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Abstract
Patterned structures are represented by means of a potential equal to the sum of a non-convex

functional with the perimeter functional. This is also a model of stable and me tas table states
in two-phase systems with surface tension. A generalization based on an extension of Fleming-
Rishel's coarea formula allows to deal with very irregular configurations, with boundary of
fractional dimension.

1. Two phase systems

This note announces some of the results of [4,5]. The corresponding evolution model is
developed in [6]. Here we shall deal just with two-phase systems; however the extension to
more phases is obvious.

Let ft be a "smooth" bounded domain of RiV(iV > 1) and u e ^ ( f t ) . We shall denote
by [i the iV-dimensional Lebesgue measure. If there exists an interval ]a, /?[ c R such that
\i(\x G ft : a < u(x) < /?}) = 0, then it is natural to decompose ft in the sets (phases) ft- :=

x G d : U(X) < £—•£ >, ft+ := \ x 6 ft : u(x) > 2^£11 Thus the system can be regarded
as patterned. These phases can be very irregular, however they are stable for small L°°-
perturbations of u.

Now we shall see how two-(or more) phase systems can be represented by means of non-
convex potentials. Let

(1.1) (/>: R —> R U {+oc} be lower semicontinuous and proper,

(1.2) Urn = +00.

The case of interest is that of non-convex <£, as in fig. 1.
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Fig. 1. Examples of non convex potentials, (la) u = b,u = d and u = /i are minimum,
relative maximum and absolute minimum points of <f)^\ respectively; u = c and u = / are
flexi. The drawn segment is tangent to the graph of <f>^ at u = a, #.

(lb) a 6 R and

if = +oc if

Then we fix any 0 e X°°(Q) and set

(1.3) /
n

Note that there exists at least one u 6
) := ^(v) — fv V(f, v G R, we have

- 6(x)v(x)] dx{< +oc) Vt; 6 L\

such that $$(u) = inf$$. Moreover, setting

f>$(x)(u(x)) = inf <f>${x) a.e. in Q
a.e. in fi = ^ 3^(tz(a:)) ^ 0a.e. in fi.d<f>(u(x)) 3 6{

Thus for <j> = <f>M(i = 1,2), we have
*

9 e \ \u(x)\ = 1 a.e. in Q (if <f> =

Thus any absolute minimum point of <^(l) corresponds to a patterned structure: Q, = {x : u(x) <
a} U {x : u(x) > g} for <f> = <^(1); fi = {x : u(x) = - 1 } U {x : u(x) = 1} /o r <̂> = <^(2)..

Physical interpretation for <?i> = <̂ >(2). We consider a solid-liquid system (water and ice,
e.g.). Let 9 be (proportional to) the relative temperature; set u = —1 in ice and u = 1 in water.
Then for ^ = ^2\^e represents the/ree energy, and the minimum condition "d<f>^(u(x)) 3
9(x) a.e. in fi" corresponds to the usual phase rule

(1.6) u = - 1 where 0 < 0, u = 1 w/iere 0 > 0, a.e.m fi.
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2. Relative minima

For suitable values of 9 e R, the non-convex real function <J>Q : v —> <f>(v) — 9v may have
a relative (non-absolute) minimum (in R). Note that also for relative minima an excluded zone
appears, which may or may not coincide with that of absolute minima. Let us set

Abs (<f>) := {v £ R : v is an absolute minimum point of <f>e for some 9 £ R},

Rel (<£) := {v G R : v is a relative minimum point of 4>e for some 9 e R};

thus for instance

(2.1) Rel ( < ^ ) = ]-oo,c[U]/,+oo[ ^ Abs (<j>^) = ]-oo,a] U [<7,+oo[,

(2.2)

Note that in several cases (but not always!)

A b s {<j>) = { v e R : < T » = < £ ( * ) } , R e l (<l>) = { v e R : <t>n{v) > 0 } ) .

The situation is different for space dependent systems:

Proposition. For any 9 6 L°°(fi),^^ has no relative (non-absolute) minimum point with
respect to the topology of

This can be easily understood by means of the following example. Let us take <j> = <p(1)

and 9 = 0 in fi. We shall show that the function u = b in £1 is not a relative minimum point
of <f>e with respect to the topology of LJ(Q). For any set A C 0 with /i(A) > 0, set

:= & in Q\A, u := h in

Then $^(ii^) < $^(ix) and ||u — UA||L1(O) —* 0 as fi(A) —> 0.

Physical interpretation. The points of absolute minimum of the potential can be inter-
preted as states of stable equilibrium, and those of relative minimum as states of metastable
equilibrium. The latter can persist just for a limited time; they eventually decay, because ther-
modynamic fluctuations let the system explore nearby states. By proposition 1, metastable states
cannot be represented by means of the potential $$, for any 9 G £



3. Surface tension

We introduce a space interaction term , containing space derivatives:

(3 .1) V(v)= I |Vv| ~supi I vdivq dx : i! e C\(Sl)N ,\rj\ < l i n f t | ( < +00) Vv G

and define the potential functional (a being a positive constant)

(3.2) *$(v) := / [^(v(x)) - 9(x)v(x)} dx + ^V(v)(< +oo) Vv € L1

Proposition 2. For suitable 9 G L 0 0 ^ ) , ^ ias a relative (non-absolute) minimum with
respect to the topology of

In order to illustrate this statement, let us still consider the case of 6 = <£(1). 8 = 0 in ft, u
and z/̂ 4 as in section 2. Then, denoting by \A the characteristic function of A,

*e(uA) - **(ti) = [<Kh) - ^(6)]AI(-4) + (h - b)lv{xA)\

the latter is positive for fi(A) « 1, because

(3.3) /im
(A)

Physical interpretation. By proposition 2, "ile allows to represent states of metastable
equilibrium. According to the previous model of ice and water systems, jV(u) is the surface
tension contribution to the free energy .

Remark. If in (3.2) V(u) where replaced by JQ \Vu\pdx for some p G [l,+oo[, then
proposition 2 would still hold. However, setting ^J(u) := $$(u) + Ja \Vu\pdx,

{ (v) < +°° => v £ Wl>p(Sl) => u cannot jump along

any (smooth) interior surface => v does not represent a

patterned structure .

On the contrary the condition $$(u) < +oo is obviously consistent with the presence of such
discontinuities.
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4. Main result

Theorem 1 [4]. Assume that (1.1), (1.2) hold and that

(4.1) any connected component of {y G R : <f>**(y) < <f>(y)} is bounded.

Then for any u G L*(ft)

(4.2) d($ + V)(u) = d$(u) + dV(u) in L

(4.3) ($ + V)**(u) = $**(u) + V(tz).

In particular, for any u G L*(ft)

V){u) ^ 0 in L°°(ft) =* a$(u) ^ 0 in
(4.4)

[ 9 ^ ( ( ) ) ^ 0 a.e. in fi <£> u(x) G Abs (^) a.e. in ft;

hence, for any 0 e L°°(ft),

{ if u is an absolute minimum point of $

then u(x) G Abs (^) a.e. in ft.

A similar result can be shown for relative minima [4]:

{ if u is a relative minimum point of ty$ (with respect to

the topology of Xx(ft)), then u(x) G Rel (<f>) a.e. in ft.

Physical interpretation of (4.5) and (4.6): points of either absolute or relative minimum
of \&0, which were interpreted as stable and metastable states , respectively, have a phase
structure.

If <fi = <̂ (2) and u is an either absolute or relative minimum of \&#, then by either (4.5)
or (4.6), \u(x)\ = 1 a.e. in ft; namely u corresponds to a two-phase structure. Moreover if
8 e C°(ft) and the interface S between these phases is "smooth", then by a standard surface
variation argument one gets the classical Gibbs-Thomson law :

(4.7) 9 = -OK on 5,

where K denotes the mean curvature of 5 , assumed positive for an ice ball.
Theorem 1 also plays a crucial role in a model of the evolution of non-Cartesian surfaces

of codimension 1 [6].



5. Generalized coarea formula.

The functional V fulfils the classical Fleming-Rishel coarea formula [2,3]

(5.1) V(u) = f V(Hs(u))ds(< +oo) VueL

where for any y, s G R, #<(y) := 0 if y < s, Hs(y) := 1 i / y > s.
This formula plays a crucial role in the proof of Theorem 1. Actually, as shown in [4], that

result holds also if V is replaced by any functional A : Ll(Q) —• [0, +oc] such that

(5.2) A is convex and lower semi-continuous (i.e., A = A**),

(5.3) A fulfils the "generalized coarea formula" (5.1).

If moreover

(5.4) the inclusion Dom (A) C L1^) is compact,

then, for any <j> fulfilling (1.1), (1.2), and for any 6 e £°°(ft), the functional <&£ : u
$(u) + A(rz) — Jn 9u dx has an absolute minimum. And finally, if also

(5.5) lira ^ 4 = +co,
( A ) O fi(A)

then, for suitable $ and 9, *£ has also a relative (non-absolute) minimum point in
All of these conditions are fulfilled not only by Vy but also by

(5.6) Ar(u) := If \u(x) - u{y)\ • \x - y\^N^dxdy (0 < r < 1),

and, setting Bh{x) := {y G RN : \x - y\ < h}, by

(5.7) Ar(u) := / h~{1+r)dh / f ess sup u - ess 'mi u\ dx (0 < r < 1).

Note that Dom(Ar) = W r j l(fl), fractional Sobolev space ; also Dom(Kr) is a Banach space.
Moreover

(5.8) D o m ( A r 2 ) c D o m ( A r i ) , Dom(A r2) C J9om(A r i) i / 0 < r2 < r2

(5.9) Dom(Ar) C -Dom(Ar) if 0 < r < 1.



6. Fractal boundaries

By De Giorgi's theory [3], for any set A C Q if XA € Dom(V)(= BV(fl))9 then the
reduced boundary d*A of A has finite (N — l)-dimensional Hausdorff measure. For any

Dom(Ar) and BV(fi) r £>om(Ar); so the conditions XA € Dom(Ar)
ield less e l a r i t f th ( t i l ) b d f A h i h b d dXA ^ Dom{Kr) yield less regularity for the (essential) boundary of A, which can be regarded

as a fractal set. Actually, both classes of functional {Ar}o<r<i and {A r}0< r<i induce in a
natural way two definitions of fractional dimension for set boundaries. For any measurable set
A C ft, let us denote by deA its essential boundary in ft, that is

deA := {x £ ft : /!(£/>(» n ft) ^ 0, fi(Bh(x) D (RN \ft)) ^ 0 V/i > 0}.

Assuming 5eA ^ 0, we then define the dimension of deA relative to the functional {Ar}o<r<i-

Dim{Ar}(deA) := N - sup{r e ]0,1[ : A r(X^) < +^}»

Under the condition that ft be bounded, the dimension of deA relative to the functional
{Ar}o<r<i can be defined similarly. The latter dimension is strictly related to the Minkowski-
Bouligand dimension [5].

Physical applications. For any r e ]0,1[, the functional Ar and Ar can be used to model
very irregular interfaces, as in dendritic formations and in snowflakes; so A F (XA) and Ar{xA)
can be regarded as generalized surface tension contributions to the free energy .
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