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ON A CLASS OF INVARIANT FUNCTIONALS

IRENE FONSECA+ AND GARETH PARRYtt

Abstract. A characterization of a class of functionals invariant under isochoric changes of domain is obtained. This

class contains strictly the null Lagrangians.
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1. Introduction. In Fonseca and Parry [FP] we studied variational problems for crystals

with defects. The model that we followed was proposed by Davini [Dv] and later developed by

Davini and Parry [DPI], [DP2]. One of the main contributions of this model is the introduction of

a class of defect-preserving deformations, called neutral, which generally involve some kind of

rearrangement. It was shown in Fonseca and Parry [FP] that a neutral change of state of a perfect

crystal corresponds to a lattice matrix

L(u(x)) = Vu(x){Vv(x)K

where u : Q —»[R3 is the elastic deformation, Q is the reference configuration and v represents the

slip or plastic deformation with det Vv = 1 a. e. in Cl. Clearly, if Vv = H then the deformation is

elastic. The total energy is given by
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E(L):= Jw(Vu(x){Vv(x)}-i})dx (1.1)

where W represents the bulk energy density, and we take the viewpoint that equilibria correspond

to minimizers of (1.1) with (u, v) in the class of admissible pairs

:= {(u, v) e Wloo(ft, [R3)l det Vu > 0 a. e. in Q, u = uo on3ft, det Vv = 1 a. e. in Q}.

Existence and smoothness of solutions for this type of problems was discussed in Dacorogna and

Fonseca P F ] .

We remark that, formally, minimizing E(.) in $& (uo) involves variations of the reference

domain ; indeed, setting co := u^v1 the integral (1.1) becomes

W(Vco(y))dy.1'v(Q)

We expect that Vv will not be too far from the identity at equilibrium, i. e. the state of the crystal

will be close to a state elastically related to the reference state and so, we want to understand the

effect that penalizations on Vv may impose on the solution. Consider the perturbed problem

E£(L) := f W(Vu(x){Vv(x)}-M) dx + e Jg(Vv(x)) dx
J °
n

where

g(ll) = 0 a n d g > 0 . (1.2)

In Fonseca and Parry [FP], Corollary 2.15, it was proven that the factorization of L into the elastic

part Vu and the slip Vv is not unique, precisely

L(u(x)) = L(u(x)) = Vu(x) {Vv(x)}-1

if and only if, setting f := u"lou, the following hold :
(i) f(x) = x on dQ ;

(ii) det Vf(x) = 1 a. e. in Q ;

(iii) v(x) = v(f(x)) + Cont a. e. in Q.

As E£(.) should not depend on the factorization of the lattice matrix L, we seek for a

characterization of the class of integrands g : M3*3 —> [R such that
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Jg(Vv(x)) dx = fg(V(vf)(x)) dx (1.3)

for all Lipschitz functions v and f satisfying (i), (ii). This is accomplished in Theorem 2.1 where

we show that

g(F) = A.F + B.adj F + y(det F)1 (1.4)

for some matrices A, B and some smooth function y. We recall that h is said to be a null

Lagrangian (see Ball [Bl], Dacorogna [Dc], Ericksen [E]) if

f h(Vv(x)) dx = f h(Vw(x)) dx (1.5)

whenever v, w G Wl>°°(Cl; [R3 ) are such that v(x) = w(x) on dCl. It is clear that null Lagrangians

satisfy (1.3); this is in accordance with (1.4) as it is well known that null Lagragians are linear

combinations of the minors of F, i. e. (1.5) holds if and only if there exist A, B e M3x3, CG [R

such that

g(F) = A.F + B.adj F + c det F. (1.6)

We conclude that if g satisfies (1.2) and (1.4) then

g(F) = 7(detF)

in which case the perturbed problem E£(.) reduces to

E£(L):= Jw(Vu(x){Vv(x)}-i})dx + £Y(l) meas(Q)

and so we obtain, up to a constant, the former energy functional. As perturbed problems involving

a bulk penalization are reduced, essentially, to (1.1) and as, formally, a change in v corresponds to

a variation of the domain, in Fonseca and Parry [FP] we considered instead a surface energy

penalization.

!If A, B e MN x N then A.B := trCA1^) and adj A is the matrix of cofactors of A, i. e. (adj A ) = - eipq £jrs AprAqs. In

(adj A) T

particular, if A is invertible then A"1 = H f / •

fv t



2. Characterization of a class of functionals invariant under isochoric

changes of the domain. In what follows Cl c [R3 is an open, bounded domain and M3x3

denotes the space of 3x3 real matrices.

Theorem 2.1. Let g e C3(M3*3). Then

fg(Vv(x)) dx = fg(V(vof)(x)) dx (2.1)

for all v, f e W1»OO(Q, [R3) such that det Vf(x) = 1 a. e. in Q and f(x) = x on dQ, if and only if

g(F) = A.F + B.adj F + y(det F)

for some matrices A, B and some smooth function y.

Remark 2.2. The function g satisfies (2.1) if and only if

Jg(Vv(x))dx= Jg(Vv(x){Vh(x)}-i)dx (2.2)

for all Lipschitz functions v, h such that det Vh(x) = 1 a. e. in Q and h(x) = x on BC1. Indeed,

suppose that (2.2) holds and let f € W1-00^, OR3) be such that det Vf(x) = 1 a. e. in Q. and f(x) =

x on 3Q. Then (see Ball [B2]) f is invertible, f-1 = : h € W 1 - - ^ , [R3) and

det Vh(y) = 1 in Q
h(y) = y on

Therefore, using the change of variable formula for Sobolev functions (see Ball [B2]) and by (2.2)

we conclude that

f g(Vv(x))dx = Jg(Vv(y){Vh(y)}-i) dy

= Jg(Vv(y)Vf(f-i(y)))dy
f(ft

= J g(Vv(f(x))Vf(x)) detVf(x) dx

= fg(V(vof)(x)) dx.

Similarly, one can show easily that (2.1) implies (2.2).



We divide the proof of Theorem 2.1 into a series of lemmas. Let

Lemma 2.3. If g satisfies (2.2) then
3 3

4 H i j ( V v ( x ) ) ] = &[ X 4 H l j ( V v ( x ) ) ] (23)
j=l j=l

for all i * 1 and for all v e C 1 ^ ; IR3).

£detVxX(x,t) = 0. (2.5)

Proof. Let f e C 1 ^ ; IR3) be such that
f div f(x) = 0 i n f l
I f(x) = 0 o n 3 Q

and for all x € Q consider the flow

£x(x,t)=f(X(x,t))
X(x,0) = x

Clearly

X(x,t) = x if x € dQ and for all t. (2.4)

Also

dt

since

^ det Vx X(x,t) = (adj VXX)T. | VxX(x,t)

= (adjVX)T.Vx[f(X(x,t))]

= (adj VX)T .VX1" Vf(X(x,t))

= detVxXl.Vf(X(x,t))

= det Vx X l.Vf(X(x,t)) divf(X)

= 0.

By (2.4) and (2.5) we deduce that

detVxX(x,t) = l

and so, by (2.2)



0 = | l t = 0 fg(Vv(x){VxX(x,t)}-i)dx

By (2.4)
0 = f lt = 0[VxX(x,t){VxX(x,t)}i]

yielding

which together with (2.6) implies that
0 = J H(Vv(x)).Vf(x) dx.

n

Hence, there exists a function p such that for all i e {1, 2, 3}

which is equivalent to condition (2.3).

Lemma 2.4. If g verifies (2.3) then the following hold.

1. ^FT51 = 0 for all n, M ;

n 9Hii 9Hii 9HU f „ . ,
2. ^ F ^ = -TTT^ - -XTT^ for all n, I # 1;

dFni d F i d F i

lln, {i,l,m} = {1,2,3}

4. ^-^ =0 foralln,i*l;

5. a / J l F ^ =0 foraUn,{i,l,m} = { l , 2 ,3} ;



ii - Hn) 3 (H m m - Hu) f___ii_ . _ r: i m i n o , .
= —XV XV foralln*p, {1,1, m} = {1,2, 3J.

p i or n m

Proof. By (2.3) we have
3

a_r VaHii(Vv(x)) a2vn -, _

j,m,n=l
3

j,m,n=l

i. e.

n | aHjj 33yn

9xj 3Fnm axmaxjd

32H 32y 82yn 9HIJ 83yn

xm3xj 3Fnm axm3xj8xi' ^ • ;

Here we use the convention that repeated indices stand for summation, unless stated otherwise.

Setting Dav(xo) = 0 except D3V(XQ), with amji := gx ^ " B X - ^ ' w e (^ e d u c e t h a t

nm
amji = gp-u- amji (2.8)

whenever amji = amij = ajmj = ajim = aijm = aimj. Next, if D«v(x0) = 0 except D2vn(x0) = B = BT,

from (2.7) we have

BqiBmj= -Jlll BqiBmj (no summation inn) (2.9)

and finally, if Dav(xo) = 0 except D2vp(xo) = B = BT and D2vn(xo) = A = AT, with n * p, by (2.7)

and (2.9) we conclude that

In (2.8) set aijk = 0 except aui = i- If i * 1 then we obtain property (1), i. e.



- (no summation).

If aijk = 0 except am = am = am then

(no summation)

which is (2). Also, (3) follows from (2.8) where aijk = 0 except for a^i = 1 =

In (2.9) let B = ei ® ci + ei ® ci. Then

hence

and by (2)

r 3Hii u
L 5 ~ "8Fni

which, together with (2.11) yields (4). With {i, 1, m} = {1, 2, 3} and B = ei ® ei + em ® e;+

® ei, (2.9) reduces to

or

32Him

3

which by (1) is equivalent to

3 F ^ 3 F 7 + 3F—3TF~7 = 3F £V + ^r; \ (2.12)
urmujrn\ ^^nm^^nl ^^nl^^nm oFnm

On the other hand, by (1) and (3) we have



a aHun

and so, from (2.12), (2) and (3) we conclude that

a2H im a a

3Fnl

proving (5). Replace B = ei®ei and A = ei®ei + ei®ei in (2.10) to obtain

which, by (1) reduces to

With B = em®ei + ei®em and A = eni®ei + ei®em we get, again using (1),

^P—5p— [HH - Hii] = 0

which, together with (2.13) yields (6). Equation (7) follows from (2.10) taking B = ei®e* and A

ei®ei. Finally, setting B = ei®ei and A = em®ei + ei®em, by (2.10) and (2) we deduce

concluding (8).

Lemma 2.5. If the conditions (l)-(8) of Lemma 2.4 are fullfllled then there exists a matrix M

and some constants Ai™, Q; such that for i * j



HyCF) = { f r ^ tr(M adj F)}.. + Aijpq Fpq + Qj.

Proof. For simplicity we set (i, j) = (1, 2). By (1) we have

and so

H12 = H12 ({Fni}, {Fp3})

We claim that H12 is a polynomial of degree less than or equal to 2, i. e.

= 0 for all n, i, p, j , k, 1. (2.14)

Clearly, (2.14) holds if 2 e {i, j , 1}. If this is not the case, then two of the indices {i, j , 1} must be

repeated, suppose that i = j e { l ,3} . I f i= j = l and n = p then (4) implies that

in which case (2.14) is satisfied. If n * p then by (2) and (7) we have

9 2 H 1 2 d
d d - a

= 0 (2.16)

thus implying (2.14). Finally, if i = j = 3 then (1) and (3) yield

8 2 H 1 2

= 0 (2.17)

concluding (2.14). Recall that by (5)

= 0

which, together with (2.15)-(2.17), implies that

Hl2 = ^ OCpr Fri Fp3 + Ai2pq Fpq + C12 (2.18)

and, in a similar way,

10



+ AnpqFpq + Cl3. (2.19)

By (2.18), (2.19) and (3) we must have for all F

Frl +Ai2p3 =

3H,

and so

Op^-Ppr for r*p . (2.20)

Note that by (2.18), (2.19), (2.20), (2) and (8) we have

82Hi2 9 [-8H22 _ 3Hn
oFridFp3 5Fp3 L o¥T2 dFr2

a a

= Prp=-Oip

and so we can rewrite (2.18) and (2.19) as

TJ JjFri Fpk + Aijpq Fpq + Qj (no summation on k) (2.21)

where {i,j, k} = {1, 2, 3},
t £ (2.22)

and

V = * V (2.23)

From (2.22) we deduce that

" = Eprs 6 ^ (2.24)

and (2.23) implies that for {i, j , k} = {1, 2, 3}

n



Eprs Os

Hence

which, together with (2.21) and (2.24) yields

Hij = £prs Etkj Mts Fri F p k + Aijpq Fpq + Qj

where {i, j , k} = {1, 2, 3}, so that there is no summation in k. However, this can be rewritten as

Hij = £prs £tkj Mts Frj Fpk + Aijpq Fpq + Qj

where the summation convention operates on all repeated indices (including k), and thus

H i j(p)= {FT^t r (MadjF)} i j + A i j p q F p q -hC i j .

Lemma 2.6. If g satisfies the conditions (1) - (8) of Lemma 2.4 then

HH(F) = (M adj F)ii + Aiipq F ^ + Qi + p(F)

where p(0) = 0 and ap/3F(0) = 0.

Proof. We claim that H n - H22 is a polynomial of degree at most two, i. e.

8FniaFpj8Fkl t H » " H ^ = ° for a11 n' {> P' J' k' L

If 1 € {i, j , 1} and for simplicity, assume that i = 1, then by (2) we have

and so (2.25) follows from Lemma 2.5.

If 1, 2 € {i, j , 1} then i = j = 1 = 3. If two of the indices {n, p, k} are different then (2.25)

follows from (6). Ifn = p = k = 3 then by (2) and (1)

82 ( H n - H2 2) _ 8 2 ( H n - H33) , d2 (H3 3 - H22)
3 F 2 a F 2 + 3 F 2

12



= 0 (2.26)

and once more, (2.25) holds. Next we show that

=0 foralln,p,i. (2.27)

If n *p then (2.27) follows from (6). If n = p and i = 3 then (2.27) reduces to (2.26). Finally if n =

pandi = lby(2)and(l)

92(Hn -H 2 2 ) d dU21

aFm2 " a F n i 3 F n 2 - u -

By (2.25) - (2.27) we deduce that

H n - H 2 2 = X Bijr Fjn Fjq + Lpq Fpq + C.
{p,q,r) = { 1,2,3}

In addition, (2) and (4) imply that

a2(Hn-H22) __a_gH2l _ n
dtradtm 9Fn2 9Fn2

and by (7)

- H22)
TF = yJ II n ^ p .dFn2dFpl

Hence, we conclude that

- H22 = Oij Fn Fj3 + pij Fi2 Fj3 + 1 ^ Fpq + C. (2.28)

From (2) and Lemma 2.5 we have

ts F p 3 + A 2 i n 2

= £jns M 2 s Fj3 + A 2 i n 2

13



and so

anj = ejnsM2s. (2.29)

Similarly,

4
u Fp3

= Ejns Mis Fj3 - Ai2nl

and so

Pnj = Ejns Mis

which, together with (2.28) and (2.29) implies that

Hn - H22 = ejis (M2s Fu F j3 + M i s F i2 Fj3) + Lpq Fpq + C

= - (M adj F)n + (M adj F)22 + Lpq Fpq + C. (2.30)

Writing

Ha = - (M adj F)ii + gi

we have

Hn - H22 = - (M adj F)n + (M adj F)22 + (gi - g2)

and by (2.30) we get

gi - g2 = Lpq Fpq + C.

Set

g2(F) := p*(F).

Then

Hii = - (M adj F)u + p*(F) + A*Hpq Fpq + C*ii

= - (M adj F)u + Aiipq Fpq + Qi + p(F)

where

p(F) := p*(F) - p*(0) - ̂ ( 0 ) . F , A ^ := A*iipq + ^ < 0 ) and Cu := C*u + p*(0).

14



Lemma 2.7. Let M be a constant matrix. If h(F) = -MT. adj F = - tr(M adj F) then

F 7 ! ! = M adj F - (MT. adj F)£.

Proof. Since

^ T = " 5 | : [ M i
_ 3(adj F)pl

" M IP aFy

we get

- -Mi 3(adJF)Pl Fw Q 3 n

We claim that if F is invertible then

a (9F-F ) p l =-(adjF)ijF^ - (adj R n F ' 1 (2.32)
lj Jr

Indeed

(adj F)ki Fkm = det F 8 ^

and so

(adj F)ki Ski 5m j = (adj F)y 6im.

Multiplying this inequality by F^ and adding in m yields (2.32). By (2.31) and (2.32) we obtain

p y K K1Fik

= - Mip [ det FFJp1 5jk- det F F 1 8ik]

This relation holds for all matrices F with det F * 0 and the result for all matrices follows by

density and by continuity.

15



Lemma 2.8. Let h : M3*3 -> IR be a C1 function. There exists a CO e C ÎR ; IR) such that

h(F) = co(det F) if and only if F1 ̂ p(F) = p(F)H for some function p.

Proof. Suppose that h(F) = co(det F). Then

| = co'(det F) adj F

and so

FT | | ( F ) = co'(det F) det F 11.

Conversely, if F7 ^p(F) = p(F)l we claim that then

i) h(F) = h(RF) for every F and for all rotations R ;

ii) h(F) = h(F(H + a®b)) for every F and for all orthogonal vectors a and b.

In order to prove i), consider the semigroup {e^} where A is a skew-symmetric matrix such that R

= e \ Set

f(t) := h(F e*).

Then

f (t) = g | (F e^) . F e^ A

= (FetA)T H
= p(F e^) trace A = 0

and so f is constant; in particular f(l) = f(0), i. e.

h(F) = h(RF).

To prove ii) we define

f(t) := h(F(ll + ta®b)).

Then

f (t) = | p (F(l + ta®b)). F a®b

(F(H + ta®b)). F(H + ta®b)(l - ta®b) a®b

ta®b)]T gp (F(l + ta®b)). a®b

= p(F(l + ta®b)) (a.b) = 0

16



and we conclude that f is constant, so that f(l) = f(0).

If F e M3x3 is any matrix with det F * 0 then (see Chipot and Kinderiehrer [CK] and

Fonseca [F]) F can be written as

F = (det F)1/3 R 11(11 + ai®bi), 1 < i < 2,

where R is a rotation and ai .bi = 0. Therefore, by i) and ii) we conclude that

h(F) = h((detF)1/3l)

= :co(detF).

The result for arbitrary F follows now from density and continuity.

Finally we prove our main result, Theorem 2.1.

Proof of Theorem 2.1. Suppose that

g(F) = A.F + B.adj F + tfdet F).

Let v, f e W^-CQ, [R3) be such that det Vf(x) = 1 a. e. in Q and f(x) = x on dCl. By (1.5) and

(1.6) we have

I [g(Vv(x» - y(detVv(x))] dx = J [g(V(v<>f)(x)) - y(detV(vof)(x))] dx (2.33)

and by the change of variables formula for Sobolev functions (see Ball [B2])

J y(detV(vof)(x)) dx = J y(detVv(f(x))) dxJ
= J y(detVv(f(x))) detVf(x) dx

f(ft)

= Jy(detVv(x))dx

which, together with (2.33), implies that

J g(Vv(x)) dx = J g(V(vof)(x)) dx .

Conversely, if the latter holds then by Remark 2.2, Lemmas 2.3, 2.4, 2.5 and 2.6 we have

Hij(F) = - (M adj F)ij + Aijpq Fpq + Cy + p(F) 5y (2.34)

17



where p(0) = 0, ^ (0) = 0. We claim that (using the summation convention for repeated indices)

_ * (F) F ^ - Hin(F) 6sj = | ^ i ( F ) F ^ - Hsj(F) 6^. (2.35)

Indeed, as

and since g e C2 we obtain

= Hin 8sj + Fmi

a2 g
^ 6

6sJ + S F ^ F ks-H s j 6 i n .

In (2.35) replace F by tF and let t -> 0. We deduce that

Hin(O) 5sj = Hsj(0) 5^

or, taking into account (2.34)

which implies that

and (2.34) reduces to

= C 5ij

Hij(F) = - (M adj F)ij + Aijpq Fpq + C 6ij + p(F) Sy. (2.36)

Again by (2.35) we have

(tF) tFmj - [Hjn(tF) - Hjn(0)] 6sj = ^KtF) tF ta - [Hsj(tF) - Hsj(0)] 5 jn

and so, dividing the latter by t and letting t ^ O w e obtain

(0) Fmj - 2Sa (0).F 8sj = © K 0 ) Fks - ̂  (0).F

i. e.

From (2.36) we deduce that

i -̂ mj = Ajjkn r k s (2.37)

18



and setting2

we claim that

AijMFpq = ( Frite^AF)) i . (2.38)

In fact, by (2.37)

= rs{ Aj s = rs{

and so, (2.36) and (2.38) yield

H(F) = - M adj F + (p(F) g

and by Lemma 2.7 we obtain

I^ ^ [g(F) - MT.adj F - trace(AF)] = q(F) 11

where

q(F) := p(F) + C - MT.adj F.

Finally, Lemma 2.8 asserts the existence of a function co such that

g(F) - MF.adj F - trace(AF) = co (det F)

and we conclude that

g(F)=

Acknowledgments. The authors would like to thank L. Tartar, J. Sivaloganathan for

interesting discussions on the subject of this paper.

2Here, and unless stated otherwise, the summation convention for repeated indices is used.
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