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despite its artificiality because it is simple enough to allow some elementary analysis and

yet rich enough to display many features of more complex models.

Computer simulations [1,2] of the model based on Eq.(l) yield, after an initial

transient and before the number of bubbles becomes too small, a time—independent

distribution Q(o) of reduced bubble radii a = R/<R>, where <R> is the average radius.

Fig.(l) shows a plot of the results of a simulation carried out by Vinals [2] starting with

10 bubbles uniformly distributed over afiom 0 to 2. The coincidence of the two symbols

representing two different times shows that Q(cr) is substantially independent of time; it is

also independent of the initial distribution.

In this paper, we investigate a one dimensional model of coarsening based on a

generalization of Eq.(l) in which the domains are intervals on a line rather than bubbles;

both a finite number of intervals on a finite line with periodic boundary conditions (i.e. a

ring of intervals) and an infinite number of intervals on the doubly infinite line are

considered. The model is a nearest neighbor one in the sense that the rule of motion of the

point (domain boundary) separating two adjacent intervals depends only on the lengths of

these intervals.

A theorem is developed for the model that allows the proof that domains do

disappear so that the model does indeed show coarsening; for the infinite case, the proof

requires a bound that is established in the appendix. When the equation of motion of the

domain boundaries has the special form of the power law discussed in section 8, an

approximate treatment of the infinite case that ignores correlations between neighboring

interval lengths shows that a time—independent distribution P(p) of reduced interval

lengths p = l/lc develops asymptotically as t -+ oo; here 1 = const.<1> is a critical length,

where <1> is the average interval length. The treatment is based on a generalization of the



coarsening theory of Lifshitz and Slyozov [3] and of Wagner[4]. Both the result of this

approximate treatment and the simulation results strongly suggest that the asymptotic

time—independent distribution of p is a rigorous consequence of the power law equation of

motion, but this has not been established.

The development of the distribution P(/?) is an example of what has been called

statistical self-similarity (SSS) [5,6]. An evolving system may be defined to be in a SSS

mode if any two consecutive configurations brought to the same scale by uniform

magnification are statistically indistinguishable, or, alternatively, if any statistical

parameter of the system that is invariant under uniform magnification is also independent

of time. Many systems, studied in experiments and in simulations, show time—independent

distributions of reduced domain sizes [5-8]. A general theory that would reveal the

conditions under which these distributions develop does not yet exist.

2. The nearest neighbor coarsening model

Let the position of the domain boundary points on the line be denoted by x. and the

length of the domains or intervals by 1. = x- , + — x- ; when two boundary points meet, they

coalesce into one new boundary point and the corresponding interval or domain disappears

as shown in Fig.2 in which time is the vertical axis. Suppose, at any given instant, the

surviving intervals are labeled consecutively. The equation of motion for a boundary point

x. is then assumed to be a function of the nearest neighbor interval lengths of the form

where it is assumed that f(l) is a continuous function of 1 with a continuous derivative;

additional characteristics of the function axe specified below. From the definition of 1- , and



Eq.(2) it follows that

0)

The linear bubble model is a special case of Eq.(3) with 1=R3 and f(l) = M/31l/3.

In this paper, we will consider both an infinite array of intervals on the doubly

infinite line, and also a finite "ring11 of N intervals in which the first and Nth intervals are

nearest neighbors. The finite case is completely equivalent to the infinite case with the

periodic boundary conditions 1 .^=1. for N > 2; when N=l, the infinite case consists of an

infinite sequence of equal intervals whereas the finite case may be regarded as consisting of

only one distinct domain formed by removing any boundary point resulting from the

collapse of a previous second interval. In the rest of this paper, we will suppose that N > 2

for the finite case.

It is clear that the sum of Eq.(3) over a finite ring of N intervals gives

N

jLt \ = 0 . (4)

The corresponding result for the infinite case is discussed in section 6.

We define a static solution to be one for which L = 0 for all intervals i. Eq.(3) shows

that a sufficient condition for a static solution is that l.=a for all i. In order for the model

to represent coarsening, we require the static solution to be unstable. A perturbed solution



1. = a + Cp where | ê | << a , yields, from Eq.(3),

where the prime denotes the derivative. A solution of Eq.(5) of the form e =

Aexp[wmt — i -v-r n], where i = yf-I and M is the wavelength (for a finite ring of N

intervals, M must divide N), gives

(6)

For instability, we require wm >0 for all appropriate M and for all a. Therefore we must

have f'(a) < 0 for all a, that is, f(l) is assumed to be a strictly monotone decreasing

function of L

3. Special case of alternating interval lengths

A special case that is exactly soluble and that clearly shows coarsening by the

disappearance of intervals is that in which the initial length of odd numbered intervals is

given by 1 (0) = I + a, and of even numbered intervals by 1 (0) = I — a; in the finite case,

this requires the total number of intervals to be even. It follows from Eq.(3) and the initial

conditions that 1 (t) + 1 (t) = 2l, where the average I is constant, as long as all intervals

are still present. This relation may be combined with the Eq.(3) to obtain a formal solution

for 1 (t) and 1 (t). The time T required for all even intervals to collapse to zero length is

then given by

ro
T = i | —=-& <\ . 1-». , (7)



where the inequality holds because f(l) is a decreasing function of 1. Therefore, for any

a > 0, the average interval size will have doubled after an elapsed time T.

One can see qualitatively that intervals disappear in the general case because,

according to Eq.(3) an interval that is and remains less than either neighbor will continue

to decrease until it disappears. Proving the disappearance of intervals by tracking

individual intervals seems difficult, however, since the actual intervals of minimum length

can change; furthermore, the magnitude of 1 for a given minimum interval can become

arbitrarily small if adjacent intervals approach the same value of 1 as the given interval

For these reasons, we will develop some global theorems in the next sections as a basis for

the investigation of the disappearance of intervals.

4. The total variation theorem for the finite ring

Theorem 1: If N is fixed and if not all intervals are equal then the total variation

V(t) of the sequence of interval lengths given by

N

hi (8)

is an increasing function of t.

Proof: We define consecutive (local) minima Xi and maxima IL of the sequence of lengths

as follows: a maximum IL is the length of an interval that is longer than the first interval

encountered in either direction with a length different from IL ; the subscript k indicates

that it is the kth maximum. Similarly, a minimum Xi is the length of an interval that is

shorter than the first interval encountered in either direction with a length different from
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x, . It follows from hypothesis that there must be at least one pair of extrema in the

sequence. Then taking absolute values into account, we have

K

V(t) = 2]L[n, - ».], (9)

where K is the number of maxima (equal to the number of minima). But all maxima are

increasing functions of time since each one must be the length of one or several adjacent

intervals and Eq.(3) shows that i > 0 for at least one of these intervals; similarly, all

minima are decreasing functions of time. Furthermore, as long as no intervals disappear,

extrema cannot be destroyed; they may be created in pairs by an interval overtaking or

falling below a neighbor. Therefore we see from Eq.(9) that V(t) is an increasing function

of time for constant N as claimed.

5. The G theorem for finite N

Let g(l) be an auxiliary function of 1 whose integral from 0 to 1 exists and introduce

the abbreviations t = f ( l ) and gj=g(l)- Then multiplying Eq.(3) by g. and summing on i we

obtain

N

JL g{\ = -H (10)

where

N N

H=xigi(fi+1+fi_1-2fi)=;gh.i



in which

(12)

Eq.(12) shows that h- . , 1 = h-,-. • • If g(l), like f(l), is a strictly decreasing function of 1,
1)1 i J- 1 i -L)l

then h- . , 1 > 0 for all i, where the equality holds only if L = L , 1 for all i; therefore, in this

case H > 0- Similarly, if g(l) is a strictly increasing function of 1, then h- • , -, < 0 for all i
i,i i J.

where again the equality holds only if 1- = L . ^ for all i; therefore, in this case, H < 0. In

either case, if H = 0, then h- •, -. = 0 for all i, which requires l-= a for all i. Thus Eq.(10)

shows that the static solution discussed in section 2 is unique, that is, i .=0 for all i implies

H = 0 which implies l-=a for all L

We next define

.1
JO')<*-'> (13)

0

and

N

GT = ] L G. , (H)

where G{= G(lj); it follows from Eq.(13) that G = gl. Then since G(l) -»0 as 1 -»0, we

obtain from Eqs.(10)-(14) the following result:
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Theorem 2 (the G theorem),

dGT/dt = -H . (15)

To obtain information about the moments of the distribution of interval lengths, we

ose g(l) = nln~ , with n >1 so that g(l) is strictly increasing. Then from Eqs.(13)—(14),

= E-l? = M , which is the nth moment of the 1- for integral n, and Eq.(15) shows that

dMR/dt = - H ^ > 0, (16)
R

where Iv11' is given by Eq.(ll) with

- y -< o •-

the superscript n refers to the special form of h for this moment case.

6. Disappearance of intervals for finite initial N

The disappearance of intervals for finite N is governed by the following theorem:

Theorem 3: If the initial state of a finite sequence of N intervals of total length L is not

static, then N must decrease.

Proof: Assume that N were to remain fixed. Then it is shown below that

J J W < JJ , < 0 , where H i is a negative upper bound, so that, according to Eq.(16), M

would increase without bound as t -* oo. But this is impossible since M is bounded by Ln,

Therefore N must decrease and intervals must disappear.
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To obtain the upper bound H i for H^ ' , for fixed N and an initial non—static state

of variation V^, we observe that there must be at least one pair of consecutive intervals of

length 1' and I 7 ' at time t such that \V - 1 ' ' | > V/N > V /N, where V is the variation at

time t and where the last inequality holds because of theorem 1; otherwise the sum in

Eq-(8) could not equal V. Hence we obtain the following inequality:

H ( n ) < h(n)(l',l' ')< MAXj/hMoM'+V /N) = Hub < 0, (18)

where MAXi, denotes the maximization of the expression that follows over the possible

range of values of 1', which cannot exceed 0< l'< L . The first inequality in Eq.(18) holds

because of Eqs.(ll) and (17), the second holds because, for any given 1' < I 7 ' , h ' n \ l 7 , l 7 7)

is a decreasing function of 1'7 and the last inequality holds because V > 0 and the range

of values of I7 is limited. The result H i of the maximization process is evidently

independent of time. This completes the proof of theorem 3.

Theorem 3 may be applied repeatedly as intervals disappear, provided that the

disappearance of an interval never results in a state in which the remaining intervals are of

equal length. The latter may occur for special initial conditions (e.g. from an initial state of

three intervals, two of equal length and the third shorter), but it seems clear that the

subspace of these initial conditions (interval lengths) for N intervals is of lower dimension

than N—1 so that we may conclude that almost all initial conditions for N intervals lead to

one final interval or domain.

Since a finite ring of intervals is equivalent to an infinite periodic sequence of

intervals, we may conclude that any non—static periodic sequence of intervals will evolve to

a sequence of equal intervals, each longer than the original average length.
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7. The disappearance of intervals from an infinite sequence

We assume that the infinite sequence of intervals on the doubly infinite line is

statistically stationary, at any given time, and can be described by probability density

functions. Thus let P(l,t) be the density function for intervals of length 1 at time t. We also

introduce the density function

nL(l,t) = NL(t)P(l,t) (19)

for the number of intervals of length 1 per unit length of line, where

NL(t) = /nL ( l , t )dl (20)
0

is the total number of intervals per unit length of line at time t.

Since intervals are not created and are not destroyed when finite, the following

continuity equation [5] holds on an abstract 1 axis:

(21)

where

00.

(22)

is the expected value of 1 given 1, in which P(I|1) is the conditional probability density for 1
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Proof: Choose g(l) to be a positive continuous decreasing function of 1 with a contiuous

derivative (e.g. g(l)=exp[—1]) so that TJA>0. Suppose, contrary to the assertion of theorem,

intervals do not disappear so that Nj = 0 (intervals are not created in the model). Then

Eq.(31) shows that < G > would be a decreasing function of time. But it is shown in the

appendix that if *7Q>0, and if intervals do not disappear, then T t̂) > th^ , where rh^ > 0 is a

positive time—independent lower bound. Therefore, < G > would become negative in a

time not exceeding < G >^ / *? IU > where < G >^ is the initial value of < G >. But this

is impossible since g(l) and hence < G > can never be negative (Eqs.(13) and (25)).

Therefore intervals must disappear as claimed (i.e. Ny < 0).

Theorem 4 can be applied at any time at which T) does not vanish. Assuming that

we can ignore initial conditions that lead to a static solution after the disappearance of a

set of intervals, we conclude that the disappearance of intervals continues indefinitely.

8. Treatment of the power law form of f(l) by the mean neighbor approximation

In this section, we investigate the consequences of the particular power law form of

f(l) given by

(32)

where the condition on A and fi assures that f(l) is a decreasing function of 1; when f$ = 1/3,

we recover the linear bubble model with 1 = R (Eq.(l)). It will be shown that, in the

random order approximation (ROA) described below, the model based on Eq.(32) with /? <

1 develops a time—independent distribution P(/?) of reduced interval lengths /> = 1/1 in the
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asymptotic limit t -»oo; here 1 is a critical length that is a constant times the average

interval length <1>. The ROA assumes that interval lengths are randomly ordered on the

line so that correlations of the lengths of neighboring intervals are ignored. The use of this

approximation permits the application of a generalization [9] of the classical theory of

Lifshitz and Slyozov [3] which establishes the asymptotic time—independent distribution

From the result of the ROA approximation and from the suggestive evidence of the

simulations of Eq.(l), it seems very plausible that an asymptotic distribution P(p) would

follow rigorously from the model based on Eq.(32) (with ft < 1), but this has not been

shown. It has been conjectured [6] that a necessary condition for the development of a

time—independent distribution of reduced interval lengths is that the rule of motion for 1

be such that the ratio of 1 for any two intervals remain invariant under a uniform

magnification of the system; Eq.(32) fulfills this condition.

We first develop the ROA approximation. The average of Eq.(27) over all intervals

of length 1 is, rigorously,

(33)

where < . |1> indicates the conditional average for a fixed 1. According to the ROA,

)M> = < f (O | l> = <*0)>> 3° t h a t Eq.(33) becomes, in this approximation,

(34)
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It is convenient to define a critical length 1 (t) by the condition

f(lc) = <f(l)>, (35)

so that Eq.(34) becomes

we see that in the ROA approximation, intervals for which 1 > 1 grow on the average, and

intervals for which 1 < 1 shrink on the average.

Now, using Eq.(32) in Eq.(36) and introducing the variable p = 1/1 , we obtain

-IP, (37)

where

y = i ^ i c - (38)

The null curve for which <p\p> = 0 in the (/>,y) phase plane is given, from Eq.(37), by

(39)

According to the generalized LSW theory [9], this curve must either have a maximum

(p ,y ) or must increase monotonically to a horizontal asymptote (y ) in order for a

stable time—independent distribution of P(p) to develop asymptotically at long times. The
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condition for this to be true is, from Eq.(39), 0 < 1. Furthermore, according to the theory,

the stable operating point of the system corresponds to y=y . By differentiation of Eq.(39)

we find

'm - <H9T ' ' (40)

Pm

For constant y=y , we integrate Eq.(38) and then make the approximation, appropriate in
'm

the asymptotic limit of long times, that t > > t n and 1 ( t ) » l (tn), to obtain
KJ C C U

^ t for^<l , (42)

l c= const.exp[ymt] for 0=1 . (43)

Substituting Eq.(42) into Eq.(37) and rearranging, we obtain, for

<P\P> = ^ , (44)

where

m
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for #=1 we obtain, from Eq.(37),

< p | / » = 2A, (46)

where we have used the relation y = —2A for the asymptote obtained from Eq.(39).

Following the general procedure of LS theory, we write the continuity equation for

nL(At) = nL(\,t)(d\fdp\

The form of <p\p> given by Eqs.(44) and (46), when used in Eq.(47) allows a general

solution iiy(/?,t) to this equation to be written down. When this general solution is

subjected to the condition expressing the conservation of interval length per unit length of

line, that is, NL<1> = 1, or

\jlL(Pyt)pdp = /nL(l,t)ldl = 1, (48)
o o

the result is a time-independent probability distribution P(/?) for p that has the following

forms:

For the case /? < 1, one finds

P(p) = 0 , for p > pm ,
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where

m

In this case, P(p) clearly has a sharp cutoff at p , since F(/?m)=0 (Eq.(45)). Other

characteristics of P(/>) have been discussed elsewhere [9].

For the case /?=1, one finds

= exp[-/>] . (51)

The continuous curve of Fig.3 is a plot of Eq.(49) for the case of the linear bubble

model based on Eq.(l); the points represent the simulation. The discrepancy is due to the

presence of correlations of interval or bubble sizes with relative position that are ignored in

the ROA approximation. The correlations favor larger than average bubbles adjacent to

smaller than average bubbles.

The LS theory and its generalizations prove the stability of the asymptotic

distributions discussed above only with regard to a limited set of perturbations [9]

corresponding to constant values of y. It would be desirable to extend these to include

arbitrary time dependent perturbatons to be sure that the distributions are indeed stable.

9. Summary and discussion

A one dimensional model of coarsening has been developed in which the domain

boundaries are points on a line, finite or (doubly) infinite, and the domains are intervals
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defined by any two adjacent points. The postulated equation of motion for the length 1 of

an interval depends only on the two nearest neighbor intervals, yields a zero average rate of

change of interval length and makes the state of equal interval lengths unstable. If an

interval shrinks to zero length, its former neighbors become nearest neighbors.

It is proved that, in general, intervals do disappear, in both the finite and the

infinite cases, and hence that the model does exhibit coarsening. A special power law form

of the equation of motion for the interval length is investigated with the use of a random

order approximation (ROA) which ignores correlations of the lengths of neighboring

intervals. The result, obtained by the use of a generalized Lifshitz—Slyozov theory, is an

asymptotic distribution of reduced interval lengths at long times that is time—independent.

Comparison of the approximate results with computer simulations shows that length

correlations are in fact developed by the model, in which larger than average intervals tend

to be adjacent to smaller than average intervals and vice versa. Based on the results

approximate treatment, and on the computer simulation results, it is speculated that a

rigorous treatment of the power law model, including correlations, would also show a

(different) time—independent distribution of reduced lengths.

There is considerable evidence [5—8] from experiment, simulations and theory, that

coarsening systems develop asymptotic self—similar behavior, as exemplified by the

time—independent distribution of reduced interval lengths. This behavior is also shown by a

one dimensional stochastic model of coarsening, recently discussed [10], in which the

boundary points execute random walk. Asymptotic self—similarity has been discussed in

terms of renormalization group theory [11—12]. Very little is known, however, about the

general conditions under which self—similarity is to be expected.
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Figure captions

1. The probability distribution Q(o) of reduced radii <r=R/<R> for the linear bubble

model from simulation results: crosses represent twice the simulation time as the diamonds

2. Schematic diagram of coarsening in the one dimensional model with time as the vertical

axis.

3* The probability distribution Q(^) of reduced radii 0-for the linear bubble model: the

curve shows the ROA results and the black dots denote simulation results.
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Appendix

We assume that the auxiliary function g(l) used to define TJ (Eqs.(29)—(30)) is

positive, continuous and strictly decreasing with a contiuous derivative. We wish to show

that if no intervals disappear and if r^O) > 0 then r£t) > th* > 0 , where ^ is a

time—independent lower bound of rj(t).

Corresponding to the finite case, a stationary sequence of interval lengths, will

contain a subsequence whose lengths are (local) extrema consisting of minima (TI )

alternating with maxima (IL ). Eq-(3) shows that the value of a maximum cannot decrease,

although the interval that possesses this value may shift; correspondingly, the value of a

minimum cannot increase. As discussed in section 4, extrema may be created in pairs but

cannot be destroyed. The subset of minima Xi at any time t that were originally present at

t=0 will be denoted by 71 and the corresponding subset of maxima by I \ ; actually, we will

use density functions to describe the distribution of 7 and I\

We define a block to be the sequence of consecutive intervals between a given

adjacent 7,F pair, in either order; if two or more adjacent intervals have the same

extremum value, any one of these may be chosen as the block boundary for the present

purpose. Then using dQ=d7dF for an element of area in the 7,F plane and integrating over



25

the region P > 7 > 0, we may write TJ (Eq.(29)) as

//b1(7.r,l,t)Hi(7,r,l)dQdl

(52)

In Eq,(52), the integrations over the l's extend from 0 to oo,

b (7,F,1 ,1 , ...1 ,t)dfidL ...dl is the number of blocks per interval with block boundaries

7 and F, in the range dQ=d7dF containing m intervals in the range dL ~.dl at time t, and

Hm(7,r,l l>la>...lm)iBgiyenby

... h(im,r) (53)

where the notation is consistent with that of Eq.(ll) and where, as before,

h(x,y) = [g(x) - g(y)][f(x) - f(y)] > 0; (54)

the equality holds in Eq-(54) only if x=y.

We proceed to show that, for fixed 7 and F, there is a set of values L=l. that yield a

minimum value Hm(7,F) of Hm(7,F,l ,—lm) which may therefore be used in Eq.(52) to

obtain a time—dependent lower bound ^(t) for t}\ we further develop the properties of

H (7,F) necessary to construct the desired time-independent lower bound
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To show that H has a minimum value H , for fixed 7 and F, we first show that

the insertion of an interval of length 1 between any two intervals of length 1 and 1 , such

that L < 1 < L , always decreases H. Thus calling H the value of H for the block with no

contained interval and H the value of H for the block containing one interval, we have

H O - H =h(ii>y-[11(1^1) + h a y ]

= b(iIH(i)][i(iHty]+MiIH(i)]Ig(i)-g(i1)] > 0, (55)

where we have used Eq-(54) and where the inequality holds since both g and f are

decreasing functions of 1.

It follows from this result that an upper bound for H (7,F,1 ,1 ..1 ) is
m 1 2 ni

H (7,F)=h(7,F) and that any values of the lfs between 7 and F decrease H below the

upper bound. Furthermore, for F > 7, H is strictly positive since there must be at least

one positive term in Eq-(53). Therefore, since H is continuous and differentiable in the

l*s, it must attain a minimum value

fim(7,r) = h(7,i() + h(M2) +... h(Im,r) >o, (56)

for a set of values 1-=L that satisfy the set of m equations

= ° > for ^O' 1 ' " m~l (57)

where L= 7 and 1 y= T, and where the subscripts x and y denote partial derivatives of
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each block is the same in the real and comparison sequence at t=t^ and hence B (7 ,? ,^)

= B (7,I\tQ). Differentiating $) in Eq.(63) with respect to time, using Eq.(62), integrating

by parts and setting the integrated parts equal to zero since H vanishes on the boundary

7 = r and <7>B vanishes on the boundary 7=0 (no intervals disappearing), we obtain

= J ̂ L [ ) > o, (64)

where the inequality follows from the inequalities <7> < 0 and <F> > 0 combined with

Eqs.(59H60)- Therefore we conclude that

(65)

Thirdly, we note that rj{0) still depends on tQ because it is based on the number of

contained intervals in each block at time tQ. We therefore impose a redistribution of

contained intervals so as to minimize ^(0) as defined by Eq.(63). That is, we define a

time—independent lower bound thx as the minimum of Eq.(63), at tQ=O, obtained by

choosing the functions B subject to the constraint

oo

(66)
f i r .

= I ^ ' j m B
J m=0
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where v is the number of contained intervals per interval in the actual sequence at t=0,

and the constraint

00 00

L Bm(7,I\0) = ] L Bm(7,r,0), (67)m ( 7 , \ )

where 5(7,I\0) is the actual number density function for 7 and P at t = 0.

The result is the desired time—independent lower bound since, using Eq.(66) (dropping the

subscript), we have r](t) > rj(O) > th* ; furthermore, 7/11 cannot vanish, for otherwise

Eqs.(63), (67) and the definition of the B's show that, for t = 0 and 7 # P, B m = B m =

b = 0 for all m, which in turn would imply TJ(O) = 0 (Eq.(52)), contrary to hypothesis.

Further details of the minimization process leading to thy will not be discussed

except to say that it is not difficult to establish that

so that the sum in Eq.(63) may be eliminated in favor of an integrand involving the

product 5(7,r,0)H - , where m is a weighted average value of m. One may then discuss the

minimization process in terms of the Lagrangian multiplier technique.



D

— Q

ZD
V



to
o

x
o

_x
3

T

X
CO



p'
b

bi
ro
o

to

1—

o

CO

o O1
r

Q

0.2
0.4

0.6
0.8

0

10

o --

c

01
O1

b

00

ro
b



MASTER COPY KEEP THIS COPY FOR REPRODUCTION PURPOSES

REPORT DOCUMENTATION PAGE
Form Approved

OMB No 0704-0188

PJOHC 'eoortinc ou^oer *QT :*'s :ceaion of n^rmatio^ s « tm* tec :c average " ^our o«r 'espors«. nciudi^g tre time *or renewing mstrucrions. searching enstmg data sources,
gathenrg aoc ^atntatrmg the data ne*oed. and corro'eting ano reviewing the cctieaion of information Send comments reqaromg thi$ Durden estimate or any other a%oea of Tm*
collection of information, .nciudmg suggestions for reducing tn»s Duroen to Washington neaoouarers Services. Directorate tor information Ooerations and "eDoas. 12 15 Jefferson
Davis Highway. Suite '204. Arlington, «rA 222C2-4302 a no tc the O^ice c* Management ana Budge:. Paperwork Reduaicn P'ojert (C704.0188). Washington. DC 20503

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE

Feb 1991
3. REPORT TYPE AND DATES COVERED

4. TITLE AND SUBTITLE

A One Dimensional Nearest Neighbor Model of Coarsening

6. AUTHOR(S)

W.W. Mullins

S. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Carnegie Mellon University
Department of Mathematics
Pittsburgh, PA 15213

8. PERFORMING ORGANIZATION
REPORT NUMBER

NAMS-20

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES)

U. S, Army Research Office
P. 0. Box 12211
Research Triangle Park, NC 27709-2211

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

The view, opinions and/or findings contained in this report are those of the
author(s) and should not be construed as an official Department of the Army
position, policy, or decision, unless so designated by other documentation,

12a. DISTRIBUTION /AVAILABILITY STATEMENT I 12b. DISTRIBUTION CODE

Approved for public release; distribution unlimited.

13. ABSTRACT (Maximum 200 words)

A one dimensional model of coarsening is developed in which the domain boundaries
are points on a line, either finite (with periodic boundary conditions) or (doubly)
infinite, and a domain is an interval between any two adjacent points. The
postulated equation of motion for the length 1 of a given interval depends only
on the two nearest neighbor interval lengths, yields a zero average rate of change
of interval lengths and makes the state of equal interval lengths unstable. It is
proved that coarsening occurs by the disappearance of intervals. A special power
law form of the equation of motion, treated by an appoximation which ignores
correlations of the lengths of neighboring intervals, shows a self-similar behavior
with an asymptotic distribution of reduced interval lengths at long times that is
time-independent. Comparison of the approximate results with computer simulations
is made.

U . SUBJECT TERMS 15. NUMBER OF PAGES

33
16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF ABSTRACT

UL
NSN 7540-01 -280-5500 Standard Form 298 (Rev 2-89)

Prescribed by ANSI Std Z39-18
298-102



ZOO

Carnegie Mellon University Libraries
-"•••••"•'• ii ii i urn ii i in HI 11


