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1. INTRODUCTION.

A simple model designed to reflect significant properties of defective crystals was

introduced by DAVINI [9]. This continuum model reckons that the state of a crystal is given by

prescribing a matrix of lattice vectors L and a positive scalar mass density p over a domain Q and

is designed to mimic basic features of the atomistic picture of a crystal as a rather stable collection

of identical atoms. To be specific, in real crystals there are generally very many defects, for

example 106edge dislocations may cross a square centimetre section of material. Away from any

particular defect there is a readily identifiable crystal lattice which extends for many hundred units

of lattice spacing, but close to the dislocation (within distances of the order of a few units of lattice

spacing) one might say either that there is no well-defined perfect lattice of atoms, or that lattice

vectors jump in somewhat ambiguous fashion. The loose assumption of the model is that a process

of averaging over distances of a few units of lattice spacing produces a uniquely defined set of

three linearly independent lattice vectors, and a mass density p, and it is tacit that these averages

vary over what we might call "macroscopic" length scales.

In a perfect crystal lattice identical atoms are located at all position vectors

x = miai + m2a2 + m3a3

with mi, m2, m3 € Z, ai, a2, a3 e [R3. The vectors ai, a2, a3 are called the lattice vectors and that

unique matrix L such that Lei = ai for i = 1, 2, 31 is called henceforward the lattice matrix. Lattice

matrices L, L1 correspond to the same perfect crystal lattice if and only if

L' = LH (LI)

for H e SL3(Z) := {H e M3*3 I det H = ± 1, Hy € Z, i, j = 1, 2, 3} (see ERICKSEN [14],

FONSECA [15], KINDERLEHRER [21]). Since L is constant, here, any sensible process of

averaging lattice vectors gives just the columns of L, in this case. Hence the continuum analogue of

the discrete collection of identical atoms has constant L, constant p defined over Q. C [R3.

i what follows, {e!, e2,63} is the canonical basis of IR3.
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An invertible, orientation preserving mapping u : Cl —»[R3 is said to induce an elastic

deformation of the crystal and it leads to a new lattice matrix L*(.) defined over u(Q) via

L*(u(x)) = Vu(x) L(x), for x e f l ,

It is traditional to assert that a crystal is defective if, given a lattice matrix L*(.) over £>*, there is no

invertible mapping u*: Cl* -»[R3 which leads via an elastic deformation to a lattice matrix constant

in u*(Q*). DAVTNI [9] and DAVINI & PARRY [10], [11] discussed subtleties related to this last

idea, and in DAVINI & PARRY [11] they showed that any change of state can be factorized into

an elastic deformation composed with specific types of non-elastic changes. It is natural to say that

all non-elastic changes are plastic, however there are two major classes involved. There is a list of

tensors which play a pivotal role in the analysis of DAVINI & PARRY [11], as they remain

unchanged when the crystal is deformed elastically (see Theorem 2.3, (2.2)). In this model, the

adopted notion of defect is such that deformations that leave these functional invariant do not

change the defects. It turns out that the class of defect-preserving changes of state strictly includes

the elastic deformations ; defect-preserving deformations are called neutral and generally they

involve some kind of rearrangement representing the slip mechanisms of the classic

phenomenological plasticity theories (see Theorem 2.9, Corollary 2.10, Examples 2.11) as well as

the elastic deformations. Thus, plastic changes of state split into these particular types of

rearrangements and into those changes of state which alter the invariants of the crystal lattice.

Here we study equilibria of defective crystals within a variational framework. We factor

neutral deformations into components which are exclusively elastic or exclusively slip. Essentially,

a neutral change of state of a perfect crystal corresponds to a lattice matrix

L(u(x)) = Vu(x){Vv(x)}-i,

where u : Q. —»[R3 is the elastic deformation, Cl is the reference configuration and v represents the

slip or plastic deformation with det Vv = 1 a. e. in £1 ERICKSEN [13] and DAVINI & PARRY

[10] have discussed the likelyhood that crystal equilibria correspond to some kind of variational

principle, and offered the opinion that the relevant class of variations should encompass, at the

most, the elastic changes and the rearrangements, so excluding any change of state which alters the
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invariants. In this paper we study the implications of including neutral changes of state in the class

of admissible variations while taking the viewpoint that equilibria correspond to minimizers of an

energy functional

E(u, v) := Jw(Vu(x){ Vv(x)}'1) dx (1.2)

where W represents the bulk energy density. Precisely, we want to judge whether or not allowing

rearrangements leads to physically reasonable predictions in the context of plasticity. Thus, we

consider the class of admissible pairs

:= {(u, v) € W 1 - - ^ , [R3)l det Vu > 0 a. e. in ft, u = uo on dQ, det Vv = 1 a. e. in Q},

which includes the elastic deformations in the case where v is the identity map. Formally,

minimizing E(.,.) in sA involves variations of the reference domain ; indeed, setting co := u°v-! the

integral (1.2) becomes

W(Vco(y))dy.i
Although one occasionally sees field equations and conservation laws in continuum mechanics

derived by considering variations of the domain, to our knowledge (1.2) is the first instance where

such variations can be seen to correspond to clear, kinematically explicit mechanisms.

In DAVINI & PARRY [10] various properties of smooth minimizers were formally

derived and convexity was assumed tacitly. Also, in DACOROGNA & FONSECA [7] existence

and smoothness of minimizers for functionals of the type (1.2) were discussed. Here, existence of

minimizers is not the issue. In fact, it is well known (see BALL [1]) that certain types of material

symmetry are incompatible with the convexity of variational problems arising in the elasticity

theory. In particular, for a perfect crystal W is not even quasiconvex (see, ERICKSEN [14],

FONSECA [15], KINDERLEHRER [21]) and so, the energy E(.,.) is not sequentially weakly

lower semicontinuous. Hence, we are interested in studying the behavior of minimizing sequences

and their state functions rather than the macroscopic weak limit.

As in CHIPOT & KINDERLEHRER [3] we assume that solutions may be measure-valued

and using the parametrized probability measures of YOUNG [32] and the theory of compensated
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compactness of MURAT & TARTAR (see TARTAR [26]) we are able to calculate the energy and

stresses of the deformed body when the class of variations includes a perfect crystal.

In Section 2 we give a brief description of the model for defective crystals proposed by

DAVINI [9] and DAVINI & PARRY [10], [11] and we recall the notion of neutral deformation.

We give new characterizations of neutrally related states for defective crystals, and in particular we

show that the matrix L of lattice vectors of a state neutrally related to a perfect cubic crystal can be

written as

L(u(x)) = Vu(x){Vv(x)H,

with det Vv = 1 a. e. in Q (see Theorem 2.9, Corollary 2.10). This factorization is not unique and

in Theorem 2.14 and Corollary 2.15 we characterize the solutions (u*, v*) of the equation

Vu*(x) {Vv*(x)}-1 = Vu(x) (Vv(x)}-1.

In Section 3 we use the div-curl lemma (see TARTAR [26]) to show that the class of

neutral deformations is closed with respect to the weak convergence in W1*00 (see Theorem 3.2)

and also to characterize the Young's probability measure associated to a minimizing sequence

{Ln}. It turns out that the minors of Ln are weakly * continuous (see Proposition 3.7).

In Section 4 we use this result to prove that the relaxation of the energy functional for states

neutrally related to a non-defective cubic crystal, inf E(u, v), coincides with

inf { J g**(det Vu(x)) dx I u e W loo(Q, [R3), det Vu > 0 a. e. in Q, u = u0 on 3Q}

where g** is the convex minorant of the subenergy function of ERICKSEN and FLORY,

g(t):=inf {W(F)ldetF = t}.

This result depends critically upon the material symmetry SL/3(Z) assumed for the function W and

proposed by ERICKSEN [14] for elastic crystals (see also FONSECA[15] and KINDERLEHRER

[21]). We note that the relevant form of the subenergy is not evident in more general situations,

where the symmetry group is not all of SL3(Z).

Our results lead fairly quickly to the conclusion that the average weak limits of the Cauchy

stress stress tensor corresponding to a minimizing sequence must be isotropic (see Theorem 4.1).

5

3/5/91, Equilibrium conf. defective crystals



Therefore, we deduce that even if one admits neutral deformations in variational principles

determining equilibria of the lattice, the crystal is necessarily weak and it may be able to equilibrate

only under pressure. ERICKSEN [12] had also remarked that perfect elastic crystals cannot

support shear stresses (see FONSECA [15]) and later CHIPOT & KINDERLEHRER [3] showed

that the average Cauchy stress for an elastic crystal is also a multiple of the identity. This is not a

result that would win unanimous applause from an audience of experimentalists, even though one

can find evidence in favour by diligent enquiry. Nevertheless, it makes us reconsider the

idealizations that are embedded in the model and it is, perhaps, the friction involved in the slip that

is foremost among the effects which have been disregarded. We refer to COTTRELL [5] and

READ [23] for assurance that internal friction plays a significant role in the movement of

dislocations. It would be appropriate, then, to consider a dynamic model involving the rate of slip

(i. e. the rate of change of v), but we choose to consider a simpler alternative which allows us to

remain in the variational setting. We modify E(u, v) by introducing a perturbation which depends

on the slip v. As showed in Section 2, if L(u(x)) = Vu(x){ Vv(x)}-1 is provided then Vv is not

unique and so, if one accepts that the penalization depends just on the lattice L(u(x)), we must

confine attention to a class of penalty functionals which remain unchanged according to Theorem

2.14. In FONSECA & PARRY [19] we characterize the integrands g satisfying the following

in variance property:

fg(Vv(x)) dx = fg(V(vof)(x)) dx (1.3)

for all Lipschitz functions v and f such that f(x) = x on 9Q and det Vf(x) = 1 a. e. in Q.2. As it

turns out, perturbed problems involving a bulk penalization dictated by (1.3) are reduced,

essentially, to the former energy functional (1.2). So we choose to consider here a surface energy

penalization as, formally, a change in v corresponds to a variation of the domain. Thus, in Section

5 we study the minimization problem where the total energy becomes

2This class of integrands is larger than the class of null lagrangians.
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f
•to

W(Vu(x) {Vv(x)} *) dx + f T(v) dS

and T denotes the surface tension. Using results of FONSECA & MULLER [18] and showing that

two star-shaped domains with the same volume can be transformed into each other by means of an

isochoric deformation (see Theorem 5.4), in Theorem 5.2 we prove that the infimum is equal to the

sum of the infima, precisely

f cp**(detVuo(x))dx+f T(v)dS
•to Jdc

where C is the Wulff shape for T (see HERRING [20], WULFF [31]). Thus, there is a

decoupling of the elastic and plastic parts of the weak limit of the appropriate minimizing sequence.

Once more, the weak limit of the corresponding Cauchy stress tensor is isotropic, so that some

more subtle modelling or reassessment is required Nevertheless, even if the results do not quite fit

with the physics as yet, the analysis seems to represent a new direction for the calculus of

variations which is motivated by mainstream problems in the mechanics of solids.

2 . DESCRIPTION OF A MATHEMATICAL MODEL FOR DEFECTIVE

CRYSTALS.

We follow the theory for slightly defective crystals proposed by DAVINI [9] and

DAVINI & PARRY [10], [11]. In the sequel, Q is a bounded, open, strongly Lipschitz domain in

[R3, M3*3 denotes the space of real 3x3 matrices, M+*3: = { F e M3x3l det F > 0} and {ei, e2, e3}

is the canonical basis of [R3.

Definition 2.1.
A global state of the crystal is a triple £ := {Q, L, p), where L : Q -» M+x3 and p : Q ->

[0, +©o) are Lipschitz mappings.

3/5/91, Equilibrium conf. defective crystals



Here Q represents the macroscopic placement of the body at time t, and at each point x e

fl, p(x) is the mass density per unit macroscopic volume (i. e. the number of atoms per unit

volume) and L(x) represents averages values over microscopic regions of lattice vectors which

define the positions of the atoms.

Consider a change of state from X := {Q, L, p) to I * := {Q*, L*, p*} where Q* = u(Q)

and u : Q -> £2* is the macroscopic deformation. We assume throughout this work that u : Q ->

[R3 is a Lipschitz mapping with det Vu > 0 a. e. in Q> and that conservation of mass always holds,

i. e.

p*(u(x)) = — ^ — a. e. in Q. (2.1)
det Vu(x)

Definition 2.2.

We say that £ and Z* are elastically related if the Cauchy - Born hypothesis is satisfied,

namely

L*(u(x)) = Vu(x) L(x), a. e. x G Cl.

Generally, of course, two given states £, E* will not be elastically related for any choice of

u : Q. -» Q*. That is to say, the set of all states I e = {Q*, Le, pe) elastically related to I , obtained

by choosing u : Q -> Q* and setting Le(u(x)) = Vu(x) L(x), pe(u(x)) = p(x)/det Vu(x), a. e. in Q,

generally does not include Z*, i. e. Le(.) * L*(.), pe(.) * p(.) for any choice of u : Q -> Q*. It is

the evolution of defects that is said to account for the "discrepancy" (L* - Le), (p* - pe), said

differently to allow that the behaviour of the lattice matrix (say) is independent of the macroscopic

deformation. This is TAYLOR'S "conjecture" (see [27]), that there is no change in defectiveness

when the change of state is elastic, and really it just hints at what one might consider to be an

appropriate definition of defectiveness here.
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To be specific, and to begin with, let A := {L, VL, p, Vp}represent a local state of the

crystal (later we shall relax the requirement that a local state can depend only on L, p and their first

derivatives). Then it is natural to search for those integrals of the type

J f(A).dx , Jf(A).v(x) do(x), J f(A) dx (2.2)

which will remain invariant under elastic deformations, since elastically related states are not to

change the defectiveness. Here c is the boundary of a surface n and S is the boundary of a volume

region V. Clearly, the densities corresponding to these integrals will produce a list of defect

measures. As usual an integral

f(A)

is said to be elastic invariant if

f f(A)=f f(A*)
^co *u(co)

for all states L* which are elastically related to L.

We introduce some notation. The lattice vectors are given by

and the dual lattice vectors are defined by

di(x):=D(x)ei,i = l , 2 , 3

where

D:=L-T.

Clearly

li(x).dj(x) = 6ijandli(x) = ~ e i j k ^ ^ wi th i , j , ke {1,2,3}.

Also for i, j € {1, 2, 3} we define the following densities :

bi := curl di {Burger's vectors)

Gij := bi.dj (components of Bilby's dislocation density tensor)

n := 1/det L = det D (the number of cells per unit volume)

m := p/n (atomic mass of an average cell)

gi := Vm.li

9
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8j := Vm ^ di.

Theorem 2.3. (DAVINI [9])

1. (Invariants associated to line defects) A line integral

f f(A). dx

is elastic invariant if and only if there exists a function h : [R —» [R such that

f = h(m)d;

2. (Invariants associated to point defects) A surface integral

J f(A).v(x) dH2(x)

where H2 is the 2-dimensional Hausdorff measure and v(x) is the normal to the surface S at the

point x, is elastic invariant if and only if there exists a function h : [R —> [R such that

f = h(m) dj ̂  dk;

3. A volume integral

f f(A)dx
Jv

is elastic invariant if and only if there exists a function h : [R3 —»IR such that

f = h(a/n, m, g) n.

Therefore, the elastic invariant integrals which have the prescribed form (2.2) are integrals

of one of the types

J h(m) d.dx, Jh(m) d i^ dk.v dH2 and Jh(a/n,m,g)n dx. (2.3)

c s v

It turns out that the class of states X for which the elastic invariants remain unchanged is strictly

larger than the class of elastically related states (see Examples 2.11)

Remark 2.4. (i) If the curve c is the boundary of a surface II then the elastic invariants

J di.dx = J bi .v dH2c n

10
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are called the Burgers numbers . According to the classical theory of continuous distributions of

dislocations, the presence of dislocations is associated to non vanishing Burgers vectors,

(ii) By Stokes's Theorem it follows that the densities associated to the integrals (2.3) are

m, n, a/n, g, curl d = b, Vm ^ d = 8.

Proposition 2.5 (DAVINI & PARRY [10], [11])

If the integrals (2.2) remain invariant under the change of state from Z to £* then for a. e.

XG Q

(i) det L*(u(x)) = det Vu(x) det L(x);

= m(x);

= g(x);
_a

> - n w .

Clearly, if r| e {a/n, g, m} then, by Theorem 2.3 and Proposition 2.5,

jr |ndx and Jr|di.dx (2.4)
* c

are also elastic invariants with corresponding densities T|n and curl(r|d) = Vr| ^d + r|b and so we

must add

to the list of densities in Remark 2.4 (ii). Also, if r| G {a/n, g, m}, it is easy to show that

.di) n dx, J(Vn.di) dj .dx i, j = 1, 2, 3J
v c

are elastic invariant integrals in the obvious sense, and we note that these invariant integrals are not

of the form (2.2). In fact, DAVINI & PARRY [11] show that there is an infinite list of elastic

invariant integrals with corresponding densities depending on L, p and their derivatives (of

arbitrary order). They show, also, that there is a functional basis for this infinite list of densities,

and this observation motivates the following definition.

n
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Definition 2.6.

The states L and X* are said to be neutrally related5 if the integrals (2.2) and (2.4) remain

invariant4.

As it turns out, in general neutral states involve some kind of slip or rearrangement,

representing the slip mechanisms of the classic phenomenological plasticity theories.

Theorem 2.7. (DAVINI [9] and DAVINI & PARRY [10], [11])

The states Z and X* are neutrally related if and only if for all i, j , k e {1, 2, 3} and for

almost all x € Q

>.p<u(x)) H
det

* Vu(x)
2. b. (u(x)) = y bi(x);

1 det Vu(x)

det Vu(x)

1 det

6. Vy(o* In*) ~ <£ = ' ")" ' V X Q - dk where y = u(x);
1J K det Vu^Y^ n

* * Vu(x)
7. Vy(g. )^d, =

1 ^ detVu(x)

Remark 2.8. If det B * 0, where Bei := bi, then Z* is neutrally related to Z if and only if

L* and Z are elastically related. In fact, setting Zf := {u(Q), L1, p1} with p'(u(x)) := — ^ ^ —
det Vu(x)

3It can be shown that neutrally related states are locally elastically related
4This is slightly different to the notion employed in DAVINI & PARRY [10], [11].

12
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and L'(u(x)) = Vu(x) L(u(x)), then £' and L are elastically related and by Theorem 2.7 (2) we

have
* Vu(x)

b. (u(x)) = bi(x) = h(u(x))
1 det Vu(x)

which, together with Theorem 2.7 (3), implies that

b*(u(x)).d*(u(x)) = - ^ T T - = h(u(x)).d(u(x))
1 J detVu(x) l J

= b*(u(x)).dj
t(u(x)).

Finally, as det B* * 0 we conclude that D* = D' i. e. L* = L1.

Theorem 2.7 suggests taking

p, B, a, n, 8, V( - )^D,Vg^D

as local measures ofdefectiveness.

We obtain the following characterization for neutral states.

Theorem 2.9.

The states Z and L* are neutrally related if and only if there exists a Lipschitz function

cp:Q —> [R3 such that for almost all x € Q

p ( ( »
det

2. L*(u(x)) = Vu(x)

3. bi(x). V(pj(x) = 0 for all i, j e {1, 2, 3} ;

4. det (1 + Vcp(x) L(x)) = 1;

5. Vm (x) * VqH(x) = 0 for all i = 1,2, 3 ;

6. V(Cij(x)/n(x)) - Vcpk(x) = 0 for all i, j , k e {1, 2, 3} ;

7. Vgi(x) - V<pj(x) = 0 for all i, j e {1,2, 3}.

13
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Proof. It is easy to show that if L*(u(x)) = Vu(x) {L'l(x) + Vcp(x)}-1, where <p satisfies

equations (3) - (7), then the conditions (1) - (7) of Theorem 2.7 are fullfilled. Conversely, suppose

that £ and £* are neutrally related. Then, using the fact that

curl (A) = ( yl curlv(Vu-T<])), where y = u(x),
det Vu y

by Theorem 2.7 (2) we have

curL(VuTL*-Tei - L~T e>) = ( V u )'* curlv(Vu-TVuTL*-Tei) - curl (L-T ei)
detVu y

r1 b*(u(x)) - bi(x)
det Vu

= 0.

Hence, there exists a Lipschitz function (p : Q -» [R3, cp = ((p!, (p^, 93), such that for almost all x

(VUTTL*-T - L-T) ei = V<pi = (V(p)T ei,

i. e.

L*-1 Vu - L-1 = Vcp

which proves (2). Therefore, by Theorem 2.7 (2), (3)

' ( ( ) )
det Vu(x)

= b* . d* = V u bi. (L*-Tej)1 J detVu J

Vu
bi. Vu-T(L-T + VcpT) e;det Vu

= Oji + bi . Vffi;
detVu J detVu J

and so bi(x). Vq)j(x) = 0. Next, by Theorem 2.7 (4)

— ^ =n* = (detL*)-i
det Vu(x)

= (det Vu(x))-1 det (L-^x) + V(p(x))

= . n(*\ N det (1 + V<p(x) L(x))
det Vu(x)

therefore

14
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det(l+V(p(x)L(x)) = l.

In a similar way, (5) - (7) follow from equations (5) - (7) in Theorem 2.7.

According to Definition 2.2, £ and L* are elastically related if and only if cp =0. Next, we

analyze the class of states neutrally related to a non-defective cubic crystal.

Corollary 2.10.

Xo = {^, 1, 1} and L = {u(Q), L, p} are neutrally related if and only if there exists a

Lipschitz mapping v : Q —> [R3 such that for almost all x e Q

l.p(u(x))=
K det Vu(x)

2.L(u(x)) = Vu(x){Vv(x)}-i;

3. det Vv(x) = 1.

Proof. Note that Bo = 0, m0 = 1, a 0 = 0 and g0 = 0 a. e. in Q. Thus Corollary 2.10

follows immediately from Theorem 2.9 setting v(x): = x 4- (p(x).

We give some examples of neutrally related states.

Examples 2.11.

(1) Consider a state LQ= [Q,tyl} of a perfect cubic crystal. Set L = (u(Q), L, p} where u e

W1*00^, K3) is invertible, det Vu(x) > 0 a. e. in Q,

P(u(x)) = a. e. in ft,
det Vu(x)

and

L(u(x)) = Vu(x) (11 + a®b)

where a, b e [R3 are such that a.b = 0. By Corollary 2.10 it follows that Eo and L are neutrally

related.

15
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(2) As in the first example, let 1Q = {Q 1. 1) and E = (u(ft), L, p}, where now

L(u(x)) = Vu(x) R

for some rotation R. Then ZQ and Z are neutrally related.

(3) Let So = {Q 1 > 1) ^ d consider a change of state involving no macroscopic deformation, i. e.

u(x) = x and Z = {Q, kH, 1}, k > 0. Here Vv = k-1! and, by Corollary 2.10, Zo and Z ait not

neutrally related unless k = 1. As D = k-1! is constant, B = 0 and so there are no dislocations.

However, mo = 1 while m = k3 which implies that the cell mass was changed and since there is

conservation of mass, the interpretation is that if k < 1 vacancies are created in passing from ZQ to

Z and if k > 1 interstitials are created.

(4) Z and Z* are rearrangements of one another if there exists u : Q. —» Q* invertible such that for

a. e. x € Q

det Vu(x) = 1, p*(u(x)) = p(x), L*(u(x)) = L(x).

A slip is a rearrangement such that

u(x) = x + p(g(x))

with g : Q -> [R, p : [R -> [R3 such that

det (1 + pf®Vg) = 1, i. e. p'.Vg = 0.

If LQ = {H, 11, 1} and L* = (u(Q), II, l}are rearrangements of one another, then they are

neutrally related by application of Corollary 2.10 with v = u.

Definition 2.12.

The states Z = {Q, L, p} and I * = {Q*, L*, p*} are said to be equidefective if they are

locally elastically related, i. e. if there exists a Lipschitz mapping u : Q -* u(£2) = Q* such that

p*(u(x)) = P ( X ) a . e . i n n
det Vu(x)

and for all xo G Q there exist neighborhoods Ui and U2 of xo in Q and there exists a Lipschitz

function g : Ui —> U2 such that g(xo) = xo and

L*((uoV)(x)) = V(uoV)(x) L(x) for almost all x e UL
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Theorem 2.13. (DAVINI & PARRY [10], [11])

If E and E* are neutrally related then they are equidefective.

In Theorem 2.9 we proved that if the states E and E* are neutrally related then there exists

a Lipschitz function <p: Q —»[R3 such that for almost all x € Q

L*(u(x)) = Vu(x) (L-i(x) + V(p(x)}-i.

In the last results of this section we address the question of characterizing different factorizations of

the lattice matrix.

Theorem 2.14.

1. (Necessary condition) Let E* = (u(ft), L*, p*} = {u(Q), L, p} and let E = {Q, L, p}, where

L, L-1 € L~(Q, M3x3), u, u, (p, (p e Wi.~(Q, [R3), det Vu, det Vu > 0 in Q, u = u = u0 on dQ,

with uo € C(Q, [R3) one-to-one in Q. Suppose, in addition, that

L*(u(x)) = Vu(x) {L-Hx) + VcpCx)}-1, L(u(x)) = Vu(x) [L-l(x) + Vcp(x)}-1.

Then there exists £ € W1-00^, tR3) such that, setting f := i r^u , the following hold :

(i) f(x) = x on

(ii) p(f(x)) = P^X) a. e. in Q ;
det Vf(x)

(iii) V£(x) = L-!(x) - L-!(f(x))Vf(x) a. e. in Q ;

(iv) cp(x) = $(f(x)) - ^(x) + Const, a. e. in Q.;

Vffx)
(v) B(f(x)) = - — = 7 7 - B(x) a. e. in Q .

det Vf(x)

Moreover, if E* and E are neutrally related then for a. e. x € Q

(a) o(f(x)) = C^X) ;
det Vf(x)

(b)n(f(x)) =
det Vf(x)

( c ) 5 ( f ( x ) ) = — ^ -
det Vf(x)
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(d) V/Sl ) - * - -?M- v , ^ ) ~ dk where y = f(x);

VfCx)

2. (Sufficient condition) If Z* = {u(Q), L*, p*} corresponds to a change of the state E = {Q, L,

p}, where L, I / 1 e L~(Q, M3x3), u € W^-fQ, R3), det Vu > 0 a. e. in Q, u is invertible, and if

there exist £, f € W 1 - - ^ , IR3) such that det Vf > 0 a. e. in Cl and

(i) f (x) = x on an ;

(ii) p(f(x)) = P ( X ) a. e. in Q :
K det Vf(x)

(iii) V^(x) = L-^x) - L-i(f(x))Vf(x) a. e. in Q

then, setting u : = u^f-1, (p := (pof1 + ^of-1 + Const, and p(u(x)): = —*—z—, we have
det Vu(x)

), L, p}

where L(u(x)) := Vu(x) {L-!(x) + Vcp(x)}-1. Furthermore, if f satisfies the conditions (a) - (e) then

E* and E are neutrally related.

Proof. 1. As u is invertible (see BALL [2]), set f := u"lou. Clearly f(x) = x on dQ and

since

—e£L-=P*(u(x)) = p(u(x))
det Vu(x)

= p(u(f(x)))

P(f(x))
det Vu(f(x))

_p(f(x))detVf(x)

det Vu(x)

we deduce that

p(f(x)) = P ( X ) a. e. in Cl.
K det Vf(x)

Define ^(x) := <p(f(x)) - q>(x) + Const. Then

18
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Vu(x) {L-Kx) + Vcp(x)}-1 = L*(u(x))

= L(u(x)) = L(u(f(x)))

= Vu(f(x)) {L-i(f(x» + V$(f(x))}-1

= Vu(x) {Vf(x)}-i{L-i(f(x)) + [Vcp(x)

= Vu(x) {L-!(f(x)) Vf(x) + V<p(x)

and so

L-!(x) = L-^fCx)) Vf(x)+ V^(x) a. e. in Q.

This implies that

0 = curl {[L-HfCx)) Vf(x) - L-!(x)]T ei}

= curlx{(Vf(x))TL-T(f(x))ei} - bi(x)

= det Vf(x) {Vf(x)}-i curly=f(x) {L-T(y)e;} - t>i(x)

= det Vf(x) {Vf(x))-i bi(f(x)) - bi(x),

therefore

Vf(x)
B(f(x)) = ^ B(x) a. e. in Q .

det Vf(x)

If L and £* are neutrally related, then by Theorem 2.9 (3) and by (iii), (v) we have

Gij(f(x)) = bi(f(x)). dj(f(x))

_ Vf(x) bj(x). L-T(f(x)) e j

det Vf(x)

Vf(x) bj(x).

det Vf(x)

Vf(x)]T ej t bi(x).V(pi(x)

det V f ( x ) d e t Vf(x) det Vf(x)

det Vf(x)'

Equations (b) - (e) follow, in a similar way, from conditions (iii) - (v) and Theorem 2.9 (4) - (7).

2. Suppose that there exist £, f e W1»OO(Q, [R3) such that det Vf > 0 a. e. in Q. and

(i) f(x) = x on dO.;
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) = P ^ a.e . inf l ;
det Vf(x)

(iii) V£(x) = L-i(x) - L-1(f(x))Vf(x) a. e. in Q.

Setting

L(u(x)): = Vu(x) {L-i(x) + V$(x)}-1 and p(u(x)): =
det Vu(x)

where

u : = uof-1 and q> := (pof-1 + ^of1 + Const.,

we want to show that

p(u(x)) = p*(u(x)) and L(u(x)) = L*(u(x)).

In fact, by (ii)

p(u(x)) = p(u(f(x))) =

P(f(x))

det Vu(f(x))

P(x)
det Vf(x) det Vu(f(x))

= p(x)

det Vu(x)

= P*(u(x))

and by (iii)

L(u(x)) = L(u(f(x)))

= Vu(f(x)) {L-Hf(x)) + Vipffix))}-1

= Vu(x) {V^J-ML-^fCx)) + [V(p(x)

= Vu(x) {L"Hf(x)) Vf(x) + Vcp(x) +

= L*(u(x)).

It is easy to check that if (a) - (f) hold then the equations (3) - (8) of Theorem 2.9 are satisfied and

so Z* and X are neutrally related.
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Corollary 2.15.

Let £ = {u(Q), L, p} correspond to a change of the state Eo = {Q 1 , 1} , where u e

^ Q , OR3), det Vu > 0 in Q, u = u0 on 3Q, with uo e C(Q, DR3) one-to-one in Q, and

L(u(x)) = Vu(x) {Vv(x)H

for some v € W^CQ, [R3), with det Vv > 0 in Q. Then £ = (u(Q), L, p} with

L(u(x)) = Vu(x){Vv(x)}-i

if and only if, setting f := u*lou, the following hold :

(i) f (x) = x on dQ ;

(ii) det Vf(x) = 1 a. e. in Q :

(iii) v(x) = v(f(x)) + Com. a. e. in Q.

Moreover, L and Lo a r e neutrally related if and only if det Vv = 1 a. e. in Q and p(u(x)) =
1

det Vu(x)'

Proof. This result follows immediately from Corollary 2.10 and Theorem 2.14. Indeed,

here Bo = 0 and defining ^(x) := x - f(x), (p(x) := v(x) - x, we obtain from Theorem 2.14 that

= (p(x) + £(x) + Const. + f(x)

= (p(x) + x + Const.

= v(x) + Const.

3. CHARACTERIZATION OF THE YOUNG MEASURE.

Our goal is to study equilibria of crystals within a variational framework when neutrally

related states are admissible. As it is well known, the bulk energy density for solid crystals is non

quasiconvex and so, in general the energy functional is not lower semicontinuous as minimizing

sequences may develop oscillations. In particular, the macroscopic limit is not necessarily a
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minimizer of E(.,.) and, as it turns out, the sequence itself stores more information on limiting

macroscopic state functions of the crystal than the macroscopic configuration itself. This

information is given partially by the corresponding Young measure (see YOUNG [32] and

TARTAR [26]) as shown in the work of CHIPOT & KINDERLEHRER [3] for elastic crystals.

However, before we start the analysis of the Young measures associated to minimizing sequences,

we need to make sure that these sequences are "stable" under weak convergence, even if

oscillations may occur. We will prove this result using MURAT & TARTAR'S div-curl lemma of

the theory of compensated compactness (see TARTAR [26]).

3.1 Div-Curl Lemma

Let Cl C DRN be an open, bounded, strongly Lipschitz domain, and let un, vn e L°°(Q;[RN)

be such that un —» u<« and vn -» Voo in L°° weak *. If, in addition, {div un} and {curl vn) are

bounded sequences in Hj^Q) then un . vn -» Uoo. v«> weakly *.

Theorem 3.2

Let En = (un(Q), Ln, pn} be a sequence of states neutrally related to £ = {u(Q), L, p} and

let cpn: Q -> [R3 be such that Ln(u(x)) = Vun(x) [L~l(x) + Vcpn(x)}-1 for almost all x e Q. If un -»

Uoo and (f̂  -^ (poo in W1*00 weak * then

1. det L(x) = det ({L^x) + VqUx)}-*) a. e. in Q ;

2. {L-i(x) + Vcpn(x)}-1 -» (L-i(x) + Vcpoo(x)}-i in L°° weak * ;

3. Ln(x) -> Loo(x) := Vuoo(x){L-1(x) + Vcpoo(x)}-1 in L~ weak *.

Moreover, if det Viu > 0 a. e. in Q, then the state 2L := {Uoo(O), Loo, p«} is neutrally related to Z,

where poo(Uoo(x)) := — .

det

In order to prove this result, we need the following lemmas, the first of which is purely

algebraic.
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Lemma 3.3.

If A, B e M3*3 and if A is an inveitible matrix then

1. det (A + B) = det A + adj A .B + A . adj B + det B ;

2.adj(A + B) = adjA + ^f* adj A - ^ - ^ a d j A + adj B.

Here, and in what follows, adj A is the matrix of cofactors of A. In particular, if A is

invertible then

A
A ~ det A •

Also, the inner product between matrices is defined by
3

Lemma 3.4.

If L* = {u(Q), L*, p*} and £ = {Q, L, p} are neutrally related and if L*(u(x)) = Vu(x)

{L-!(x) + Vcp(x)}-1 then for almost all x € Q and for i, j , k e {1, 2, 3} the following hold :

1. curl [{L-i(x) + V(p(x)}Tei] = bi(x) ;

2 d i v
 ( L '

Proof. In fact, by definition of the Burgers' vectors we have

curl [{L-Hx) + V(p(x)}Tei] = bi(x) + curl Vq>i(x)

= bi(x),

and by Theorem 2.9 (4), setting L'(x) := {L-J(x) + VtpCx)}-1, D1 := L'-T and c\j := curl d'j. dj

we have

detL(x) = detL'(x)

which implies that
{L-Hx) + V(p(x)}-iej L'(x)ei

^ det L(x) = d l v d e t L t ( x )
_ I .. £ijkdetL'(x)d l

i(x)^d'k(x)
" 2 m v detL'(x)
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= \ eijk (curl d'j(x).d'k(x) - curl d'k

= \ eijk (a'jk(x) - a'kj(x)). (3.1)

However, by (1)

curl d'j(x) = curl [{L-^x) + V<p(x)}Tei]

= bi(x)

which, together with Theorem 2.9 (3), yields

a'ijCx) = bi(x).(L-T(x) + V(p(x)T)ej

= <jy(x) + bi(x).V(pj(x)

= ay(x). (3.2)

The result follows from (3.1) and (3.2).

Proof of Theorem 3.2 We start by proving (1). By Theorem 2.9 (4) and by Lemma

3.3 (1) we have

(det L(x))-i = det (L"!(x) + V(pn(x))

= det (L-!(x)) + adj L-*(x) . V ^ x ) + L-!(x). adj Vq^x) + det Vcpn(x)

and so, as adj V<pn -» adj V(p« and det V(pn -» det Vcp^ in L~ weak * (see BALL [1]), we

conclude that

(det L(x))-i = det (L-i(x) + V<p«(x)).

Also, by Theorem 2.9 (4) and Lemma 3.3 (2)

{L-i(x) + Vcpn(x)}-i = det ({L-Hx) + Vq^x)}-') adj {L-i(x) + V(pn(x)}T

deTLOO V<P»W hW + adj Vcpn(x)T

hence the weak * limit of {L-J(x) + Vcpn(x)}-1 is equal to

deTL%) -

^ ( x ) V ( P~ ( X ) L ( x )

which by (1) and by Lemma 3.3 (2) reduces to

24

3/5/91, Equilibrium conf. defective crystals



det ({L-i(x) + Vqu(x)}-1) adj {L-i(x) + VqUx)}T = {L-i(x) + V<p«(x)}-1.
Finally we prove (3). Fix i, j e {1,2, 3} and set C0n = (G£, CO*, co*), vn = (V, v^, v*) where

K
* vj; := (L-i + V9n)-ikj.

Clearly curl C0n = 0 and by Lemma 3.4 (2) and Theorem 2.9 (4)

div vnW = div [ ( L ' ( i ^ ( '
P

x f ' e i de, L(x>]

- akl(x)) det L(x) + V (det L(x)).

= ejik(aik(x) - aid(x)) det L(x) + V (det L(x)). adj (L'l(x) + V(pn(x)}Tej

which, by Lemma 3.3 (2), belongs to a compact subset of H[oc. By the Div-Curl Lemma and by

(2) we conclude that

= COn . Vn - > V u ^ . (L'l +

Moreover, if det Vuoo > 0 a. e. in Q. and if

det

then Loo := {mo(£2), L^, p^} is neutrally related to £ as, by (1), conditions (1), (2) and (4) of

Theorem 2.9 hold and the remaining (3), (5), (6) and (7) are linear in Vcp.

Remark 3.5

(i) In Theorem 3.2, we need the additional information that det Vuoo > 0 a. e. in order to define the

mass density poo. However, we will see that this condition is automatically fullfilled in the case

where the sequence {En} minimizes the bulk energy (see Proposition 4.4 (2)).

(ii) We remark that in the proofs of Lemma 3.4 and Theorem 3.2 we only used the conditions (3)

and (4) of Theorem 2.9 concerning neutrally related states.
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As we mentioned before, we are interested in the characterization of the Young measure

associated to a bounded minimizing sequence of lattice matrices. We start by recalling the notion of

parametrized probability measures.

Proposition 3.6.

If {uq} is a bounded sequence in L°°(Q, [RP) then there exists a subsequence {u£} and a

family of probability measures {|ix}x€Q (Young measure) such that if f e C([RP) then {f(ue)}

converges in L°° weak * to the average function

Hx) := <m, f> = J p f(y) d^(y).

As in Theorem 3.2, consider a sequence of states 2^ = (un(Q), Ln, pn} neutrally related to

Z = (u(Q), L, p} and let (pn: Q -> [R3 be such that Ln(u(x)) = Vun(x) (L-^x) + Vcpn(x)}-1 for

almost all x e Q. Let un -> Uoo, (pn -» <P« in L~ weak *, Ln(x) -» Uo(x) := Vu«(x){L-1(x) + V

^^(x)}- 1 in L°° weak * (see Theorem 3.2 (3)) and let {jix}xenbe the Young's measure

corresponding to {1^}. If the change is elastic then (pn = 0, L^ = Vun L and as M -» det(M) and M

—> adjM are null lagrangians, and so weakly * continuous, it follows that

det( f Md( i x (M)) =detLoo(x)
M ^ 3

= det Vuoc(x) det L(x)

= w.*limit det Vun(x) det L(x)

= w.*limit

= f det M d[ix(M) (3.3)f
ix3

and, in a similar way,

adj( j M d ^ x ( M ) ) = f adj M df i x (M). (3.4)

The analysis of CHIPOT & KINDERLEHRER [3] relies heavily on (3.3) and (3.4). Next we

show that (3.3) and (3.4) still hold for neutrally related states.
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Proposition 3.7.

For almost all x e Qwe have

1. det Vuoo(x) det L(x) = det L«(x) = det ( f M d

= f det M
*3

2. adj Loo(x) = adj ( JMd^ x (M)) =
M3x3

Proof. By Proposition 3.6

U.(x) = j[MdMM)

and so, by Theorem 3.2 (1), (3)

det( J M d M M ) ) =det

= det (VUoo(x){L-i(x)

= det Vuoo(x) det L(x)

= w.*limit det Vun(x) det L(x)

= w.*limit det Ln(x)

= f det M d(ix(M)
*3

M
f*3

and in a similar way

adj( J Mdjix(M))
M 3 ^

= adj Vuoo(x) det L(x) {L-^x) + V<p«(x)}T

with adj Viioc divergence free and, by Lemma 3.4 (1), {L-^x) + V<poo(x)}T has curl b;. Therefore,

by the div-curl lemma we conclude that

adj ( J M dHx(M)) = w.*limit adj Vun(x) detL(x) {L-J(x) •
M

= w.*limit adj Ln(x)

M * 3
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In the last proposition we proved that {|ix}Xeft behaves essentially like a Young's measure

corresponding to a sequence of gradients. To illustrate this fact, consider the case where Z = {Q,

11, 1} and S n = {un(£2), L^, p n}, with 1^ = VunfVvn}-1 and det Vvn = 1 a. e. in £L Suppose

further that det Vun > a > 0 a. e. in £2 and un = uo on dQ, with uo e C(Q, [R3) one-to-one in £2.

Then (see BALL [2]) un are invertible and we define wn : = v ^ u ^ 1 : uo(£2) —» Fi3. If un —> Uoo

and vn -> Voo in W1*00 weak * then det Viu, > a, Uoo is invertible, det Vv^ = 1 and {wn} is bounded

in W1'00. Assuming that wn ->w« in W1*00 weak * let {Xy}y€Uo(n) be the Young's measure

associated to (Vwn).

Proposition 3.8

For all G € C^M3*3; DR) and for almost all x € Q

f G(M) d^x(M) = det Vu«(x) f G(M-!) det M dXUoo(x)(M).
M M3^3

Proof. As 0 < a < det Vun < 1/K < +c» then det Vwn = > K > 0 and we have
det Vun

supp Xy C {M I det M > K} C M^x3 and supp \ix C {M I det M > a} C M+
3x35.

As un ~> Uoo in L°° strong, given 9 € $(uo(£2)) we have

fq>(un(x)) G(Ln(x)) dx -^ fq)(u«(x)) ( J G ( M ) djix(M)) dx

J
^ f ^ dy) (3.5)

I

uo(Q)

and on the other hand

Jq>(un(x)) G(Ln(x)) dx = fcp(y) G({ Vwn(y)}-1) det Vwn(y) dy
« uo(tl)

5Here we use the fact that if Vu^x) e K, where K is a closed set of MNxN, then the Young's measure associated to

{Viin) has support contained in K (see TARTAR [26]).
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-> cp(y) ( JGCM-1) det M dXy(M) ) dy

which, together with (3.5) and setting x = u^(y) yields

f det M

Remark 3.9. The conclusions of Proposition 3.7 can be easily obtained using

Proposition 3.8. As an example, by Theorem 3.2 (1), (3) with L = 11 and setting G(M) = det M in

Proposition 3.8 we deduce that

f det M d|ix(M) = det Vuoo(x) f det M-1 det M dXu (x)(M)
M*3 M*3

= det Vuoo(x) = det

= det(

If Xn = (u n (Q) , Ln, pn} are neutrally related to Z = (u(Q), L, p} and if Ln(u(x)) = Vun(x)

{L'l(x) + Vcpn(x)}"1, where un -* Uoo, (pn -> cp~ in W1-00 weak * and (see Theorem 3.2 (3)) Ln(x)

-» Loo(x) := Vuoo(x){L-1(x) + Vcp^x)}- 1 in L°° weak *, we define

{<*x} xe ft Young's measure corresponding to {Vun}

{Px 1 xe n Young's measure corresponding to

{H-x }XG Q Young's measure corresponding to

W e end this section by showing that the Young measures preserve the structure of the neutral

deformations, precisely

Proposition 3.10

1. ( f M dax(M) ) ( f (L-i(x) + M)-* d(5x(M) ) = \ M d^x(M) ;

2. ( JdetMda x (M)) ( f det (L^(x) + M)-1 d(3x(M) ) = f det M d^x(M) ;

3. ( JadjMda x(M)) ( J adj (L-i(x) + M)-i dpx(M) ) = J adj M d|ix(M) .
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Proof.

( fM
M*3

By Theorem

dax(M)) (

3.2 (2), (3)

(x)

= T

II 
II

7iU

M* 3

[)-i dpx(M)

x) w*limit 1

M dnx(M)

and by Theorem 2.9 (4)

( fdetMdctx(M)) ( f det (L-i(x) + M)-i d|3x(M) )

= det Vuoc(x) w*limit det {L-

= det Vu«(x) det L(x)

= detLo.(x)

= f det M d^ix(M).
M*3

Finally, by Lemma 3.3 (2) we conclude that

( J adj M dccx(M)) ( f adj (L-J(x) + M)-1 d(3x(M) )
M 3 " M*3

= adj Vu«(x) w*limit adj (L-^x) +

= adj Viu(x) det L(x) w*limit {L-!(x) + V(pn(x)}T

= adj Vu«(x) det L(x) {L-i(x) +

= adj L»(x)

= J adj M d̂
M 3 "

4. RELAXATION OF THE BULK ENERGY.

If we are seeking for a mechanical theory asserting that crystal equilibria correspond to

extremals of some energy functional then we must impose some constitutive assumptions on the

corresponding volume energy density and we must decide if an energy difference can be assigned

to pairs of configurations involving continuous distributions of defects. Now, the evolution of

30

3/5/91, Equilibrium conf. defective crystals



defects is commonly associated with plasticity and it should be regarded as an irreversible process

in the sense of thermodynamics. In this context, then, there is a fundamental difficulty in

prescribing well-defined state variables which have the properties commonly associated with the

free energy and entropy densities. One might refer to ERICKSEN [13] for discussion of this, to

RICOU [24] or to SERRIN [25] for helpful, relevant ideas. When no irreversible processes enter

into consideration, free energy and entropy are well defined

Recall that changes of state, here, are neutral (i. e. defect-preserving) or such as to alter the

elastic invariant integrals (2.2), (2.4). We devote this section to studying the implications of an

assertion that neutral deformations provide reversible processes, so that an associated energy

density is well-defined (see also DAVINI & PARRY [10]). Assume, in addition that the free

energy depends only on the local state A = {L, VL, p, Vp} and the absolute temperature 6. Using

Galilean invariance and excluding "second-grade" elasticity effects, DAVINI & PARRY [10]

deduced that the free energy may be written variously as

W(L, o/n, m, g ; 0) = W(UL, o/n, m, g ; 9).

Henceforward we focus exclusively on states neutrally related to Zo = {Q, 1,1} and we recall that

such states are characterized explicitly in Corollary 2.10. Thus if Z = {u(Q), L, p} is neutrally

related to IQ then

L(u(x)) = Vu(x) (Vv(x)}-1, det Vv(x) = 1 a. e. in Q

for some Lipschitz mapping v : Q —»[R3, and from Proposition 2.5

o/n = 0, m = 1, g = 0 a. e. in u(Q).

Under isothermal conditions, i. e. with 0 constant, we abbreviate W(L, 0,1,0; 0) as W(L) and we

call it the stored energy density in state L. Then the total stored energy of that state is

:= Jp(y)W(L(y))dy = J W(Vu(x){Vv(x)}-*) dx,
ft) ft

the latter equality by conservation of mass and a change of variables.

We assume further that

i ) W e
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ii) W(L) -> +00 as det L -> 0+, W(L) > 0 and W(l) = 0, (4.1)

iii) W(L) = W(RLH), R e O+(3), H e SL3(Z). (4.2)

Note that ERICKSEN [14], FONSECA [15] and KINDERLEHRER [21] have based much work

on perfect crystals on assumption iii). The motivation for assumption iii) here is a result of

DAVINI & PARRY [11], that neutrally related states are locally elastically related

We shall reckon that equilibria correspond to minimizers of I(.) and use corresponding

necessary conditions to assess whether or not the rearrangements should really be allowed to

compete in the class of admissible changes by comparison with what are seen as reasonable results

in the context of plasticity. Said differently, we use these necessary conditions to judge if the

neutral deformations are reversible.

We consider Dirichlet boundary conditions, where X is an admissible change if Z = (u(fi),

L, p} with L(u(x)) = Vu(x){Vv(x)}-i, (u, v) e $4 and

£tf(u0) := {(u, v) € W^CQ, [R3)l det Vu > 0 a. e. in fi, u = u0 on 9Q, det Vv = 1 a. e. in Q).

This class includes the elastic deformations in the case where v is the identity map. Here uo e

C(Q, [R3) is one-to-one in Q. Using Lagrange multipliers, DAVINI & PARRY [10] showed that,

independently of the boundary conditions and of the symmetry invariance, at a smooth local

minimizer we must have

fLT(x)S(L(x))dx = a 11

where the first Piola-Kirchhoff stress tensor S and the Cauchy stress tensor T are given,

respectively, by

Hence, they concluded that there is a weakness in the crystal associated to the presence of slips and

rearrangements, as the crystal cannot sustain certain nonzero average stresses. Also, using the

material symmetry invariance (4.2), ERICKSEN [12] proved that for elastic crystals at equilibrium

the Cauchy stress reduces to a pressure,

T = -pU (4.3)
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and later CHIPOT & KINDERLEHRER [3] recovered (4.3) still for elastic changes and when

oscillations may develop. Precisely, they showed that if {|ix}xeQ is the Young's measure

corresponding to a minimizing sequence Ln = Vun, where un —» Uoo in W1*00 weak *, then the

average Cauchy stress is still a pressure,

T(x) =

= (g**)'(det Vuoo(x)) 11 a. e. in Q (4.4)

where g** is the convex minorant of the subenergy function introduced by ERICKSEN and

FLORY,

g(t):=inf {W(F)ldetF = t}.

Here we will show that (4.4) still holds even when neutral changes of state are allowed to

compete. Let 1^ = (un(Q), L^, pn} be a minimizing sequence for I(.). with (un, vn) € S^(UQ) and

Suppose further that un —> u« and vn —> v«, in W1*00 weak *, which, by Theorem 3.2 imply that

Ln —> Loo = Vuoo {Vvoo}'1 in L°° weak *. Let {|ix}x€Q be the Young's measure associated to

Theorem 4.1

T(x)= fT(M)d»ix(M)
M3x3

c e t i-»oovXj

=(g**)f(det Vuoo(x)) 11 for almost all x € Q.

In order to prove this result we need to obtain the relaxation of the bulk energy functional.

Theorem 4.2.
Let A € Mf*3 and let £0(A) := {(£, v) e W 1 - -^ , [R3) x W1-00^, [R3)l £(x) = Ax on 3Q,

det Vv(x) = 1 a. e. in Q}. Then
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inf{ |W(V^(x){Vv(x)}-l)dxl(^v)€ &(A)} = meas (Q) g**(det A).
d

This result was proven by CHIPOT & KINDERLEHRER [3] and FONSECA [16] in the

case where only elastic changes are admissible :

inf { f W(V£(x)) dx I £ e Ax 4- W ^ G , (R3)} = meas (O) g**(det A). (4.5)

Proof of Theorem 4.2. Clearly, by (4.5)

inf{ J l
d
J
d

inf { f W(V£(x)) dx I £ e Ax+W1^°°(^, Fl3)} = meas (Q) g**(det A)

and since det is a null lagrangian, by Jensen's inequality and as W(F) > g**(det F) we have

J W(V^(x){ Vv(x)}-1) dx > Jg**(det V^(x) det Vv(x)-l) dx

= Jg**(det

= meas(Q) g**(detA).

From Theorem 4.2 and using the same argument as in CHIPOT & KINDERLEHRER [3]

we obtain the following generalization to the case of inhomogeneous boundary conditions.

Proposition 4.3.

If uo € C 1 ^ , [R3) is such that either det Vuo is constant in Q or

inf { f g**(det Vu(x)) dx I u e W 1 *-^ , [R3), det Vu > 0 a. e. in Q, u = u0 on
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= inf { f g**(det Vu(x)) dx I u e C 1 ^ , K3), det Vu > 0 a. e. in n , u = u0 on 3Q}6

then

inf J
d
inf { J g**(det Vu(x)) dx I u € W^CQ, [R3), det Vu > 0 a. e. in Q, u = u0 on 9Q}.

Proposition 4.4

Under the hypotheses of Proposition 4.3

1. f W(x) dx = f( f W(M) d^x(M) ) dx
d J **

<inf{ j
a

2. supp \ix C M^ and det Vu« > 0 a. e. in Q.

Proof. Part (1) is proven exactly as in CHIPOT & KINDERLEHRER [3] and (4.1) and

(1) imply that supp |ix C M^x3. Finally, by Theorem 3.2

which, together with Proposition 3.7 (1), yields
det Viioo(x) = ] det M d|ix > 0 a. e. in Q.

Mix2

Corollary 4.5

Under the hypotheses of Proposition 4.3

6Using Jensen's inequality, it is easy to check that this hypothesis is satisfied if, as an example, det Vuo = const, a.

e. in Q.
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inf{ fwCV^CxXVvCxJJ-^dxIC^vJe ^(u 0 )} = fg**(det Vuoo(x)) dx

Proof. Using the same argument as in CHIPOT & KINDERLEHRER [3], by Proposition

4.4 we have det Vuoo > 0 a. e. in Q and so, since g is convex and det Vun -» det Vuoo weakly *,

by Proposition 4.3 we conclude that

inf{ fw(V^(x){Vv(x)}- 1 )dxl (£, v) e ^ ( u 0 ) } < fg**(det Vuoo(x)) dx

< lim inf fg**(det Vun(x)) dx

< lim inf JW(Ln(x)) dx

= inf { J W(V^(x){Vv(x)}-l) dx I ($, v) €

Proposition 4.6

Under the hypotheses of Proposition 4.3

1. W(x) = g(x) = i**(x) = g**(det ViiooCx)) a. e. in Q ;

2. supp |ix C {M G M^x3 I a(x) < det M < (3(x)} where [a(x), p(x)] is the maximal closed interval

containing det Vu«(x) on which g** is affine ;

3. W(M) = g(det M) = g**(det M) a. e. in supp |ix.

Proof. The argument is essentially the same as in CHIPOT & KINDERLEHRER [3],

where we must use Proposition 3.7 (1).

Finally, we give the proof of Theorem 4.1.

Proof of Theorem 4.1. By Proposition 4.6 (3), if M € supp (ix then

0 = W(M) - g**(det M) = min {W(.) - g**(det.)}
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and so

O = ^(M)-(g**) l (de tM)adjM.

Also, by Proposition 4.6 (2)

(g**)'(det M) = (g**)'(det Vuoc(x))

and we deduce that

S(M) = (g**)"(det Vu.(x)) adj M, (4.6)

hence, by Proposition 3.7 (2),

S"(x) = J (g**)'(det Vuoo(x)) adj M d\ix(M)

= (g**)'(det Vu«(x)) adj Uo(x). (4.7)

Finally, by (4.6) and for almost all x € Q

T(x) = jj(M)dMM)= f s | j j

= (g**)'(det VMx)) J fcfM adjM
M?x3

= (g**)'(detViu(x))ll

and by (4.7)

= (g**)'(detVu«(x))ll.

5. PENALIZED VARIATIONAL PROBLEM.

As shown in Theorem 4.1, including neutrally related states as admissible changes seems

to render the material weak as it cannot sustain nonzero average shear stresses. We take this as an

indication that the neutral deformations are irreversible, indeed this is reasonable since slip along

glide planes (which provides neutral deformations by Example (2.11)4) surely involves some kind

37

3/5/91, Equilibrium conf. defective crystals



of dissipation due to friction. So we contemplate problems where the slip, represented by v, is

penalised. Now, minimizing E(.,.) corresponds, formally, to a variational problem involving

variation of the domain. Indeed, if v was an invertible mapping then

= fw(Vco(y))dy
v(fi)

where

co(y) := u ° v

If the solid attained equilibrium at an elastic state then v(Q) would be a translation of Q, i. e. v(x) =

x + Const. In this section, we will consider an energy functional were we penalize the boundary

v(Q) in order to obtain some information regarding the prefered shape for v(Q).

Suppose that uo e Cl(Q ; OR3) is one-to-one in Q and det Vuo(x) > 0 in Q. Suppose further

that

fg**(det Vuo(x)) dx < fg**(det Vu(x)) dx (5.1)

for all u€Uo + W1-00^ ; [R3). Note that, by Jensen's inequality and using the fact that F -» det F

is a null lagrangian, (5.1) is trivially satisfied if det Vuo = constant. Consider the energy functional

= E(u, v) := / W(Vu(x){ Vv(x)}-i) dx + Jr(v(x)) dH2(x)/ J
where (u, v) € £0*(uo) := {(u, v) e Wl>°°(n, [R3)l det Vu > 0 a. e. in Q, u = u0 on 3Q,

det Vv = 1 a. e. in Q, meas v(Q) = meas Q},

d*v(Q.) denotes the reduced boundary of v(£2), v(x) is the outer unit normal to the boundary of

v(Q), r is the Lipschitz anisotropic surface energy density and H2 is the two-dimensional

Hausdorff measure.

Remark 5.1

1.1(Z) does not depend on the representation (u, v) of X. Indeed, by Corollary 2.15 if (u, v) is

another representation of Z then

v(x) = v(f(x)) + Cont. a. e. in Q.

where
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f(x) = x on 3Q and det Vf(x) = 1 a. e. in Q.

Hence,

v(Q) is a translation of v(£2)

and so

E(u, v) = E(u, v).

2. On the definition of $& * (uo), v is subject to the constraints det Vv = 1 a. e. in Q and meas v(Q)

= meas (Q). These conditions imply that v is invertible a. e. in Q and v 1 e W1-0 0^ ; [R3) (see

BALL [2]). Without this invertibility assumption on v, it would be possible to find a sequence

{vn} of Lipschitz functions with det Vvn(x) = 1 a. e. in Q, and Per(vn(Q)) —» 0. In particular, meas

vn(Q) -» 0 and

Jr(v(x)) dH2(x) -» 0.
a*vn(Q)

Indeed, by a result of MARCUS & MIZEL [22], if det Vv = 1 a. e. in Q. then vol (Q) < meas (Q.)

and it is possible to have strict inequality. In fact, let Q = B(0, R) C [R2, define in polar

coordinates

v(r,0) := (^r, 20)

and assume that vn is obtained by composing v with itself n times,

vn : = vov ... vov : B(0, R) -> B(0, ( ^ ) n ) .

It is easy to verify that vn -» 0 in W1*00 weak *, det Vvn = 1 a. e. and, clearly,

Per(B(0, (^ ) n ) "^0 .

It is well known (see HERRING [20], FONSECA [17], FONSECA & MULLER [18],

TAYLOR [28], [29], [30], WULFF [31]) that the shape that minimizes the surface energy

Jr(v) dH2

among all sets A of finite perimeter with constant volume, meas A = meas Q, is the dilation XC of

the Wulff set C, where
3 i FT

. /meas L2
K'- \ meas C
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and

C : = {xe [R3I x.n < T(n) for all unit vector n}.

In what follows, we assume that

(H) Q is a bounded, open, star-shaped domain7 with respect to xo e int £2, B(xo, e) C Q. for some

e > 0, there exists a finite partition of £2, Q = Q\U Q.2^ •—U Qp, such that Q[ is a cone with

vertex at xo, d(Qi)CidQ e C1, B(xo , e)dQi is convex for all i = 1, ..., p. Further, we assume

that there exist a > 0 such that v(x).x > a for all x e dQ, where v(x) denotes the outward unit

normal to dQ at x.

Also, without loss of generality we can suppose that meas(fi) = meas(C).

Theorem 5.2.

Let uo € Cl(Q ; IR3), be such that det Vuo(x) > 0 in Q. and uo satisfies (5.1). If C and Q

satisfy the condition (H)8 then

inf {E(u, v) I (u, v) e ^* (u 0 )} = Jg**(det Vuo(x)) dx + fr(v(x)) dH2(x).

d d*c

The proof of Theorem 5.2 relies on the following two results.

Proposition 5.3.

If y0 € Cl(Q ; [R3) is such that det Vyo(x) > 0 in Q and if y e C 1 ^ ; tR3) verifies y = y0 on
dQthtn

inf{ f W(Vu(x)) dx I u € y0 + W>~(Q ; [R3)} < f g**(det Vy(x)) dx.
d d

Proof. It is included in the proof of Theorem 4.1 in CHIPOT & KINDERLEHRER [3].

7We say that Q is star-shaped with respect to an interior point xo e Q, if any ray with origin at x0 has a unique

common point with the boundary dQ.
8In general, the Wulff set C for solid crystals is a polyhedron.
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Theorem 5.4

If Q. and Q! satisfy (H) and if meas(Q) = meas(Q') then there exists v € W^C^Q 1 ) such

that v(Q) = Q\ det Vv = 1 a. e. in Q, v is invertible and v e 0(110 for some finite partition of Q

into strongly Lipschitz domains {Ui}.

Using these results we prove Theorem 5.2, and then devote the rest of this section to

proving Theorem 5.4.

Proof of Theorem 5.2. By (5.1) and Proposition 4.3 we have

E(u, v) := f W(Vu(x) {Vv(x)} -1) dx + fr(v(x)) dH2(x)
a 3*v(Q)

> Jg**(det Vuo(x)) dx + fr(v(x)) dH2(x). (5.2)
d d*c

On the other hand, using Theorem 5.4 let v € W^°°(p.,C) be such that v(Q) = C, det Vv = 1 a. e.

in £2, v is invertible and v e CH^i) for some finite partition of Q into strongly Lipschitz domains

i)i = i,...p- Clearly, uo 0^ 1 e CHv^i)) and so, by Proposition 5.3 and changing variables

inf { f W(Vw(z)) dz I w € W1.oo(v(Qi)), det Vw > 0 a. e., w = u o °v 1 on
4

< J g**(detV(uo°v-1)(z)) dz
v(Oi)

= Jg**(detVuo(x))dx.

Fix e > 0 and let w; e W^vCQi)). be such that det Vw > 0 a. e., w = i ^ v 1 on 3v(Q0 and

J W(Vwi(z)) dz < J g**(det Vuo(x)) dx + e. (5.3)

Let w(z) = V Xv(n;)(z) WJ(Z) if z e C, where X A denotes the characteristic function of the set
i = l

A. Clearly w e W ^ C ) , det Vw > 0 a. e. in Q, w = i^v-1 on dC and by (5.3)
p

f W(Vw(z)) dz = X 1 f W(Vwi(z)) dz
Z)C
i = 1
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p

< \^ J g**(det Vuo(x)) dx + pe

i = 1

- f g**(det Vuo(x)) dx + pe.

Thus, letting e -» 0+ we deduce that

inf { J W(Vw(z)) dz I w € W^-CvCQ)), det Vw > 0 a. e. and w = u ^ v 1 on

< J g**(det Vuo(x)) dx (5.4)

and, by (5.2) and changing variables we have with u = w v

J W(Vw(z)) dz = f W(Vw(v(x))) dx

= Jw(Vu(x){Vv(x)}-1)dx

> J g**(det Vuo(x)) dx

which, together with (5.4) yields

inf { J W(Vw(z)) dz I w e W1.~(v(Q)), det Vw > 0 a. e. and w = uo°v-i on 3v(Q)}J
(H)

= Jg**(detVuo(x))dx.

Let Wk e WliOO(v(Q)) be such that det Vw^ > 0 a. e., w^ = uo°v1 on dv(Q) and

J W(Vwk(z)) dz -» J g**(det Vuo(x)) dx
v(6) n

and set u^ := Wk°v. We conclude that

E(uk, v) := J W(Vuk(x){ Vv(x)}-1) dx + fr(v(x)) dH2(x)

= fw(Vwk(z))dz+ fr(v(x)) dH2(x)
v(ft) a*c

-* fg**(det Vuo(x)) dx + Jr(v(x)) dH2(x)

and by (5.2) the result is proven.
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Next, assume that Q, satisfies (H) and we suppose without loss of generality that xo = 0,

B(0, e) c c Q c c 1(0,1/e) for some e < 1. Let

|i(x) :=inf { t>0 I x €

be the Minkowski functional of Q.

Lemma 5.5

1. |i is homogeneous of degree one, i. e. |i(tx) = t |i(x) if t > 0 ;

2. |i is continuous.

Proof. 1. is trivial.

2.Since B(0, e) C Cfl C C B(0, 1/e) we have

ellxll < |i(x) < 1/e llxll (5.5)

for all x e [RN. Then, if xn -» 0 it follows from (5.5) that |i(xn) -^ 0 = |i(0). Suppose that xn ->

x* * 0. By (5.5), {|i(Xn)} is a bounded sequence and we can assume that (i(xn) —> a > 0. Since

we have

So

x*
a

x* x*

JI(X*) a

hence

a = |i(x*).

Lemma 5.6

, — e dtl and they lie on the same ray through the origin

Proof. We want to show that
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l|j.(x) - n(y)l < K llx - yll for all x, y e 1RN, and for some K > 0. (5.6)

(i) Using hypothesis (H) we start by proving that

p. € C1(^i\ {0}) for all i = 1,.... p.

As 9(Qi)n9£2 e C1, there exists (p; e enclosure of the convex envelope of Qj) such that if x e

9(Qi)fi9Q then (p,(x) = 0 and 0 * V<pi(x) is parallel to the normal to dQ at x. Thus, as Q. is star-

shaped,

V(pi (x) .x*0i fxe aOifian. (5.7)

Let xo € Qi\ {0}, with B(x0, 8) C Qj \ {0}. For t small enough,
x o + t e k

and so, by the mean-value theorem

1 n(xo)

V(pi(yt). [tek»i(xo) - (n(xo + tek) - H(x0)) x0]

Vcpi(yt)-xo ^i(x0 + tek) - |i(x0)

) l

where yt —> —^— as t -> 0. Hence, as by (5.7) and by the continuity of Vcpi we have
H(x)

Vq>i(yt).xo*O,

by (5.8) we deduce that
li(x0 + tek) - ii(x0) _ Vcpi(yt)-ek

1 V(pi(yt).xo/p(xo)'

Therefore [i is differentiable at XQ and

Finally, by (H)

I U ^ ^ < 1 . (5.9)
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(ii) If x = 0 then by (5.5) we have

iM-(x) - n(y)l = n(y) < 1/e llyll =l/e llx - yll.

(iii) If x, y € QjO B(0, e) and x * 0 * y then (5.6) follows from the mean value theorem and

(5.9),

Ijx(x) - |j.(y)l < Ki fix - yll.

By the continuity of jx (see Lemma 5.5 (2)) and by (ii), this result still holds if x, y e Qj0B(0, e).

(iv) Suppose now that x, y € B(0, e) C C Q and x € Qi, y € Qj where Q[ and Qj are adjacent.

The segment determined by x and y intersects dCli<~)BQj at a point z and so by (iii) we deduce that

ln(x) - n(y)l < l|x(x) - (J-(z)l + ln(z) - \i(y)\

< (Ki + Kj) [llx - zll + llz - yll]

= (Ki + Kj) llx - yll.

We conclude that if x, y e B(0, e) then

\\i(x) - ^(y)l < (K! + ...+ Kp) llx - yll.

(v) Finally, if x, y € 1RN choose R large enough so that

llxll, llyll < R.

Then by Lemma 5.5 (1) and by (iv)

i. e.

Lemma 5.7

If Q satisfies (H) and if meas (Q) = meas B(0, 1) then there exists co : B(0, 1) -> Q such

that

l .coe Wi-- (B(0,1); Q);

2. co(B(O, 1)) = Q ;
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3. det Vco e W^-tBtO, 1)), det Vco > a a. e. in B(O, 1), for some a > 0;

4. co is invertible, co1 e W1-00 and Vco-Ky) = (VcoCco-Ky)))-1 a. e. y e Q.

Proof. Choose M large enough so that

B(0, 1) C C MQ.

Consider a cut-off function TI e C([0, «>)) such that 0 < T| < 1, r|(t) = 1 if 0 < t < 1/4, rj(t) = 0 if t

> 1/2, Ti'(t) < 0 if 1/4 < t < 1/2, define

and set

where

H(x):=inf { t > 0 l x e tMQ}

is the Minkowski functional of MQ (note that MQ still satisfies (H)). By (5.5) there exists P > 0

such that

p < — < 1 / | 3 i f x * 0 (5.10)
H(x)

and define

We claim that

F : B(0, 1) -* MQ.

Indeed, if llxll < 1 then |i(F(x)) = llxll < 1, i. e. F(x) e MQ. Therefore, if 1 > llxll > 1/2 then co(x) =

F(x) e MQ and if llxll < 1/2 then x e B(0, 1) C MQ, F(x) € MQ and so, as MQ is star-shaped

with respect to the origin, co(x) e MQ. We conclude that

co : B(0, 1) -» MQ.

Moreover, F is a bijection with inverse function given by

if y" °- F"1(y> = ° i f y = °
and F is a Lipschitz function, where by Lemma 5.6
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) ] ifx*O. (5.11)

By Lemma 5.5 (1), |i is homogeneous of degree one and so

V^i(x).x = (i(x) a. e. in tRN (5.12)

which implies that

( - ^ - ) N . (5.13)
(̂)

Hence

©€ Wi.-(B(0, 1);MQ). (5.14)

Also, if x * 0 then

V© (x) = G(x)[ll + G-Hx)(x - F

where

G(x):=4>(x)H+(l-<Kx))VF(x).

From (5.11), (5.12) and (5.13) it follows that

det G(x) = [(|>(x) + (1 - (Kx)>^- f
()

and so

det V© (x) = [<t>(x) + (1 - <|>(x))^- ] N . [1 + G-i(x)(x - F(x)).T]'(Hxll)A ]
| ( ) llx"

- llxll) ]

because Ti1 < 0 and, as x/llxll e 1(0, 1) C MQ, ^(x/lixll) < 1, i. e. \i(x) - llxll < 0. By Lemma 5.6

and by (5.10) we conclude that

det Vco (x) € W1-oo(B(0,1)) and det Vco (x) > a : = min {1, p}N. (5.15)

Next, we show that

co is invertible, a1 e W1-" and V©-!(y) = (VeoC©-1^)))-1 a. e. y e MQ. (5.16)

Indeed, if co* denotes the restriction of co to B(0,1/2) then co* is a Lipschitz function with Jacobian

bounded away from zero and co*(x) = F(x) if x € dB(0, 1/2), where F(.) is a one-to-one and
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continuous function. Thus (see BALL [2]), co* admits an inverse function g e W L P ^ B (0,1/2),

B(0,l/2)), p > N, with

Vg(y) = ^

— — adjVco (x)T for x = g(y),
det Vco(x)

which, by (5.15), implies that g e W^^^B(0,1/2), B(0,l/2)). We deduce that (5.16) holds,

where

"if v= l F " 1 ( y ) if y* F(B(0' 1 /2))

I g(y) if y e F(B(0, 1/2))

Note that if llxll = 1/2, y = F(x) then
g(y) = g(©(x)) = x = F-l(y).

co(x)
The result now follows from (5.14), (5.15) and (5.16) setting co(x): = - j ^ - .

Remark 5.8

It follows immediately from Lemmas 5.5 and 5.6 that co e C(Bj) where Bj :=

MQinB(0,l).

Proof of Theorem 5.4. Let Q and Cl' satisfy (H), meas(ft) = meas(Q') =

meas(B(0,l)). Choose co: B(0, 1) -» Q as in Lemma 5.7 and define

f(x) := det Vco(x).

Then f is a Lipschitz function bounded away from zero and as co is invertible we have

f f(x) dx = f det Vco(x) dx

B(0,l) B«U)

= meas (co(B(O, 1))

= meas Q,

= meas (B(0, 1)).

Therefore (see DACOROGNA & MOSER [8]), there exists u e DifP-«(B(0, 1)), B(0, 1))), with 0
< a < 1, such that
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det Vu(x) = f(x) in B(0, 1)
u(x) = x on 3 B ( 0 , 1) *

Set

£(x) := u o co-^x) f o r x e Q .

By Lemma 5.7 the function £ is invertible, £ e W loo(Q, B(0,1)) and

Thus for a. e. x € Q.

= 1.

Note also that t,'1 is a Lipschitz mapping with V^-^y) = {V^-^y))}"1 for almost all y.

In a similar way, construct £' € W1*00^1, B(0, 1)), bijection, such that

det V£(x) = 1 a. e. x e Q!.

Setting

it follows that v(Q) = Q\ det Vv = 1 a. e. in Q and v is invertible. Finally, by Remark 5.8 we

deduce that v € OOJi) for some finite partition of Q into strongly Lipschitz domains {Ui}.
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