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1. INTRODUCTION.

In this work we assume that we are dealing with slightly defective crystals, i. e. crystals

exhibiting so few defects that a lattice is distinguishable at the microscopic scale. A (perfect) crystal

is a discrete array of identical atoms arranged in a periodic way and filling the space [R3, precisely

there exist lattice vectors ai, a2, a3 with corresponding lattice matrix L such that Lei = ai for i = 1,

2, 31 and the position vector of any atom is given by

x = miai + m2a2 + m3a3

with mi, m2,1113G Z. Clearly L is not unique and Lf is another lattice matrix if and only if

L ! =LH (1.1)

for H e SL3(Z) := {H e M3*3 I det H = ± 1, Hy e Z, i, j = 1, 2, 3} (see ERICKSEN [7],

FONSECA [8], KINDERLEHRER [12]). A defective crystal is an array of atoms that cannot be

mapped globally onto a space lattice, being such operation possible only locally and perhaps with

the exclusion of some atoms. In this case the lattice vectors are actually averages over microscopic

regions.

To connect the microscopic and macroscopic behaviors of the material, DAVTNI [3] and in

subsequent work DA VTNI & PARRY [4], [5] introduced the kinematics of a model for defective

crystals where the notion of defect relies on the assumption that deformations that leave a certain

class of elastic invariants unchanged preserve the defectiveness. Within this theory, we take the

viewpoint that equilibria correspond to minimizers of an energy functional

where L is a lattice matrix corresponding to a defect-preserving deformation of a perfect crystal

with reference configuration Q, and W represents the bulk energy density, which, due to (1.1) and

to frame indifference, satisfies the invariance

W(RLH) = W(L) for all rotation R e O+(3), L e M+*3, H € SL3(Z). (1.2)

*In what follows, {e^ ^ e3} is the canonical basis of [R3.
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Since W is not quasiconvex (see ERICKSEN [7], FONSECA [8], KINDERLEHRER

[12]), the energy E(.,.) is not sequentially weakly lower semicontinuous and so, in general, we do

not expect existence of minimizers. Following the work by CHIPOT & KINDERLEHRER [2] for

elastic changes of state, we are interested in studying the behavior of minimizing sequences and

their state functions rather than the macroscopic weak limit. Assuming that solutions may be

measure-valued and using the parametrized probability measures of YOUNG [15] and the theory

of compensated compactness of MURAT & TARTAR (see TARTAR [13]), we are able to

calculate the energy and stresses of the deformed body when the class of variations includes non-

elastic changes.

In Section 2 we give a brief description of the model for defective crystals proposed by

DAVINI [3] and DAVINI & PARRY [4], [5]. Non-elastic defect-preserving deformations of a

perfect crystal are called neutral and we show that, in the case of a perfect cubic crystal, the

corresponding lattice matrix L can be written as

L(u(x)) = Vu(x){Vv(x)}-i, (1.3)

where u : Q —> [R3 is the elastic deformation and v represents the slip or plastic deformation with

det Vv = 1 a. e. in Q (see FONSECA & PARRY [10]). Using the div-curl lemma (see TARTAR

[13]) we prove that the class of neutral deformations is closed with respect to the weak *

convergence in W1*00 (see Proposition 2.7) and in Proposition 3.7 we show that the minors of Ln

are weakly * continuous.

Due to (1.3) and assuming Dirichlet boundary conditions, we rewrite the energy I(.) as the

functional

E(u, v) := f\V(Vu(x){ Vv(x)}-1) dx

where (u, v) belong to the set of admissible pairs

S4(uo) := {(u, v) e W 1 ^ , [R3)I det Vu > 0 a. e. in Q, u = uo on 3Q, det Vv = 1 a. e. in Q],

which includes the elastic deformations in the case where v is the identity map.

In Section 3 we prove that the relaxation of the energy E(.,.) coincides with
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inf { J g**(det Vu(x)) dx I u € W 1 *-^ , R3), det Vu > 0 a. e. in Q, u = u0 on

where g** is the convex minorant of the subenergy function of ERICKSEN and FLORY,

g(t):=inf {W(F)ldetF = t}.

In Section 3 we show that the average weak limits of the Cauchy stress stress tensor

corresponding to a minimizing sequence must be isotropic (see Theorem 3.1). ERICKSEN [6] had

also remarked that perfect elastic crystals cannot support shear stresses (see FONSECA [8]) and

later CHIPOT & KINDERLEHRER [2] showed that the average Cauchy stress for an elastic

crystal is also a multiple of the identity. Moreover, DAVTNI & PARRY [4] proved that, if we

allow neutrally related states to compete, then some of the stress averages vanishe independently of

the material symmetry hypotheses on W. In subsequent work (see FONSECA & PARRY [10],

[11]) we study the effect caused by penalizing the energy using bulk energy or surface energy

functionals.

2. DEFECTIVE CRYSTALS AND NEUTRAL DEFORMATIONS.

We give a brief description of a mathematical model for defective crystals proposed by

DAVINI [3] and DAVINI & PARRY [4], [5]. For more details see FONSECA & PARRY [10]. In

the sequel, Q is a bounded, open, strongly Lipschitz domain in [R3, M3x3 denotes the space of real

3x3 matrices and M**3: = { F e M3x3l det F > 0}.

Let Q represent the macroscopic placement of a non-defective cubic crystal and consider a

change of state from the reference state Zo := {£>, 11} to Z := {u(£2), L}, where the macroscopic

deformation u : Q —» u(Q) is a Lipschitz function with det Vu > 0 a. e. in Q and L(u(x)) represents

averages values over microscopic regions of the lattice vectors around u(x) defining the lattice cell

at the atomic scale. In this theory the evolution of defects is supposed to account for the

discrepancy between the macroscopic deformation and the lattice vectors as they come from

averaging at different scales. The main feature of the work of DAVINI [3] and DAVINI & PARRY
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[4], [5] is the introduction of a class of changes of state which strictly includes the elastic ones and

which, at least intuitively, leave the defectiveness unchanged as they correspond to elastic

deformations followed by rearrangements at the microscopic level.

Definition 2.1.

We say that Eo and £ are elastically related if the Cauchy - Born hypothesis is satisfied,

namely L(u(x)) = Vu(x) a. e. x e Cl.

Since elastically related states preserve the defectiveness (see TAYLOR [14]), it is natural

to search for those integrals of the type

ff(A).dx, Jf(A).v(x) da(x), ff(A)dx
c S V

where A := {L, VL} represents a local state of the crystal, which will remain invariant under elastic

deformations. Here c is the boundary of a surface II and S is the boundary of a volume region V.

Clearly, the densities corresponding to these integrals will produce a list of defect measures.

We introduce some notation. The lattice vectors are given by

l i (x) :=L(x)e i , i= l ,2 ,3

and the dual lattice vectors are defined by

di(x):=D(x)ei,i = l , 2 , 3

where

Clearly

li(x). dj(x) = 6ij and li(x) = eijk -£^ with i, j , k e {1,2,3}.

Also for i, j € {1, 2, 3} we define the following densities, where y = u(x):

bi := curly di (Burger's vectors)

Ojj := bj.dj (components ofBilby's dislocation tensor)

n := 1/det L = det D (the number of cells per unit volume)
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m := (atomic mass of an average cell)
n det Vu(x)

gi := Vym.li

Theorem 2.2. (DAVINI [3])

1. {Invariants associated to line defects) A line integral

f f(A). dx

is elastic invariant if and only if there exists a function h : [R -^ OR such that

f = h(m)d;

2. (Invariants associated to point defects) A surface integral

J f(A).v(x) dH2(x)

where H2 is the 2-dimensional Hausdorff measure and v(x) is the normal to the surface S at the

point x, is elastic invariant if and only if there exists a function h : [R -» [R such that

3. A volume integral

f(A)dx

is elastic invariant if and only if there exists a function h : [R3 —> [R such that

f = h(a/n, m, g) n.

It turns out that the class of states Z for which the elastic invariants remain unchanged is

strictly larger than the class of elastically related states (see Examples 2.5).

Definition 2.3.

The states X and E* are said to be neutrally related if they are not elastically related

although the integrals (2.2) remain invariant.
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We obtain the following characterization for neutral states. For its proof we refer the reader

to FONSECA & PARRY [10].

Proposition 2.4.

Io and £ = (u(£2), L) are neutrally related if and only if there exists a Lipschitz mapping

v : Q —> IR3 such that for almost all x € Cl

l.L(u(x)) = Vu(x){Vv(x)}-i;

2. det Vv(x) = 1.

We give some examples of neutrality related states.

Example 2.5.

(1) Set L = (u(Q), L} where u € Wl.°°(Q, [R3) is invertible, det Vu(x) > 0 a. e. in &,

L(u(x)) = Vu(x) (1 + a®b)

where a , b e [R3 are such that a.b = 0. By Proposition 2.4 it follows that Lo and Z are neutrally

related.

(2) Let L = (u(Q), 1} , where u(x) = x + X3 e2 = (1 + e2®e3)x and v = u. L is a special type of

rearrangement of Io> designated by slip in the classic phenomenological plasticity theories.

It turns out that if ZQ and L are neutrally related then they are locally elastically related, i. e.

for all xo e Q there exist neighborhoods Ui and U2 of xo in Q and there exists a Lipschitz function

g : Ui -»U2 such that g(xo) = XQ and

L((u°g)(x)) = V(uog)(x) for almost all x e Ui.

Hence, it is natural to assume that neutrally related states preserve the defectiveness.

Next, we want to study equilibria of crystals within a variational framework when neutrally

related states are admissible. As it is well known, the bulk energy density for solid crystals is non

quasiconvex and so, in general the energy functional is not lower semicontinuous as minimizing
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sequences may develop oscillations. In particular, the macroscopic limit is not necessarily a

minimizer of E(.,.) and, as it turns out, the sequence itself stores more information on limiting

macroscopic state functions of the crystal than the macroscopic configuration itself. This

information is given partially by the corresponding Young measure (see YOUNG [15] and

TARTAR [13]) as it shows the work of CHIPOT & KINDERLEHRER [2] for elastic crystals.

However, before we start the analysis of the Young measures associated to minimizing sequences,

we need to make sure that these sequences are "stable" under weak convergence, even if

oscillations may occur. We will prove this result using MURAT & TARTAR'S div-curl lemma of

the theory of compensated compactness (see TARTAR [13]).

2.6 Div-Curl Lemma

Let Q C [RN be an open, bounded, strongly Lipschitz domain, and let u n , vn e L°°(Q;[RN)

be such that un —» Uoo and vn —» Voo in L°° weak *. If, in addition, {div un} and {curl vn} are

bounded sequences in Hjoc(Q) then un . vn -» Uoo. v«> weakly *.

Proposition 2.7

Let Zn = {un(£2), Ln} be a sequence of states neutrally related to I Q and let v n : Q -» [R3 be

such that Ln(u(x)) = Vun(x) {Vvn(x)}"1, det Vvn(x) = 1 for almost all x e Q. If un -> u«> and vn

—> Voo in W1'00 weak * then

1. det Vvoo(x) = 1 a. e. in Q ;

2. Ln(x) -> Loo(x) := Viioo(x){ Vvoo(x))-i in L~ weak *.

Proof. (1) follows immediatly from the fact that F ^ det F is a null lagrangian. Also, as

{Vvn(x)}-i={adjVvn(x)}T
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with the rows of Vun(x) curl free and the rows of adj Vvn(x) divergence free2, we obtain (2) from

the div-curl lemma.

As we mentioned before, we are interested in the characterization of the Young measure

associated to a bounded minimizing sequence of lattice matrices. We start by recalling the notion of

parametrized probability measures.

Proposition 2.8.

If {urj} is a bounded sequence in L°°(Q, [RP) then there exists a subsequence {u£} and a

family of probability measures {|ix}X€ft (Young measure) such that if f e C((RP) then (f(u£)}

converges in L°° weak * to the average function

f(y) <Wy)-= f

As in Proposition 2.7, consider a sequence of states Ln = {un(Q), L^} neutrally related to

£ = (u(Q), L} and let v n : Q -> OR3 be such that Ln(u(x)) = Vun(x) {Vvn(x)}-1, det Vvn (x) = 1

for almost all x € Q.. Let un -> mo, vn -* Voc in L°° weak *, Ln(x) -> Loo(x) := Vuc>o(x){Vvoo(x)}-1

in L°° weak * and let (lixlxeftbe the Young's measure corresponding to {L^}. If the change is

elastic then Ln = Vun, L^ = Vuoo, and as M —> det(M) and M —> adjM are null lagragians it follows

that

det( f Md[i x (M)) = J det M d^x(M) (2.1)

and

adj( f M d j i x ( M ) ) = f a d j M d M M ) . (2.2)

2Here, and in what follows, adj A is the matrix of cofactors of A. In particular, if A is invertible then A 1

(adi A)T

-. Also, the inner product between matrices is defined by A.B :=
det A
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The analysis of CHIPOT & KINDERLEHRER [2] relies heavily on (3.3) and (3.4). Next we

show that (3.3) and (3.4) still hold for neutrally related states.

Proposition 2.9.

For almost all x e flwe have

1. det Vuo.(x) = det L».(x) = det ( f M d^x(M))
M3*3

= f det M djix(M) ;
M*3

2. adj Lcc(x) = adj ( fMdn x (M)) = fadjMd^ix(M).
M?x3 M A 3

Proof. By Propositions 2.7 and 2.8 we have

LUx)= J Md|ix(M)
M

and

det ( J M dMM)) = detU.(x)
M3«

= det(VuTO(x){Vv«(x)}-i)

= det Viu(x)

= w.*limit det Vun(x)

= w.*limit det Ln(x)

= f det M dnx(M)

and in a similar way

adj( J M d | i x ( M ) ) =adjL«(x)

= adjVu,,,(x){Vvo.(x)}T

with the rows of adj Vu» divergence free and the rows of Vcpoo(x) curl free. By the div-curl lemma

we conclude that

adj ( f M d*ix(M)) = w.*limit adj Vun(x) {Vvn(x)}T
M* 3
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= w.*limit adj Ln(x)

= f adjMd

3. RELAXATION OF THE BULK ENERGY.

Here we take the viewpoint that crystal equilibria correspond to extremals of some energy

functional. Taking into account Proposition 2.4, we assume that the bulk energy associated to a

neutral state L = (u(Q), L) is given by

E(u,v) = J W(Vu(x){Vv(x)}-i) dx,
d

where L(u(x)) = Vu(x){Vv(x)}-1, det Vv(x) = 1 a. e. in Q, and W is the stored energy density

satisfying (1.2). Also, as it is usual, in order to make it energetically impossible to compress part

of the body to zero volume or to change its orientation we suppose that

W(L)->0+ asdetL->0+. (3.1)

We consider Dirichlet boundary conditions, where L is an admissible change if (u, v) e

and

:= {(u, v) € W ^ Q , [R3)l det Vu > 0 a. e. in Q, u = u0 on 3Q, det Vv = 1 a. e. in Q}.

This class includes the elastic deformations in the case where v is the identity map. Here uo e

CKlQ, [R3) is one-to-one in £2, det Vuo > 0 in Q and

inf { J g**(det Vu(x)) dx I u e W1>OO(Q, [R3), det Vu > 0 a. e. in Q, u = u0 on

= inf { J g**(det Vu(x)) dx I u € O(A [R3), det Vu > 0 a. e. in Q, u = u0 on

In particular, these conditions imply that if (u, v) e £#(uo) then u is invertible a. e. (see BALL

[11). Using Lagrange multipliers, DAVINI & PARRY [4] showed that, independently of the

boundary conditions and of the symmetry invariance, at a smooth local minimizer we must have

jLT(x)S(L(x))dx = a I

3Using Jensen's inequality, it is easy to check that this hypothesis is satisfied if, as an example, det Vu0 = const, a.
e. in Q.
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where the first Piola-Kirchhoff stress tensor S and the Cauchy stress tensor T are given,

respectively, by

S(F) := ^ ( F ) and T(F) = ^ S(F) F^ for all F e M+
3x3.

Hence, they concluded that there is a weakness in the crystal associated to the presence of slips and

rearrangements, as the crystal cannot sustain certain nonzero average stresses. Also, using the

material symmetry invariance (1.2), ERICKSEN [6] proved that for elastic crystals at equilibrium

the Cauchy stress reduces to a pressure,

T = -pll (3.2)

and later CHIPOT & KINDERLEHRER [2] recovered (3.2) still for elastic changes and when

oscillations may develop. Precisely, they showed that if {\ix}xeCi is the Young's measure

corresponding to a minimizing sequence Ln = Vun, where un —» Uoo in W1'00 weak *, then the

average Cauchy stress is still a pressure,

T(x) = jT(M)dj i x (M)

= (g**)!(det Viioo(x)) 11 a. e. in Q. (3.3)

where g is the subenergy function introduced by ERICKSEN and FLORY,

g(t):=inf {W(F)ldetF = t}.

Here we will show that (3.3) still holds even when neutrall changes of state are allowed to

compete. Let 1^ = {un(fi), 1^} be a minimizing sequence for I(.). with (un, vn) e £^(uo) and

Suppose further that un -» Uoo and vn -» Voo in W1*00 weak *, which, by Proposition 2.7 imply that

Ln -> Loo = Viioo {Vvoc}'1 in L°° weak *. Let {[ix}xeQ be the Young's measure associated to

Theorem 3.1

T(x)=

det Loo(x)
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=(g**)'(det Vuo.(x)) 11 for almost all x e Q.

We start by obtaining the relaxation of the bulk energy functional.

Theorem 3.2.
Let A € M+*3 and let s4(A) := {(£, v) €

det Vv(x) = 1 a. e. in Q}. Then

inf{ f\V(V^(x){Vv(x)}-1)dxl (^,v
a

[R3) x , [R3)l 5(x) = Ax on 3Q,

= meas (Q) g**(det A).

This result was proven by CHIPOT & KINDERLEHRER [2] and FONSECA [9] in the

case where only elastic changes are admissible :

inf { f W(V£(x)) dx I £ e Ax + WJ /^Q, 1R3)} = meas (Q) g**(det A). (3.4)

Proof of Theorem 3.2. Clearly, by (3.4)

inf{ Jw(V$(x){Vv(x)}-l)dxl($,v)e
a

inf { f W(V^(x)) dx I £ €
a

j , 1 " ^ , 1R3)} = meas (Q) g**(det A)

and since F —»detF is a null lagrangian, by Jensen's inequality and as W(F) > g**(det F) we have

J W(V^(x){Vv(x)}-!)dx > fg**(det V^(x) det Vv(x)-l) dx

= Jg**(detV^(x))dx

> meas (Q) g**( ^ ^ J det V$(x) dx )

= meas(Q) g**(detA).
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From Theorem 3.2 and using the same argument as in CHIPOT & KINDERLEHRER [2]

we obtain the following generalization to the case of inhomogeneous boundary conditions.

Proposition 3.3.

inf{ Jw(V$(x){Vv(x)}-l)dxl(5,v)e ^ (u 0 )} =

inf { f g**(det Vu(x)) dx I u e W1--^, IR3), det Vu > 0 a. e. in Q, u = u0 on

Proposition 3.4

1. f W(x) dx = f( f W(M) dfix(M) ) dx
d J ^

<inf{ jW(V$(x){Vv(x)}-l)dxl($,v)6

d
2. supp nx C M^x3 and det Vuo» > 0 a. e. in Q.

Proof. Part (1) is proven exactly as in CHIPOT & KINDERLEHRER [2] and (3.1) and

(1) imply that supp ^ix C M+
x . Finally, by Theorem 3.2

Vuoo(x){Vvoo(x)}-1=L«(x)

which, together with Proposition 2.9 (1), yields
det Vuoo(x) = f det M dfix > 0 a. e. in Q.

\>f3x3

Corollary 3.5

Under the hypotheses of Proposition 3.3

inf{ fw(V£(x){Vv(x)}- l )dxl ( tv)€ <^(u0)} = Jg**(det VUoo(x)) dx.

Irene Fonseca 1/3/91
13



Proof. Using the same argument as in CHIPOT & KINDERLEHRER [2], by Proposition

3.4 we have det Vuoo > 0 a. e. in Cl and so, since g is convex and det Vun —> det Vu«> weakly *,

by Proposition 3.3 we conclude that

inf{ fw(V^(x){Vv(x)} - l )dx l (£ , v ) € ^ ( u 0 ) } < fg**(det VUoo(x)) dx

ft

< lim inf Jg**(det Vun(x)) dx

<liminf fW(Ln(x))dx

= inf{ f
d

Proposition 3.6

1. W(x) = g(x) = g**(x) = g**(det Vuoo(x)) a. e. in Q ;

2. supp \ix C {M e M^ I a(x) < det M < (3(x)} where [a(x), (5(x)] is the maximal closed interval

containing det Vuoo(x) on which g** is affine ;

3. W(M) = g(det M) = g**(det M) a. e. in supp |ix.

Proof. The argument is essentially the same as in CHIPOT & KINDERLEHRER [2],

where we must use Proposition 2.9 (1).

Finally, we give the proof of Theorem 3.1.

Proof of Theorem 3.1. By Proposition 3.6 (3), if M € supp |ix then

0 = W(M) - g**(det M) = min (W(.) - g**(det.)}

and so

0 = | J (M) - (g**)'(det M) adj M.

Also, by Proposition 3.6 (2)

(g**)'(det M) = (g**)'(det
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and we deduce that

S(M) = (g**)'(det Vuoo(x)) adj M, (3.5)

hence, by Proposition 2.9 (2),

S(x) = J (g**)'(det Vu»(x)) adj M d\ix(L)

= (g**)'(det Vuoo(x)) adj L.(x). (3.6)

Finally, by (3.5) and for almost all x e Q

T(x) = JT(M) dnx(L) = J 5 ^ S(M) MT d

= (g**)'(detVMx)) J 3 ^ adjMMTd^x(M)

= (g**)'(det Vuoo(x)) II

and by (3.6)

= (g**)'(detViue(x))ll.
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