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Commonly, Martensitic transformations associated with shape memory effects are of first

order. It seems typical that, as one cools one in the austenitic phase which is stable at higher

temperatures, some elastic modulus becomes unusually small, seeming to extrapolate to zero, at a

temperature slightly below the transition temperature. Although there is little evidence to support

it, there is some opinion that a similar effect should occur, as one warms the Martensite which is

stable at lower temperatures. This raises a question which has intrigued me. Experience with

bifurcation theory suggests that, if we accept that those moduli do vanish, one there has a

bifurcation, involving equilibrium branches which seem to be too unstable to be observable. So,

what can we infer, theoretically, about the qualitative features of such bifurcations, from what can

be observed?

What is proving to be useful in describing at least some of the near-transition behavior of

such materials is the nonlinear thermoelasticity theory of Bravais lattices. This involves a

Helmholtz free energy function, hereafter called the potential, which is invariant under an infinite

discrete group. However, the restriction of this to a suitable neighborhood of any configuration is

invariant only under a finite group, the point group associated with this configuration. For our

purposes, equilibria can be considered as homogeneous, unstressed configurations. Then, for

local bifurcation theory, we can consider the potential to be invariant under the point group for the

configuration occurring at bifurcation. Logically, this could be any of the seven point groups

which can be realized in Bravais lattices, and my goal is to construct a fairly general theory of

these. At least for a first look, I'll assume that the potentials are smooth. Also, I will use an old

idea, still in common use among physicists, to reject as unlikely some of the numerous

mathematical possibilities.
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I'll sketch my plan of attack, which is pretty much that commonly used in bifurcation

theory. The potential will be considered as a smooth function of the usual Cauchy-Green tensor C

and 0. The aim is to solve the equilibrium equations (zero-stress condition) for C as a function of

0. So, one considers a solution at a particular value of 0, and tries to apply the implicit function

theorem. What is important for this is a fourth order tensor obtained by differentiating the potential

twice with respect to C or, what is equivalent, the tensor A of linear elastic moduli, considered as a

(symmetric) linear transformation on the space of second-order symmetric tensors. If kerA=O, the

implicit function theorem applies, giving us the local existence and uniqueness of smooth

solutions, nice equilibrium branches. On these, it is not hard to show that the point group of

configurations remains fixed For bifurcation theory, one is interested in equilibria which are limit

points of such branches, at which A has a nontrivial kernel. By a simple continuity argument, the

point group at a limit point of a branch must either be or contain as a subgroup that on the branch.

On a branch, various functions of interest related to the potential, such as A, reduce to

functions of 0. As a consequence of invariance, these will automatically satisfy some equations.

The aforementioned criterion is that one additional equation might well be satisfied at a particular

value of 0, but it is very unlikely that two or more independent equations are satisfied

simultaneously.

In a conventional way, we can define the eigenvectors and eigenspaces of A. As a

consequence of invariance, A will be invariant under the point group associated with the

configuration at which it is evaluated, which can force two or more eigenvalues to coincide.

Necessarily, the eigenspaces are invariant under this group. If the number of distinct eigenvalues

is as large as it can be, these spaces are also irreducible. That is, they contain no proper subspaces

which are also invariant under the group. To have a non-trivial kernel, at least one eigenvalue of A

must vanish, giving one equation to be satisfied. By the aforementioned criterion, it is then

unlikely that any two eigenvalues will also be equal, unless this is forced by invariance. So, the
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eigenspaces, in particular the kernel, are irreducible spaces and, of course, such eigenspaces are

orthogonal to each other. By using these properties, one can get useful characterizations of the

eigenvalues and eigenspaces, for the various point groups. After some calculation, one finds that

the possible dimensions of eigenspaces are one, two or three. It is pretty clear that the qualitative

character of bifurcations will depend somewhat on the point group involved and, then, on which of

the different eigenvalues vanishes, at least. I'll sketch my my strategy for helping to reduce the

numerous possibilities to a manageable list of mathematical problems.

To proceed, it is convenient to introduce an orthonormal basis of eigenvectors of A,

evaluated at a putative bifurcation point, to serve as a basis for symmetric second order tensors, in

particular, values of C. Using the implicit function theorem, one can solve the equilibrium

equations for some components of C in terms of the others and 0. By substituting this into the

potential, one gets the reduced potential, a function of a smaller number of deformation variables,

equal in number to the dimension of the kernel. Essentially, these are what are called "order

parameters" by physicists. Using the implied uniqueness, one can determine what invariance the

reduced potential inherits. Also, from the way it is defined, the first and second derivatives of the

reduced potential with respect to the order parameters vanish, when evaluated at the bifurcation

point. By the procedure described, and with the order parameters interpreted as rectangular

Cartesian coordinates, the latter invariance groups turn out to be finite subgroups of the orthogonal

group in one, two or three dimensions, making it easier to relate these bifurcations with some

occurring in other kinds of applications.

In one dimension, either the group consists of the identity or it also includes reversing the

sign of the variable. In the two-dimensional case, one gets groups generated by a rotation with

angle 7C/3, TC/2 or 2TC/3 and an improper transformation. With a suitable choice of the basis of

eigenvectors, the latter is represented by the matrix

r - 1 0 V
0 1
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There is just one three-dimensional case, associated with the cubic group, described below. For

this, my calculations give a group of order 24, generated by two improper transformations: use the

negatives of two rotations with angle K/2, about two different crystallographic axes. So, the

reduced potential is a function which is invariant under one of these six groups. Analyzing the

likely bifurcation patterns for the six is a manageable task. This, along with a chart linking these to

the original physical possibilities, provides pictures of what I would regard as typical bifurcation

patterns in Bravais lattices.

Here, I won't try to elaborate the bifurcation patterns produced by analyses of all the

possibilities. I have not made a thorough search of the literature on bifurcation theory, so can't

exclude the possibility that all of these analyses are presented somewhere in it. Certainly, some

are.

A very commonly observed possibility has as Austenite a cubic crystal. Since the cubic

group is maximal, a limit point also has this symmetry. With the usual choice of crystallographic

vectors as an (orthonormal) basis, and with the bifurcation point taken as a reference, the

eigenspaces mentioned above are as follows.

a) one-dimensional; tensors proportional to 1.
b) two-dmensional; traceless tensors of diagonal form
c) three-dimensional; tensors with zero diagonal components.

Observations indicate that it is the eigenvalue associated with the two-dimensional space which

vanishes. With the implicit functional theorem, it is easy to show that nearly equilibria will have

zero off-diagonal components, so it suffices to consider only those of diagonal form. For these,

one orthonormal basis of eigenvectors is given by

V2 Ei =diag (1,-1,0)
V6 E2 = diag (1,1,-2)
V3 E3 = diag (1 ,1 ,1) .

Assuming C is diagonal, we can write
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C=

and, with the implicit function theorem, we can solve the equilibrium equations for X3, in terms of

x 1, X2 and G, using this to get a reduced potential function of the form

F(xi, X2, G). At bifurcation G=6B, XI=X2=0, we will have

9F 32F A . . , o0 l o r 2

To calculate the group leaving F invariant, we proceed as follows. Let Q be any of the 3x3

matrices describing the cubic group: it transforms C into QCQT, taking diagonal tensors to

diagonal tensors. Calculate the quantities X̂  such that

3

Since E3 and the pair (Ei, E2) lie in different invariant subspaces, one gets relations like ^=^2=

and, with Ei orthonormal, one finds that the matrices

X\ X\

are orthogonal. Then, with

, 3 N
QCQT = Q XxiEi QT=

0=1 )
3

from which one can read off the transforms of xi and X2, which is also the invariance group for F.

This works out to be the group generated by a 120° rotation and the improper transformation
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-1 0

0 1

With F invariant under this group, it is easy to show that

which describes a cubic equilibrium branch, passing smoothly through the bifurcation point.

Clearly, F is an even function of xi, so

I won't belabor the analysis, but, by a fairly elementary exercise in bifurcation theory, one can

deduce that the likely possibility is that the other equilibrium equation has a solution of the form

xi=O, X2=f(6)^0, f(0) being a smooth function, vanishing at the bifurcation temperature.

Applying the invariance group to this gives three symmetry-related branches of this kind:

physically, these are crystal configurations with tetragonal symmetry. I did consider the possibility

of having additional branches, finding that this is unlikely. In terms of the aforementioned

observations, one expects all eigenvalues to be positive on the cubic branch, for G greater than the

value 0B at bifurcation. According to my analyses, one is negative on each of the other branches,

indicating that these are quite unstable. So, this gives some impression of what kinds of results

can be obtained to characterize the more likely kinds of bifurcation patterns in Bravais lattices.
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