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GEOMETRIC PARAMETERS AND THE RELAXATION OF
MULTIWELL ENERGIES

NIKAN B. FIROOZYE*f AND ROBERT V. KOHN**J

Abstract. This paper discusses the relaxation of a multiwell energy of the special form W = min»{|Vti-
af | 2 } . We explain how the relaxation QW can be expressed in terms of certain "tensors of geometric pa-
rameters." The exact set J$ of attainable geometric parameters is not known, but we show that it must
lie inside an explicitly given convex set 3^. This leads to a new Geometric Parameters Lower Bound for
QW. For the special case of three wells in two space dimensions we give a complete characterization of the
extreme points of 3*£. The final section addresses the "three gradient problem," which asks whether three
pairwise incompatible gradients can nevertheless be mutually compatible. We do not solve this problem,
but we show that it is linked to the attainability of the type 3 extreme points of 3%.

1. Introduction. A basic problem in the variational modeling of coherent phase tran-
sitions is the identification of energy-minimizing microstructures, see e.g. [4,5,14,15,17,25].
Mathematically spealcing, this is equivalent to the relaxation of a multiwell energy W(Vu)
of the form

(1.1) W(Vu)= min {Wi(Vu)},
t=l,...,N

see e.g. [17]. The individual "wells" {W,-(Vu)} are the energies of the N component phases.
The relaxed or "macroscopic" energy is QW, the quasiconvexification of W, defined by

(1.2) QW(Q = , inf T^T / W(Vu)dx.

It represents the average energy of the system when the average gradient is f, assuming
that both the phase geometry and the locally varying deformation gradient axe governed by
energy minimization. The process of relaxation is discussed, for example, in [1,7,9,18,19].

To calculate the relaxed energy, one must find a formula that is at once an upper
bound and a lower bound for QW(£). Upper bounds are obtained by considering specific
microstructures, obtained for example by "sequential lamination." (The best such upper
bound is the "rank-one convexification," see [8,18,23].) Lower bounds are usually estab-
lished by some version of the "translation method," which is based on the use of weakly

^Institute for Mathematics and its Applications
fThe work of NBF was supported in part by the Institute for Mathematics and its Applications with

funds provided by the National Science Foundation and the U.S. Army Research Office. An earlier version
of this work appeared as part of NBF's Ph.D. Thesis, Optimal Translations and Relaxations of Some
Multiwell Energies, New York University, August 1990.

**Courant Institute of Mathematical Sciences.
JThe work of RVK was supported in part by NSF grant DMS-8701895, ONR grant N00Q14-88-K-0279,

AFOSR grant 90-0090, ARO contract DAAL03-89-K-0039, and DARPA contract F49620-87-C-0065.

University Libraries
Carnegie Mellon University
Pittsburgh, PA 152I3-3W0



lower semicontinuous functions and convexification [12]. (The best such bound using only
weakly continuous translations is the "polyconvexification," see [8,18,23].) These methods
have the advantage of being quite general. However, it can be difficult to apply them
optimally in specific cases. Moreover, we do not know whether the optimal translation
bound agrees in general with the rank-one convexification. Therefore it is natural to seek
new approaches to computing relaxed energies.

This paper explores a new method for bounding QW from below, when W has the
specific form

(1.3) W(Vu) = jmn {|Vtz - af"|2}

for some matrices a1, 1 < i < N. The basic idea is as follows. To any microstructure
we shall associate a "tensor of geometric parameters" F = (Fijap). The effective energy
of the microstructure is explicitly representable as a linear function of F. If we knew the
exact set 3$ of geometric parameters attained by microstructures with volume fraction 6,
then we could compute QW(£) exactly by minimizing this linear function over 3$. We do
not know 3$ explicitly, but we do know a set 3% which contains it; minimization over 3^
gives a lower bound for QW.

The set 3% is convex; hence for the purpose of minimizing a linear function one need
only consider its extreme points. For the specific case of three phases and two space
dimensions we shall give a complete classification of these extreme points in Section 4.

One would like to know whether our lower bound on QW is optimal, i.e. whether it is
equal to QW. This amounts to asking whether 3$ = 3^. We shall show that 3$, too, is
convex, so it is equivalent to ask whether each extreme point of 3^ lies in 3$. For three
phases in two space dimensions the extreme points come in three types. The first two types
are attained by sequentially laminated microstructures of rank 2; in particular, they are in
3$. We have been unable to find any microstructure corresponding to an extreme point of
type 3. The question whether 3$ = 3*jj is equivalent to whether the type 3 extreme points
are attained by microstructures; this question, however, remains open.

The final section of this paper addresses the "three gradient problem." It asks whether
three pairwise incompatible gradients can nevertheless be mutually compatible. In other
words, given matrices a1, a2, and a3 such that rank (a1 — a*) > 1 for i ^ j , and defining
W by (1.3), does QW(Q vanish for some £ £ {a1,a2, a3}? (We refer to Section 5 for a
discussion motivating this question, and for a summary of related results.) Our analysis is
restricted to two space dimensions; for maximum simplicitly it is focused primarily on the
case when {a1} are simultaneously diagonal. Our main result is an equivalence between the
three gradient problem and the attainability of our type 3 extreme points (see Theorem
5.4). It should be emphasized, however, that the three gradient problem has not been
settled, since the attainability of type 3 extreme points remains open.

Our attention is focused throughout on TV > 3 phases, because the situation for two



phases is much simpler. That case is analyzed in [17,20,24]. When N = 2 it turns out that
3~e = 5J7, so the "Geometric Parameters Lower Bound" is actually a formula for QW.

It is natural to ask how our "Geometric Parameters Lower Bound" compares with the
polyconvexification of W or the optimal translation bound. For two phases the Geometric
Parameters bound can also be proved using the translation method [17,24]. For N >
3 phases we know no direct relation between geometric parameters and the translation
method. Section 5 offers one indication of a possible connection: whenever we can prove
that QW(£) > 0 for £ £ {a1, a2, a3} using polyconvexification, the same conclusion can
also be deduced independently using geometric parameters (see Remark 5.6).

Acknowledgement. The tensor of geometric parameters that we study here was
first considered a few years ago by G. Milton, in an attempt to improve upon the Haskin-
Shtrikman bounds for the effective conductivity of a multicomponent composite. His anal-
ysis included the basic properties (3.2)-(3.6) and the layering formula (3.13)-(3.14), though
it did not extend to a classification of the extreme points. We are grateful to Milton for
sharing with us his insight and his unpublished notes on this subject.

2. Relaxation and the Tensor of Geometric Parameters. This section defines
the tensor of geometric parameters associated to a microstructure, and explains its rela-
tionship to the relaxed energy. We assume that W has the form (1.3) for some { a 1 } ^ .
Each a1 is an m x n matrix; in other words we are considering u : Rn —* Rm.

The relaxed energy QW has already been defined by (1.2). However we plan to use
Fourier analysis, so it is more convenient to use a characterization based on periodic
functions. We choose C = [0,27r]n as the period cell in Rn, and we write - / / for the
average value of a C-periodic function / . Then QW has the alternative characterization

(2.1) QW{Q= inf

where <p ranges over C-periodic H1 functions from Rn to Rm [17].

Because of the special form of PT, (2.1) can also be written another way:

(2.2) QW(0 = inf irif

where <p ranges over periodic functions as before, and {xi}iLi range over C-periodic char-
acteristic functions:

Xi(x) = 0 or 1 for every x

Xi(x)Xj(x) = 0 for i ^ j
N

= 1 for every x.



The equivalence of (2.1) and (2.2) is elementary: if <p is fixed then an optimal choice of
{Xi} for (2.2) has

and substitution yields (2.1). We think of {xt} as a (spatially periodic) phase arrangement
or micro structure. One sees from (2.2) that QW is obtained by minimizing the energy of
the N-phase system over all possible microstructures, while holding the average gradient
equal to £.

We now rewrite (2.2) by computing the minimum over <p explicitly, for given {xi}«
Writing

(2.4)

for the volume fraction of the ith phase, one easily sees that the integral in (2.2) is equal
to

N

(2.5) 5>|
1 = 1

(Here and henceforth we write (A, B) = tr(ABT) for the inner product o f m x n matrices,
and Vip represents the mxn matrix (V<p)Qp = d<pQ/dxp.) We are fixing {xi}> s o the first
term in (2.5) is determined. Hence the optimal ip solves

(2.6) inf

or equivalently

It is a straightforward matter to solve (2.7) by means of Fourier analysis. Writing

one finds after some calculation that



for any k € Zn, k -£ 0. (The sum in (2.9) is over all repeated indices: a and /? range from
1 to n, t and j range from 1 to TV, and 7 runs from 1 to m.) Now, an integration by parts
based on (2.7) gives

Using this along with (2.9) and Plancherel's Theorem, we deduce that

inf(2.7) = -

We have thus derived the following alternative representation of (2.2):

(2.10)

The right hand side of (2.10) depends only on certain features of the microstructure
{Xi}- To clarify this dependence, we define the tensor of geometric parameters associated
to {xi} by

(2.H)

(It is not a true tensor, since i and j refer to phases rather than spatial dimensions.) Let
V be the simplex of all possible volume fractions:

{ N

i=l

For any 6 € V, let 3"# be the set of all geometric parameters attainable with volume fraction
0:

= The closure of the set of all

defined by (2.11), as {x%} ranges over

C-periodic characteristic functions with

Then (2.10) may be expressed as

(2.14) QW{i) = inf



We emphasize that (2.14) is an exact "formula7' for QW(£). It is better than the
other representations (1.2) or (2.1) or (2.2), because it involves only a finite dimensional
minimization. It is not a computable representation, however, because we do not know
the exact form of the set 3$. OUT "Geometric Parameters Lower Bound" will be obtained
in Section 3 by replacing 3$ with a (possibly) larger set 3*jj which is known explicitly.

To place the tensor of geometric parameters in its proper mathematical context, we
now explain its relationship to the ff-measure of the microstructure [29], also called its
microlocal defect measure [13]. Given a (spatially periodic) microstructure {xt\h the asso-
ciated iif-measure is the symmetric matrix-valued measure on S""1 defined by

(2.15) im = Re

where 8 k is the Dirac measure concentrated at jn. The tensor of geometric parameters
keeps track precisely of the second moments of the H-measure. Indeed, it is an easy
consequence of the definitions (2.11) and (2.15) that

(2.16) * W = / la
Jsn~l

A discussion of multiwell energies based on if-measures rather than geometric parameters
will be found in [17].

3. Properties of the Geometric Parameters. This section presents the known
algebraic properties of the tensor of geometric parameters. It also discusses the geometric
parameters associated with sequentially laminated microstructures. Its main result is the
"Geometric Parameters Lower Bound" for QW, (3.8).

We introduce some notation for use in the following proposition: given any 8 € V, let

' " 1-0,0; iftVi.

PROPOSITION 3.1. IfFeJe, then

(3.2)
N N

(3.3)

(3.4)
c r = l

(3.5) y^ FijaP QiaQjP > 0 f°r anY rea^ N x n matrix qiQ,

(3.6) 2^ (tapTij — Fijap) QiaQjp ^ 0 for any real N x n matrix qiQ.
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Proof. The symmetries (3.2) are immediate from the definition (2.11), using the fact
that {xi} are real. Property (3.3) follows from the fact that J2iLi Xi = 1- To prove (3.4)
we use Plancherel's Theorem:

a = l

For (3.5) we observe that

which is a sum of squares. Property (3.6) follows similarly from the observation that

T u

is a sum of squares. Q

In view of Proposition 3.1, 3$ is contained in the set

(3.7) 3% = {F= (Fijap): F satisfies (3.2)-(3.6) } .

We therefore deduce

COROLLARY 3.2. (Tie "Geometric Parameters Lower Bound.") For W of the form
(1-3),

(3.8) QW(t) > jnf

The advantage of (3.8) is that it involves minimization over a set which is known
explicitly. Thus (3.8) is a computable lower bound, at least in principle. It is not easy
to evaluate, however, because 3^ is defined by inequalities (3.5)-(3.6) as well as linear
relations (3.2)-(3.4). We shall make it easier to evaluate in Section 4, for the special case
of 3 wells in two space dimensions.

It is interesting to observe that in two space dimensions properties (3.5) and (3.6) are
equivalent. This is analogous to the fact that for 2 x 2 symmetric matrices A, A > 0 <=$>
(trA)I — A > 0 in the sense of quadratic forms.



LEMMA 3.3. In space dimension n = 2, suppose that F satisfies (3.2) and (3.4). Then
it satisfies (3.5) iff it satisfies (3.6).

Proof. Consider the 2N x 2JV matrix

Fu . . . F1N

in which Fij represents the 2 x 2 block (Fijap)Qj-if2. By (3.2), G is symmetric. Property
(3.5) is equivalent to the statement that G > 0. This holds for G iff it holds for any matrix

similar to G. Let R = ( 1, and consider the 2N x 2N rotation

/R 0

Noting that RTAR = (<rA)/ — A for any symmetric 2 x 2 matrix, and making use of (3.4),

we find that

MTGM=

The positivity of MTGM is equivalent to (3.6). Q

We deduce as a consequence

COROLLARY 3.4. In space dimension two, the set 3^ is invariant under the map

It is well-known that the convexification of W always provides a lower bound for QW.
As a partial confirmation that (3.8) is a good bound, we now verify that it always lies
above the convexification.

LEMMA 3.5. Let CW denote the convexi£cation ofW. Then

for any 6 G V and any F G 3^. In particular, the "geometric parameters lower bound" is
greater than or equal to CW.

Proof. First let us show that

(3.10)



Indeed, for any W one has

= inf

in which fi ranges over probability measures on the space o f m x n matrices, see e.g. [9].
Since each "well" |f — al\2 is convex, an easy application of Jensen's inequality shows that
the optimal fi will be a sum of N point masses. It follows that

where 9 = (#i, . . . ,#AT) ranges over V and f, over m x n matrices. Optimization over f,
(with 6 held fixed) yields (3.10).

Now let us rearrange the expression in (3.10):

We use (3.6) and (3.11) to bound the left hand side of (3.9):

(3-12)

ELS asserted. •

A crucial question is whether or not 5^ = 3^. This remains open. An affirmative
answer would provide, for each F € 3 ^ , a microstructure whose tensor of geometric pa-
rameters is equal to F. To make progress in this direction, it is important to look for
microstructures whose tensors of geometric parameters are explicitly computable. One
such class are the microstructures obtained by sequential lamination. That construc-
tion has played a central role in recent work on the effective moduli of composites, see
e.g. [2,22,28]. In the present context the construction is as follows: consider any pair of
microstructures, with possibly different volume fractions 6i\ 6" 6 V, and with tensors of
geometric parameters F' € 3>, F" € $e». We construct a new microstructure by layering
the two with one another, using volume fractions p and 1 — p respectively, in layers orthog-
onal to some unit vector k. If the length scale of the microstructure is small compared to
the length scale of the layering, then the geometric parameters of the new microstructure
depend only on F ' , F" , &\ 0", p, and Jb:



PROPOSITION 3.6. Suppose that F' e %>, F" e 3> . For any p, 0 < p< 1, and any
unit vector k, consider the microstructure associated with "layering F1 and F" in volume
fractions p, 1 — p with layers orthogonal to k," as described in more detail above. It has
volume fractions

(3.13) 6i = p

and its tensor of geometric parameters is

(3.14) Fiieifi =

Proof Assertion (3.13) is elementary. Assertion (3.14) follows by (2.16) from the
analogous layering formula for JEf-measures, see formula (8.16) of [17]. Q

An important corollary of the layering formula is the convexity of 7$:

COROLLARY 3.7. For any 6 e V, 3$ is convex.

Proof Let F\F" £ 3$. Then (since both have the same volume fractions) (3.13)-
(3.14) give

F = pF1 + (1 - p)F" € 3e

for any p,0 < p < 1. Notice that in this case the result of layering is independent of the
direction of the layers. []

The term "sequential lamination" arises from the observation that the layering process
can be repeated any numbers of times. We begin with the N "pure" phases, described
by F = 0 and 6 = (0 , . . . , 1 , . . . , 0). (The 1 is in the tth place for the tth phase.) One
says a microstructure is "sequentially laminated of rank r" if it is obtained from these
by r applications of the layering construction. We denote by 3% the set of all geometric
parameters attainable by sequential lamination. Since the layering formula generally mixes
microstructures with different volume fractions, 3\ is best described as the slice at 8 G V
of a set in the product space of { volume fractions } x { geometric parameters }:

3^ = slice at 6 6 V of the smallest closed

set of pairs (0, F) that contains the

(3.15) N pure phases and is preserved

under application of the layering

procedure (3.13) - (3.14).

We do not have an explicit representation of 3"£.

Since J^ C 3"̂ , we could formulate an associated upper bound for QW:

(3.16) QW{0 < inf ^
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This is not a new bound, however: the right side of (3.16) is precisely the rank-one con-
vexification of W. Indeed, for any W the rank-one convexification can be characterized
as the best upper bound achievable by a sequentially laminated microstructure [8,18,23].
The right hand side of (3.16) is the same thing, specialized to W of the form (1.3) and
phrased in terms of geometric parameters.

To recapitulate, the main goal is to find 3$. We have described sets 3\ and 3^ such
that

We shall show in Section 5 that the inclusion 3\ C 3% is strict, for some choices of 8 6 V, in
the context of three wells and two space dimensions. It remains a possibility that 3$ =3$;
in this case the list of properties (3.2) - (3.6) is incomplete. It is also a possibility that
3e = jU. -n t j i a t c a s e tk e dags of sequentially laminated microstructures is not rich enough
to include an energetically optimal configuration. Finally, it might be the case that both
inequalities are strict. The question whether 3\ = 3$ corresponds to asking whether, for
W of the form (1.3), the quasiconvexification equals the rank-one convexification. The
question whether 3% = 3$ is analogous to (but apparently different from) asking whether,
for such W, the quasiconvexification equals the polyconvexification.

4. Extreme Points for Three Wells in Two Dimensions. This section deter-
mines the extreme points of the convex set 3% in the special case of three wells and two
space dimensions. The restriction N = 3, n = 2 applies through the section.

We have already observed in Lemma 3.3 that it is useful to view a tensor of geometric
parameters as a block matrix:

/ F\\
(4.1) F22

F32

-^13

•^23

^33

where Fij represents the 2 x 2 block FiJQ0. By (3.2)-(3.3) each block is symmetric, and
there are only three independent blocks:

(4.2) F =

with A = F n , B = F12, C = F22. Condition (3.4) is equivalent to

(4.3) trA = 02(1 - 0i), trB = - M 2 , trC = 02(l - B2).

The following proposition gives conditions on A,B, and C which axe equivalent to F
satisfying (3.2) - (3.6).

11



PROPOSITION 4.1 . For N = 3, n = 2, the set 3^ is in 1 - 1 correspondence with the
triplets of symmetric, 2 x 2 matrices (A,J3,C) that satisfy the trace relations (4.3) and
the following positivity condition:

(4.4) (Ax, x) + 2(Bx, y) + {Cy, y) > 0 for all x, y e R2.

Proof. We have only to prove that (4.4) is equivalent to (3.5) - (3.6). By Lemma 3.3,
(3.5) and (3.6) are equivalent, so it suffices to consider (3.5). Written in terms of A,B,
and C, this condition asserts that

{Ax, x)+{By, y) + {(A + 2B + C)z, z)

+2(Bx, y) - 2{{A + B)x, z) - 2( (B + C)y, z)>0

for every x, y, z £ R2. Clearly (4.5) implies (4.4) by taking z = 0. On the other hand, (4.5)
can also be written as

(A(x - z), x - z) + 2(B(x - *), y - *) + (C(y - *), y - z) > 0.

This condition is implied by (4.4). Q

Let us examine the positivity condition (4.4) more closely. If A is invertible then (4.4)
holds if and only if

(4.6) A > 0, C > 0, and C - BA^B > 0

in the sense of quadratic forms. (Actually, the condition C > 0 in (4.6) is redundant, since
BA"rB > 0.) Indeed, it is obvious that (4.4) implies A > 0 and C > 0. If we rewrite (4.4)
as

(4.7) \Al'2x + A-l'2By\2 + ((C - BA^B)y, y) > 0,

then the positivity of the Schur complement C — BA^B becomes clear as well. Conversely,
(4.6) clearly implies (4.7) and hence also (4.4).

When A is not invertible, we can retain the equivalence of (4.4) and (4.6) by interpreting
the latter properly. Specifically, we interpret "C — BA"1B > 0" as the assertion that

(4.8) Urn C - B(A + eI)~lB > 0.

Since (4.4) is a closed condition, one easily checks that (4.6) (with the convention (4.8)) is
equivalent to (4.4) even when A is not invertible.

12



Condition (4.8) really amounts to two separate assertions:

(4.9) The range of B is contained in the range of A; and

(4.10) C-BA+B>0,

where A* is the Moore-Penrose inverse of >1, i.e. the inverse of the operator obtained by
restricting A to the orthogonal complement of its kernel (which is also its range, since A
is symmetric). In our 2 x 2 setting A fails to be invertible only if A = 0 or if A has rank
1 : A = ak ® Jb, a > 0, \k\ = 1. In the former case (4.9) forces B = 0; in the latter case
it forces B = fik®k, and (4.10) becomes C - (P2/a)k ® k > 0. We note that when A is
not invertible, the quadratic form (4.4) can still be written in the form (4.7) provided that
(4.8) holds; here "A"1/2" must be interpreted as the nonnegative, symmetric square root
of A+.

All the above remarks apply just as well when the roles of A and C are interchanged.
In particular, (4.4) is also equivalent to

(4.11) >i>0, C>0, A-BC~lB>Q,

with the convention analogous to (4.8) when C is not invertible.

Our classification of the extreme points will make use of the following well-known fact.

LEMMA 4.2. Let M+ denote the set of nonnegative, symmetric, n x n matrices with
trace 1. Then the extreme points of M+ are precisely the rank-one matrices k ® k with

1*1 = 1.

Proof To see that k(&k is extreme, suppose k®k = pM\ +{\—p)M2 with M\, M2 € M+.
Then (Mir, v) = (M2V, v) = 0 for any v ± k, and it follows that M\ = M2 = k®k. There
can be no other extreme points, because the spectral decomposition of any M 6 M+
expresses it as a convex combination of rank-one matrices. Q

We are now ready to classify the extreme points of 3 ^ .

THEOREM 4.3. Let (A, B,C) be a triplet of matrices corresponding to a point of3*jj.
They correspond to an extreme point precisely if they fall in one of the following three
classes.

• Extreme points of type 1:

(4.12) A = 02(1 - e^k ® *, B = - M 2 * 0 *, C = 02(1 - 02)* 0 k

for some unit vector k.

• Extreme points of type 2: either

A = 0i(1 - 0i)k 0 A:, B = -0!02fc 0 *

13



or else

C = 82(l -
(4.14)

for some unit vectors k and I.
• Extreme points of type 3: A and B are both invertible, A~lB ^ XI for X € R, and

C = BA~lB.

Proof. Suppose first that A = 0. Then the trace relations (4.3) force 8\ = 0 or 1 and
B = 0. The trace relations (4.3) and the positivity condition (4.6) permit any C with
C > 0 and trC = 02(1 — #2)- By Lemma 4.2, the only such extreme point is

for some \k\ = 1. (It is simultaneously of types 1 and 2 due to the degeneracy 6\ = 0 or
ex = i.)

Next, suppose that A has rank one: A = 0j(l — 6i)k ® k with |fc| = 1. By (4.3) and
(4.6), B and C must satisfy B - -9i$2k <g> k and

(4.15) C- . » 2 . .fc®fc>0.

If the left side of (4.15) is strictly positive definite then C can be expressed as a convex
combination of matrices satisfying both (4.15) and the trace condition. So if (A,B,C) is
extreme then the left side of (4.15) equals zero or has rank one. These two alternatives
correspond to (4.12) and (4.13) respectively. Let us check that such points are indeed
extreme. If (A,B,C) are as in (4.12), consider a convex combination

Since the volume fraction 0 is fixed, Lemma 4.2 yields A\ = A2 = A and C\ = C2 = C.
Since A has rank one, we also have B\ = B2 = B. Thus points of the form (4.12)
axe extreme. Similarly, suppose that (A,B,C) are as in (4.13) and consider a convex
combination as above. Lemma 4.2 still yields A\ = A2 = -A, and it still follows that
B\ = J52 = i?. So C\ and C2 must satisfy the analogue of (4.15). An application of
Lemma 4.2 shows that C\ = C2 = C, since the left hand side of (4.15) has rank one. Thus
points of the form (4.13) are extreme.

If A is nonsingular but C is singular then we can repeat the preceding arguments with
A replaced by C. This leads to either (4.12) or (4.14).

14



Now suppose that A and C are both nonsingular. If in addition C — BA"1B > 0 then
(4,2?, C) lies in the interior of the region determined by the positivity condition (4.6);
it is easy to see that such (A,B,C) are not extreme points. If C — BA~lB has rank
one, then we see that (-4, B,C) is not an extreme point as follows. Let j / 0 ^ 0 satisfy
(C — BA~1B)yo = 0 and set XQ = — A~1Byo. Next, choose symmetric matrices Ao, -Bo,
and Co such that

,A ,_x (Aoxo,xo) = 0,
(4.16)

*>i = trB0 = <rC0 = 0.
Let Q(x, y) denote the quadratic form in (4.4):

(4.17) Q(x,y) = (Ax,x) + 2(Bx,y) + (Cy,y).

Our special choice of J4O, -BO, CQ assures that

(4.18) Q(x,y) > c{\(Aox,x)\ + \(Box,y)\ + |(Coy,y)|}

for all x, y 6 R2 if the constant c > 0 is chosen sufficiently small. Indeed, if (4.18) were to
fail for every c > 0 then there would exist ari, y\ € R2 such that Q{x\,y\) = 0 and

(4-19) |(4>*i,*i)l + l(£o*i,yi)| + |(Coyi,yi)| = 1.

(4.7) we see that Q(xi,yi) = 0 implies x\ = XXQ and t/i = Aj/o for some A 6 R, so
(4.19) contradicts (4.16). Thus (4.18) holds for some c > 0. It follows that (A ± eA0,B±

o, C ± eCo) satisfies (4.6) when e is sufficiently small. So

eB0, C + eC0) + \{A - eA0, B - eB0, C - eC0)

is not an extreme point.

We have shown that for A and C invertible, the only possibility of an extreme point
is when C = BA~lB. If it should happen that A~lB = A/, then this is not an extreme
point. Indeed, if B = XA and C = BA~lB = \2A, then the positivity condition (4.4)
becomes

+ \y),x + \y) > 0,

which holds whenever A is positive definite. Choosing any matrix 6A such that trSA = 0
and A + 6A > 0, we have

(A

| ( i4 - 6A, \{A - 6A), X2(A - 6A)),
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so (A, AA, A2A) is not an extreme point. We note that this exceptional case can occur only
for certain 6: the trace relations (4.3) force A = — 02 / ( l - #i) and 0X62 = (1 - 0i)(l — 62).

The only remaining task is to show that our "extreme points of type 3" are indeed
extreme. Consider a convex combination

Since A, B, and C are nonsingular, we may suppose without loss of generality that A,, B*,
and Ci are also nonsingular. As a first step we shall show that Ct = BiA~lB{ and
A~lB{ = A~*B for t = 1,2. Indeed, consider the quadratic from Q(x,y) associated to
(A,B,C), defined by (4.17), and the analogous forms Qi(x,y) associated to (Ai,Bi,d).
Since C = BA~lB,

which vanishes on the subspace x = —A"1 By. Since each Q, is nonnegative, Qi and Q2

must vanish on this subspace. We have

Q!(*,y) = \A\/2x + A71 / 2By|2 + <(d - BlA^B1)y,y).

As y varies over R2 with x = — A-1J3y this forces C\ = B\A^lBi and A^lB\ = A " ^ .
The same argument shows that C2 = B2A^"aJ52 and AJaB2 = A~lB.

Let et, i = 1,2, be the generalized eigenvectors

2 = —A2Ae2

with (Aei,ei) = (Ae2,e2) = 1 and (Aei,e2) = 0. Notice that Ai ^ A2, since otherwise we
would have A"1B = —A/. From the preceding paragraph we deduce that

for i = 1,2. Since the eigenvalues are distinct, this forces

(B.-ei ,e2)=0, (A le1,e2) = 0,

using the symmetry of A; and B*.

We return now to the quadratic forms Q(x,y), Qi(x,y), and Q2(x,y). Consider the
associated forms on R2 defined by
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and similarly for Qi, £2- By the preceding paragraph, all three forms vanish on the
one-dimensional subspace s = Ai<. By hypothesis they are all nonnegative, and

It follows that the matrices associated to Qx and Q2 are multiples of that associated to Q.
Thus

(B,ei,ei> \ ((Aeuel) (Bcj.e,) \
i A f ^ i c e , ) ; ^V(^i,ea) {BA~1Be1,e1) J

A similar relation holds for A2 and B2, with a different constant /Z2- Summarizing this
information, we have:

A parallel argument using e2 in place of ei gives

, c2) = 1/1, (B ic 2 , c 2 ) = -1/1A2

for two new constants I/J, i/2.

We claim that the trace relations force jij = ji2 = I/J = i/2 = 1. Indeed, since ei and
e2 span R2, t\ ® ci , e2 ® e2, and (e2 ® e2 + e2 ® e i ) /2 span the space of symmetric 2 x 2
matrices. So there are constants a, /?, and 7 such that

J = ae! ® ea + ̂ e2 ® e2 + —(ci ® e2 + e2 ®

The above relations give

trA = a + ̂  <rB = -(Ai<* + A2/3)

Setting the traces equal gives

- 1) =0, a(v2 - 1) + i8(i/2 - 1) =0,
- 1) =0, Aja(^2 - 1) + X2/3(u2 - 1) =0.
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Since Ai ^ A2, the only solution is fii = ^2 = 1̂ = 2̂ = 1.

We have thus shown that (A,-el9ei) = (Afe2,e2) = 1 and {Aielje2) = 0 for t = 1,2.
It follows that A! = A2 = A and J5i = B2 = B. Therefore the point (A, B, C) under
consideration is an extreme point. Q

We have been unable to find a microstructure corresponding to any extreme point of
type 3. However, the extreme points of types 1 and 2 are easily realized using sequential
lamination. To achieve (4.12), we first layer pure phases 1 and 2 in volume fractions
p = 01/(01 + 62) and 1 — p = 62/{6\ +62) using layers normal to k. Representing F as a
block matrix as in (4.1), the layering formula (3.14) gives

Jfc®
- * ®

0

k
k

-k<S>
k<S>>

0

k
k

0
0
0

for the result. Its volume fractions axe of course (p, 1 — p, 0). Now we layer pure phase 3
with this, using volume fractions 6$ and 1 — #3 respectively, and still using layers normal
to k. The result has volume fractions

Its geometric parameters are seen, after some calculation, to be in agreement with (4.12).

The construction leading to a type 2 extreme point is similar. To achieve (4.13) we first
layer pure phases 2 and 3 in volume fractions p = 92/(62 + ^3) a^d (1 — p) = ^3/(^2 + ^3)
respectively, using layers normal to /. The result has volume fractions (0,p, 1 — p) and
geometric parameters

/ 0 0 0
F = p(l-p)lo / ® / -Z®/

\ 0 - / ® / /®
Now we layer pure phase 1 with this, using volume fractions B\ and 1 — 6\ respectively,
and using layers normal to k. The result has volume fractions

Its geometric parameters are seen, after some calculation, to be in agreement with (4.13).
An analogous construction can be used to achieve (4.14).

To understand the nature of the type 3 extreme points better, it is interesting to
consider those for which A,B, and C are simultaneously diagonal. This class will play a
special role in Section 5. They have the form

0\ fh 0
(4'20) U c)-\ (h 0

b2
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with ai > 0, a2 > 0, 61 7̂  0, 62 ̂  0, and h/ai ^h/^- The trace relations require

A convenient way to classify the solutions of (4.21) is to seek them in the form a\
a2 = /x^, for some A ̂  /i G R. Then (4,21) becomes

These are three independent equations in two unknowns 61, ̂ . They are consistent pre-
cisely if

(4.22) (A + l)(/x + 1)M2 + Ma + V M a = 0,

and in that case they imply

ai = - — [exe3 + fa + i)ele2]
(4.23) A Z *

a2 = —^-[el63+(\ + l)8ie2}.

A — /i

We want a\ ^ 0 and a2 ^ 0, so A and // should be non-zero. We also want A^ / i . If
(4.24) (A + l)(,i + 1) > 0 and A/z > 0

then each term in (4.22) must vanish separately; it is easy to see that this cannot yield an
extreme point of type 3. If however

(4.25) (A + 1)(JI + 1) < 0 or A/i < 0

then (4.22) has a one-parameter family of solutions 8 € V. A tedious but straightforward
calculation shows that the resulting values of a\ and a2, given by (4.23), are always positive.
We have thus proved:

PROPOSITION 4.4. Let A and /x be given, with A ̂  0, \i ^ 0, and A ̂  /i. If (4,24)
holds then there is no type 3 extreme point of the form (4.20) with ai = A62 and a2 = fib2.
If on the other hand (4.25) holds, then there are type 3 extreme points of the form (4,20)
with a\ = A&i and a2 = /i^. in fact there is one such extreme point in 5% whenever 6 € V
satisfies (4.22).

We chose this section with an observation that will be useful in Section 5.
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LEMMA 4.5. The map Fua/j *-+ Tij6Qp — FijQfi takes type k extreme points to type k
extreme points for each k = 1,2,3.

Proof, We know from Corollary 3.4 that this map preserves 5^. It is also affine and
invertible, so it takes extreme points to extreme points. One verifies readily that FUQp
has rank 2 exactly if r n ^ - FnQp has rank 2, and similarly for F22ap- The desired
conclusion follows easily from the character of the extreme points, c.f. (4.12) - (4.14). Q

5, The Three Gradient Problem. In this section we consider W of the form (1.3),
with three wells in two space dimensions, under the further hypothesis that a1 — a-7 has
rank 2 for each i ^ j . Our attention is focused on the question: is QW strictly positive
for £ (£ {<**}? This question remains open, despite recent progress by Pedregal [23] and
Sverak [27]. We do not solve it. Rather, we show a direct link between this problem and
the attainability of our type 3 extreme points.

We begin with a digression, to set this discussion in its proper mathematical context.
One reason for studying this "three gradient problem" is its analogy to the variationa!
theory of phase transitions. In that setting it is an important task to identify all "macro-
scopically stress-free states." In other words, suppose that W has the form (1.1), and that
each Wi has minimum value zero. Then one wants to know the exact set where QW(£) = 0.
This is among the principal goals of [4,5]; there each W7, is assumed to be frame-in differ-
ent, ELS is appropriate for geometrically nonlinear elasticity. The analogous question in a
geometrically linear setting is addressed for example in [6] and [17]. Our attention here is
on the corresponding question for "gradients," i.e. for energies of the form (1.3).

The "three gradient problem" is also of interest because it promises to shed light on
the relationship between polyconvexity, rank-one convexity, and quasiconvexity. It is well-
known that PW < QW < RW, where PW is the polyconvexification of W and RW is
the rank-one convexification of W [9]. For a three-well energy with appropriately chosen
"wells" {a1}, it can happen that PW vanishes on a one-dimensional curve in the space of
all matrices, while RW(£) > 0 for f £ {a1} [23,27]. Knowing where QW vanishes could
give some indication of whether QW = PW or QW = RW in this case.

Some of the relevant mathematical literature avoids discussing a relaxed energy, fo-
cussing instead on other concepts such as Young measures. To clarify the relation between
such work and ours, we note some consequences of the assertion that QW(£) = 0. First,
from the definition (1.1), if QW(() = 0 then for every e,6 > 0 there exists u : ft -* Rm

with affine boundary values t/|an = f • x such that

(5.1) meas{x : |Vti - af'|2 > e for all £} < 6.

Thus, loosely speaking, if QW(£) = 0 then a gradient field can have average value f and
yet "approximately take only the values a1,1 < i < TV." A second conclusion amounts to
the same thing in different language: if QW(£) = 0 then there is a Young-measure limit of
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gradients with mean value f, whose support is contained in {a;}i<i<N- This is immediate
from (1.2), by taking the Young-measure limit of a minimizing sequence. (See [3] and
the references there for basic facts about Young measures, and [16] for more about the
relation between quasiconvexity and Young measures.) The statement that QW(£) = 0
actually carries somewhat more information than (5.1). Among energies with super- or
sub-quadratic growth

W ( V ) = min

one might expect the set where QW(() = 0 to depend on the value of p. Actually, it does
not: motivated by a result of Sverak [26], Zhang [30] has shown, (under the hypothesis
that the set where W(£) = 0 has compact support, which certainly applies in the case we
are considering), that the set where QW(() = 0 is independent of 1 < p < oo. In any case,
we focus here on p = 2 because that is the case in which Fourier transform-based methods
apply.

In any spatial dimension, and for any number of wells, we say that a1 and a3 are
compatible if their difference has rank one. It is easy to see that if a1 and a7 are compatible
for some i ^ j , then QW vanishes along the line segment joining a1 to aJ. The associated
microstructure is a layered mixture of phases i and j with layer normal i/, where a% — aJ =
w ® v. It is natural to ask whether the converse holds.

Question 5.1: If {al}i<i<N are pairwise incompatible, does it follow that QW(£) > 0
except when f 6 {a1} ?

The answer is yes for N = 2 [17,20,24]. Surprisingly, it is no for N = 4 [6]. The case
N = 3, which is the focus of our attention here, remains open in general.

In view of the discussion above concerning Young measures, etc., we think of the asser-
tion that QW(£) = 0 for some £ ^ {a%} as a statement that {a1} are mutually compatible
(as gradients). Thus Question 5.1 asks whether a set of pairwise incompatible gradients
is automatically mutually incompatible. See Section 8 of [17] for a related discussion in
terms of microstructures.

Since the study of multiwell energies is motivated in part by the theory of coherent
phase transitions, it seems appropriate to mention that the situation for strains is different
from that for gradients. For geometrically linear elasticity, (1.3) should be replaced by

W(e)= min {|e-a<|2}

where e(u) = (Vti + VtiT)/2 is a linear strain and {a1} are now symmetric nxn matrices.
In this setting af and a-7 are compatible if ax — aJ = t; ® w + w ® v for some v,w € Rn.
In space dimension 2, analogue of Question 5.1 has an afiirmative answer for any number
of wells. A similar result even holds in the geometrically nonlinear setting [6,10,21]. The
situation in space dimension three is open, except for some special cases.
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We return now to energies of the form (1.3). For the remainder of this section W is a
three-well energy, involving incompatible, 2 x 2 matrices {a1}. The following result gives
an affirmative answer to Question 5.1 under certain conditions on {a1}. The proof uses
only the weak continuity of the determinant. Essentially the same result figures in the
recent work of PedregaJ and Sverak [23,27].

PROPOSITION 5.2. Let a1,a2, and a3 bepairwise incompatible 2 x 2 matrices. Assume
that det(a* - a2), det(a2 - a3), and det(a* - a3) all have the same sign. Then QW(£) > 0
except when f 6 {a1}.

Proof. We use Dacorogna's formula for the polyconvexification [8]:

(5.2) PW(O = jv£( J W(\)dv(\),

where v ranges over the set A( of probability measures on 2 x 2 matrices that satisfy the
"minors relations":

= {v: IXdu(X) = f, f det Xdu(X) = detf}-

It is easy to see that the infimum in (5.2) is achieved, since W has quadratic growth at
infinity.

Suppose that QW(£) = 0. It follows that PW(£) = 0, and therefore any extremal for
(5.2) must be supported on the set where W = 0. We thus conclude the existence of

3

1 = 1

such that

/ •
det \du{\) = J26i det(a') = det £.

Combining these relations gives

(5.3) J3^det(a') = det(^^).
Since we are in two dimensions, det (a) is a quadratic form and

det(]T Bid*) = J2 °2i d e t °f + H W a f"» cof QJ)'

Using this in (5.3), we obtain after some manipulation that

(5.4) ex02 det(al - a2) + M a det(aa - a3) + 6203 det(a2 - a3) = 0.

By hypothesis the terms det(al — a-7) are either all positive or all negative. So it follows
that M 2 = 01̂ 3 = 02̂ 3 = 0, whence f = a* for some i. D

What happens when {det(af — aJ)} are not all of the same sign? The answer is not
known, however Pedregal and Sverak have proved the following [23,27]:
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PROPOSITION 5.3. Let a1, a2, and a3 be incompatible 2 x 2 matrices. If QW(£) = 0
for some f £ {a 1} , then the associated microstructxire cannot be sequentially laminated.

Equivalently, the rank-one convexi£cation RW satisfies RW(£) > 0 whenever f £ {a 1} .

We turn now to the relationships between these issues and the calculus of geometric
parameters. To keep matters as simple as possible, we shall consider only the case of
diagonal matrices a1. By a translation and a linear change of variables, there is no further
loss of generality in taking a3 = 0 and a1 = I. So we shall henceforth concentrate on the
case

, / I 0 \ o / - A 0 \ 3 / 0 0 \

The real numbers A and /x should satisfy

(5.6) (A + l)(/i + 1) < 0 or A// < 0,

since otherwise Proposition 5.2 applies. (Our notation is chosen for later convenience in
making contact with Proposition 4.4.)

THEOREM 5.4. Let {a1} be as above. Then QW(£) = 0 with f £ {a1} if and only if a
certain associated type 3 extreme point of 3^ is achievable. The specific extreme point is
given by (5.16)-(5.17) below.

Proof. Suppose that QW(£) = 0. Then obviously CW(f) = 0, so ( lies in the convex
hull of {a1}:

(5.7) £

Therefore f is necessarily diagonal. The "volume fractions" 6 = (^1,^2^3) zxe uniquely
determined by (5.7) since we have only three wells. The possible values of 6 are restricted
by (5.4), which becomes

(5.8) $i$z + A/i0203 + (A + l)(p + 1)6x62 = 0

in this case. In view of (5.6), the possible values of £ lie on a one-dimensional curve. (An
explicit representation of this curve is easy enough to obtain, but we omit it.)

We assert that in this situation there exists a tensor of geometric parameters FijQp € 3"#
satisfying

(5-9) YFn**fi ~ Fn°eKAe = 0.
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More specifically, we assert (5.9) whenever F represents the limiting behavior of a mini-
mizing sequence in the definition of QW(£). Indeed, for such F (2.10) - (2.11) yield

(5.10) QW(Q =

where p = (p\, pi, pz) € V gives the volume fraction of the microstructure. Since QW(£) =
0, (5.10) and (3.11) yield

The first term is a perfect square, and the second one is nonnegative as well, by (3.6).
We therefore conclude that £ = 52 Pi^1, whence pi = 0t. We furthermore conclude that F
satisfies (5.9).

Next, we assert that any F satisfying (5.9) must be a type 3 extreme point of
Indeed, if (5.9) holds then

(5.12) inf
F6

using the fact that 5> C S% along with (3.6). The extremal value of any afBne function
on a compact, convex set is achieved at an extreme point; therefore F is either an extreme
point of 3*Q or else a convex combination of extreme points all of which achieve 0 in (5.12).
Now, there is no extreme point of type 1 or 2 that achieves 0 in (5.12). This can be
proved by direct calculation using the formulae (4.12) - (4.14). Alternatively, it suffices to
recall that these extreme points correspond to rank-two laminates, whereas it is impossible
to achieve QW(Q = 0 by means of a rank-two lamination construction. We shall show
presently that (5.12) vanishes (for given f) at a unique type 3 extreme point of 5^. So F
can satisfy (5.9) only by being equal to this type 3 extreme point.

Consider a type 3 extreme point G 6 3*# which achieves 0 in (5.12). By Lemma 4.5,

(5.13)

is also an extreme point of type 3. Writing it as a block matrix

/#„ H12\ (A B\
\Hi2 H22) \B CJ

as in Section 4, we have C = BA~lB, and AB~X is not a multiple of the identity. The
hypothesis that G achieves 0 in (5.12) can be written as

(5.14) {Aa\al) + 2{Ba\a2) + (Ca\a2) = 0.
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Because C = BA~lB , (5.14) is a perfect square, i.e. (5.14) is equivalent to

So B^Aa1 = -a2 , i.e.

(5.15) JTM-g °).

Since A and £ are symmetric, (5.15) implies that they are diagonal. To see this, we observe
that B~lA = - a 2 implies A = - £ a 2 , so

A = AT = » Ba2 = a2B,

using the symmetry of a2 as well as that of A and B. Thus B and a2 commute, whence
either A = /i or else B is simultaneously diagonal with a2. The case A = /i does not arise,
since B~lA cannot be a multiple of the identity at a type 3 extreme point. Thus B and
A = —Ba2 are both diagonal, and H has the form (4.20) with a\ = A&i, a2 = /i&2. By
Proposition 4.4 there is exactly one such extreme point in 3)j whenever 8 satisfies (5.8),
and it is given by (4.23). An easy calculation shows that if H is given by (4.23), then
Gijap = TijSap - HiJQp is given by

Cl

with

/X — A

C2 [^^3 + (M
// — A

^i = / ^ c i , 2̂ = A"1c2.

(Notice that (5.16) - (5.17) are simply (4.20) - (4.23) with the roles of A and /i reversed.)
Recapitulating, we have shown that if QW(£) = 0 then f = £0,-af" with 6 e V satisfying
(5.8), and the associated microstructure achieves the tensor of geometric parameters de-
termined by (5.16) - (5.17), which is an extreme point of type 3. The argument is entirely
reversible: if 6 e V satisfies (5.8) and if the tensor of geometric parameters (5.16) - (5.17)
is achievable by a microstructure, then retracing the argument leads to QW(£) = 0 with

. D
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COROLLARY 5.5. Type-3 extreme points with A,B, and C simultaneously diagonal
cannot be achieved by laminated microstructures.

Proof. Suppose that such a type 3 extreme point were achievable. Then by Theorem
5.4 we could obtain an example of a1, a2, and a3 which are pairwise incompatible but
mutually compatible. According to Proposition 5.3 the associated microstructure could
not be sequentially laminated. D

Remark 5.6. The proof of Theorem 5.4 actually includes a new proof of Proposition
5.2, based on the "Geometric Parameters Lower Bound" instead of polyconvexification,
when a1 ,a2, and a3 are simultaneously diagonal. Indeed, the general case is easily reduced
that of a3 = 0, a1 = J, a2 = (a 2 -a 3 ) (a 1 - a 3 ) " 1 . Condition (5.8) for a1,a2,a3 is the same
as (5.4) for a1, a2, and a3.
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