. This difficulty has been overcome with the intro-

duction of the correct class of generalized solutions, called viscosity solutions

([11]; see also [10]) for which (P) is globally well-posed. In the present work,

the viscosity solutions are taken to be continuous. Beyond the critical time

they are no longer C°°, because discontinuities appear in the derivatives of

the solution.

Let F(x,<) be a smooth n-dimensional surface in iR£ x Ftt. Let O be

a bounded domain separated by T(x^t) into two domains O+ and O~ such

that O = O + U O " U T(x,t). Then we have the following.

Theorem 2.1. Let u G C(O) and u = u+ in O+ U T(x,t),u = vT in

O~ U T(x,t) where u* G C ^ O * U T(x,t)). Then u is a viscosity solution of

(1.1) in O if and only if the following conditions hold true:

(a) u + and u" are classical solutions of (1.1) in 0+ and O~, respectively.

(b) If the vector fj = (—(i/+ — u~), /(u£) — f(u~)) points into C?+, then

/((I - X)ut + At£) < (1 - A)/(u+)

t/77 points into O~, f/ien

/((I - A)t£ + AuJ) > (1 - A)/(u;)

where A G [0,1]. In particular, the graph of f lies, respectively, below or

above the line segment joining the points (u^, / (u^)) and (u~,f(u~)).
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The proof of the theorem is given in [16]. The condition (b) will be

referred in the sequel as the viscosity criterion. The surface F(x,<) in the

neighborhood of which u has the properties specified in the above theorem

is called a shock surface.

T



3 The caustic structure of the critical points
of the characteristic manifold

As we have seen in the previous section, there is in general a critical time

t0 beyond which xj"1 becomes multi-valued. Due to the special form of the

characteristic equations, the critical points of xt are generically of specific

type. Indeed, the characteristic equations are given in Hamilton's canonical

form, i.e.

dt aPi ' dt dxi ' '

If we consider the mapping

9t ' (*o,Po) € M2£p) -> (s,p) = (x0 + tf'(po),po) e

then, since
d(x,p)

= 1,

g't defines an 1-parameter group of difFeomorphisms, i.e. a Hamiltonian phase

Sow with Hamiltonian function / (see [2], p.204). In the sequel we shall use

the notation JR\2yV) to denote that JR2n is considered as the range set of the

variable (x,p).

For the sake of completeness, we next recall some elementary facts from

symplectic geometry. The space JR\^P) equipped with the standard symplec-

tic structure

w2 = Xl A Pl + - - • + xn A p n (3.2)
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is a symplectic space; see [2, p.219].

Definition 3.1. An n-dimensional submanifold of the symplectic space Mj* x

on which the symplectic form w2 induces the null form is called a Lagrangian

submanifold.

Consider the manifold

The following proposition was established in [2], p. 440.

Lemma 3.1. For any smooth function <j> the graph Wo of its gradient is a

Lagrangian submanifold of M?™)-

We also have the following proposition (see [5], p.289).

Proposition 3.1. The Hamiltonian phase flow preserves the symplectic

structure.

Lemma 3.1 and the Proposition 3.1 yield

Lemma 3.2. The image Wt = gt(Wo) of the manifold WQ under the Hamil-

tonian phase flow gt is a Lagrangian submanifold of

Let

T



be the projection mapping and

nf: wt c R\l

its restriction on Wt.

Definition 3.2. The mapping Ht : Wt —• iR^ t 5 called a Lagrangian mapping.

The set of critical values of the Lagrangian mapping is said to be a caustic.

By representing the manifold Wt in y-coordinates we easily obtain

Proposition 3.2. The caustic of the Lagrangian mapping Flt is the image

if under the mapping xt.

Our first goal is to study the multi-valuedness of the mapping xj1. This

is equivalent to studying the structure of the surface Ef; in particular, the

form of the generated caustic and the way caustics undergo metamorphosis

as t evolves. By metamorphosis we mean how caustics interact and change

from one type to another and the way that different branches of caustics

cross. The question of the generation and bifurcation of caustics has been

answered along the lines of the critical point theory of smooth mappings; (see

e.g. [5], Section 22.3). The obtained results are generic, that is they hold

for a residual subset of the set of Lagrangian mappings. A subset is called

residual, if it is the intersection of a countable number of sets, each of which

is both open and dense in the set of Lagrangian mappings. For n < 4 there
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are only finitely many inequivalent types of metamorphoses of caustics (see

[5], [1], [7], [4]). The exact pictures for n = 2 are given in [7], [4 Fig. 36], [6]

and for n = 3 are given in [5, Fig. 64, 65], [4, Fig. 40,41], [7]; see also [3].

For n > 4 the caustics may be unstable and may bifurcate in infinitely many

ways. The propagation of shocks, however, is not affected by the crossing of

the different branches of caustics. The generated shock remains attached to

the branches by which it has been initially determined and does not follow

the evolution of the others.

In this work we shall investigate the way the shocks are generated, except

in Section 6 where we discuss how the shocks propagate further in the case

n = 2. To accomplish the goal above, we need to describe the multivaluedness

of the mapping xjl just after the first time t0 for which Ef ^ 0. This can be

done without the use of the results of the theory of caustics, by expressing

the mapping xt in canonical coordinates, following the lines of [19]. This task

is undertaken in the rest of this section.

Let At(j/), y G Mn be the eigenvalues of the matrix f"{4>{y)) • <f>"{y)' We

make the following generic assumptions (see [1], [6]):

(Al) An has a negative nondegenerate local minimum for y = y0 and Sf = 0

fo r f< i 0 , S r o = {yo}.

(A2) An(y) < An_i(t/) < • • • < Ai(y) in a neighborhood of the point y0-

Then it is obvious that for t > to,t near io>

11
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Moreover, t0 = —1/An(j/O) and SJ' is an n-dimensional manifold in My. We

have the following:

Lemma 3,3. At least one of the principal minors of order (n — 1) of the

matrix —*° is different from zero,
dy

z$ ( \
Proof: Let At = 1, • • •, n, be the eigenvalues of the matrix —^—- and cr(A)

dy
its characteristic polynomial. Since At- = 1 + ioAt(j/o), using (A2) we get

da(\n) Tifr (\ \ \ A / ̂
—J=— = 11 I ̂ n — At 1 = A n _ ! f: 0,

dX A=1 V /

where An_! is the sum of the principal minors of order (n — 1). •

We next study the multi-valuedness of the mapping x^1. Consider the

mappings

defined by
Yi = yi + tfP,(<t>'(y)), t = l , - - - , n - l )

\ ( Y t )
Yn = yn J

and
x,; = Yi, i = l , - - - , n - 1

In view of Lemma 3.3, without loss of generality, we can assume that Yu t >

to,t near <0? is a C^-diffeomorphism. Moreover,

= {F e i^ : Ig = o}.
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Next, we define the sets

Y yY • d

Sy = {(Y,t) : Y e Sf}, E*1 = {(F,t) : Y e Sp},

We, finally, denote by fiy the domain bounded by SJ' and by J7f the domain

We now state the following definition.

Definition 3.3. A critical point Yo of the mapping Xt : My —• M™ is said to

be a fold (respectively cusp), if in a neighborhood ofY0, Xt is differentiably

equivalent (see [5, page 8]) to the mapping

£i = *i> • '# > £ n - i = Yn-i, xn = Yn ,

(respectively, xx = y i , - - - , a ; n - i = K - i , ^ = Y* + Yn-XYn).

According to the characterization of cusp points given in [18] (see also

[19]) a point of Sy>1 is a cusp if and only if

We use the above relations to obtain

Proposition 3.3. Fort neart0 the following hold:

i) The set S*'1 consists of cusps and the set Ex \ SX)1 consists of folds.

13
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ii) The set Y,Yyl is a C°°-submanifold ofM?y\ of codimension 2, parametrized

iii) The set EXtl is a C°°-submanifold of]R?+\ of codimension 2, parametrized

Proof: It is easy to see that

dx dXt

BY
dYt

dy

- l

Therefore

= 0

and for F G H

~dYjz

d2xn

dtdYn

Therefore

dYt

dy

- 1

K(Yt-\Y)) • [ n ( l + dYt

dy
# 0 .

dYn

dYt~\Y0)
' ° = t

and hence

According to (3.3), Ey?1 is the set of cusp points. Since, for t = to,y = y0,

d(l+t\n(y),d\n/dYn)

d(t,Yn)
= Aj(y0)

14



(ii) is easily deduced from the implicit function theorem. •

The geometry of E* described by Proposition 3.3 and the theory of caus-

tics is the same. According to the theory of caustics, Ef,t near i0, has

the form of a "pancake"; see Figure 1, where x = (xi,... ,xn_i), Y' =

(Yi, . . . , Yn-i). The set E*'1 of the cusps consists of the "points" XA, XB, {YA —

Xfl(XA),YB = X^~1(XB)), which represent a manifold of codimension 2 in

JR£. See e.g. Figure 2, for the case n = 3, where the caustic looks like a "fly-

ing saucer" whose circular edge is the set E*'1. A mapping is three-valued

around a cusp point; see e.g. [22]. Therefore, the image of a level curve

£ : R - • Ittyj(s) = (Yf =const., Yn = s), in the domain Q* is triply-folded.

See Figure 1, where the three folds have been drawn separated to show the

change of the orientation of X^l(l(s)) as s increases. Hence, the inverse

mapping Xf1 is three-valued on 0%.

We conclude this section by introducing several notations which will

be used in the sequel. In particular, we denote by Y = §l(x;t),$l =

( 3 ^ , . . . ,$„) G iRy, the three branches of Xfl defined on Of. Let also

fi^t- be the image of Q* under the mapping 4>\ We name f2 t̂ in such a way

that fi^ is met first by a point moving on £, along the positive direction, and

Q%2 = n^ . The sets S y and Ex described by Proposition 3.3 are depicted in

Figure 3. The level surfaces f=const. are the previously described caustics

Ef and Sf.
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4 Formation of shocks

Here, we study the way the graph of v(x^l(x),t) folds for t > t0. We accom-

plish that by examining the relative position of the different branches of v

on a properly chosen level surface, that is Y' =const., in the MjyX) s P a c e -

Throughout this section we shall assume that t is sufficiently close to t0. We

shall also introduce the notation Ar to denote the matrix (AT)~1
J where A

is a nonsingular matrix. We have the following

Lemma 4.1. Let s —> y(«s), s £ (a,/3) C JR, be a smooth simple curve in

the y—space, then

±v{y{s),t) = (<f>'\y))T±xt(y(S)).

Proof: We have

-v{y{s),t) =
'dv\ dy
dy) ds

£-(Xt o Yt)(y) dy_
ds

L e m m a 4 . 2 . Consider the mapping Y/ : i?","1 -» RyT1, where (Y',Yn) =

%{y iVn) and y = (yu ...,yn-i)- The following identities hold:

d d
BY' \ dy ) dy''

16
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dYn

dxn

dy

dXt

dYt

- 1

-t
dXt

dYt

dXt
provided that

dYt

Proof: The chain rule yields

Thereby,

dy~\dy) dY'

d
dY' 'dy' \dy'J dY' ' dyn \dyn

Using these equalities, (4.2) is easily obtained.

Equalities (4.3) and (4.4) are obtained from the relation

d
dY' dYn'

(4.2)

(4.3)

(4.4)

±=(?l\± •
8Y \dYt) dx

We can study the geometry of the graph of v more easily if the level curves

Y =const. are chosen in such a way that the matrix / (<f> (yo)) is diagonal.

The following lemma is helpful in this direction.

Lemma 4.3. By an affine transformation of coordinates we may assume

that the matrix f"(<f>(yo)) is diagonal The corresponding mapping xt of the

transformed problem has the same eigenvalues.
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Proof: Let B = (&,_,), i, j = 1 , . . . ,n, be a nonsingular matrix. If

n

£j = yoj + Yl bji(xi - yoi), (4.5)

then

ux = BT • u£

where

tx(x,O = «(yo + 5 - 1 ( 5 - y o ) , O -

Let

]>(x) = fi(x,0) = <Ky0 + ^ - ' ( x - y0)).

The problem (P) is transformed to the equivalent

fit + /(fif) = 0

where f(p) = / ( 5 T • p). Moreover,

We choose as B the orthonormal matrix which diagonalizes / '(^(j/o))- It is

also easily seen that

^ = 5 • (/ + t /V(y))) • <̂ "(y)) • B~\ (4.6)

where
n

18



dxt dxtTherefore -̂ — and -r— nave the same eigenvalues. •
dy dy

From now on we shall assume that the matrix f"(<f>'(yo)) is diagonal.

Lemma 4.4. The following inequality holds:

d fd<f>

Proof: Since

dYn \dyn/

= 0 for

#0, y =

0, y = yo.

Using the fact that / (<f> (j/o)) is diagonal, we get

1+*»/«.(*'w)^(^)-°. » = »•• D

Let u'"(x,<) = ^ ( y r 1 ^ , - ^ ; <)),/), t = 1,2,3, be the three branches of

Proposition 4 .1 . For any x G flf,i > t0,

(u2(x,t)-u1(x,t))(u2(x,t)-u3(x,t))>0.

Proof: Let s —> x(s), s G iR, be the level curve in the ]R™ space, given by

V / — 0 ' ^ — ' 0 -̂ x '

and assume that it intersects fij7. If y*^) = Yt"
1(^t(x(s);t))^ then Lemma

4.1 yields
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dyn dyn

for x in f)f. In view of (4.2)

dxn = _t

t—(fPn(<f>'(y))), y = y0, t = tQ. (4.9)

The right-hand side of the above equation is the Schur complement of the

therefore
dxn(y0)

dYn

dxt0(y0)
dy

K
dy'

- 1

In view of Lemma 3.3, we may assume that

0, y = y0---rdy
(4.10)

Since I—^—-I is less than zero in fijf, t > t0, and it changes sign outside ftf,
dy

we have that

> 0 , Z = 1 , 3 ,

away from the caustic E^. Therefore

dYn
< 0,

Yn(y\s);t) < Yn(y2(s);t) < Yn(y3(s);t).

In view of Lemma 4.4, we may also assume that

d (dd>\

(4.11)

dYn \dynj
, Y = Yto(y0). (4.12)

20



By means of (4.7), (4.8), (4.11), (4.12) we conclude that

•^r[u
1(x(s),t)-u2(x(s),t)}>0,

(4.13)

-E— \u3(x(s),t) - u2(x(s),t) <0 ,
OXn L v v / 7 / \ \ / 7 / j

for x(s) G n^, i > t0. Finally, if 5 l952 correspond to the points x(si),x(s2) G

£f and xn(52) > ^n(5i), then

u1(x(s2),t) = u2(x(s2),t), u3(x(s1),t)= u2{x(s1),t).

Therefore, in view of (4.13), we obtain

u3(x(s),t) < u2(x(s),<), tia(x(5),t) < u2(x(s),i), x G f}^. O (4.14)

The graph of the function u(x^1(x)^t) with respect to x is depicted in

Figure 4. If the opposite inequality holds in (4.12), inequalities (4.14) are

reversed. The cusp points of EJ7 correspond to the swallowtail singularities

of the graph of v(x^1(x)^t). This is in accordance with the results obtained

for the one-dimensional problem (see [16]).
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5 Construction of the shock surface

In this section we shall construct the viscosity solution of the problem (P)

up to the time to + e,e sufficiently small. This is accomplished by selecting a

single-valued branch of v(x^1(x)^t) and proving that it is a viscosity solution.

In the case of the one-dimensional problem, i.e. n = 1, we have that

))

where (j/o> *o) corresponds to the point of generation of the shock. In particu-

lar, the function / is convex or concave in a neighborhood of the point (j>'(yo)

and the viscosity criterion is automatically satisfied (see [16]). For n ^ 1

we expect an analogous situation, i. e. a property related to convexity or

concavity must hold but only in a specific direction. Along this direction the

viscosity criterion must be satisfied. This direction is along the level curves

Y' =const. of the space My-

In order that we simplify the calculations we have to make a proper

transformation of coordinates. Thus, we study the solution u(x,t) of the

transformed problem (P), where B substitutes for B in (4.5). The matrix

B will be chosen properly in the sequel. The viscosity solution of (P) is

obtained by virtue of

u(x,t) = u(y0 + B-(x- y o ) , t ) ,

see e.g. [11]. The solution u is classically defined outside ftf. We construct

the solution in Vl* by choosing a single-valued branch of the corresponding v
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function, which we denote by v. In order to prove that the so chosen function

is the viscosity solution, we shall make the following assumption

(A2') An = An(j/0) < An_! = An.!(yo) < . . . < Ax = A1(y0),

which is stronger than (A2). According to (4.6), let B be the matrix which

diagonalizes H = (/" • 4>"){yo) with diagonal elements Ha = At(y0), i =

l , . . . , n . Since an affine transformation does not alter the type of multi-

valuedness of a function, the graph of v folds in the way described in the

previous section. In the sequel, for convenience, we omit writing the tildes.

Let u*(x,i) be the branches of v(x^1(x)^t) defined along the lines of the

previous section. Let T(x,t) he the smooth surface along which the two

branches ul(x,t) and tz3(x,f) intersect and Tt(x) he its projection in the x-

space (see Figure 4). We denote by flf̂  and fi*2 the two parts of flf into

which fi* is separated by F(o;, t) and we assume that fij^ is the domain which

is met first by a point moving along the positive direction of the level curve

y'=const. of the space My- Let u be the function defined by

u(x,t)=< (5.1)

We want to prove that u is the viscosity solution of (P). Since u is a classical

solution away from F(x,t), the viscosity criterion must be satisfied across
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F(x,i). That is, the following conditions must hold across the surface Tt(x):

•r - - du3 *!.
if -5— > •£—, then

and

if -r— < -r—, then

But for t near

- *i(*, 01 J r [^(y)], y = yo + 9(t, yo), (5.2)

where O(t,y0) —• 0 uniformly as < —»• i0- In view of (4.2),

d<f>

It is easily seen that

d<Kv)

dyl \h dPidPn dyidyj t0

In view of (5.2) and (5.3), the viscosity criterion is satisfied provided that
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In the sequel we shall prove that — = 0 contradicts the assumption

. To this end, we write

and we assume that <f)nn = 0. Then

n - l

Let M(n — 1, n — 1) be the matrix which is obtained from f"(<f>'(yo)) by delet-

ing the nth row and column and let |M|(n — 1, n — 1) denote its determinant.

Then

otherwise < t̂n = 0,i = l , - - - , n — 1 and An = 0. We next assume that the rank

of M(n — l , n — 1) is A:, l < A : < n — 2 and that M(A:, k) is the matrix resulting

from / (<f> (j/o)) by deleting the rows and the columns of order greater than

k. For convenience we assume that \M\(k,k) ^ 0. Consider the system

k n - l

Solving the above system we obtain

where Dj is obtained by replacing the j t h column of M(k, k) with the vector

n - l n - l
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We note that

(5.5)

where DJt is obtained by replacing the j t h column of M(k, k) with the vector

(/i» • • • ,/fc.)T- Using (5.4), (5.5) we obtain

We now define the quantity

fr{\M\(k,k)

Since

\M\(k,k)-A =
M{k,k)

= 0,

fnl ' * # Jnk fn

the right hand-side of (5.6) equals to zero, which contradicts (Al). Therefore

we have the following

Lemma 5.1. Under the assumptions (Al), (A2), we have that

The above lemma and (5.3) yield

26



Theorem 5.1. Under the assumptions (Al), (A2') the function u given

by (5.1) is the viscosity solution o/(P), up to a time t neart0.
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6 Discussion

The multivaluedness of v(x^1(x)^t)^ under the assumption (A2), is depicted

in Figure 4. Under the stronger assumption (A2'), we have shown that u

defined by (5.1) is the desired viscosity solution. Since only An(y) participates

in the generation of Sf, the formation of the shock should not depend on the

presence of multiple eigenvalues At(y),i ^ n. Thus the assumption (A2') is

more technical than essential.

As we have seen in [16], in order to continue the solution further we have

to solve all the possible local Riemann problems at a time level ta > t0.

We may accomplish that in two steps. The first one is to study how the

characteristics are crossing and the initial shock surface is transformed for

t > ta. This is related to the way the caustics undergo metamorphosis and

it can be understood using the theory of caustics. Using this information,

we need to study the multivaluedness of v(x^1(x)^t). The second step is to

construct the solution by selecting a single-valued branch of v. Thus, we

have to prove that the proper branches of the graph of v, corresponding to

the different domains into which the initial plane is divided by the initial

shock surface, intersect. We then have to show that the viscosity criterion

is satisfied across the intersection. Intersection usually occurs at least in

the one-dimensional case, as a consequence of convexity or concavity of /

in the direction of the jump. Thus the viscosity criterion is automatically

satisfied. For an arbitrary / the change of the sign of curvature (the analogue
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of inflection points for the one-dimensional problem) can force the branches

of the graph of v to be detached. In this case we have to fill up the gap with

a rarefaction-wave type solution such that the viscosity criterion is satisfied.

Since locally the viscosity criterion is actually one-dimensional, we can follow

the construction presented in [16]. To accomplish that, we have to study the

geometry of the domain covered by the constructed rarefaction waves and

the way they fit writh the existing characteristics. Valuable insight in this

direction can be obtained by the related work for conservation laws. See [9]

and references cited there.

As t —> oo, the surface Ef tends to the level surfaces {y £ My : At(?/) =

0, i = 1 , . . . , n} . We can use this fact to study the asymptotic profile of the

shock surfaces and the asymptotic behavior of the viscosity solution u(x,t)

as t —• oo. See [14] for a result in the two-dimensional conservation law (cf.

[12], [17], for the one-dimensional problem).

In the sequel we discuss how we can use the results on the bifurcation

of caustics to get insight on how the shocks propagate further and undergo

catastrophe. We only consider the case where n = 2 and / is convex or con-

cave, so that the viscosity criterion is automatically satisfied. We primarily

use the results presented in [6]. The five types of bifurcation of causics are

presented in Figures 5a-5e. The "birth of a pancake" (type A3, "lips") has

been discussed in Section 3 and corresponds to the case where A2(y) has a

negative local minimum. Figure 5b represents the type A3, "beak-to-beak",

which occurs when A2(y) has a saddle point. There are two versions of this
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type. The geometric conditions under which the two versions take place are

given in [6]. In the first one, the two corresponding pancakes ££o ,££6 meet

at their edges for t = tQ. The different pictures of Ef for t < tQ,t = tQ and

t > tQ are given in Figures 6a-6c. The corresponding shocks I \ a , Ttjb also

meet at their ends and they are depicted by a full line. In the second version

the junction takes place through the boundary points of the pancakes, see

Figures 7a-7d. The shocks initially meet at a middle point and then undergo

catastrophe. They interact giving one branched shock (cf. [21]). The Figure

5c represents the type A4, "swallowtail", where xt is locally equivalent to the

swallowtail

x2 = j / 2 .

In Figures 8a-8d we see how the appearance of the swallowtail changes the

shape of the pancake. In Figure 8b the swallowtail touches the shock for the

first time. The shock undergoes catastrophe, it bends and another branch

springs out (Figure 8c). This branch can move out of the region of the

pancake and interact with another shock (Figure 8d). Figures 5d, 5e depict

the types D^ which correspond to the case where Xi(ya) = X2(yQ). The

two types are the "purse" D% and the "pyramid" D± . In a neighborhood

of yQ the two surfaces Ai(y), X2(y) look like a cone. The local graph of the

eigenvalues corresponding to the two cases is depicted in the Figures 9a and

9b respectively. In the D j case, the mapping xt is locally equivalent to the
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hyperbolic umbilic

The Figures 10a-10c depict the caustics corresponding to the two eigenvalues

for t < ia ,f = ta and t > ta. The metamorphosis of the graph of v{xJ1{x)^t)

is given in Figures l l a - l ie , respectively. The type Z}J, "pyramid", involves

the interaction of three shocks and we are not going to discuss it further. It

is worth-while to notice that the metamorphosis of a caustic does not always

cause the catastrophe of a shock, unless it affects directly the branches defin-

ing the shock surface.
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