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a single-valued branch of the multi-valued function given as a solution by the

method of characteristics. The singularities correspond to the intersection

of the different branches. Such singularities are called genuine shocks. Due

to the presence of the inflection points this intersection may be empty. In

this case we join the two parts by a rarefaction-wave type solution. The two

junctions correspond respectively to a weak wave and a contact discontinuity

shock curve.

In the case where / is convex, Fleming [7] proved that, except for a set

of lower dimension, the set of singularities lies on the union of n-dimensional

smooth manifolds. Assuming that the convex function / is only continuous,

Cannarsa and Soner [3] have proved certain regularity properties of Lipschitz

continuous viscosity solutions. Jensen and Souganidis [11] studied the sta-

tionary problem with nonconvex / , when n = 1. Using a blow-up argument,

they proved that the singular set is countable.

The structure of the singular points obtained in this work is analogous

to that of the weak solution of the related one-dimensional conservation law;

see Dafermos [6]. The latter is obtained using the method of generalized

characteristics. This method is qualitative; it describes the different forms

of the curves of the singular points and their relative position as trajectory

solutions of a differential equation with discontinuous right-hand side. It is,

however, restricted to the one-dimensional case.



The present approach relates naturally the hamiltonian flow correspond-

ing to the Hamilton-Jacobi equation with the unique viscosity solution. We

give the exact geometric construction of the path of a generated singularity

in terms of the initial data. We state explicit criteria which force a type

of singularity to change into another and we explain the way they interact.

We, moreover, obtain additional geometric features, not given in [6], which

complete the geometric picture of a singularity. Finally, the method can be

extended to higher dimensions using the theory of critical points of smooth

mappings (see e.g. Arnold et al [1]). In the present work, however, we

have systematically avoided the language of critical point theory in order to

present clearly the phenomena related to the singularities themselves. The

correct setting of the problem in higher dimensions and some first results

how the singularities propagate will be presented in a forthcoming paper [12]

(see also [13], [14], [16]).

The paper is organized as follows: In Subsection 2.1 we explain the

method of characteristics. In Subsection 2.2 we give the necessary back-

ground from the theory of viscosity solutions. The assumptions and the

main results are given in Subsection 2.3. In Section 3 we investigate how the

shocks are generated. In Section 4 we make the constructions of all the pos-

sible local Riemann problems. The above constructions are used in Section

5 to study the global structure of the shock waves.



2 Preliminaries and statement of the main
results

2.1 Method of characteristics

The classical method of characteristics for the Cauchy problem (P) reduces

the solution of the partial differential equation to solving a system of ordinary

differential equations given by

with initial conditions x(0) = y, p(0) = <$>'{y), v(0) = <f>(y), y G M. The

solution of the above system is given explicitly by

*(y,t) = .W(v))* + v, (2-1)

p(y,t) = *'(„), v(y,t) = {-f(4>'(y)) + 4>\y)f\4>\y))}t + <j>{y). (2.2)

dx
The value of the solution u at (x, £) is found as follows: If we assume — ^ 0,

9y

then there exists a unique characteristic line (2.1) passing through the point

dx
(x,t) originating at the point (y,0). In particular, — ^ 0 yields that the

Oy

map

x : y-> x = x(y;<) = x(y,t)

is a C°°-diffeomorphism. K we denote by

x"1 : x —> y = x""1(x;t)



its inverse, then

u(x,t) = v(x-l(x;t),t).

In general, there is a critical time beyond which the Jacobian dxjdy may

vanish. The characteristic lines (2.1) start crossing and x"1 becomes multi-

valued. As a consequence, the map x —• v(x~1(x;t)^t) is also multi-valued.

That is, the graph of v starts folding in a specific wray, generating a picture

which looks like a swallowtail (see Fig. 4).



2.2 The notion of viscosity solution

Since the characteristics may cross, the value of v(x"1(x;t),i) at a certain

point (x,t) is determined by more than one points (j/,0). Therefore, we can

assign different values of v as the solution u(x,t) from the left or the right

of the point (x,f) along the x—direction. That is, we have to look for a

solution which is not in the class of C°° functions. This difficulty has been

overcome with the introduction by Crandall and Lions [5] of the correct class

of generalized solutions, called viscosity solutions, for which (P) is globally

well-posed. Such a solution need not be differentiate anywhere, as the only

regularity required in its definition is continuity. Even the requirement of

continuity has been relaxed; see e.g. Ishii [9] where / , <f> are not assumed

continuous. Since in our case / and <f> are C°° we shall only deal with con-

tinuous viscosity solutions. Beyond the critical time, the (globally defined

continuous) viscosity solution is not C°° and discontinuities in the derivatives

of the solution appear. We next state the definition of a viscosity solution.

Definition 2.2.1 The function u £ C(O) is a viscosity solution of (1.1)

in the open domain O C 1R x 2R+ provided

&(*,*) +/OkOM)) < o, (2.3)

respectively

s,i))>0. (2.4)



for any tp £ Cl(O) for which u — xp attains a local maximum, respectively

local minimum, at the point (x, t) £ O.

Definition 2.2.2. The function u £ C(JR x [0,oo)) is a viscosity so-

lution of the Cauchy problem (P) if and only if it is a viscosity solution of

(1.1) in the domain M x (0,oo) and satisfies the initial condition

Jlim u(x,t) = (f)(x).

The inequalities (2.3) and (2.4) will be referred in the sequel as the viscosity

criterion at the point (x,t).

We next state the viscosity criterion in a form which turns out to be

more useful for the construction of the solution. To this end, assume that

O C M x (0, oo) is open and that there is a smooth curve t —• x — x(0? * ̂

{t\,t2) C M, with negative slope, which divides O into two open sets O+ and

0 - , O = r u O + U O - , r = {(z,<) : x = *(*)}, where (9+ lies on the right

of F. Finally, let 7/(x, t) be the unit normal on T(x, t) pointing into 0+ ' . Then

Theorem 2.1. ([4]) Lei u G C(O) and u = u+ in O+UT,u = u~ in

O""Ur where u* G C1(O± U T). Then u is a viscosity solution of (1.1) in

O if and only if the following conditions hold:

a) u+ and u" are classical solutions of (1.1) in O+ and O~, respectively.



b) Let T(x,t) = {r e M2 : r?(z,t) • r = 0} be the tangent space to T at

(x,t) and PT the orthogonal projection of M2 onto T(x,t). If

a = Du+(x,t) - ri(x,t) < Du~(x,t). r/(x,f) = 6,

then

H(PTDu±(x,t) + ( . r/(x,<)) <0 , /or a < ^ < 6,

while, if

a = Du+{x,t)-r)(x,t) >Du-(x,t)-ri(x,t) = 6,

then

H{PTDu±{x,t) + £ • ri(x,t)) > 0, /or 6 < ( < a,

where H{q) = q2 + /(ft), g = (ft, ft) G i?2 and D = ( —, —).

The curve x(t) in the neighborhood of which u has the properties specified

in the theorem above is called a shock curve.

We now state the viscosity criterion in a standard form which has a clear

geometric representation.

Theorem 2.2 Let the function u be defined as in Theorem 2.1. Then

u is a viscosity solution of (1.1) in O if and only if the following conditions

hold:
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a) tx+ and u are classical solutions of (LI) in O+ and O respectively,

b) f ((1 - X)ut + Atij) < (1 - A)/(u+) + A/(ti") for u~ > «+

across the shock curve, while

/((I - \)u-x + Xui) > (1 - \)f{u-x) + A/(«+) /or «; < «+,

where X G /0;i7. TAaf i*5; <Ae ̂ rap/i of f lies respectively below or above

the line segment joining the points (u+,f(u+)) and (u~, / (u~)) .

Proof The vector fj = (—(t/+ — ux)if(ut) ~~ f(ux)) ^s normal to T(x,t).

Moreover,

Therefore b > a (resp. 6 < a) if and only if 77 (resp. — )̂ points into

This happens if and only if u+ < u~ (resp. U+ > u~). The inequalities

Du* • fj < £\\fj\\ < Du - fj or — Du~*~ • fj > £\\fj\\ > —Du • fj

are equivalent to

Moreover,

Therefore,

PTDu± ± ejjlii = («*, -/(«*)) + (TA(u+ - «;), ±A(/(u+) -



Substituting the above expression in H yields the result. •

It is an immediate consequence of Theorem 2.2 that the viscosity criterion

is analogous to the Oleinik E- condition for the corresponding conservation

law. (See e.g. [11]).
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2.3 Assumptions and main results

Throughout this paper we make the following assumptions:

Al) The function h(y) = f"(<f>'(y))<t>"(y),y G M, has finitely many isolated

critical points and <f> has compact support.

A2) The function f(p),p £ JR, has just one inflection point normalized so

that

/(0) = / '(0) = /"(0) = 0, pf»{p) < 0,p ̂  0.

Although this approach could work without assuming (Al), this condition

is imposed to guarantee that the solution is initially C°° and only finitely

many shocks are generated. Assumption (A2) is somewhat special, but it

captures the effect of inflection points of the hamiltonian / and it illuminates

completely how the method works. The reader who wishes to get a feeling

of the interaction of several inflection points may consult the related papers

in conservation laws [2], [8], [10].

In order to present the main results of the present work, we need to give

some additional definitions. The shock curves are either genuine shocks or

left contact discontinuities (see Figures 1, 2 respectively). The jump of the

derivatives of the viscosity solution across a genuine shock is generated by

two incoming characteristics (incoming waves). The shock is initially con-

structed by choosing a continuous single-valued branch of v(x~1(x;t)^t). We

11



continue the solution further by constructing the solution of all the possible

local Riemann problems. Let v"(x"1(x;i),<) and v+(x"1(x;i),f) be the solu-

tions defined by the characteristics coming from the left and the right of the

initial discontinuity point. If the two graphs intersect, then their intersection

determines a genuine shock curve.

Due to the presence of the inflection point of / , the two graphs may,

however, have no common point. In that case we construct the solution by

joining v" and v+ with a rarefaction- wave type solution (see Section 4). The

junction of the graph of the rarefaction wave with the graph of v+ determines

the contact discontinuity curve. The jump across the shock is determined by

the right incoming waves. The shock is a convex curve emitting tangentially

from the left outgoing waves called rarefaction waves. The rarefaction waves

are carried by characteristic lines originating from the contact discontinuity

and not the initial axe. They are present because of the inflection point of / .

Characteristic lines across which all the derivatives of the solution of order

less or equal m are continuous while that of order (m + 1) has a finite jump

are called weak waves of order m.

The main results of the present work are summarized in the following

theorem.

12



Theorem 2.3 The viscosity solution u of (P) is a C°° function on

(-00, +00) x [0, oo)\(5 U W) where

1) S is either empty or is the finite union of genuine shocks and left contact

discontinuities.

2) W is either empty or is the finite union of weak waves of order m.

3) A genuine shock is either generated at the point where the character-

istics start crossing for the first time or springs from a weak wave of

order 1. In the latter case, at the point of birth of the weak wave the

shock splits into two forward shocks. The one on the right is a left

contact discontinuity, the one on the left is a genuine shock determined

from the right by the incoming rarefaction waves.

4) A genuine shock can turn into a left contact discontinuity. A left con-

tact discontinuity can change back into a genuine shock. In that case

the shock is defined from the left by the outgoing rarefaction waves.

5) Weak waves of order 1 are triggered tangentially at the points where a

genuine shock turns into a contact discontinuity. Weak waves of order

m > 2 are emitted tangentially on the left of the contact discontinuity

due to the collision from the right with a weak wave of order m — 1. All

weak waves terminate upon colliding with a shock.
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6) The collision of two or more shocks produces a single outgoing genuine

shock.

The generation of a shock is caused by the presence of a negative local

minimum of the function h(y). Contact discontinuities are always the result

of deformation of genuine shocks. The number of existing shocks at any time

is less or equal to the number of the negative local minima of h(y). The

conditions under which a genuine shock turns into a contact discontinuity

are given in Theorem 5.1. Such conditions cannot be obtained with the

techniques used in [6]. Moreover, properties 3) and 4) of Theorem 5.1 do not

appear in the related literature of conservation laws.

In Section 3 we show how the shocks are generated. In Section 4 we

make all the local constructions needed to continue the shock further. The

results obtained in these sections are combined in Section 5 to get the global

structure of the shocks.
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3 Generation of shocks

In order to understand the mechanism of generation of shocks let us assume

that the function h(y) = —(/'(<f>'{y))) achieves a negative global minimum

" . dx

at the point y = ya. As long as the Jacobian -̂— = 1 + th(y) is positive,

the solution is classically defined. The first time tQ that the Jacobian is 0 is

given by

In view of (Al), for t € (ta,tQ + e),£ > 0 small enough, there exists a

neighborhood (yQ -6,yQ+ 6), 6 > 0, and points, yt = j/t-(t) G (ya - 5, ya + 8),

i = 1 , . . . , 4, such that j/t- < y1+1 and

dx ^ , . , . dx ,
^ - > 0,2/ € (yi,y2)u (2/3,2/4), ^ - < 0,2/ e (y2,y3).

5x(y2;i) dx(y^t)
Moreover = = 0. For t fixed, the graph of the function

dy dy

x{y\t) with respect to the variable y is depicted in Figure 3. The inverse

mapping x'1 : x —> y = x~l{x\t), te(tQ,tQ + e), is clearly three-valued on

the interval (xux2), where yt+2 = y» = x"1(xi;t),i = 1,2. We denote by

Vi = yi{x\t),i = 1,2,3, the three branches of x"1, mapping (2:1,2:2) onto

Lemma 3.1 If/"(<{>'(yQ)) > 0 (rw/>. / " (^ (y . ) < 0), then for te(tQ,t

15



4>'{V3{x\t))<4f{y2{x;t))<4t{yi{x\t))

(resp. <f>'(y3(x;t)) > ^ fofo t ) ) > *'(yi

PTY>O/: Since f"W{ya))<f>"(ya) = -l/ta, f"W(y))<i>"(y) < 0 on a neigh-

borhood of yQ and <f>'(y) is monotone around j / a . •

Theorem 3.1 Let ut-(z,t) = v(yt-(z; *),<),* = 1,2,3, te(ta,ta + e),

where v is defined by (2.2) and F(x,t) = u3(x,t) — ui(x,t), xe[xi,x2]. Then,

ijf"{4>'{ya)) > 0 (resp. /"(<?%*)) < 0),

a) faF(x,t) < 0, (resp. ^ W ) > 0), xe{xux2),

b) F(xut) > 0 and F(x2,t) < 0 (resp. F(xut) < 0 and F(x2,t) > 0)

cj i/iere exists a unique point x(£)e(xi>x2) such that F(x(t),t) = 0. More-

over, the curve x(t) is smooth on (tQ^tQ + e).

Proof: Let us assume ^"(y) < O,j/e(j/a — <5, j / a + 5). In this case Lemma

3.1 yields

OM) ( ( * ) ( , t ) ) + —{u2{x,t) - UiOM)) < 0.

Since

-—(u3(x,t) - u2(x,i)) < 0, xe(x!,x2), u3{x1,t) =
ax

16
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we have that

u3(x,t) - u2(x,t) < 0, xe(xux2].

Similarly we conclude

u2(x,t) > ux(x,t), xe[xux2).

Moreover,

F(xut) = (u3(xut) - u2(xut)) + (i/2(a:i,0 - UiOr^O) > 0,

F(x2,t) = (u3(x2,0 - W2(x2,<)) + (u2(a:2 ,0-^i(^2,0) < °-

Conclusion (c) follows by the implicit function theorem. In this case the

graph of v(x~1(x-1t),t) is depicted in Figure 4. In the case where <f>"(y) > 0,

the graph of u2 lies below the graphs of u\, U3. •

Theorem 3.2 The function u(x,t), (x^t)e(xux2)x(tct^ta+e)} defined

by
Ul(x,t), x<X(t)

u3(x,t), x>x(t),

is a local viscosity solution of (1.1)-

Proof: Let ux(x(t)i:,t) denote the x-derivatives of u from the right and

the left at the point (x(0»0- Since the values ux(x(t)dz,t) correspond to

the points where the function / is convex or concave, the viscosity criterion

is satisfied. •
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This construction is originated in [15]. In the case of a conservation

law the graph of v(x~1(x,<),i) folds in a different way, see [8, p. 112], and

the shock curve is constructed using stable manifold theory. We denote

by xjl the single-valued branch of x"1 defined on the interval (x!,x2), for

te(ta,tQ + e), given by

( 2 / i ( ; ) , x

(3.1)

while x j 1 = x"1 for t G (0,ia],x G M. It is obvious from the previous analy-

sis that any negative local minimum of the function h(y) may give rise to the

generation of a shock following the above construction. In view of (Al) there

are only finitely many such points yQni = 1 , . . . ,m, where yQl = ya. Let Xi

be the corresponding shocks and assume that e is sufficiently small such that

the Xt's do not interact. Then following (3.1), we can choose a single-valued

branch x j 1 of x"1 defined for every xelR.

Theorem 3.3. There exists a single-valued branch of x~~l denoted by

xjl = x5(x;i),xe]R,te(tQ,tQ +£) ,£ > 0 small enough, such that the function

is a viscosity solution of (P) up to the time level ta + e.

Proof: By construction u(x,t) is C°° away from the points (xi{t),t) and

18



satisfies (1.1). Since the values ux(xi{t)±,t) correspond to the points where

/ is convex or concave, the viscosity criterion is satisfied. •
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4 Construction of the solution of local Rie-
mann problems

In view of the construction of Section 3, we have extended the solution beyond

the critical time tQ. In order to further construct the solution, we have to

solve a new Cauchy problem with initial data < (̂x) = \imu(x,t) at the time

level tQ = tQ + e. Here e is the supremum of all the e's such that Theorem

3.3 holds. In the sequel to simplify notation, we write ta instead of ta. The

function $ is C°°, except at finitely many points where it is only continuous

and <p undergoes a finite jump. The viscosity criterion is satisfied across

the jump, i.e. the inequalities of Theorem 2.2 hold for u+ = <f> (xQ+) and

u~ = </> (xa—). The points of discontinuity correspond to the trace of the

shocks at the time tQ or to the points where a new shock is generated.

To construct the solution of the Cauchy problem we have to solve all the

possible local Riemann problems:

ut + f(ux) = 0, (*, t)e(xa - I, xQ + 6) x (<a, tQ + e), e, 6 > 0

(Pa)

u(x,tQ) = 4>{x),

where ^eC°°((xQ -6,xQ + S)\{xa}) n C((xa -S,xQ + £)), for 6,6 sufficiently

small.

Here <j> is assumed discontinuous only at the point xa across which the

viscosity criterion is satisfied. We shall also assume that x"1, t = ta , is

20



single-valued on (xQ — S,xa) U (xa,xQ + S) with range the disjoint union

(x" -6,x~)\J (x+,x+ + 6), where xa = x(x~;ta) = x(x+;ta), x~ < x+, and

(f(t(y))) >0,!,6(xo--^a-)U (x+, *+ + *). (4.1)

The task of the construction of the solutions of the local Riemann prob-

lems is undertaken in this section. There are only four constructions in

addition to that presented in Section 3. Construction I corresponds to the

case where the incoming shock for t < ta meets the characteristic coming

from the left at the point (xajta) at an oblique angle. In the case where the

characteristic meets the shock tangentially, we have the constructions II and

III. The different subcases depend on the sign of <j)"(y),y ^ ar^, and whether

1 + taf'(</>'(x~))<!>"{%Z) m a y o r m a y n° t equal to zero. The last construction

corresponds to the case where f ( i o - ) = 0 (ara+)? while the higher order

derivatives are discontinuous. It is related to the generation of a new shock

and is caused by the interaction of regular waves with rarefaction waves.

On the other hand, the shock constructed in Section 3 was the result of the

breaking of regular waves. In the following section we are going to use these

constructions to trace the paths of the shocks, as t evolves, and the way they

interact.

Before we present any of these constructions, we need to study how the
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characteristics cross. To this end, we consider the sets

Q+ = {(*,*) : x = y + tf\4>\y)\x+ < y < z+ + 6,tQ < t < tQ + e}

Q~ = {(*,*) : x = y + tf'(4>'{y)),x- -6<y< x'a,tQ < t < ta + e}.

The domain Q+ (resp. Q~) is spanned by the characteristics originating from

(xj ,x^ + 6) (resp. (x~ — 5, x~)). Subsequently we shall assume that e,<5 are

sufficiently small so the assumptions made in each case hold for any (x, t) in

the domain of definition of Pa.

Lemma 4.1 . / /

then the left (resp. right) boundary of Q~*~ (resp. Q~) is a smooth concave

(resp. convex) curve <r(t), which is the envelope of the characteristic lines.

Otherwise the boundary is the corresponding characteristic line originating

from (xQita).

Proof: Let us assume that the first equality holds. In view of (Al) and

(4.1), we have that ti(y) > 0,y > x+. Applying the implicit function theo-

rem, we conclude that, for any t > ta there exists a unique a+(t) > z+ such

that

22



Since a(t) = a+(t) + tf'(<f>'(a+(t)), we have

Differentiating the equation defining <7+(<), yields —— > 0, therefore
at

< 0. (4.2)

The other case is proved similarly. •

We shall now study how we can define v(x'1(x; <),<) to be single-valued

in Q* and Q". We assume that

and consider the map

x : y -> x = x{y\t) = f'(<f>(y))t + y, x~ - 6 < y < x~, te(ta,ta + e).

For a fixed t^x"1 is two-valued on the interval (x(x~;t),a(t)). Let yx

j/!(x;<) be the continuous single-valued branch of cr"1 mapping

(x(x~ — 6;t),a(t)) onto (x~ — (5,cr~(<)), where

a(«) = <r-(t) + tf'{<t>'{a-{t))\ a-{t) < x~a.

We define u~(x,t) = v(yi(x,t),t), (x,t) € Q~, where
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The value of the function u at the point (x,<) £ Q , near the boundary

curve <r(t), is defined through the unique characteristic originating from the

initial axis, which is tangent to the curve a (see Fig. 5). In the same way we

define u+ o n Q + . In the case where

the above analysis is superfluous since x"1 is single -valued on Q~. Since

the viscosity criterion is satisfied across the point (x a , i a ) , the domains Q+

and Q~ overlap. (See Figure 5, where for definiteness it is assumed that

1 + ia-rU\<t>\xt)) ¥" 0)- Outside the overlapping region Q+ n Q", the
dy

solution can be defined as u+ or u~. We have to construct the solution

on Q+ fl Q~. This is done by first examining the graphs of u+ and u" on

Q+ n Q~. If they intersect, the viscosity criterion is satisfied across the in-

tersection and the solution is obtained by neglecting the unnecessary parts

of the graphs. Otherwise a contact discontinuity appears. In that case we

explicitly construct the contact discontinuity curve and the outgoing rarefac-

tion waves. Therefore, we have the following constructions depending on

the sign of <f>"(y) on (x~ — 5, x~) and (x£,x£ + S) and on whether or not

1 + ta-rlWfaa)) e<luals t o zero'dy

24
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Construction I We assume that if <t>f{xQ) > <f>'(x+), then

while if <f>'(x~) < <f>'(x+), then the opposite inequality holds. In this case we

have a single genuine shock. Define s(xQ^tQ) = <f> (x~) — <f> (z j) .

Lemma 4.2. If s(xa,tQ)) > 0 ( res/?. < OJ;

^[^(o:(^;0,0-^(^;0^)]<0 (rê p. > 0),

where x(x^;t) stands for the characteristics originating from the points

Proof: We only present here the proof of the case s(xQ; tQ) > 0. The other

case follows similarly. A simple calculation yields

±[u-(x(xt;t),t)-u+(x(xt;t),t)} =

On the other hand, since u~(x(x+;t),t) and 4>'(x+) lie in the convex region

of/,

°" ((+t)t)

Combining the above relations we obtain the first inequality.
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The second inequality is proved using

[ + ( ( : t ) t ) -

and

The inequality above holds for t = tQ by means of (4.3). In view of continuity

it holds also for t near tQ D.

For a fixed time i,—[u+(x,<)-t2~(x,<)] < 0 (resp. > 0) in Q + nQ~, fo r
ax

5(xa,tQ) < 0 (resp. > 0). Thereby, in view of the Lemma 4.2 and implicit

function theorem, there exists a unique x(t)-> x ( x J ; 0 < x(0 < X(XZ'^)^

such that u+(x(i)>0 = u~~(x(0>0 an(^ x(') ^S a smooth curve (see Figure 6).

Therefore we have the following theorem.

Theorem 4.1 There exists a unique smooth curve x

such that

, 0 = u-(X(t),t), x(i+;t) < X(t)

Moreover, the function

«"(x,<), x<x(t)
u(x,t)={ (4.4)
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is a local viscosity solution of (Pa).

Proof: In view of (4.3) the viscosity criterion is satisfied across x- D

Let us now assume that instead of (4.3) we have

B

and <f>"(y) < 0,2/ > x+, for s{xa,ta) > 0 (resp. <f>"(y) > 0 for s{xa,ta) < 0).

We follow the previous construction to construct a curve x-> x{xt'^) <

x(x~; i), such that

and we define u using (4.4).

If <f>»(y) > 0,y < x" , for s(xQ,tQ) > 0 (resp. <j)"(y) < 0 for s(xa,ta) <

0), then the geometric properties of / and the monotonicity of <f>\ for y ^

x j , yield that the viscosity criterion is satisfied across \- H" the opposite

inequality holds and the viscosity criterion is not satisfied for t > ta then, in

view of (Al), - J - > f(4>'(x (0) m a half-neighborhood of tQ, where

Differentiating the last equality yields
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d>X
Therefore —— > 0,2 > tQ and hence x~(0 > X~(*a) = ^ Q , which is a con-

dt
tradiction. Therefore we have the following theorem.

Theorem 4.2 Assume that (4-5) holds and that <f>'\y) < 0,y ^ x^} for

s(xQ^tQ) > 0, while <f> (y) > 0 for s(xQ,tQ) < 0. Then defining u by (4-4)?

the viscosity criterion is satisfied across \ and u is the local viscosity solution

Of {Pa)

Construction II Here we assume that

and

<t>"(y) > 0,y > 4 , iis(xa,ta) > 0, while 4?\y) < 0, if s(xa,ta) < 0 .

Under these assumptions, it is easy to check that the graphs of u+ and u~

do not intersect for t > tQ. A new way to build the solution is required.

This is the case where a contact discontinuity appears. We first construct

the contact discontinuity shock curve and then define the solution in the

28



different regions. Let us consider the functions (•)*, (•)», defined by

(•). : V 3 JR+ -»»/. € # " ,

v-q T)-V

dt

X(ta) = xa.

Let us cLSsume that 5(x t t,fa) > 0. We will first construct the contact discon-

tinuity as solution of the following initial value problem

(4.6)

Since

there exists a unique local solution x(0- ^y u s i n g the identities

dt

and

. *) = «+,(xw. w\««t(x(t), or) - /W(x(o, o)]

we obtain

= f"((u+ (4.7)
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d2y
where *(*) = x+(0 + *W(x+(<))- Therefore, —~ > 0 and the following

Lemma holds (see [2]), which describes the construction of the rarefaction

waves.

Lemma 4.3 Let x € C°°((ta,ta + e)), be such that x(ta)

> 0. For each fx € {tQ,ta + e) let Z,(ix) 6e f/ie half line
df*

) , t>t

and Q = {(x,t) : tQ < t < tQ + £,x(*) > x > ^ (^ iO- T/ien every point

(x,t) G 0 ^ e 5 o r i exactly one half line L(ti). Furthermore, if g = p(t) G

Cc°((*a^a + ^)); ^ e r i ^ e function w defined on Q by w(x,t) = g(ti), (^,t) G

X(<i), safis^es w(x,t) G C°°(Q).

We next define u to be u""(a:,t), on the left of x(x~;t) (see Fig. 7) and

u+(x,t) on the right of xW- We need to define the solution on Q. The

curve x(0 has been constructed to have the right slope /'(^*(x(0>0)*)-

The previous lemma yields that the domain Q is spanned by the half lines

L(ti). Since on the right of the curve x(0 at i = <i, the gradient of the

solution has the value uj(x(*i),<i), we assign (U£(X('I)J*I))* as its value

from the left and keep it constant along L(ti). That is the solution u(x^t)

on Q is carried by rarefaction waves corresponding to the half Hnes L(ti).

Applying the previous lemma with g(tx) = (u+(x(ti),ti))* we obtain
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Theorem 4.3 The function u defined by

u(x,t) = u~(x,t), (x,t) e

-w(y,t)dy + u"(x(
Z t )

is a local viscosity solution of (Pa).

Proof: Let (x,<) £ Q, then making the change of variables x

In view of the previous identities and the definition of u, we have

(fit(x, 0 + /(ux(x, <))), = wt(x, t) + f(w{x, t))wx(x, t) =

Therefore ut(x,t) + f(ux(x,t)) = constant, for (x,t) £ Q,t fixed. On the

other hand, lim ux{x,t) = <f>'(x~) and lim ut(x,t) = -f(<f)l(x-)).

Thereby,

lim (iit + (f(ux)) = 0,

31



hence

fit +/(fix) = 0, (x,t)eQ.

By definition, however, fia?(x(0~">') = (ux(x(0>*))*> therefore

This yields that £t has a C1 extension up to the boundary of Q. To conclude,

we need to prove that u is continuous across xM> l-e-

/(*) = fi(x(*),<) - ti+(x(«),0 = o, * > *tt.

This is easily checked using that I(ta) = 0 and the relation

o. •

In the C2tse s(xQ,tQ) < 0, we repeat the same construction except that

we substitute the upper star (•)* function with the lower star (•)*. This con-

struction is originated in [2], where the contact discontinuity curve and the

rarefaction waves for a conservation law are obtained.
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Construction HI Here we assume that the conditions of the case II hold

except that 1 + taf"(<f>(x~))4>"(x~) — 0. Moreover, we assume s(xa,ta) > 0;

the case of the opposite inequality can be treated similarly. The assumptions

imply that <j> (y) > 0 for y < x~. The geometry of / and the monotonicity

of 4> yield

-\u-{x{x-a;t)yt) - u+{x(x-a;t),t)) < 0. (4.8)

Let a(t) be the right boundary of Q~ and

A(t) = u+(a(t),t) - u-(a(t),t), t > tQ.

dA
—
dt (4.9)

-[/(^+(0))-/(^V"(<)))],
where

a{t) = a~(t) + « / W ( 0 ) ) = °+{t) + tf'(<f>V+(t))), (4.10)

and cr+(t) > z+, &~(t) ^ 2Q> Differentiating (4.9), we get

Differentiating (4.10) and using that a(t) is the right boundary of Q~, we

get
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Moreover (4.2), with a in place of a + , the previous identity and equation

(4.11) yield

(PA da2 , + ,

for t = ta. Let us now denote by x the curve defined by (4.6). In view of

(4.7) and

du* f'(u)

du f"(u*)(u-W)

for t = tQ we obtain

By means of the above equality (4.12) is written in the form.

d2A{tQ) \da\ta) (f'MxZ)) _ \ <Px(tay
[ + \f'W{x+)) ) dt*

We need to examine the following subcases.

Case Ilia Assume that a(t) > x(i), t > tQ. The construction results

in a single genuine shock. Since both \ and a are convex near tQ, we have

> £*}hl and (4.13) yields that *A}1^ < 0. Therefore in view of
at2 at1^ > } and (4.13) yields that }1

at2 at2 at1

the definition of A{t) and (4.8) we have the following
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Lemma 4,4. Under the assumptions of case Ilia

and

Following the lines of Theorem 4.1, there exists a unique smooth curve x

with x(x~; t) < x{t) < a(i)i s u c^ that u~*~(x(t)i t) = u~(x(/), t). The solution

is given by (4.4).

Case Illb Here we assume that a(t) < x(t),t > ^a- In this subcase

two shocks spring from the point (xQ,tQ). The right one is a left contact

discontinuity. The left one is a genuine shock defined from the right by

the outgoint rarefaction waves. If Q, u are defined as in construction II, we

write Q = Qi U Q where Qi is the domain bounded by the curves x{x~\t)

and cr(t), Q2 the domain bounded by the curves a(t) and x{t) (see Figure 8).

Lemma 4.5 The following inequalities hold:

jt[u(x(x;;t),t)-u-(x(x;;t),t)]<0

jt[u(a(t),t)-u-(a(t),t)}>0.

Proof: Since <f> is increasing for y < x~, then

Z))-f{u-x{x{x-a-t),t))
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which results in the first inequality of the Lemma. Moreover,

jt[u(a(t),t)-U-(o(t),t)} =

Since / {<j> (a~( t ) ) , / (ux(a(t),t)) are the slopes of the incoming characteris-

tics at (cr(£),£) we have /'(<^>'(cr~~(t))) > f'(ux(a(t),t)). Since both (f>\a"(t))

and ux(a(t),t) belong to the concave region of / , <f> (a~~(t)) < ux(cr(t),t).

Therefore,

hence the result. D

In view of the Lemma there exists a unique \ with x(xQ; t) < \{t) <

such that

Theorem 4.4 The function u defined by

f u~(x,t), x<X(t)

u(x,t) =
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is a local viscosity solution of (PQ).

Proof: The viscosity criterion is satisfied by construction across x(t) (see

construction II). Since the derivatives accross \ correspond to the concave

area of / , the viscosity criterion is also satisfied across x- D

Construction IV Assume that <^'(za—) = <j>'(xQ+) = <t>'(xQ) ^ 0,

and <f>"(x) < 0, x > xa, if 4>\xa) > 0 or 4>"{x) > 0 if ft(xa) < 0. We only

present here the case <j>\xQ) > 0. If <j>'{xa) < 0 we argue similarly. Here the

construction results in a single genuine shock.

Lemma 4.6 The following inequalities hold:

The proof can be given along the lines that of Lemma 4.5. Therefore,

there exists a unique point x(x~;t) < x(t) < a(t) such that u+(x(<),<) =

u~(x(t)9t) and x(t) ls a smooth curve. The solution is constructed as in

Theorem 4.1.
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5 Propagation of a single shock and interac-
tion of shocks

In this section we shall use the constructions undertaken in Sections 3 and 4 to

investigate the global structure of the shock curves. In view of Theorem 3.3,

we have extended the solution up to the time iQ (see the beginning of Section

4). If two or more shocks intersect at the same point, the viscosity criterion

is satisfied across the resulting discontinuity. Moreover, the corresponding

chord is not tangent to the graph of / . Hence, we follow construction I to

extend locally the solution. The outgoing shock is a genuine one. We use

the constructions presented in Section 4 to continue locally the shock curves

for t > tQ. Working along the lines of the proof of the Theorem 3.3, we can

find a single-valued branch xj1 of x~l defined in the region not covered by

rarefaction waves. The solution of (P) is given by v(xJ1(x] t)). In the region

covered by the rarefaction waves, the solution is defined according to the

Theorem 4.3. In view of (Al), the construction of the shock can change only

finitely many times. Therefore, we can construct the solution for any time t.

Let S be the union of genuine shocks and contact discontinuities and W

the union of weak waves. We have the following theorem.

Theorem 5.1. The complement of the union S U W of the shock
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curves and weak waves consists of the two domains Q and 71.

1. Q is a simply-connected domain covered by regular waves originating

from the initial axis. A single-valued branch xjl of x"1 can be defined

on Q such that the solution u of (P) on Q is given by

2. The set 7Z is the union of simply connected domains and it is covered by

rarefaction waves originating from contact discontinuities. The solution

u on 71 is obtained according to Theorem 4-3.

To understand better the geometric structure of the generated shocks, we

need to study how a shock propagates further and how it changes from one

type to another

To this end, let us assume that a negative local minimum of the function

h{y) = T~(/ (^ (y)) a t *he P°in t Vet gives rise to a genuine shock. The shockay

is generated at the point (x(yQ;tQ),tQ); see Figure 9. We follow construction

I to continue the shock further. Let us assume that <t>"{yQ) < 0. Then, we

always have ux(x(t)+^t) < tiar(x(0~~>0- Otherwise, there would be a time t'

for which ux(x(t')+,t') = ux(x(t')-,t') and the shock would be degenerated

in a characteristic line. For a time t near the time tQ of the generation of the

shock, ux(X(t)-,t) < 0. If, for a later time t,ux(x(t)-,t) < (ux(x(t)+,t))*

or ux(x(t)->t) = ux(x(t)+,t))* and uxx(x,t) < 0,z > *(<), we follow
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construction I to continue the solution further. If the equality holds but

uxx(x{t),t) > 0,z > x(t) a nd 1 + t h(x~(t)) 7̂  0, the characteristic coming

from the left stimulates the shock which changes to a contact discontinu-

ity and starts emitting tangentially from the left rarefaction waves. Let

us assume that this happens for t = tp (see Fig. 9.). In the case where

1 + tph(x~(tp)) = 0 the genuine shock either continues as a genuine one or

splits into a left contact discontinuity and a genuine shock lying on its left

(see Fig. 10). More precisely, we have the following Theorem.

Theorem 5.2 Let u be the viscosity solution of (P) constructed up to the

time level tp. We assume that the genuine shock x generated at a previous

time passes through the point

and either

i) if «*(x(<0-i*/9) >«*(x(*/0+i*/8) and

uxx(x,tp) > 0 for x(tp) < x < x{tp) + ^ ^ > 0 small enough

or

ii) ux{x{tp)-,tp) <Ux(x{h)+>tp) and

uxx(x,tp)<0 for X{ip) < *< X(*/O + <*•
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Then we have the following cases: If

the genuine shock turns into a left contact discontinuity following construc-

tion II. If

then either

a) the conditions of Construction Ilia hold and the shock continues as a

genuine one;

or

b) the conditions of Contstruction Illb hold and the shock splits into a fleft

contact discontinuity and a genuine one lying on the left. The genuine

shock is defined from the right by the outgoing rarefaction waves.

Next, we assume that only a contact discontinuity springs at the time

tp. The condition for this contact discontinuity to change into a genuine

shock at a later time t' > tp, is that t / r ( x ( 0 , 0 = 0 anc^ Uxx(x,t') < 0

( resp. > 0), x > x(O, for 5(x(0>0 > ° (resP- < 0). On the other hand,

the structure of the rarefaction waves yields that uxx(x,t') < 0 (resp. > 0)

for x < x(O- If w e s°lv e the new Riemann problem around the point

(x(O,O, ^e graphs of the corresponding functions u+,u~ will intersect
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along a smooth curve across which the viscosity criterion must be satisfied

and the contact discontinuity changes into a genuine shock according to The-

orem 4.2.

In the case where 1 +t h(x"(tp)) ^ 0 the characteristics on the left of the

weak wave x(x{tp)—; t) may start crossing at the time level t1 > tp. The weak

wave is terminated at this point and a genuine shock XiM 1S born following

construction IV. The genuine shock enters the rarefaction wave region (see

Fig. 11).

We denote by xr(^y) an<^ X~(*a) the traces on the initial axis of the

left characteristics passing through the points (XI^-Y)?^)? (x(ta)<>ta) respec-

tively. Since there exists a point y G (xr(*7)?X~(*a)) s u c h that <f>"(y) = 0,

the function h(y) has at least a negative local minimum on the interval

[Xi"(^Y)>X~(^a))- Moreover, if more than two shocks intersect, we have a

unique genuine outgoing shock and the number of existing shocks is less or

equal the number of the negative local minima of h(y). Due to the con-

struction of the contact discontinuity, if the shock is hitted from the right

by a weak wave of order m, it continues as a contact discontinuity and the

triggered weak wave from the left is of order m + 1.

All the results obtained in this section are summarized in Section 2.3.
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