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Abstract: We consider functional of the calculus of variations of the form

F(u) = / / ( x , u , u ) dx
Jo

defined for u € Wl'°°(0,1), and we show that the relaxed functional F with respect to
weak W} >l (0,1) convergence can be written as

u)= / / ( z , t i V ) d x
Jo

where the additional term L( u), called the Lavrentiev term, is explicitly identified in terms
ofF.

1. Introduction

The term Lavrentiev phenomenon refers to a surprising result first demonstrated in
1926 by M. Lavrentiev in [La]. There it was shown that it is possible for the variational
integral of a two-point Lagrange problem, which is sequentially weakly lower semicon-
tinuous on the admissible class of absolutely continuous functions, to possess an infimum
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on the dense subclass of C1 admissible functions that is strictly greater \han its minimum
value on the full admissible class. Since that time there have been additional works de-
voted to:
(a) simplifying the original example (Mania [Ma], Heinricher & Mizel [HM1]);
(b) demonstrating that the phenomenon can occur even with fully regular integrands

(Ball & Mizel [BM1], [BM2], Davie P a ] , Locwen [Lo])
(c) devising conditions which forestall occurrence of the phenomenon (Angell [An], Ce-

sari [Ce], Clarke & Vinter [CV])
(d) sharpening the specification of the precise dense subclass of admissible functions for

which the La vrentiev gap occurs (Ball & Mizel [BM2], Heinricher & Mizel [HM1]);
(e) presenting an analogous gap phenomenon in stochastic control and in certain (deter-

ministic) Bolza problems (Heinricher & Mizel [HM2], [HM3]).
Ball and Mizel's investigation [BM2] was undertaken in response to certain previ-

ously unresolved foundational questions in nonlinear elasticity. There remains open the
question of whether in boundary problems of nonlinear elasticity the presence of Lavren-
tiev 's phenomenon signals the onset of elastic fracture: the force distribution associated
with an elastic deformation which provides a global minimum for the elastic energy is then
more singular than that associated with minimizers over subclasses of smooth admissible
deformations.

The Lavrentiev phenomenon also provides a serious obstacle for numerical schemes
of minimization: the cost of any sequence in the smoother admissible class is bounded
away from the true minimum value. Furthermore, when a minimizer over the smoother
admissible class exists, the approximation scheme typically converges to this suboptimal
solution. Ball and Knowles [BK] (see also [Kn] and [Zo]) have succeeded in the devel-
opment of numerical approximation schemes which do detect the lower energy singular
minimizers.

As a simple example of a problem in which the Lavrentiev phenomenon arises, con-
sider the functional

f
Jo

(uHx)-x)2\uf(x)\edx
o

over the set
A* { u € W u ( 0 , l ) : u(0) = 0 ,

Here (see [Mil] or [He]) the global minimum over the set A is given by

while the infimum over the C1 or Lipschitz functions in A is given by

o 5 g 5 6

The present article revises the above classical view of the phenomenon. Here we
adopt the viewpoint that the Lavrentiev gap is actually a relaxation phenomenon assigning



to each admissible function u a Lavrentiev term L(u) > 0 which specifies the magnitude
of the gap between the value of the variational functional itself on u and the smallest se-
quential lower limit of the values it takes on Lipschitzian admissible functions converging
weakly to u. Accordingly, given a sequentially weakly lower semicontinuous (for short
"l.s.c.") functional G defined on the class of all admissible functions, we proceed first to
examine the functional F which coincides with G on the Lipschitz class but is assigned
value +00 on all non-Lipschitzian admissible functions. We seek the l.s.c. envelope F
of F (i.e. the maximal sequentially weakly l.s.c. functional dominated by F) on the full
class of absolutely continuous admissible functions. Then L(u) is the quantity (nonneg-
ative because of the l.s.c. behavior of G) defined for all admissible functions u by

In Section 2 a characterization of L(u) is provided in terms of the value function
V associated with the Lagrange problem. This description reveals, in particular, that
the Lavrenriev term is local in nature; the quantity L(u) is given as a limiting value of
V(x,u(x)) as x converges to a critical abscissa for the integrand (Theorem 2.1). This
description is then utilized in Section 3 to provide a rather explicit calculation of L( u) for
integrands satisfying a homogeneity condition (whose relevance to the Lavrentiev phe-
nomenon was pointed out in Heinricher & Mizel [HM1]) as well as for the far larger class
of integrands which only satisfy the homogeneity condition in an asymptotic sense near
the relevant critical abscissa. In particular, the integrand presented by Mania [Ma] is fully
analyzed by following this approach. Section 4 is devoted to the analysis of the Lavren-
tiev phenomenon in the case of an integrand which is discontinuous in its arguments; here
the Lavrentiev term L(u) is again calculated explicitly. Finally, in Section 5 the Lavren-
tiev phenomenon is considered in a very general framework; examples are presented of
conditions under which the Lavrentiev term is identically zero, so that the Lavrentiev phe-
nomenon is forestalled, and an example involving a second order autonomous integrand
is described for which the Lavrentiev phenomenon is present, despite the demonstrated
absence of the phenomenon in the case of first order autonomous integrands (Clarke &
Vinter [CV], Ambrosio, Ascenzi & Buttazzo [AAB]). Moreover, the presentation of cer-
tain multidimensional problems permits a clear discussion of the Lavrentiev phenomenon
for general integral functional of the calculus of variations.

2. A General Representation of the Lavrentiev Term

In this section we prove a rather general result on the representation of the relaxed
functional associated to an integral of the calculus of variations.

Let £1 be the interval ]0,1[; we consider the following spaces:
Wl'} (0 ,1) the space of all absolutely continuous functions u : Q —• R;
Lip[0,1] the space of all Lipschitz continuous functions u : Cl —• R;
Lipioc]0,1] the space of all functions u : Q —• R which are Lipschitz continuous on

every interval [ 6,1] with 6 > 0.



Moreover we set

,l] : u(0)=0}.

Let / : ft x R x R - • R be a function such that
(2.1) f is of Caratheodory type {i.e. /(x,5,2) is measurable in x and continuous in

is,*));
(2.2) /(x,s,0 is convex on R for every (z,s) € ft xR;
(23) /(x,s,0) =0 for every (x,s) g Q x R ;
( 2 4 ; there exists a function u : Q x R x R - ^ [ 0 , + o o [ w i r t w ( i , r , t ) integrable in x

and increasing in r andt such that

0 < f(x,s,z) < u)(x,\sl\z\) for every ( 1 , 5 , 2 ) € ft x R x R .

For every ug^wc define

G(u)« / /(x,u,u')dx
Jo

F(u) = ( G ( u ) tfti€Lip[O,l]
I +00 otherwise

and we denote by F the greatest functional on A which is sequentially l.s.c. with respect
to the weak Wl |] (0,1) topology and less than or equal to F. Our goal is to give a repre-
sentation of F on A. Of course, since G is sequentially weakly i.s.c. on Wl >l (0 ,1) (see
for instance Ioffe [Io], or Buttazzo [Bu] Chapter 4), we have

~F(u) > G{ u) for every ueA.

Moreover, by the inequality F < F we get

F(ti) =G(u) for every u e Lip[ 0,1].

In order to characterize the functional F on A we introduce the value function
V(x,s) defined for every (x,s) 6 ft x R by

V(x,s) = inf \ I f{y,u,u)dy : u€Lip[0,x] , u(0) = 0 , u(x) = s\
Uo J

and its lower semicontinuous envelope V(x, 5) with respect to s

V(xys) = lim inf V(x.t).

Finally, for every u G i w c define the "Lavrentiev term"

(2.5) L(u) =liminf 7(x,u(x)).



The main result of this section is the following.

Theorem 2.1. For every u € A we have

In order to prove Theorem 2.1 we need some preliminary results.

Lemma 22. Letu € A and let uh 6 Lip[0,1] be such thatuh{0) = 0 anduh —> u
weakly in W1^1 (0,1). Then

G(u) + L(u) < lim inf F(uh).

Proof. Fix 5 > 0; for every h € N we have

F(ufc)*/ f(x,uh,u'h)dx+ f(x,uh,u'h)dx>
Js Jo

ri
> / /(x.tifc.u'fcJdz+VCfi.ttACfi)) >

/•i _
> / f(x,uh,u'h)dx+V(6,uh(8)).

Js

Passing to the liminf as h —» + oo and recalling that the assumptions made on the integrand
/ provide the weak sequential W*il(0,1) lower semicontinuity of the functional v •->

1

lim inf F(uh) > / f(x,u,u') dx + Uminf V(6,uh(8)) >

> / f(x,u,u')dx + V(6M6)),
J 0

where the last inequality follows from the fact that V(x, s) is l.s.c. with respect to s.
Passing now to the liminf as 6 —• 0, we obtain

/•i _
liminf F(uh) > Urn inf / /(x.u.ti') dx + lim inf V(6,u(6)) =



Lemma 23. The functional G + L is sequentially l.s.c. on A with respect to the weak
Wl>\0,\) topology.

Proof. Take u, u/> 6 A with u^ —> u, weakly in W1*1 (0 ,1) ; we have to prove that

G(u) + L(u) < lim inf \G(uh) + L(u>>)].

Without loss of generality, we may assume that the liminf at the right-hand side is a finite
limit. Let XH —• 0 be a sequence such that

(2.6) V(xh,uh(xh)) < Uuh) + \ for every h € N;
n

by the definition of V and by the properties of / we may find a sequence s/> —> 0 such
that for every / i g N

(2.7)

(2.8)

/•I /•' 1

(2.9) / f(x,uh + sh-uh(xk),u'h)dx< f(x,uh,u'h)dx+-r.

Finally, let v^ e Lip[0, ih] be such that

(2.10) vfc(0)»0, vh(xh)*ah, f * ' \
Jo h

By property (2.3) of / it is easy to see that v/, can be taken monotone; hence, setting
_ fufc(z) +Sh-Uh(xk) ifx>Xh

h \vk{x) ifx<xh

we have Wh € Lip[0,1], Wh(0) = 0, and

\M-<\\mo,i)< r'(KI + |uil)«ix-
JO

•/o

Since 5^ —• 0 and u^ are equi-integrable on Q., we get

lim '



so that WH —> u weakly in IV1-1 (0,1). Therefore, by using Lemma 2.2 and (2.6H2.10),
we obtain

G(u) + L(u) < Uminf F(wh) =

liminf /liminf / /(z,u f c+ «*-!**(ZA),U'O dx+ / /U.Vfc.Vfc) dx <

<liminf f(x,uh,u'h) dx + V(xh,sh) + -\<

< Uminf \G(uh) + L(ufc) + - = lim i

n

inf [

Proof of Theorem 2.1. It is easy to see that

L(u) = 0 for every u e Lip[ 0 ,1 ] , u(0) = 0 ,

so that G + L < F on A. By Lemma 2.3 we have G + L < F on >l, and so the proof is
achieved if we prove that

T(u) < G(u) + L(u) for every u € > l .

Let us fix u G ̂  and let x^ —• 0 be such that

(2.11) L(u) = lim

By the definition of V and by the properties of / we may find a sequence s/» —> 0 such
that for every h € N

(2.12) h ( ) | <

(2.13) V(xk,sh) <V(sA,u(z*)) + i ,

(2.14) / f(x,v + sh-u{xh),u')dx£ /(i,u,u')di+-.

Finally, let v/> € Ltp[0, Xh] be such that

(2.15) v f c(0)=0, vA(xA)=5h, /* */(x.v*,Vfc)di< V(x

Jo
As in the proof of Lemma 2.3, setting



we have WH € Lip[0,1], WK(O) = 0, and

lim |K-u ' | | L . ( 0 , i ) = 0 .

Hence WH —• u strongly in W1-1 (0,1) and, by using (2.11H2.15), we obtain

F(u) < liminf F(wh) =

= 1Sli«f / f(x'u+$h-u(xh),u')dx + J f(x,vh,v'h) dx\ <

<liminf [/"

< lim inf

3. Some Particular Cases

In this section we discuss some particular cases in which the expression of the Lavren-
tiev term L( u) can be reduced to a simpler form. To begin with, let us consider an inte-
grand / satisfying conditions (2.1M2.4) and the following invariance property (see Hein-
richer&Mizel[HMl]):
(3.1) there exists 7 €]0,1[ such that for every t > 0 and(x,s,z) G H x R x R

In this case the following proposition holds.

Proposition 3.1. For every u 6 A

u) = liminf V
x-0

Proof. Let us fix (x,s) 6 Q x R and u € Lip[0,x] with u(0) = 0 and u(x) = s.
Setting y - tx and v(t) = x~^u(tx) we get

/(y,ti(y),tt'(y))dy- / z/(xl,u(xt),u'(xt)) di =

= f x/(xt,xVt),x''-1v'(t))dt= /" /(t,v(t),v'(t))dt.



Therefore

V(x,a) =inf {F(v) : v 6 l i p [ 0 , l ] , v

and the conclusion follows from formula (2.5) for the Lavrentiev term

Example 3.2. Letp > l , a 6]0 ,1[ , and let

It is easy to see that, if a = (p - l ) / ( p + 1), then / satisfies all conditions (2.1W2.4)
and the invariance condition (3.1) with 7 = a. By Heinricher & Mizel [HM1], for every
$ € R we have

inf {F(v) : v € L i p [ 0 f l ] f i/(0) = 0 , v( l) = 5} = G(u3)

where u3 is the function

Therefore, an easy calculation gives

if5 > 1

Note that in this case, if u(x) = xa, we have G( u) = 0 whereas

We consider now a larger class of integrands which only satisfy the homogeneity
condition in an asymptotic sense near the relevant singular abscissa. Let p > 1, let a 6
[ 1, p[, and suppose the integrand / : Q x R x R —* R has the form

f(x,3tz)=x-la(x,s)\z\p

where a(x, s) is a nonnegadve continuous function such that, setting 7 = (p — a) /p , for
every y e Q the functions mv, A/y : R —> [0 , +00] defined by

f mv(s) = inf (o(x,x75) : x < y}
1 A/y(5) = sup (o(x,x^) : x < y]

are locally bounded.



For every x, y € Q with x < y we consider the functional

F,(u)« f:/(*,«,«') (ft
Jo

Jo

and the respective value functions

V(x,s) =inf (Fx(u) : u€.A(x,«)}
V.(x,y,a) = inf {F.X|»(u) : u£.4(x,s))
V(x,yf«)«inf {Fsyu) : u€-A(x,s)}

where A{x,s) is the set

A(x,s) = {ueLip[0 ,x] : u(0) = 0 , u(x) = 5}.

It is immediately seen that for every s € R and every x, y € & with x < y

(3.2) V.(x,y)5) < V(x,s) < V(x ,y , s ) .

Hereafter we shall suppress the parameter y in expressions such as V«(x,y,s) and
V ( x , y, s) when no confusion can arise.

We now proceed to evaluate the functions V. and V* by using a verification argument
based on the study of variational problems of the form

(3.3) inf I ( V -

where m : R -* R is a locally bounded Borel function. If I(u) denotes the integral in
(3.3) and W{ x, s) is its value function, we will show that

where txo(t) « ( t / x ) ^ ^ 1 ^ . Indeed, setting for simplicity k = pif/(p - 1), the fol-
lowing proposition holds.

Proposition 33. The function

10



is the solution of the Hamilton-Jacobi equation

, U 1 hSh'(S) = sup {Qh'(S) -Tn(5)|Q|" :
(*A) U(0)=0
and for every (x,s) £ i i x R

) -MaT^a) = / ( u 0 ) .

Proof. By cxplicidy carrying out the maximization, the Hamilton-Jacobi equation (3.4)
becomes

(h'(S)p

1 MO) = 0
that is

Now let u £ A(x,s); from (3.4), taking S(t) = f M * ) andQ(t) = t ' - V U ) , we have

where the last equality follows from the chain rule for composition with Lipschitz func-
tions (see for instance Marcus & Mizel [MM1]). Integrating on ]0 , x[ yields

> f (
- J o

(3.5)

where we have used the fact that u 6 Lip[0, x] implies that

limt-^u(t) = 0.

Taking the infimum on u in (3.5) we obtain

On the other hand, the functions

{(t/x)kS ift>B

belong to A( x, s), so that for £ small enough

o

11



Passing to the limit as e —» 0 it is easily seen that the first integral goes to 0, hence

W(x,s) <

An easy calculation shows that I(uo) = h{x~i$), and this achieves the proof. •

We can now evaluate the functions V. and V. From Proposition 3.3 we get

where

MS) = f
Jo

h'(S) [
Jo

Therefore, from inequalities (3.2), since the functions /i. and hm are continuous,

(3.6) h9{x-i3) < V(x,s) <hm{

Recalling Theorem 2.1, formula (3.6) yields for every u € A

(3.7) liminf hjx^u(x)) < L(u) < liminf hm(x'nu(x)).

Finally, taking in (3.7) the limit as y —> 0, and applying the monotone convergence theo-
rem, we obtain the following result

Theorem 3.4. Under the assumptions above on / ( x , 5, z), for every u € -A we have

lim inf r <L(u) <

< pkv~l lim inf r*
where the functions mo, Mo are given by

mo (a) s sup

M0(s) =inf (Mv(s) :

> 0 } « lim my(s)
* y-*o* v

> 0 } = lim My(s).

Remark 3.5. The same son of analysis can be carried out whenever

12



where tp is a nonnegative superlinear convex function satisfying <p(0) = 0. In the case
considered here <p(z) = \z\p.

Example 3.6, Consider the functional studied by Mania (see for instance Mania [Ma],
Cesari [Cc])

F(u) = / (u — x) \u\pdx ( p > 3 ) .
Jo

The integrand / has the form

/ ( x , s , z ) = (s 3 — £)2 |*lp = x2(s*x~l — l ) 2 | * | p

so that a = 3 , 7 = ( p - 3 ) / p , and a(x,s) = (3 3 x - 1 - I)2 .
When p > 9 / 2 , which corresponds to 7 > 1 / 3 , one finds easily

tno (a) = A/o (s) = 1 for every s € R

Therefore, from Theorem 3.4

hm inf
p_ 1 y ;^o" x^3 '

In particular, L(u) = +00 if u(x) = x1 / 3 .

When p ss 9 / 2 , which corresponds to 7 = 1 / 3 , one has

mo(5) = Mo (5) « (s3 — l ) 2 for every 5 6 R

whence
\7/2

y x—»o*

withZ(x) =u3(x)/xand^T(Z) = |Z|3'2 (15 Z2 - 4 2 Z + 35). In particular, if u(x) =

35 \1

When p 6] 3,9 /2[ , which corresponds to 7 < 1 / 3 , Theorem 3.4 docs not apply because
the functions my and My are not locally bounded However, it is possible to show that in
this case the Lavrentiev phenomenon does not occur, that is

L ( u ) = 0 whenever / / (x ,u ,u') dx < +00.
Jo

Indeed, if u € A and

13



for a suitable sequence xc —> 0, taking

u(x) if x > xt

su(x c) /z£ i f x < x £

we get

L(tt)<liminf

lim

- X
u(xt)

T 2 J
On the contrary, if there exists c > 0 such that

(3.8)

for all x small enough, we have

Jo Kx'u>u)dx^2j0

-1

for suitable 0 < x£ < y£ < £. Therefore,

U(X«)

u(x£)

which is in contradiction with (3.8) i f / (x , u, u') € L1

4. An Example with a Discontinuous Integrand

Let us fix a real number p > 1 and a function <p € W1'1 (0,1) such that y?(0) = 0
and p € Wi*(611) for every 6 > 0. Define the mappings av :]0,1[ xR -» R and

^(0,l) ->[0,+oo]by

J 0 ifs = p(x)

+oo

,!), u ( 0 ) = 0

otherwise,

14



and consider the relaxed functional F : W1*1 (0,1) -> [0, +oo] defined by

. F = sup {G : Wx-1 (0,1) -> [0, +oo] : G < F, G sequentially weakly l.s.c.}.

The main result of this section is the following.

Theorem 4.1. For every u € Wl'l(0,1) withu(O) - 0 wehave

The proof of Theorem 4.1 will be obtained by means of some preliminary lemmas.
Let us defined 0,1) = {u € Wl'l{0,l) : u(0) = 0} and, for every u 6 ^(0,1)

u)= f
Jo

L(u) = hm inf

\+oo otherwise.

Since

(4.2) Um ' u ( j ) = o foreveryu€ W1>p(0,l) withu(O) = 0 ,
x—»0* I ^ ~

we have
G<G+L<FP<F on

Moreover, since G is sequentially weakly W1'1 (0,1)-l.s.c,

(4.3) G<F^<T o

Lemma 4.2. Letu € -4.(0,1) be such that G(u) < +oo. Thenu 6 WlJ>(6,\) forevery
6>0.

Proof. Setting £ = { i 6 ] 0 , l [ : u(i) = <p( i ) } , for every 8 > 0 we get

f | i i?dz= /" |tt'|>»di+ /" |
JS J]S,\[nE J)6M\E

= f |¥5'|pdi+ /* ov

< f \<p'\pdx + G(u) <+oo.

15



Therefore « € Wl*( 6,1). •

Lemma 4 J. For cveryu 6.4(0,1) andeverye>0 there exists ue € Wl'°°(0,l) such
thatuc(0) = 0 , u e -> u strongly in W^HO,!), and

(4.4) liminf F( u«)< G( u) + lim inf L J

Proof. Let u € A( 0,1) be such that the right-hand side of (4.4) is finite; then, by Lemma
4.2, u € Wl*(6,1) for every 6 > 0. Let xt -» 0 be such that

( 4 5 )
l

It is known (see for instance Liu [Li] or Marcus & Mizel [MM2] Lemma 1) that for every
e > 0 there exist an open subset Ae of ]x£, 1[ and a Lipschitz function vc (actually ve

can be taken in C1 (R) ) such that

< £, v£ = u on

Moreover, possibly refining the sequences (Ae) and (v£) we may also assume that

f i |t;c(x€) |
P |u(x£)|P

(4.6) / \ve\
pdx<t and ——i 1-1— < e.

Define now
ve( i) if i >

<

We have ut € W 1 > o o ( 0 , 1 ) , u e - • u strongly in Wl ' ' ( 0 , 1 ) , and

F(ut)= [ 'av(x,ut)\u'e\
J>dx+ f av(

Jo JA.

+ f av(x,ue)\u'e\^dx
J)z.M\A<

A ,v;|
JA,

Passing to the limit as e —> 0 + , and recalling (4.5) and (4.6), we obtain (4.4).

Remark 4.4. From Lemma 4.3 we obtain immediately

— lu(x)|p

(4.7) F(u) < G(ti) • liminf J p - for every u €>4(0 , l ) .

16



Therefore, by (4.2) and (4.7) we have

J<FP on.A(0,l).

Hence T < F~p which, together with (4.3) gives

T = TP on^(O.l).

Thus, in what follows, we shall use the functional Fp instead of F; this allows us to use
functions instead of Lipschitz functions in the approximations.

Lemma 4.5. Foreveryu € .4(0,1) andeveryt > 0 there exists ue € Wl*{0,l) such
t(O) = 0,ue -*u strongly in Wltl (0,1), and

(4.8) liminf Fp(u£) <G(u) + liminf
£—0* V — S-^)*

Proof. Le tu€ .4 (0 , l )be such that the right-hand side of (4.8) is finite; then by Lemma
4.2 u e W1>T>(6,1) for every 6 > 0. If u i pin]0,6[ for a suitable 6 > 0 , we have

= /
Jo

and sou £Wlj>(0,\). In this case it is enough to take ut = u to satisfy our requirements.
Otherwise, let yt -* 0 be such that u( ye) - <p( yt), and let i e —* 0 be such that

(4.9)

Possibly refining the sequence (xe) we may assume that xe < ye for every £ > 0. Define
now

(u(x) ifx>yt

• i f x < x t .

We have ue € W^iO, l ) ,u e -> u strongly in Wl-l(0,1), and

u«(x)

/ :

Passing to the limit as t —• 0*, and recalling (4.9), we obtain (4.8).

We are now in a position to prove Theorem 4.1.

17



Then

Me |(P-D/P -
1
£

which contradicts (4.14) and (4.15).
Let us prove the last inequality in (4.13) by contradiction. Assume

( 4 . 1 7 ) Ita. sup > Urn sup

and let i £ —* 0 be such that

x-0-

From (4.17) and (4.18) it follows that |y>(i£)| < | u ( i t ) | for e small enough. As before,
if <p(0) i 0, since u(0) = 0 andG(u) < +oo, we would obtain u € Wx*(0,l) which
contradicts our assumptions. Then <p( 0) = 0, so that, setting

= max { i € [0 ,

,u) = 1 in ]y£ )x£[. Then, as in the previous part, setting

We = / O^(l ltt)|tt'|pdx,
Jy.

we have we -+ 0 and

fSt, ,1P . r x

that is

This implies

Xe

which contradicts (4.17) and (4.18). •

Remark 4.7. By Proposition 4.6 we may write

lim inf otherwise.

£
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Moreover, when \*p(x)\* I x*~x tends (as x - • 0*) to a limit (finite or not), taking into
account (4.2) and Proposition 4.6 we get

— \u(x)\p

F(u) = G(u) + liminf ' V for every u 6-4(0,1).

5, Further Remarks

We may consider the Lavrentiev phenomenon in a very abstract framework: given a
topological space X, a dense subset Y C X, and a functional F : X —> [0, +oo] define

Tx - sup{G:X — [0,+oo] : Gis l.s.c., G < F on X}

TY = sup {G: X -* [0,+oo] : G is l.s.c, G < F on Y).

It is clear that Tx < Fy, hence the Lavrentiev term L( u) defined for every u e X by

L(u) = f V U ) -Fx(u) (L(u) « 0 if FJC(U) = +oc)

turns out to be nonnegative. In particular, L = Fy — F whenever F is l.s.c
Consider now the case when X = Wl*l(Cl; Rm) , Y = Wl'°°(Cl; Rm) , and

F(u) =

Here Q is a bounded open subset of R n with a Lipschitz boundary, X is endowed with
the weak convergence, and / (x , 5,2) is a nonnegative Borel integrand.

In some situations^ may occur that L(u) « 0 whenever F*(u) < +c», so that
the relaxed functional Fy coincides with Tx • This is the case, for instance, when the
integrand / is of Caratheodory type (in the sense of (2.1)) and satisfies a condition of the
form

/ £ 1 \ f\ ID •

withp> 1,0 <c\ < C2,01,02 € L !(Q) f &€ C(R). Indeed, in this case the following
proposition holds.

Proposition 5.1. The functionalsFy andFx coincide.

Proof. Since FJC < Fy and since F is finite only on W} *( Q; R m ) , in order to conclude
the proof it is enough to show that

(5.2) Ty(u) <F(u) foreveryu€
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Let u € Wl *( Q; R m ) and let (un) be a sequence in Lip[ 0 , 1 ] converging to u strongly
in Wx *( Q; R m ) . Using the lower semicontinuity of Fy and the fact that by the second
inequality of (5.1) F is continuous in the WltP norm (cf. e.g. [ET]), we get

Fy(ti) < lim inf Fy(uh) < lim inf F(xik) = F(u)

that is (5.2). •

Another class of functional for which the Lavrentiev term L( u) vanishes whenever
u) < +00 is given by all integrals of the form (here n = m = 1)

(5.3) F(u)= f{x,u')dx
Jo

where / : Q. x R —> [ 0 , +oc] is a Borel function such that
(5.4) fix,-) is convex and Ls.c. onR fora.c. i g Q ;
(5.5) there existsuo € Lip[0,1] withF(uo) < +oo,
Then F is sequentially weakly Ls.c. and the following proposition holds (see De Arcan-
gelis [De]).

Proposition 5.2. Let / : f l x R —• [0,+oo] 6e a Bore/ function satisfying (5.4) and
(5.5), and let F be given by (5.3). Then we have

Fy(u) =F(u) foreveryueWl*l(0,l).

Proof. By considering the function

we may reduce ourselves to the case uo - 0 in (5.5). Moreover, the assumptions made
on / imply that the functional F is sequentially weakly Ls.c. on Wl>l(0,1). Therefore
we have

Fy(u) > F(u) forevery u 6 W u ( 0 f 1).

In order to prove the opposite inequality, fix u 6 Wl'} ( 0 , 1 ) , and for every h € N and
i g f l define

ti/i(i)«ti(O)+ f (u'(t)
Jo

We have that u/> 6 Lip[0,1] and
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Hence UK-* v strongly in W1*1 (0 ,1 ) , and so, by the convexity of / ( x , •),

Ty(u) < liminf F(UK) *

= lim inf / /(x,u')dx+ / /(x,/i)dx+
h-*+oo lJ{\u'\<h} J{uf>h)

< liminf | J /(x,u')dx+

< / f(x,u) dx + liminf / / ( x , 0 ) d x = / / (x ,u ' )dz ,

where the last equality follows from the fact that / (x ,0 ) has been supposed integrable
and meas({|u/| > h}) —• 0 as h —• +oo. Therefore the proof is completely achieved •

It is known (see Proposition 5.2 and also Clarke & Vinter [CV], Ambrosio, Ascenzi
& Buttazzo [AAB]) that if n = m = 1 then in order to have the Lavrentiev phenomenon
(that is L( u) ^ 0 for some u € X) the integrand / must depend on all its variables x, s, z.
If n > 1 and m = 1, on the contrary, we may have the Lavrentiev phenomenon even for
integrands of the form / ( x , z) (see De Arcangelis [De]), whereas if n > 1 and m > 1
an example in which the Lavrentiev phenomenon occurs has been provided by Bethuel,
Brezis & Coron [BBC] and by Giaquinta, Modica & Soucek [GMS] with

otherwise.

In the case n > 1, m > 1 the Lavrentiev phenomenon may occur even with integrands
of the form / = / ( * ) ; indeed Mliller [Mil] (see also Marcellini [Marl], [Mar2]) showed
that if n= m = 2 ,p 6]4/3,2[ ,and

F(u) = f |det£>u|dx (u (

with the weak Wl * convergence, one has

) forsomeu ( y )

The problem of determining whether for n > 1, m > 1, / = / ( * ) the Lavrentiev
phenomenon can occur in general with Lsx. functional of the form

F(u) = f f(Du)dx
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is, as far as we know, still open (except in the case / (z ) convex, where L = 0 under some
mild assumptions on / or on Q).

In view of the result of Clarke & Vinter [CV] forestalling the presence of a Lavren-
tiev gap in the case of first order autonomous integrands, it seems useful to present the
following example.

Example 5 3 . The autonomous second order two-point Lagrange problem with regular
integrand given by

F(u)= [ [(u'(x)-|u(x)|4/9)lg|ul'(x)|7l + e|ulf(x)|2]dx
Jo

exhibits the Lavrentiev phenomenon on

A= ^ 6 ^ ( 0 , 1 ) : u(0) = u'(0) = 0 , u( l ) = 6 > 0 , u ' ( l ) = o > 0 } .

That is, for t small enough,

inf {F(u) : u G A) < inf {F(u) : u 6 A D ^ 2 ' ° ° ( 0 , 1 ) } .

In fact, it can be shown (sec Mizel [Mi2]) that in this example the critical dense subclass
of A is the subclass consisting of all W2t5(0,1) admissible functions.
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