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1. Introduction
Recently much attention has been devoted to the study of phase transitions problems
involving singular perturbations. A typical example is the case where equilibria correspond
to minima of a certain energy functional

E(u) = [ W{u{x))dx
Jn

and the bulk energy density W supports two or more wells. Depending on the boundary
conditions or constrains, in general there are more than one solution and to resolve this
non-uniqueness one may consider a family of singular perturbations

Ee(u) = f W{u{x))dx + e2 / g2{Vu(x))dx,
Jn Jn

expecting that, when e —» 0, minimizers of E€(-) will select the physically reasonable
solution for E(-). The isotropic version of this model, where g = |-1, was first introduced
by Cahn [C] and Carr, Gurtin & Slemrod [CGS] analyzed it in the case where u:J7 C
HN —» R?, N = p = 1. For p = 1 and N > 1 Modica [M] identified the limiting energy for
the rescaled functional J€ := \E€, Kohn & Sternberg [KS], Owen [Ol], [02], Sternberg [S]
studied the problem in the scalar-valued case and Baldo [Ba], Bouchitte [Bo] and Fonseca
8z Tartar [FTl] solved the isotropic vector-valued case.

In 1988 Fonseca and Tartar [FT2] initiated the analysis of the interesting case corre-
sponding to a change of phase in three-dimensional nonlinear elasticity. Here u is a 3 x 3
matrix representing the deformation gradient of a body with reference configuration fi,
W has two potential wells of equal depth at a and b which in order to meet kinematic
compatibility conditions, differ by a rank-one matrix, i.e.

a — b = c ® v

for some c € R3, i / £ 5 2 . Considering the isotropic penalization

f f
E€(u) = / W(u(x))dx + 6 / ||Vi/(x)|| dx

Jn Jn
together with the constraint

curl u = 0,

Fonseca and Tartar [FT2] conjectured that the F-limit of the rescaled functional

J€(u) = --E€(u)

is given by

j , v _ f C Pernjx 6 H: u(x) — a\ if curliz = 0 , u 6 {a, 6} a.e.
\ +oo otherwise.
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The constant C is defined as follows. Let {v\,V2,vz = ^} be an orthonormal basis of R3

and let
Q { R 3 \ \ l 2 3 }

Then
(1.1)= i n f { /

JQ

where A is the subset of W2'2(fi; Rp) consisting of functions f such that
(a) the trace of V£ on j/3 = | is equal to 6;
(b) the trace of V£ on j/3 = — | is equal to a;
(c) V£ is periodic in the directions of ei, e2 with period 1.

We recall that if curl u = 0 and if u £ {a, 6} a.e. then the interface d{x £ fi: u(x) =
a}f1fi must be planar with normal v (see Ball and James [BJ]). Some results on the later
constrained problem have been already obtained by Fonseca and Tartar [FT2]. However,
for solids that may undergo a change of phase we expect the surface energy density to be
anisotropic (see Fonseca [Fo], Taylor [Tl], [T2], Wulff [W]) and so the ultimate goal is to
understand the asymptotic behavior of Ee{- ) when g is any convex function.

Owen and Sternberg [OS] showed that the F-limit in the anisotropic, unconstrained,
scalar-valued case reduces to the Wulff shape (see Fonseca [Fo], Fonseca and Muller [FM],
Taylor [Tl], [T2]). In the vector-valued, unconstrained case the problem is still unsolved.
In order to find a lower bound for the F-limit Jo(-) we apply the Cauchy-Schwarz inequality
and obtain

> f
Jn

where

Assuming, in a first instance, that / is nondegenerate, and that /(rr, w, • ) has linear growth
at infinity we want to identify

F[u] :=inf{liminf / f(x,un(x),Vun(x))dx:un € W^\Q;RP), un -> u L\

where
u 6 {a, b} a.e. infi

and the interface, or jump set E, is planar. Aviles and Giga [AG] obtained a lower bound
for ^[u]^ but it is not clear that the resulting functional is indeed the greatest lower bound.
Under the isoiropy condition (see Definition 2.5) Ambrosio, Mortola and Tortorelli [AMT]
and Aviles and Giga [AG] identified the integral representation for T\- ] which turns out to
be a generalization of a result of Dal Maso [DM] for the scalar-valued case. Uiifortunately,
the isotropy condition is so strong that it implies, essentially, the isotropy of the surface
energy density (see Proposition 5.1).



Motivated by (1.1) we identify F[u] for u: ft -> {a, 6} C Rp such that

v ; l a if x-i/ > 0. v ;

We show that

Jn
where E := {x G ft: x- v = 0},

-K"(x, a, 6, z/) := inf { / /°°(^, C(y)? ̂ ^(y))^y: ^ € A(a, 6, i/)}

where

A(a, 6, i/) :={e € W^\Q^ Rp) : f(y) = a if y-1/ = -1 /2 , f(y) = 6 if y i/ = 1/2
and £ is periodic, width period 1, in the i/i, . . . , i/;v-i directions},

and /°°(x, tx, •) is the recession function of /(x, K, •) .
Recently, we became aware of the work by Ambrosio and Pallara [AP] in which they

obtain an abstract integral representation for P[u] for every u € BV{Sl\ Hp) (see Theorem
5.2). It turns out that our Propositions 3.1 and 4.1 together with Theorem 5.2 provide
a full characterization of the integral representation of T['] in I?V($7;RP) (see Theorem
5.3).

In Section 2 we state some results on functions of bounded variation. A general
discussion on this subject can be found in Evans and Gariepy [EG], Giusti [G], Federer
[F], Ziemer [Z]. Also, we analyze the implications of our hypotheses on / with respect to
/°° and to K (see Lemmas 2.3 and 2.4). In Proposition 2.6 and 2.7 we study the isotropy
condition in some detail and we conclude that it forces the resulting relaxed surface energy
density to be isotropic.

Setting

[
where u is a function as in (1.2), in Section 3 we show that

To this end, in Lemma 3.2 we introduce a "slicing" technique which allows us to
modify a sequence un —* u in L1(QI/; R

p) in such a way that the new sequence wn agrees
with un in most of the cube Qv and there are slices near the top and bottom of Qu where
wn is a convex combination of un and, respectively b and a,

b if x-u = 1/2
a ifs-i/ = -



and concentrations are avoided so that

liminf / f(x,un(x), Vun(x))dx > liminf / f(x,wn(x), Vwn{x))dx.
n—+00 JQ n—+00 JQ

A similar slicing procedure is possible in order to render un periodic with respect to the
remaining N — l directions. We used the same idea again in Section 4, where we show that

by constructing a sequence un —> u in L1 such that

f{x, un(x), Vun(x))dx

In Section 5 we conclude that our results, namely our characterization of the surface
density K, together with Ambrosio and Pallara's theorem yield the integral representation
for JF[U], for all u £ BV(Q; Bf).

2. Preliminaries. The isotropy condition.
In what follows ft C R^ is an open, bounded, strongly Lipschitz domain, p, N > 1, and
{ei , . . . , e;v} is the standard orthonormal basis of R^.

Definition 2.1 A function u £ L1(f2;Rp) is said to be of bounded variation (u £
BV(Q; Rp)) if for all z £ {1 , . . . ,p}, j £ { 1 , . . . , Ar} there exists a Radon measure fiij such
that

/ Ui(x)—-(x)dx = - /
JQ oxj JQ

for all <f>e C$

The distributional derivative Du is the matrix-valued measure with components fiij.
If u £ BV(Sl\ Hp) then Du can be represented as

Du = Vudx + (tz+ - u~) ® vdHN-X [S + C{u) (2.1)

where Vu is the density of the absolutely continuous part of Du and -H^v-i is the N — 1
dimensional Hausdorff measure. Here u+ and u~ denote, respectively, the approximate
upper and lower limits of u, i.e. for all i £ {1 , . . . ,p}

u?(x) := inf {< £ R : lim -^£^[{ut- > i} n B€(x)] = 0}

and
U~(J:) := sup\t £ R : lim -jrJCN[{ui < t} H B€(x)] =-• 0}



where B€(x) is the open ball centered at x and with radius e. The three measures in (2.1)
are mutually singular. In fact, if HN-I(B) < +00 then ||C(u)||(i?) = 0 and there exists a
Borel set E such that

CN{E) = 0 and ||C(tx)||(B) = \\C{u)\\{B n E)

for any Borel set i?, where Cjy is the N—dimensional Lebesgue's measure. S(w) is called
the singular set of u or jump set and is defined by

Z(u)={J{xeSl:u-(x)<ut(x)}.

E(w) is the complement of the Lebesgue set, i.e.

E(u) = {xen:WzeR lim I I \u(y) - z\dy ̂  0}.
€->o+ £N(B€{x)) JBi(x)

It is well known that S(w) is countably N — 1 rectifiable, i.e.

E(u) = | J Xn U iV
nGN

where HN-I(N) = 0 and JCn is a compact subset of a C1 hypersurface. Also, for
a.e. x 6 S(u) there exists a unit vector i/(x) 6 5N~ 1 , normal to S(u) a< x, such that

u+(x) = lim u{x + ei/(x)),
0 +

u (x) = lim u(x — ev(x))
C-H-0 +

and

limim i /
- 0 + C y{ygB€(r):(y-x).

Hm -1- / |u(y) - tt-^^/^-^y = 0.
" ( I ) > ° } (2.2)

For a detailed study of the spaces I? 1 (̂0; Rp) we refer the reader to Evans and Gariepy
[EG], Federer [Fe], Giusti [G], Ziemer [Z].

Let MpxN denote the space of p x N real matrices and if A € MpxN let

Let / : ft x Rp x MpxN ~> [0, +00) be a continuous function such that



(Hi) f(x,u, • ) is convex for all (x, u) £ ft x W;

(H2) There exist c\ € R and there exist cj,C2 > 0 such that

ci||A|| - c\ < /(x,u, A) < c2(l

for all (x,u,A) € ft x R? X M?XN;

(H3) For all xo € ft and for all e > 0 there exists 6 > 0 such that |x — xo| < £ implies
|/(z,u,;4) - /Oo,u,A)| < eC(l + |u| + ||A||) for every (u, A) € Rp x M^xN where
C > 0 is a constant independent of XQ ;

(H4) There exist 0 < m < 1, t0 > 0, c4 > 0 such that if (x,u,A) € ft x Rp x M p x N ,
= 1, t > to then

^ C 4

Remark 2.2 If / satisfies (Hi) and (H2) then / is globally Lipschitz, i.e.

\f(x,u,A) - f(x,u,B)\ < c3\\A - B\\.

Let f°°: ft x R p x MpxN —»• [0, +oo) be the recession function, i.e.

f°°(x,u,A):= lira ^ '
t

Note that, fixing (x,u,A) € ft x R? x M^x ;v and setting $(<) := / (x,u,M) - f(x,u,Q),
then p is a convex function, #(0) = 0 and so

t —> g(t)/t

is increasing. Thus
f°°= sup g(t)/t

t

= lim f(x,u,tA)/t
t•Hoo

It is well-known that /°°(:r,u,-) is a convex function, homogeneous of degree one. In
addition we have

Lemma 2.3 Under the hypotheses (H2) and (H3) the following hold:



(i) ci||A|| < f°°(x,u,A) < c2\\A\l for every (x,u, A) e f i

(ii) For all x0 G 0, 6 > 0 there exists 6 > 0 such that for every (u, A) 6 Rp x MpxN,
|cc — xo| < £ implies

| /~(x, u, A) - /°°(x0, u, A)I < cC||A||.

Proof.

(i) By (2.3) and (H2) we have

/°°(x,u, A) > f(x,u,A) - /(*,«,0) > Cl||A|| - c1! - c2

and so, for all t > 0

</°°(a;,u, A) = f°°(x,uM) > ci||«A|| - c \ - c2.

Dividing by t and letting < go to infinity, we conclude that

Also,

/-(«,«,A)- lim
t^+0

(ii) Fix x0 € ft, e > 0 and let 8 > 0 be such that

|x — xo| < 8 =» |/(x,u,A) — f(xo,u, A)\ < eC(l + |u

If 0 <t <t', then by (H3)

/(x,t/,fA)-/(x,u,O) / (XQ^^'^-^XQ^^)

i t'

< f(x, u, tA) - /(a, u, 0) /(x0 , tz, <A) - /(x0 , u, 0)
i <

__f(x,u,tA)-f(xo,u,tA) /(XQ,U,0)-/(X,U,0)

<eC1 + 'U'+"
~ t

and so

, f(xo,u,O)-f(x,u,O)
- + -
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Letting t' —>• +00 we obtain

' ' ' t t

and if t —»• +00 then

r(x,u, A) < f°°(xo,u,A) + eC\\A\\.

In a similar way we obtain

/°°(x0, u, A) < /°°(x, u, A) + eC\\A\\

and we conclude that

\f°°(x,u,A) - f°°(xo,u,A)\ < eC\\A\\.

U

We want to find an integral representation for

f[u] :=inf i l iminf / f(x,un{x), Vun(x))dx :un 6 W1 '1 , u 6 BV, un -* u in L1 i ,

when u takes only two values across a planar interface.
Given v 6 S ^ " 1 , Q^ is the open unit cube centered at the origin with respect to an

orthonormal basis {1/1,.. . , Z/JV_I, î } of R ^ , i.e.

, i = 1 , . . . ,JV - 1}.

For (a, 6,1/) G R p x R p x S^""1 we define the class of admissible functions

A(a, 6, u) :={e € W^iQ^W) : ̂ (y) = a if y ,/ = -1/2, {(y) = b if y u = 1/2

and <̂  is periodic, width period 1, in the I/J, . . . , I/AT-I directions}

where the boundary value of £ is understood in the sense of trace. A function £ is said to
be periodic with period 1 in the direction of V{ if

ay) = ay + kui)

for all k E Z, y € Qv. Our surface energy density K : Cl x R* x R* x S ^ " 1 —> [0, +00),
is denned by

K(x,a,b,u):= inf / /°°(a:,«y), Ve(y))dy (2.4)

8



and our candidate for the relaxation T[- ] is given by

J(u):= I f(xJu(x),0)dx+ I K(x9a,b,v(x))dHN-i(x). (2.5)
Jn JE(U)

We examine some continuity properties of the surface energy density K.

Proposition 2.4 Under the hypotheses (HI) and (H2) the following hold:

(i) 0 < K(x,a,b,v) < C\b-a\ for all (z,a,6,i/) G ft x R* x R* x

(ii) For all xo G n, 6 > 0 there exists 6 > 0 such that

(iii) For some constant c > 0 and for all (x, a, 6, i/), (x, a, 6, i/1) G fi x Rp x Rp x MpxN

\K(x,a, 6, i/) - K(x,a, 6, i/')| < c | i / - i / ' | .

Proof.
(i) Fix (a, 6, i / ) 6 R ^ x R p x S^"1 and let

Clearly £ G A(a, 6, v) and so, by Lemma 2.3 (i)

0 < K(x,a, 6, z/) < / /°°(x,(6 — a)i + (a + 6)/2,(6 — a) ® i/)cft < C2|6 — a|
J-l/2

(ii) Fix xo G ft, 6 > 0 and by Lemma 2.3 (ii) choose 6 > 0 such that

For all n G N we choose £n G *4(a, 6, i/) such that

, x 1

By Lemma 2.3 (i) and by part (i) above we have

? 6 ? ^ + 1 <C(\b-a\
Qv



hence, if \x — xo | < 8 by Lemma 2.3 (ii)

K(x, a, 6, u) — K(XQ , a, b, v) <

< f
JQQ,

 n

<eC{\b-a\ + l)+-.
n

Letting n —> +00, we obtain

On the other hand, if \x — x0 \ < 8 and if gn G A(a, 6, u) is such that

n

then due to part (i) and Lemma 2.3 (i) we have

/ \\vUy)\\dy<C(\b-a\ + i)

and similarly

K{xQ, a, b, u) — K(x, a, 6, u) <

[foo(x0,gn(y),Vgn(y))-foo(x,gn(y),Vgn(y))]dy + -
n

<eC(\b-a\ + l) + -
n

which implies that

K(xo,a,b,v) -K(x,a,b,v) < eC(|6-a| + l).

(iii) We take f n G A(a, 6, v) such that

b) +

By part (i) and by Lemma 2.3 (i) we have

\\VUy)\\dy<C(l+\b-a\). (2.6)
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Let v' € SN 1 and choose R a rotation of RN such that Rv = u' and Qv> = RQV. Setting
Cn(v) := Zn(RTy), it is clear that

t'eA(a,b,u')

and so, by Remark 2.2 and by (2.6)

K(x,a,b,v')-K(x,a,b,v)

- f /°°(*, e -

n

n

If n —* +co then the previous inequality yields (iii). |

Next, we study some implications of the isotropy condition.

Definition 2.5 A function / : fi x Kp x MpxN —• [0,+co) is said to satisfy the
isotropy condition if

/(x, u, A) > /(x, u, An ® n)

for all A € M?xN, n G S^""1.

Ambrosio, Mortola and Tortorelli [AMT] and Aviles and Giga [AG] showed that under
the isotropy condition

?W] = / f{x,u(x),Vu{x))dx + f D(x,u-(x),u^(x),u(x

j
for all u € BV(tt;Rp); here we used the decomposition (2.1) and (2.2), ||C(u)|| denotes
the total variation of C(u) , i.e.

||C(u)||(B) = sup{ / 4> dC(u) : <f> E C0(B;

for all Borel sets 5 c f i , and

D(x,a,b,u) =inf{[ f°°(x,7(t),y'(t) ® v(x))dt : 7 € W1'00, 7(0) = a, 7(1) = *}•
Jo
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D is the obvious extension of the energy density obtained by Dal Maso [DM] to the vector-
valued case. Note that (see Clarke and Vinter [CV])

D(x,a,b,v) = inf{ / /°°(x,7(t),7 ' ( i) ® u{x))dt : 7 € W1'1, 7(0) = a, 7(1) = b}.
Jo

We extend /(•), introduced in (2.5), to BV(ft;Rp) as

I(u) = [ f(x, u(x), Vu(x))dx + f K{x, u~(x), u+(x), v(x))dHN-X
JO. ^E(u)

f°°(x,u(x)tjfffll Jx))d\\C(u)\\(x).
d\\C{u)\\

[
n

In the next proposition we compare D(x, a, 6, v) and K(x, a, b, u).

Proposition 2.6 If (Hi) holds then
(i) D(x,a,b,v) > K(x,atb,i/);

(ii) If / = f(x, A) then D(x, a, b, v) = K(xt a, b, u) = f°°(x, (a - b) ® v) and ^"[u] = 7(u).

(iii) If / satisfies the isotropy condition then

D(x, a, b, u) = K(x, a, b, v)

and F[v] = I{u).

Proof.
(i) Choose 7 € W^HIO.lJjR'), 7(0) = a, 7(1) = b and set £

^ +1/2).

Then
_ / 7(0) = a ify.!/ = -

\ = 6 if y-1/ = 1/2
and

i(y + kui) = 7(y i/ + fci/j- v + 1/2) = 7 ( y u + 1/2) =

for* = 1 , . . . , JV-1 . Thus

K(x,a,b,u)<

= I* f~>(x,*r(t),7'(t)®u)dt.
Jo
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Talcing the infimum in 7, we conclude that

K(x, a, 6, v) < -D(x, a, 6, u).

(ii) Suppose that / = f{x, A) and let £ € ,4(a, 6, */). By Jensen's inequality

V£(y))ciy==/~(*f(&-a)®i/) (2.7)

since £ is periodic in the i / j , . . . , 1/7V-1 directions. On the other hand, if

7(t) := <(6 - a) + a 0 < t < 1,

then

2?(x,a,6,i/)< / r{x,1\t)®v)dt = r(x,(b-a)®v)
Jo

which, together with (i) yields

D(x, a, 6, v) = K(x, a, 6,1/) = /°°(x, (6 - a) ® 1/).

In this case, it is well-known that (see Goffman &; Serrin [GS], Giaquinta, Modica, Soucek
[GMS], Reshetnyak [R])

(*, tx(x), V(

n

(iii) If / satisfies the isotropy condition and if £ £ Wljl(Ql/;H
p) is such that £(y) = a

if y i / = -1 /2 , f(y) = 6if y i / = 1/2 and £(y + fc^) = f(y), k € Z, i = 1,. . . ,N - 1,
then writing y = (y',yN-i) € Q' x (—1/2,1/2) with respect to the orthonormal basis

> / i /1
[ 1 / 2

If y' € Q' is fixed and if we set

13



then 7 € W^QO, 1]; Rp), 7(0) = £(y' , - l /2) = a, 7(1) = £(y',l/2) = b and V(<) = V£i/.
Hence

rl/2

-1/2

and we conclude that

,1/2 ,i

/ foo(x,t(v),Vt(y)u®v)dyN= f°°{x^{t)^'{t)®u)dt>D{x,a,b^
J-l/2 JO

:,a,6,1/) = inf

which, together with part (i), implies that

D(x, a, 6,1/) = K(x, a, 6,1/).

We axe particularly interested in the characterization of the surface energy density
,a,b,v) (or -D(x, a, 6, i^)), since its anisotropic nature may give some insight in the

geometrical structure of interfaces for phase transition variational problems. Indeed, con-
sidering a family of singular perturbations for a nonconvex bulk energy functional and
using the Cauchy-Schwartz inequality, we obtain a lower bound for the perturbed ener-
gies exhibiting the same structure as J7^] (see Modica [M], Owen [Ol], [02], Owen and
Sternberg [OS], Sternberg [S], Baldo [Ba], Bouchitte [Bo], Fonseca and Tartar [FTl]). For
solid materials, anisotropy plays an important role in the selection of equilibrium states
and so it becomes crucial to analyze functionals J-\- ] for which the surface energy density
is genuinely anisotropic. As it turns out, for homogeneous materials the isotropy condition
renders the surface tension isotropic, namely if

then
/ D{x,u-{x\u^{x),v{x))dHN^{x) = C Pern(E(ti)). (2.8)

•/E(u)

Indeed,

Proposition 2.7 Let g : M?xN -> R+ be differentiate in M*>*N \ {0}, g(A) = 0
only if A = 0, g is convex and homogeneous of degree one and g(A) > g(An ® n) for all
A £ MpxN', n € SN~~l. Then there exists <f> : Rp —> R+ convex, homogeneous of degree
one such that g(a ® 6) = </>(a)\b\, for all a G Rp, be RN .

Hence, if / = f(u, A) satisfies the isotropy condition then by the previous proposition
we have

14



and so

D{x,a,b,v)=in£{'[ <j>(7(t),7'(t))dt : 7 € W1'1, 7(0) = a, 7(1) = *>} =: C

asserting (2.8). The proof of Proposition 2.7 is based on the following result

Lemma 2.8 Let £ : HN —» R + be differentiate in R^ \ {0}, £ is convex and
homogeneous of degree one, f (u) = 0 only if u = 0 and

£{u) > f ((u- n)n) Vn € S*- 1 , u G RN .

Then there exists <j> > 0 such that £(u) = <£|u|, for all u G RN .

Proof. Let u / 0. As £ is convex, due to the isotropy hypothesis we have for all

(u)[(u- n)n - u],

hence
V£O> u > (V{(u)- n)(u- n). (2.9)

As £ is homogeneous of degree one,

which, together with (2.9), implies that

£(u)>(Ve(u>n)(u-n). (2.10)

Set G(x) := f(u) - [Vf• ^ ( u - jfj) for x 7̂  0. By (2.10) we have

G(x) > 0

and

hence
VG(u) = 0.

Since VG(u) = -Vf(u) + Sffi we conclude that

u

that is
V[ln£(u)]=V(ln|u|)

15



and so

Proof of Proposition 2.7 Fix a 6 Rp \ {0} and set £(u) := g(a ® u). Then f (u) > 0
if u 7̂  0, £ is convex, homogeneous of degree one and

f (u) = g(a ® u) > g((a ® u)n ® n)

= g(a(u-n) (g> n)

= #(a ® (u-n)n)

By Lemma 2.8 there exists <̂> = <£(a) such that

It is clear that <f> is convex and homogeneous on degree one, and <̂ (0) = 0 as <j)(a) =

3. A lower semicontinuity result

In this section we prove lower semicontinuity for the functional /(•) when the limiting
functions take only two values across a planar interface.

converges inProposition 3.1 If (Hl)-(H4) hold and if un €
to a function u such that

/ x f t if x- v > au(x) = < _
l a if X' v < OL

for some a G R, a, 6 € R*\ z/ € S N ~ \ then

<liminf

Kin addition A) > f(x,u,0) for all (x,u, A) e fi x R^ x M* x N then

liminf

To prove this result we start by showing that we can modify slightly a sequence un

converging to u strongly in L1 on a cube so that un = 6 on the top, un = a on the bottom
and un becomes periodic with respect to the remaining directions. This is achieved by
selecting thin slices were concentrations of || Vun|| and of the average of un axe avoided.

16



Lemma 3.2 Assume that / satisfies (H2). Let Q = {x € R^: |x-e,| < 1/2, i =
l , . . . , iV} and let

{ b if XN > 0

a if £/sr < 0
If un e W l j l(Q,Rp) converges to u in Z^C^R*) then there exists a sequence wn €
.4(a, 6, e#) such that wn tends to u in i1(Q; Rp) and

liminf / f(x,un(x),Vun(x))dx >Uminf

In particular, if / does not depend on x and if /(u, •) is homogeneous of degree one then

liminf / f(un(x\Vun(x))dx > K(a,b,eN).
TI-+ + OO JQ

Proof. First step. We modify the sequence un in order to meet the boundary
conditions on {x G Q: XN = ±1/2}. We can assume, without loss of generality, that

liminf / f(x,unj Vun(x))dx = lim / /(x,un, Vun(x))dx < +oc

and so by (H2) there exists 0 < C < +00 such that

\\Vun(x)\\dx < C

for all n. Choose an integer m > 2C and a partition

1 1 m

{xeQ:j<xN <-}=[] Si
4 2

where 5t- = {x E Q: OL{ <X^< a z + i} , i = 1,. . . ,ra

1 1
- = ai < a2 < - . . < am+1 = -

and £N(S{) = a,+i - â  = j ~ (see Figure 1). Then

||Vun(x)||dx < C

and so, for all n G N there exists a slice S{ such that

n|| < f.
17



Since there axe only m such slices, there must be a slice 5(2) such that

/ \\Vun(x)\\dx < \
JS(2) Z

for infinitely many indices n. On the other hand

l k ? r rcrow / \un(x) - u(x)\dx = 0

thus, there exists n(2) such that if n > n(2) then

\un(x)-u(x)\dx<l/2./
£N(S{2)) JS{2)

Let 7i2 be the smallest integer such that n-i > n(2) and

\\Vun2(x)\\dx < 1, /
s(2) 2 £N(5(2))

By induction, if k > 5 let

1 1 1 Pk

i = l

where Pk is an integer, Pk > kC and 5; are mutually disjoint slices of the type

{x e Q:ai <

with measure

There exists a slice 5(A:) such that for a subsequence

< /
{{)) JsW k

Choose nfc > rik-i such that

/ ||Vunfc(x)||dz < j , \ [ \unk(x) - u(x)\dx < \ . (3.1)
s(k)

Suppose that
S(k) = {x£Q:jk<xN<0k},

18



where

2 - % ̂  7* < Pk < - •

Let 0* e C°°(R; [0; 1]) be a smooth cut-off function such that

and

Define

{ 6 if xN > (3k

0k(xN)unk(x) + (1 -0k(xN))b if 7fc <xN

unk i f <
Clearly t; G TV1'1, vu{x) = b if XN = ^ and

= / \unk(x) - u(x)\dx + /
JQn{xN<lk] Js(k)

<2\\unk -

On the other hand,

lim / f(x,un(x),X7un(x))dx >
n-++ooJQ

lim inf

liminf[ / f(x,vk(x),Vvk(x))dx — I f(x,vk(x),Vvk(x))dx+

f(x,b,0)dx]

= lim inf /

*-*+oo JQ

because by (H2)

/ / (x , 6,0)dx < const.(- - ^ ) -> 0 as fc -> +oo

19
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and due to (Hi) and (3.1)

f(x,vk(x)%Vvk(x))dx <C I (||V^0r)|| + l)dx
S(k)

{Ok(xN)\\Vunk(x)\\ + \e'k(xN)\\unk(x) - u(x)\}dx
S(k)

In order to meet the boundary conditions at xjy = — i, we modify the sequence {vk} using
the same slicing procedure on {x 6 Q: —| < ÂT < —| + ^ } , A: € N.

Second step.We transform the sequence {un} into a periodic sequence with respect
to the directions {ei, e2,... , e/^_i}.

By the first step, we can assume that

liminf / f(x,un,Vun(x))dx = lim / /(x,un,Vt/n(x))dx <+oo

where

Let ^ G S F ( ( - 1 ; 1); Kp) be given by

6 if Xiv = |
-r 1

a if xjsr = - f .

b if t > 0
a i f t < 0 .

Let hn e BV((-1; 1); R?) n C°°((-l; 1); Rp) be such that

hn->g in L1((-1;1);RP) and / \tin(t)\dt < const,

and let 9, 9 € C°°(R; [0; l]) be smooth functions such that

M , _ J 1 if t > 1/4 s, . _ J 1 if t < -1 /4
t f} ~ \ 0 if < < 1/8 " W " \ 0 if f > -1 /8 .

We define
[b if * > J

<7n(i) : = •

20



Clearly, the gn's are in W ^ f t - l , 1);RP),

a if t < — i

gn converge to # in ix((—1,1);RP) and

/ \g'n(t)\di < const.

We set
Gn(x) :=gn(xN).

It follows immediately that Gn is periodic in the directions e,-, i = 1 , . . . , N — 1,

/ |Gn(x) - u(x)|dx = / {/ \gn(t) - g(t)\dt}dx'-> 0 a s n ^ + o o
y<3 ^Q' ^ - 1 / 2

and

where

As a result

/ ||VGn(x)||dx
JQ

of (H2) we have

\Wn

Q' =

(XN)£

= {x € Q:xN

x = r
J-l/2

= o}.

/ {||Vun(x)|| + ||VGn(x)||}dx < const = C (3.2)
JQ

for all n and so, choosing Pi G N such thatPi > 2C we decompose (see Figure 2)

where

and
\ __ *

2Pi

It follows from (3.2) that there exists a slice S (2) and a subsequence {(un>,Gn<)} such
that

/ {||Vun,(x)|| + ||VGn,(x)||}<fx<- (3.3)
Js~(2) i• ( 2 )
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for all n'. Similarly, writing

1 P)

\ V- — i 2
1 = 1

there exists a slice 5+(2) such that

+ ||VGn/(z)||}<£r < - for infinitely many indices n'. (3.4)
2

On the other hand, if n is large enough then

L,9K I \un{x)-u(x)\dx < \, I f \Gn(x)-u(x)\dx < \. (3.5)

By (3.3), (3.4) and (3.5) we can find 1x2 such that

|uns(ar) - u{x)\dx < i ^ / |GB,(z) u(x)|dr <
2 £ N ( 5 ± ( 2 ) ) y 2

By induction, if k > 3 then

1 i 1 ft

with

Pk > kC, Pk € N,

< X l < } = Q 5 t , cN(st) =

and we choose slices S±(k) and n^ > n^_i such that

±(fc)) ys±(fc) «

CN(S-(k) ())

2 2

(3.6)



Let

where

Let us consider #j~, #£ smooth cut-ofF functions such that

and define

Gnk(x)

Unk(x)

if xi < 7fc

(x) i fxe5-(Jb)
if /3J < xi <

(x) i f x €

S b if XN > 4= \ i
Because

it follows that

1 a if XN = —j

In addition, if xi = ± | then

i.e. Dfc is periodic in the e\ direction. Also,

\\vk-u\\LHQ) <

< J |uBfc(x) - U(x)|dx + / (|tinfc(x) - «(X)| + |Gnt(x) - u(x)|)dx

+ J _ \Gnk(x)-u(x)\dx + J ^ > + |Gnjk(x)-ii(x)|dx

— lî f̂c "~ Wlll/1(Q) "̂~ l|Gnfc ~~ W I |L 1 (Q) —̂  0 as fc —• +oo.

We show tha t

lim / f(x,un(x),Vun(x))dx >liminf f(x,vk(x),Vvk(x))dx.
JQ fc-H-oo 7 Q
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Indeed, as / is nonnegative

lim

>liminf f(x,unk(x),Vunk(x))dx

= liminf{ / f(x,vk(x),Vvk(x))dx - /
fc—+00 JQ Js

/ /
Q Js±(k)

, Gnk Or), VGnfc (x)dx -

),Vvk(x))dx

(x), VGnfc (x))dx

= liminf

because by (H2)

f(x,Gnk(x),VGnk(x))dx <
}

<C(7^" + - ) -+ 0 as fc -» +00,

and by (H2) and (3.6)

f(x,vk(x),Vvk(x))dx <C I (1 + \\Vvk{x)\\)dx
JS±(k)

<C
S±(k)

t(Xy\et(Xiy\\unk(x)-Gnk\dx

<Cill+ I (\\Vunk\\ + \\VGnk(x)\\)dx

L,L^ I (K*0O - <x)\ + M ~ Gnt(x)\)dx}

Denoting the sequence {vk} thus constructed by {un} and using a similar slicing

procedure in the a^-direction, we construct a sequence {uk ' } as

(1.2)

' Gnk(x) ifx2<7~

+ (1 - 6k(x2))Gnk(x) if x € S~(k)

[Gnk(x)
if x
ifx2>/3+.
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Because unl and Gnk are periodic in the rri-direction, then u^ is periodic in the x\ and
X2-directions and

a if xjy = — | .

By induction we repeat the process to construct a sequence wf
n := Un'2'"*' periodic in

the directions e\,..., e^^\,

6 if x/^ = 2

u>n —>• u in 1

and

liminf / f(x,un{x),Vun(x))dx > liminf / f(x,wn{x),Vwn(x))dx.

Proof of Proposition 3.1 Without loss of generality we assume that i/ = e;v, a = 0.
Suppose that we show that

• • f f
liminf / f(X)Wn(x\\wn(xj)dx ^ / K(x^Q^b^ci^)dHj^^\. (3.7)
n-++oo JQ Jfin{iw=0}

If we set
5(x, u, A) := /(x, u, A) - /(x, u, 0)

then ^ satisfies (Hl)-(H3). If in addition g is nonnegative, obviously we have

and the assumptions (H2) and (H4) on / yield

l«^^-»-(»,«,«A)|

L

for t > to; note that as m < 1

tm t ~ tm

and so g verifies (H4). Hence, by (3.7)

liminf / g(x,un(x),Vun(x))dx > / K(x,a,b,tN)dHN-i (3.8)
n _ + o o y Q J }
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and, as un —> u in L1 strong and by (H2)

0< / ( z , u ,0 ) <c 2 ;

by Lebesgue's Dominated Convergence Theorem we obtain

f f(x,un(x)90)dx-+ f f(x,u(x),0)dx,
Jn Jn

which, together with (3.8), yields

liminf / f(x,un(x),Vun(x))dx > I f(x,u(x),0)dx+

Next, we prove (3.7). We assume that

liminf/ f(x,un(x),Vun(x))dx = lim / /(x,un(x), Vun{x))dx < +oc
n-—+00 y n

 n-*+°°Jn

which, by (H2) implies that

/ \\Vun(x)\\dx < const. (3.9)
Jn

Fix e > 0 and consider the open subset of R^""1

ft' := {x £ Sl:xN = 0}.

By (H3) if x € ft' then there exists 6(x) > 0 such that
x1 e x + 8{x)Q =* |/(x,u, A) - /(x',tx, A)\ < cC(l + |u| + ||A||) (3.10)

for every (x,u, A), (a?;,u, A) G ft x R^ x M^x N , where Q = ( - i , | ) N . Since for all jfc G N

v= U U (̂  + ̂ r ) ,

where Q' := {y E Q:I/N = 0}, by Vitali's Covering Theorem there exists a countable
disjoint subcollection such that

As / is nonnegative we have

lim / f(x,un(x), Vun{x))dx >

00 r (3-H)
J j i ^ Z ) / , c _ f(xk

g,un(x), Vun(x))dx + O(e)
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because, by (3.9), (3.10) and as ||un||^i < C,

f(x,un(x), Vun(x)) - /(x{,un(x), Vun(x))|dx

<eC^ I ^ (1 + |u«(x)| + ||Vun(x)||)dx <

<eC I (1 + |un(x)| + ||Vun(x)||)dx < eC.

By (3.11) we deduce that

lim / f(x,un(x),Vun(x))dx >
n->+<x>Ja

r(xk
q,un(x),Vun(x))dx

•liminfV / |/(xJ,un(x),Vizn(x))-/°°(xJ,«n(x),Vun(x))|dx
n—•"Hoo ^ J J ku-£kr)

+ O(e).

Defining

clearly

Fk:=(J(xk
g+8k

qQ),
g = l

Fk C {x € ft:dts<(x,ft') < -

and so

q=l

Indeed,

CN(Fk) < ̂  ^ ( ^ J ) ^ " 1 = ^ifjv-i(fi')- (3-13)
9=1
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By (H2), (H4), Lemma 2.3 (i), (3.9), (3.13) and Holder's inequality we have

] T / |/(xJ,tin(x),VuB(a:))-/oo(a:J,uB(x),Vun(x))|da: <
-« J X -

c2(l + 2* 0 )£N({* € Ffc: ||Vun(x)|| < to} +

q=l " vq

< O{h + C4( / ||VtiB(x)||dx)
« JFk

1 -™

<O() + C(£N(Fk))<O()

where
yg

fc = (xk
g + 8k

qQ) n { x e Fk-. | | V u n ( x ) | |

Thus, (3.12) reduces to

lim [ f(x,un(x),Vun(x))dx>

, V<g(y))dy + O ( ^ ) + O(€),

where

Since, for fixed x^ G ft', it is clear that

if

in L ^ Q , ^ ) , by lemma 3.2 we have

lim / f(x,un(x),Vun(x))dx >
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By Proposition 2.4 (ii), the function x H-> K(x, a, 6, u) is continuous and so, letting k —> +00
we conclude that

lim / f(x,un(x),Vun(x))dx > f K{x,a,b,eN)dHN^{x) + O(e).
n->+oojQ Jnn{xN=o}

f
nn{xN=o}

Now, it suffices to let e —* 0 + . |

4. A continuity result.
In section 3 we showed that if u takes only two values across a planar surface £(u) then

Next we prove that the equality holds.

Proposition 4.1 Let / : (a0 + \Qu) xR^x MpxN -^ [0, +00) satisfy (Hl)-(H4), where
N N

a0

(
, A > 0, v e SN~\ and let

& if (x — ao)* ̂  > 0
a if ( z - a o ) ^ < O .

Then there exists a sequence un G Wljl(ao + AQ^jR^) such that un —> u in
and

lira /
-++°°Ja

We start by considering the case where / does not depend on x.

Lemma 4.2 Assume that f:Kp x MpxN -> [0,+oo) satisfies (Hi) and (H2). Let
\ A6R, a0 € R N ,

[6 if (x — ao)- ̂  > a
a if (x — ao)-v < a .

There exists a sequence un G VF1>:l(ao + AQ^jR^) such that

( v __ J a ifa:-i/ = —a/2

un(x) = un(x + kavi), i = 1 , . . . , N — 1, fc € Z

where {1^1,..., ^ N - I , ^} is an orthonormal basis of R^,

un->u in L^
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/ f(un(x), Vun(x))dx -> I(u) = [ f(u,O)dx + XN-JK(a, b, u)
Jan+\QV Jao + \QP

and

!ao+\Q

Proof of Lemma 4.2. Step 1. We assume that a0 = 0, A = 1 and, without loss
of generality, we set v = e^. We claim that for all £ £ A{a, 6, ejsi) there exists a sequence
£n € A(a, 6, CN) such that

\\€n - U\\LHQ) ^ 0 as n -> +oc

and

/ f(M*),VU*))dx - / /(u,0)dx + / f~(t(x),Vt(x))dx. (4.1)

We denote by E the set {̂  G Q:XN = 0}. For Jfe 6 N we label the elements of (Z n

hifc^ifc])^"1 x {0} by R } ^ 1 ^ " 1 and we observe

= |J (a,- + E)
i=i

with
(at- + E) fl (fli + S) = 0 if i ̂  j .

(See Figure 3). Extending £(-,£TV) to R^" 1 by periodicity we define

b iixN> l/(2(2k + 1))
f((2fc + l)x) if \xN\ < l/(2(2fc + 1))
a if z N < -l/(2(2Jk + l))

Clearly £2*4-1 € .4(a, 6, e/y) and

r 2(2Jt+i) r
H62JH-1 - ^ I U i ( Q ) = / / |f((2£ + l ) z ) - w(x)|rfx'rfxAr =

2(S* + 1)

/
2A: + 1 J^i

i /
rvr /
K + 1 JO

Due to the periodicity,

/ l)x', xAr) - a\dx'dxN - [

30



and so we conclude that

Also,

in

Jo
2(2Jb + l )

)x), (2fc

f2 f
/ / /(6,

^2(2fc + l) ^ E

f(a,0)dx'dxN (4.2)

r r2(2Jt+i) r
f(b,0)dx'dxN+ f(a,0)dx'dxN.

On the other hand, due to periodicity of £, by (H2) and by Lebesgue's Dominated Con-
vergence Theorem we have that

2 ( o i l UN f
I

as

which, together with (4.2) yields

/(u,0)dx+

thus proving (4.1). Next, let {77n} C *4(a, 6, ejy) be a minimizing sequence for K(a, 6, <
i.e.

K(a,b,eN)= lim / f°°(rin(y)^Vn(y))dy.

By (4.1), for all n we can choose un € ^4(a, 6, e^) such that

1
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Q /*n Jn Tl

and

(i/n(x), Vun(x))dx — / f(u(x),Q)dx — If
JQ JQ

By Theorem 3.1 we conclude that

(u) < liminf / f(un(x),Vun{x))dx < limsup / f(un(x),Vun(x))dx
O n-»+oo

< lim ( / f(u(x),0)dx + f f°°(Tln(x),Vrin(x))dx + -
n-^+oo [JQ JQ Tl

= I /(u(x), 0)dx + K{a, 6, eN) = I(u)
JQ

and so

(u)= lim

Step 2. Let A > 0, and define

h(u,A):=f(u,j).

Setting
"6 if ar- e;v > 0

a if a:- ê v < 0 ,

by Step 1 there exists vn G A(a, 6, eAr) such that

vn —> t/o in X1

and

JQ
 ( a ' 6 ' I / ) >

Let ao G R ^ and set

A

It is clear tha t un meets the boundary conditions, un is periodic in the e i , . . . , e j v - i
directions with period A,

and

/ f(un(x),Vun(x))dx
Jao+XQ

f= /
Ja

/ K ( r ) , T
ao + \Q A A

))dx

f fx(uo(y),O)dy
JQU
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However,
N / / f(u(x),0)dx

'ao+AQ

and since

we deduce that

Jao+\Q Jao+\Q

•
Proof of Proposition 4.1. Without loss of generality, we may assume that ao = 0,

A = 1, v = ejv. In the subsequent constructions we will use (H3). In order to make sure
that this property is satisfied uniformly we will work on compact subsets of Q. Since as
the proof will show it suffices to construct the desired sequence only on compact sets in a
thin neighborhood of the set

Fix € > 0 and let

Since Ec is compact, by a standard argument we can find 8 > 0 such that (H3) is satisfied
uniformly in Ee x [-6/2,5/2] i.e.

x\x € Sc x [-6/2,6/2],\x-x'\ < 6 =» | /O,u, A) - /(z',u, A)\ < eC(l + \u\ + \\A\\) (4.3)

for every (u, A) e Rp x MpxN. Let k G N be such that

^ < S (4.4)

and partition Ee into k1^"1 (N — l)-dimensional cubes, aligned according to the coordinate
axis and with mutually disjoint interiors

kN-l

Se = |J (a

Note that S \ Se can be covered by at most

~1 (4.5)

non-overlapping (N — l)-dimensional cubes of size ^ p . After we set

Qi := at + —jT-Qi V *•=
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Lemma 4.2 guarantees the existence of a sequence {fn } C Wlil(Qi;K
p) such that

a if [x - ai)-eN = f

tf)(x + ifcJ?c.) = e w ( x ) J b € Z | i = 1>... tJV_1 | ( 4 - 6 )

and

We can assume that for all n and for all i € { 1 , . . . , k }

and

< 7-77-

(4.8)
By (4.8), (H2) and Proposition 2.4 (i) there exists a constant c* such that

( x ) i I ax *̂» c 7i 14 y )

We want to piece together the functions £n in order to obtain a sequence on the cube
converging to I(u). Firstly, we show that due to the periodicity of £n we can avoid
concentrations near the boundaries of the (N — l)-dimensional cubes ai + 77E.

Step 1. Fix i € { l , . . . , ^ ^ " 1 } . We claim that it is always possible to assume the
existence of slices 5^ ± such that (see Figure 4)

\n \ - an < Xl - ah

'L = {x G Q{: -\<Xi- a
h
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Moreover, the width of the slices is the same for all i = 1, . . . , kN 1. Indeed, let Q* :=
Qi U Q\ where Q\ is a translation of Qi in the zi-direction, (see Figure 5),

Q'i = (cLi + Vei + Qi),

and by (4.6) extend & periodically to Q\. Choose M > 2c*(l - e)^"1 , M € N and slice
Q* orthogonally to the x\ direction into M slices of width ^ . By (4.9) there exists a slice
S\ such that

\ c
- e)N-2 - Jb'^5 X h, IVI c

for infinitely many indices n. Assume that {£n } is the subsequence thus extracted and
choose n\ large enough such that

By induction, let M G N be such that M > 2mc*(l — e)1^"1 and partition Q* orthogonally
to the xi-direction, into M slices of width -^. There exists a slice Sm such that

/ s

for infinitely many indices j and so, we can find

nm > nm_i > . . . > n2

such that

with

Set

and define
(i)f \ c(i) (~ i \ * \ ~* r- r\

Sm + := {x € Qi:ail 2 2
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It is clear that w$ satisfies (4.6)1,2,3. Also, since u does not depend on x1 and £n (• ,
is periodic in the directions of e i , . . . , e^ - i with period 77,

\w<£(x)-u(x)\dx= \tx)\dx

as m —>• + 0 0 .
Qi

Similarly,

JQi

:))da

Finally, if x € S^_ — \e\ then a m < 7 m < xi < /3m, and if x €
<*m < xi < j m < fim and so, by (4.11)

— Aei then

m,±

and

TI , x

Ae.) -

Step 2. We consider {£n } as in (4.10) and we are going to piece them together row
by row, in the ^-direction. Suppose that the first row in the Xi-direction is

We define (see Figure 6)

:=

where 0 < ^,,n < 1,
and

7^i JQ<

t = i

if —§ < a
if x e s£
if x € Q2

U
- f

i U

if ajt + 5 < ^i < i

< Ckn. Clearly, the Vn (^)'s are periodic in x 2 , . . . , Z N - I

&Xx) - u(x)\dx
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and so by (4.7) and (4.10) we obtain

E ] k2)(*) - <*)\*> $ pfel + p v ^ I < fcfe (4-13)

for n large. Also, by (4.8), (4.3), (4.4), (H2) and Proposition 2.4 (i), (ii)

k

<

E
t = l

E / l/(ai,«(x),0)-/(*,«(*),0)|dx

^2 \K(x,a,b,€N) - K(ai,a,b,e

E C e / (l + l t f ^ l + IIV
,=1 ^Q'

Since

L
<2 /

+ E / ( ltf^l II^tolD
,=1 ^Q'

n,± *"JVV~'n,±J " n , ±
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by (4.7), (4.9), (4.10) we conclude that

k

k f
*52 I K(x,a,b,eN)dHN-i\
,=1 J*i + r)Z

k_ k k_ \ Ce Ce

2e

for n sufficiently large.

Step 3. Having pieced together the functions {£n } in every row i2;, z = l , . . . ,
corresponding to x\ = constant, we obtain ELS in step 4 the sequences

Now, we connect them in the a^-direction (see Figure 7). Since {vn } is periodic in the
X2-direction, using a similar argument as in (4.7), (4.8), (4.9) and (4.10) which involves
extending Vn to i?,-+i by periodicity, we can assume that there axe slices 5 ^ ± orthogonal
to the 22-direction, where concentrations are avoided,

:,

Using convex combinations of tA (a;) and Un across S^± in the 0:2-direction, we con-
struct wn such that

and

f(x,wn(x),Vwn(x))dx - ^T

k f
-^2 K(x,a,b,eN)dHN-i\<

i=1 Jai + t,S

3e

3S



By induction, we obtain finally a sequence

such that vn(x) = b if x^ = 77, t;n(x) = a if x̂ v = —

(4.15)

and

kN-l

-y I
/ J J

f(x,u(x),0)dx

(4.16)

_1(x)| < JVe.

We now extend vn to the whole cube Q. Using the periodicity assumption, we consider
defined in R N " ! x (-f, f) and we set

un{x) =

a

if XN > f
if x e Ec x (-;
if E \ S 6 x (--J
if xN < f,

where vn is the natural extension of vn as a W1'1 function on the layer S \ S € x (—|^, |T?).
Using Figure 8 as a reference, by (4.5) and (4.10) we can see that S \ S€ x (—577,7̂ 77) is
formed by at most a(N)ekN^1 cubes on which vn is equal to some £n and by slices of the
total measure of order ~ where vn is a convex combination of some fn s. Thus, by (4.7),
(4.10), (4.15) we have

/ |un(z) — u(x)\dx
JQ

i = i

(4.17)
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and

/ f(x,un(x),Vun(x))dx - / f(x,u(x),O)dx -
JQ JQ

kN-l

2 I K(x,a,b,eN)dHN-.i(x)\

^ r r

+ 22 f(x,vn(x),Vvn(x))dx+ f(x,u(x),O)dx

r
^(S\E4)

(4.18)
From (H2) and Proposition 2.4 (i) it follows that

/ f(x,u(x),0)dx + f K(x,a,b,eN)dHN-1{x) = O{t\ (4.19)
J(Z\Ze)x(-r)/2,r}/2) </X;\E€

and by (4.9) and (4.10) we obtain

(£\£,)x(-ij/2,ij/2) A ~ M

n

By (4.16)-(4.20) it suffices to choose n = n(e) so large that

"n(€)0»0 ~ w(a;)|c?ar = O(e)
Q

and
/"

/(x,wn(e)(x),Vun(e)(x))dx - / ( u ) | < O(t).
Q
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5. Relaxation on
As mentioned in Section 1, our initial goal was to find the greatest lower bound for

/ f(x,un(x),Vun(x))dx
Jn

when un —> u in L1(J7;RP) and u takes only two values across a planar interface S. We
accomplished this in Propositions 3.1 and 4.1 where we showed that

Proposition 5.1 Let / satisfy (Hl)-(H4) and let

f v f b if (x - CLQ\V > 0 / K nv
u(x) = < .j.) v - ( 5 . 1 )K J \a if (x - ao)-i/ < 0 v ;

a0 € RN , a, 6 G R^, z/ € 5 N - \ A > 0.
(i) l£un->u in L 1 ^ ; ^ ) then

liminf / f(X)Un(x),Vun(x))dx > I K(x,a,b,v)dHN-.\(x)

where E = { x 6 f l : ( i - ao)- v = 0};
(ii) There exists un G W 1 ' 1 ^ + AQ^R?) such that un -» u in L^ao + AQ^R^) and

f(xtun(x),Vun(x))dx-* I /(a;,u(i),O)da

-\- I I\ (x, G, 6, i/jdHjv—1 {*£)•

We recall that (see Section 2)

, a, 6, v) = inf { / /°°(a:5 £(y), Ve(y))dx: { € ^(a, 6, i/)}.

In order to find the specific form of the surface energy density if, we drew our inspiration
from the conjecture of I. Fonseca and L. Tartar [FT2] concerning the F-limit for a phase
transition problem in nonlinear elasticity (see Section 1). Later, we became aware of the
work by Ambrosio and Pallara [AP] where they proved

Theorem 5.2 Under the hypotheses (Hi) - (H4), the relaxation ^[-] on BV{Sl;YLp)
admits the integral representation

T[u]= f f(x,un(x),Vun(x))dx+ f lf{x^{x\u-{x\v{

[
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where

7/(x, a, b, v) := inf{ / f(x, un{y), Vun{y)dy: un —m in

where u is given by (5.1) for ao = 0. It is now clear that Proposition 5.1 and Theorem 5.2
provide the final integral representation for F[u] .

Theorem 5.3 If / satisfies (Hi) - (H4) then

F[u] = f f(x,u(x),Vu(x))dx+ I if(x,u+(x),u-(x),K*)>*#JV-i0r)
JQ. JT,{u)

Proof. By Theorem 5.2, it suffices to show that

7/(x, a, 6, v) = K{x, a, 6, i/).

Fix xo € fi, e > 0 and by Theorem 5.2 let un € Wx'l(eQu; Kp) be such that

lim / f(xQ,un{y),Vun(y))dy= f f(xo,u(y),O)dy + 7/(ar0,a, 6, i / ) ^ " 1 .

By Proposition 5.1 (i) we have

c^-^Cxo^. f t , ! / )^ lim / /(a;0,M«(y),VuB(y))dy

Dividing the inequality by eN~* and letting e —> 0+ yields

/v (x0, a, 6, i/) < 7/(0:0, a, 6, u).

On the other hand, by Proposition 5.1 (ii) let un G W1'1(QV; Rp) be such that un —»• u in
1

-* / f(xo,u(y),O)dy + K(xo,a,b,u).

By Theorem 5.2

n_lim / f(xo,un(x),Vun(x))dx > f(xo,u(y),O)dy + 7/(xo,a, b, v)
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and so we conclude that
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