NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:

The copyright law of the United States (title 17, U.S. Code) governs the making

of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.



NAMS
- a4

ON A CLASS OF INVARIANT FUNCTIONALS

by

l. Fonseca
Department of Mathematics
Carnegie Mellon University

Pittsburgh, PA 15213

G. Parry
University of Bath

School of Mathematical Sciences
UK

Research Report No. 91-123-NAMS-24

July 1991



Univers 118

Cuineg'> Me on . iversity

Pl%

argy, FAO1S. 3-3890

ON A CLASS OF INVARIANT FUNCTIONALS

IRENE FONSECA?' AND GARETH PARRY

Abstract. A characterization of a class of functionals invariant under isochoric changes of domain is obtained. This

class contains strictly the null Lagrangians.
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1. Introduction. In Fonseca and Parry [FP] we studied variational problems for crystals
with defects. The model that we followed was proposed by Davini [Dv] and later developed by
Davini and Parry [DP1], [DP2]. One of the main contributions of this model is the introduction of
a class of defect-preserving deformations, called neutral, which generally involve some kind of
rearrangement. It was shown in Fonseca and Parry [FP] that a neutral change of state of a perfect

crystal corresponds to a lattice matrix

Lu(x)) = Vu(x) {Vv(x)}-,

where u : Q — R3 s the elastic deformation, Q is the reference configuration and v represents the
slip or plastic deformation with det Vv =1 a. e. in Q. Clearly, if Vv = 1 then the deformation is

elastic. The total energy is given by
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EL):= | W(Vu){Vv(x))1)) dx (1.1)
Q

where W represents the bulk energy density, and we take the viewpoint that equilibria correspond

to minimizers of (1.1) with (u, v) in the class of admissible pairs

& (ug) := {(u, v) € WL=(Q, R3)IdetVu>0a.e.in Q,u=ugond, det Vv=1a.e.in Q}.
Existence and smoothness of solutions for this type of problems was discussed in Dacorogna and
Fonseca [DF].

We remark that, formally, minimizing E(.) in & (ug) involves variations of the reference

domain ; indeed, setting @ := uev-! the integral (1.1) becomes
J W(Vo(y))dy.
v(QY)

We expect that Vv will not be too far from the identity at equilibrium, i. e. the state of the crystal

will be close to a state elastically related to the reference state and so, we want to understand the
effect that penalizations on Vv may impose on the solution. Consider the perturbed problem

Ee(L) := JW(Vu(x){Vv(x)}’l}) dx +e [ g(Vv(x) dx
Q
Q

where
g(1)=0and g>0. (1.2)
In Fonseca and Parry [FP], Corollary 2.15, it was proven that the factorization of L into the elastic
part Vu and the slip Vv is not unique, precisely
L)) = L) = Vax) (Vv(x)}!

if and only if, setting f := u-lou, the following hold :

(1) f(x)=x onoQ;

(i) detVf(x)=1la.e.in Q;

(iif) v(x) = V(f(x)) + Cont. a. €. in Q.

As E¢(.) should not depend on the factorization of the lattice matrix L, we seek for a

characterization of the class of integrands g : M3x3 — R such that
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ﬂ[g(Vv(x» dx = Jg(V(vofxx» dx (1.3)

for all Lipschitz functions v and f satisfying (i), (ii). This is accomplished in Theorem 2.1 where
we show that

g(F) = AF + B.adj F + y(det F)! (1.4)
for some matrices A, B and some smooth function y. We recall that h is said to be a null

Lagrangian (see Ball [B1], Dacorogna [Dc], Ericksen [E]) if

d[h(vv(x)) dx = n[h(Vw(x)) dx (1.5)

whenever v, w € W1=(Q ; [R3) are such that v(x) = w(x) on 0. It is clear that null Lagrangians

satisfy (1.3); this is in accordance with (1.4) as it is well known that null Lagragians are linear

combinations of the minors of F, i. e. (1.5) holds if and only if there exist A, B e M3x3, c e R
such that
g(F)=AF+B.adjF+cdetF. (1.6)
We conclude that if g satisfies (1.2) and (1.4) then
g(F) = Y(det F)

in which case the perturbed problem Eg(.) reduces to

EL):= | W(Vu(){Vv(x)}-1})) dx + € Y(1) meas(Q)
Q

and so we obtain, up to a constant, the former energy functional. As perturbed problems involving
a bulk penalization are reduced, essentially, to (1.1) and as, formally, a change in v corresponds to
a variation of the domain, in Fonseca and Parry [FP] we considered instead a surface energy

penalization.

11f A, B € MN™N then A.B := tr(ATB) and adj A is the matrix of cofactors of A, i.e. (adj A ) = %eipq EirsAprAgs. In
_(adj AT

. oA s . 1
particular, if A is invertible then A™ = det A



2. Characterization of a class of functionals invariant under isochoric

changes of the domain. In what follows Q ¢ R3 is an open, bounded domain and M3x3

denotes the space of 3x3 real matrices.

Theorem 2.1. Let g € C3(M3x3), Then

n[g(Vv(x)) dx = Jg(V(vofxx» dx @.1)
for all v, f € W1=(Q, R3) such that det Vf(x) =1 a.e.in Q and f(x) = x on 9L, if and only if

g(F) = AF + B.adj F + y(det F)

for some matrices A, B and some smooth function .

Remark 2.2. The function g satisfies (2.1) if and only if
d[ g(Vv(x)) dx = n}' g(Vv(x){Vh(x)}-1) dx 2.2)

for all Lipschitz functions v, h such that det Vh(x) = 1 a. e. in Q and h(x) = x on 0Q. Indeed,
suppose that (2.2) holds and let f e W1.=(Q, R3) be such that det Vf(x) =1 a.e.in Q and f(x) =
x on 0Q. Then (see Ball [B2]) f is invertible, f-1 =: h € Wl=(Q, R3) and

{ det Vh(y) =1 in Q
h(y) =y on 9Q

Therefore, using the change of variable formula for Sobolev functions (see Ball [B2]) and by (2.2)

we conclude that

Jg(vwx» dx J g(Vv(y){Vh(y)}-1) dy

[ s(Vv(y)VEEI(y)) dy
@
= [ g(Vv(E))VER)) detVi(x) dx
Q
= Jg(V(wf)(X)) dx.

Similarly, one can show easily that (2.1) implies (2.2).



We divide the proof of Theorem 2.1 into a series of lemmas. Let
0
H(F) :=FT 5§ (F).

Lemma 2.3. If g satxsﬁes (2.2) then

o [ z 3x; Hi(Vved) ] = - [ Z 3x; (Vv ]

for all i #1and for all ve CL(Q; R3).

Proof. Let f € C1(Q; [R3) be such that
div f(x) =0 in Q
f(x) =0 on dQ

and for all x € Q consider the flow

{ g—tX(x,t) = f(X(x,1))

X(x,0) =x
Clearly
X(x,t)=x ifxe dQ and for all t.
Also
% det V4 X(x,t) = 0.
since

ccilt det V4 X(x,t) = (adj V X)T — V,X(x,1)

= (adj VX)T . V,[f(X(x,1))]
= (adj VX)T .VXT V{(X(x,1))
=det V4 X 1.Vf(X(x,t))

=det V4 X 1.VEX(x,1) divf(X)

= 0.
By (2.4) and (2.5) we deduce that
det V, X(x,) =1

and so, by (2.2)

(2.3)

(2.4)

(2.5)



0=51_, Jg(Vv(x){VxX(xt)} 1) dx

= f%lg::(Vv(x)). Vv(x)(—ﬁll:O{VxX(XJ)}'l dx. (2.6)
Q
By (2.4)
0= 31 _o [Vixxn(Vs X(x 0}1]
na [%l Xxn] + 51 [vaxxn)]
yielding

dt | _ [(VXx.0}1] =- Ve

which together with (2.6) implies that
0= ‘{ H(Vv(x)).Vf(x) dx.

Hence, there exists a function p such that for alli € {1, 2, 3}
0 0
D Hy v = 5L
j=1

which is equivalent to condition (2.3).

Lemma 2.4. If g verifies (2.3) then the following hold.

1. g?;l =0 forall n, i#l;
oHj; _aHii oHy : .
2. aFn] —m’mﬁ)fﬂl]ﬂ,l#l,
oHj; _ oHin, . _ .
3- m - -a-F;fOI'aun, {l,l,m}—{1,2,3},
2H,.
4. ﬂ_lz—h =0 foralln,i#l;
oF,
02Hj; )
5. m =0 foralln, {i,l, m} = {1,2, 3} ;
d2(Hy - Hi))  _ . )
6. m =0forallk,izl,n#p;



02(Hy - Hj)

7. - =0foralli#l,n#p;
nl0pi

02(Hji - Hn)  _ 02(Hmm - Hp)
8. ~OF,0Fmm = 0Fp0Fmm foralln#p, {i,],m} = {1, 2, 3}.

Proof. By (2.3) we have

[ EBHU(VV(X)) d2vy ]-=
j.m,n=1
oHji(Vv(x)) 92v,
aan 0XmOX;
j.m,n=1

i e.

02H;;  d%v, 9d%vy JoH;; 03vy
OFnmoFpq 0Xq0x] gxmaxj OFnm 0Xm0X;0X]

OHy v, v, . BHy vy -
= FumdFpq Oxg0X; OxmdX; * OFnm OXmOXIX; 2.7)

Here we use the convention that repeated indices stand for summation, unless stated otherwise.
d3v

3 oL = 3 i i = .

Setting D®v(xg) = 0 except D°v(xq), with ap;; : r————(xmaxjaxi x0), we deduce that

JoH;; JH
9, amjl = 5F__ amji 2.8)
whenever amji = amij = ajmi = &jim = ajjm = aimj- Next, if D*v(xq) = 0 except D2v,(xg) = B = BT,
from (2.7) we have
82Hij _ a2H1j . ..
m BgBnj= aFn—maFn—q Bgi Bmj (no summationinn) (2.9)
and finally, if D®v(xg) = 0 except D2vp(xg) = B = BT and D2v,(xg) = A = AT, with n # p, by (2.7)
and (2.9) we conclude that
02H;; 02H;; 02Hjy; 02H;;
ij Hij 9y poa L 00 4 o
SFmdFypq B4 Ami * 3F, 3F,, Ad Bmi = 5F  oF,, Bai Ami* 5F, o, AdiBmi (2.10)

In (2.8) set a;x = 0 except ajjj = 1. If i # 1 then we obtain property (1), 1. €.



% (no summation).
ni

If aj = 0 except alii = a1 = ajj] then

oH; _ JH; , JoHy .
HF_; = 9F., + OF.; (no summation)

which is (2). Also, (3) follows from (2.8) where ajjx = 0 except for ami; = 1 = aimi = ajim.

In(29)let B=¢; e + ¢ ®e;. Then

o2H; . _9%H; _ o2Hy  _9%Hy
aFniz oF nlaFni aFn12 aFniaFnl
hence
0%Hj; ) d2H) _ d2Hy; ) d%Hj 2.11)
OFn0Fn; = 0FnioFy 0Fn 2  0Fp;2 ’
and by (2)
02H;; ) 02H; _ 9 [ JoHii _aHn ]
al:nlaFni aFniaFnl ~oF nl 5Fni aFni
_ 02Hj;
) SRy

which, together with (2.11) yields (4). With {i,], m} ={1,2,3}and B=¢,® e +e, ®¢e;+ e,
® e;, (2.9) reduces to

82Hij By: = azHlj Bu:
) nkaI nl kj 5): nkaI nm kj

or

02Hy , 0Him  0%Hyi _ 0%Hy | %Him  92Hj
aFn]2 OF0Fq  OFpndFn — 0FqdFny, © 0F0Fh, aanl ’

which by (1) is equivalent to

0?Him 92Hi 02Hj 92Hy;
+ = + . )
dFghidFn  dFpmdFnm dFn10Fam aanZ (2.12)

On the other hand, by (1) and (3) we have



82H1i 0 OHp, 0
aanZ 5an 3Fm B
and so, from (2.12), (2) and (3) we conclude that
0Him, _ 9 0 [ ]
) niaI nl B anm r u

_ 09 dHj
= OFym OFn;
_ 0 OJOH;,
- an; EF nl

proving (5). Replace B = ¢;®e; and A = ¢;®e) + €;®¢; in (2.10) to obtain

02H;; 82H11 + azHli + 82H1i
OFpi0Fn; OFq0Fpi ~ 9FpidFn
which, by (1) reduces to
o2H; _  02%Hy 213
OFpioFn ~ dFndFp " (2.13)

With B =e,Qe; +¢{®enand A = cm®él + e®e, we get, again using (1),

W [Hi-Hy] =0

which, together with (2.13) yields (6). Equation (7) follows from (2.10) taking B = ¢;®e; and A =
e;®e). Finally, setting B = ¢;®eg; and A = e,®e) + €;®¢ep, by (2.10) and (2) we deduce

d2Hy _  92Hy 0?Him
) ) Sl ) aFnlan,
_ 02Hy [ JHy ]
~ OFymoFp; an, - 0Fnm

concluding (8).

Lemma 2.5. If the conditions (1)-(8) of Lemma 2.4 are fullfilled then there exists a matrix M

and some constants Ajjpq, C; such that fori# j



Hy(F) = {FT 2 oM adj F) ), + Ajig Fpg + Ci;

Proof. For simplicity we set (i, j) = (1, 2). By (1) we have
12 =0
Fn2

and so

Hi2 = Hi2 ({Fn1}, {Fp3))

We claim that Hy; is a polynomial of degree less than or equal to 2, i. €.

03 Hy, _ . .
FrdFp0Fg Oforalln,i,p,j kL (2.14)

Clearly, (2.14) holds if 2 € {i, j, 1}. If this is not the case, then two of the indices {i, j, 1} must be

repeated, suppose thati=je {1,3}.Ifi=j =1 and n = p then (4) implies that

Oy _
S5 =0 (2.15)

in which case (2.14) is satisfied. If n # p then by (2) and (7) we have

02 H, _d [asz dH1;
3Fn10F,; ~ 9Fy LaFy; ~dFy;

=0 (2.16)
thus implying (2.14). Finally, ifi =j = 3 then (1) and (3) yield

02 H;, _ d OHj3
aFn3an3 T " 0F3 ész

=0 (2.17)
concluding (2.14). Recall that by (5)
02 H;, -0
aI:nlaFn3 -
which, together with (2.15)-(2.17), implies that
Hjy, = 2 Olpr Fn Fp3 + A12pq qu + Ci2 (2.18)

p#r

and, in a similar way,

10



His =Z Bpr Fri Fp2 + Auqzpg Fpq + Cus. (2.19)
p#r
By (2.18), (2.19) and (3) we must have for all F
JH
2 Clpr Fn +A12p3 = _a'FLaz
pr P
oH
='_aF_1; =- Bpr Fii -Amp
P p#r
and so
Opr = - Bpr forr#p. (2.20)
Note that by (2.18), (2.19), (2.20), (2) and (8) we have
_ 02H;, _ 0 [aH22 oH1; ]
Opr = OF;10F,3 ~ 0Fp3 LoF;; -~ oFp
0 0
=" OFy; oF,3 [Hi; - Has)
0 JHjs
= OFp dFp1
= ﬁrpz - arp
and so we can rewrite (2.18) and (2.19) as
H; = Z nl;riF,i Fpk + Ajjpg Fpg + Cjj (no summation on k)  (2.21)
pr
where {i, j, k} = {1, 2, 3},
ki ki
Mo =- T (2.22)
and .
e =-1) (2.23)
From (2.22) we deduce that .
NS = Eprs 05 (2.24)

and (2.23) implies that for {i, j, k} = {1, 2, 3}

11



ki ji
€prs es = - Eprs 9’;

Hence
oki =
s Eikj M

which, together with (2.21) and (2.24) yields
Hjj = €prs €xj Mis Fri Fpk + Aijpq Fpq + Gjj

where {i, j, k} = {1, 2, 3}, so that there is no summation in k. However, this can be rewritten as
Hjj = €prs €ij Mis Fri Fp + Ajjpg Fpq + G

where the summation convention operates on all repeated indices (including k), and thus

Hy(F) = {FT % r(M adj F) } .+ Aijpq Fpq + Cij

Lemma 2.6. If g satisfies the conditions (1) - (8) of Lemma 2.4 then
H;(F) = M adj F); + Ajipq Fpq + Gii + p(F)
where p(0) =0 and dp/dF(0) = 0.

Proof. We claim that Hj1 - Hp; is a polynomial of degree at most two, i. €.

93 ..
IFndF 9 1 [Hll - H22] =0foralln,i,p,jk, L (2.25)

If 1 € {i, j, 1} and for simplicity, assume that i = 1, then by (2) we have

dHy,
0

d
o9F.. [Hu -H22] )

and so (2.25) follows from Lemma 2.5.
If1,2¢ {i,j,1) theni=j=1=3.1If two of the indices {n, p, k} are different then (2.25)
follows from (6). If n = p = k = 3 then by (2) and (1)

02 (Hyy - Hyp) _ 02 (Hy, - H3s) | 02 (H3s - Hp))
0F,32 0Fp32 0F 32

12



dHj3 dHa3
=0 (2.26)
and once more, (2.25) holds. Next we show that

d0%(Hyj -H .
%Fnlilani 2) _ 0 foralln,p,i. (2.27)

If n #p then (2.27) follows from (6). If n = p and i = 3 then (2.27) reduces to (2.26). Finally if n =
pandi=1by(2)and (1)
02(Hy; - Hyp) _ 9 9JHy

aFn12 = aFnl aFn2 =0.
By (2.25) - (2.27) we deduce that
Hi; -Hp = B, Fi, Fiq + + C.
11 {pqr]2{123}1 ip Fjg + Lpq Fpq
In addition, (2) and (4) imply that
02(Hiy - Hpo) _ a H
and by (7)
d2(Hy; - Hpp)
aFn2anl =0 ifn# P-
Hence, we conclude that
Hj; - Ha2 = oy Fyy Fjz + ﬁij Fip Fj3 + Lpg Fpq + C. (2.28)
From (2) and Lemma 2.5 we have
aHzl

On F3+ Ly = 31-:— [Hii - Ho] =

= Epns €31 Mis Fp3 + Aoin2

= €jns M2s Fj3 + A21n2

13



and so

Otnj = Ejns Ms. (2.29)
Similarly,
Bnj Fj3 + L2 = 325 [Hi: - H] = -%gg
= - €pns €32 Mis Fp3 - A12n
= €jns M5 Fj3 - A12m
and so

Bnj = €jns M5

which, together with (2.28) and (2.29) implies that

Hii - Hpo = gjis (Mas Fiy Fjz + My Fip Fj3) + Lpg Fpq + C

=-MadjF);; + M adj F)22 + Lg Fpq + C. (2.30)
Writing
Hii =- M adj F); + g
we have
Hi1-Hpp=-(Madj F)11 + M adj F)22 + (g1 - £2)
and by (2.30) we get
g1-82=LpqFpq+C.
Set
g2(F) = p*(F).
Then
Hi; = - (M adj Fii + p*(F) + A¥iipq Fpq + C*;
=- Madj B)j; + Ajipq Fq + Gii + p(F)
where

op* *
(F) := p*(F) - p*(0) - 0).F, Aiipq:=A%; +§L(0 d Gy := C*j + p*(0).
p P |Y _5%( ) Pq Pq qu ) an C +p*(0)

14



Lemma 2.7. Let M be a constant matrix. If h(F) = -MT. adj F = - r(M adj F) then

h . .
Fraa?=Madj F-MT. adj F)1.

Proof. Since 5
h
r =- r [Mlp (adj I::)pl ]

_ . pp.2adj By
= __gL_LFU

we get
oh
(FT )kj Flia ‘a— Fix oF;;
=- M2l L 2.31)
ij
We claim that if F is invertible then
d(adj F . - )
—(—%I;l?)’i = - (adj F);; FI:, - (adj Fj)};l F-l (2.32)
Indeed
(adj F)xg Fxm = det F 8i
and so

d(adj F . .
(aaFij )kl F]gn + (ad_] F)k] 81(1 Sm_] = (ad_] F)l_] Slm-
Multiplying this inequality by Fr‘;p and adding in m yields (2.32). By (2.31) and (2.32) we obtain

FTIR), = Mip [ (adj Py ;! - (ad PuF;! ] Fi

=- My [ det FF}, 8- det FF.! 8]

= [Madj F- MT. adj B 1 ];.
This relation holds for all matrices F with det F # 0 and the result for all matrices follows by

density and by continuity.

15



Lemma 2.8. Let h : M3x3 — R be a C! function. There exists a ® € C}(R ; R) such that
h(F) = w(det F) if and only if FT %%(F) =p(F)1 for some function p.

Proof. Suppose that h(F) = w(det F). Then

g%(F) = w'(det F) adj F

and so

FT%%(F) = w'(det F) det F 1.
Conversely, if FT %(F) =p(F)1 we claim that then

i) h(F) = h(RF) for every F and for all rotations R ;
ii) h(F) = h(F(1 + a®b)) for every F and for all orthogonal vectors a and b.
In order to prove i), consider the semigroup {e*} where A is a skew-symmetric matrix such that R
=eA. Set
f(t) := h(F et).

Then
dh
f(t) =a—F(Fe'~A) .Fer A

= Fen)T B Fewy. A
= p(Fe¥A) trace A=0
and so f is constant ; in particular f(1) = f(0), i. e.
h(F) = h(RF).
To prove ii) we define
f(t) := h(F(1 + ta®Db)).

Then
fi(t) = g—; (F(1 + ta®b)) . F a®b

= %‘I‘: (F(1 +ta®b)) . F(1 + ta®b)(1 - ta®b) a®b
= [F(1 + a®b)]T %‘1‘: (F(1 + ta®b)) . a®b

= p(F(1 + ta®b)) (a.b) = 0

16



and we conclude that f is constant, so that f(1) = £(0).

If F e M3x3 is any matrix with det F # 0 then (see Chipot and Kinderlehrer [CK] and
Fonseca [F]) F can be written as
F= (det FH)1BRII(1 +a®b;), 1<i<2,
where R is a rotation and a; .b; = 0. Therefore, by i) and ii) we conclude that
h(F) = h((det F)1 1)
=: w(det F).

The result for arbitrary F follows now from density and continuity.
Finally we prove our main result, Theorem 2.1.

Proof of Theorem 2.1. Suppose that
g(F) = AF + B.adj F + y(det F).
Letv, f e W1=(Q, R3) be such that det Vf(x) =1 a.e.in Q and f(x) = x on dQ2. By (1.5) and

(1.6) we have
J [evveo) - vdervvon] ax = [ [eVveneo) - vdervivenon] ax @33

and by the change of variables formula for Sobolev functions (see Ball [B2])
[vdetV(von() dx = [ ¥(detVv(E(x))) dx
Q Q

[ v(@etVv(£(x))) detVe(x) dx
f(Q)

n[ Y(detVv(x)) dx

which, together with (2.33), implies that
n[ g(Vv(x)) dx = Jg(V(vof)(x)) dx .

Conversely, if the latter holds then by Remark 2.2, Lemmas 2.3, 2.4, 2.5 and 2.6 we have

H;i(F) = - (M adj F)jj + Ajjpq Fpq + Cj + p(F) &y (2.34)

17



where p(0) =0, %% (0) = 0. We claim that (using the summation convention for repeated indices)

aHsn

2 (F) Fo - Hin(F) &,-—*(F) Fis - Hy(F) 8in. (2.35)

Indeed, as 3
HE) =FT 3£ ®)

and since g € C? we obtain

dHy o 32
gﬁi—j Fri = Hin 8j + Fni stmlg:;j

= Hin 8j + Fii Fims F?:,,Bij

=Hjn &5 + STH;:,E Fys - Hgj din.
In (2.35) replace F by tF and let t — 0. We deduce that

Hin(0) &5 = H;;(0) 8in

or, taking into account (2.34)

Cin 8sj = Csj 8in
which implies that

Gij = C §;;
and (2.34) reduces to
H;i(F) = - (M adj F)jj + Ajjpq Fpq + C 8;5 + p(F) &;;. (2.36)

Again by (2.35) we have

HSH .
SE (&) Py - [Fn(EP) - Hn©)] 8= SREGF) i - [HyP) - By 0)] 8

and so, dividing the latter by t and letting t — O we obtain

S (O) Fny - 51 OF 8 = 5E0) Fiu- 528 OF 8,

0Hjy oH;;
Fm; (0) Fyj = BT;(O) Fys.

From (2.36) we deduce that

Asnmj Fmj = Ajjin Fics (2.37)
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and setting?
qu = A_qu
we claim that
d(trace AF
Aiipq Fpq = (FT ( ac"’ ) )i
In fact, by (2.37)

(Fr AR AD ), — F] 52 (Aum F)

(2.38)

=Fg A_]s =Fg AkkS) Aupq F

and so, (2.36) and (2.38) yield

H(F) = - M adj F+ (p(F) + C) 1 +1~*r§(‘“‘a°}‘j:—;Aﬂ

and by Lemma 2.7 we obtain 5
FT 55 [2(F) - MT.adj F - trace(AF)] = q(F) 1

where
q(F) :=p(F) + C- MT.adj F.
Finally, Lemma 2.8 asserts the existence of a function ® such that
g(F) - MT.adj F - trace(AF) = » (det F)

and we conclude that

g(F) = MT.adjF + ATF + o (det F).
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2Here, and unless stated otherwise, the summation convention for repeated indices is used.
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