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1. Introduction

Allen and Cahn proposed in [AC 1979] the following semilinear parabolic PDE to

describe the time evolution of an "order parameter" v determining the phase of a

polycrystalline material:

(1.1) vt - 2OK Av + a f(v) = 0 in R3 * (0,*).

Here a is a positive kinetic constant and K is a gradient energy coefficient. The nonlinearity

is

(1.2) f = F ' ,

F denoting the free energy per unit volume. We assume F to be a W—shaped potential,

whose two wells, of equal depth, correspond to different stable material phases. The

Ginzburg—Landau excess free energy is then

[ |Dv|2 + F(v)dx,
R3

the term K|DV| 2 corresponding to interfaces between stable regions. See Allen—Cahn [AC

1979], Cahn-Hilliard [CH 1958], and Caginalp [C 1988] for more explanation. (The PDE (1.1)

is related also to the stochastic Ginzburg—Landau model, an equation for first-order phase

transitions: see Gunton, San Miguel, Sahri [GSS 1983, p. 290].)

We are interested in the asymptotics of the Allen—Cahn equation in the limit e -» 0+ for

(1.3) a = F*> * = T

This represents a rapid rescaling in time and a simultaneous diminution of the gradient energy



term. We consequently expect the solution to converge at each point of R3 * (0,QD) to one of

the two minima of F, creating thereby a sharp interface, the "antiphase boundary11, between

regions of different phases.

An interesting physical and mathematical problem is determining the motion of this

antiphase boundary. Allen and Cahn [AC 1979] propose for the general problem (1.1) the

motion by mean curvature rule

(1.4)

V denoting the velocity of the interface and ki,k2 its principle curvatures. In his study of two

phase continua [Gu 1988a,b], Gurtin has also derived the mean curvature type flow as a model

for the motion of the interface, and later Angenent and Gurtin further developed this theory for

perfect conductors [AG 1989]. The asymptotic limit (1.4) is also consistent with the stationary

results of Modica [M 1987], Fonseca and Tartar [FT 1989], etc.: these authors have shown the

F-limit of the problem of minimizing the excess free energy is the surface area minimization

problem.

Our goal in this paper is a mathematically rigorous verification of the law of motion

(1.4) in the asymptotic limit (1.3), for all times t > 0. This undertaking turns out to be rather

subtle mathematically. The big problem is that a surface evolving according to the mean

curvature evolution (1.4) can start out smooth and yet later develop singularities. For instance

the boundary of a dumbell shaped region will after a time "pinch off1: see for instance Gray son

[Gr 1989], Sethian [S 1990], etc. From the viewpoint of classical differential geometry it is not

so clear if, and how, it may be possible even to define the subsequent evolution of the surface

after the onset of singularities.

There have been, to our knowledge, two general proposals for interpreting the mean

curvature evolution of surfaces past singularities. K. Brakke [Br 1978] has exploited techniques

of geometric measure theory to construct a (generally nonunique) varifold solution.



An alternate approach, initially suggested for numerical calculations by Sethian [S 1985],

Osher k Sethian [OS 1988], and, for a first order model of flame propagation, by Barles [B

1985], represents the evolving surface as the level set of an auxiliary function solving an

appropriate nonlinear PDE. This latter suggestion has been extensively developed by Evans k

Spruck [ES 1989a,b] [ES 1990] and, independently, Chen, Giga and Goto [CGG 1989]. Their

analysis made use of the theory of so—called viscosity solutions to fully nonlinear second order

elliptic equation, as developed by Crandall k Lions [CL 1983], Crandall, Evans k Lions [CEL

1984], Lions [L 1983a,b], Ishii [11989], Jensen [J 1988], Jensen, Lions k Souganidis [JLS 1988],

etc. etc. For a general review of the theory as well as an extensive list of references we refer to

the usefs guide by Crandall, Ishii and Lions [CIL 1990]. Recently, Soner [So 1990] has recast

the definitions, constructions and uniqueness criterion of [ES 1989a], [CGG 1989] into a

different and more intrinsic form using the distance function to the surface: this reformation is

an important tool in our analysis below. A general theory for moving fronts using the distance

function to the surface is developed in Barles, Soner and Souganidis [BSS 1991].

The level set approach uniquely defines a generalized mean curvature evolution

{Ft}t>Q, starting with a given compact surface To C Rn. This flow exists for all time and

agrees with the classical smooth differential geometric flow so long as the later exists. The

geometric motion may, on the other hand, develop singularities, changing topological type and

exhibit various other geometric pathologies.

In spite of these peculiarities the generalized motion {r t} t > 0 seems in many ways a

strong candidate for being the "right" way to extend the classical motion past singularities.

We are consequently led to conjecture that this generalized mean curvature motion governs

asymptotic behavior for solutions of the Allen—Cahn equation (1.1) in the limit (1.3). Formal

asymptotic expansions suggesting this have been carried out by Fife [F 1989 ], Rubinstein,

Sternberg k Keller [RSK 1989], Pego [P 1989], and others. The radial case has been studied by

Bronsard k Kohn [BK 1989], and De Mottoni k Schatzman [DS 1989] have given a complete

proof for the case of a classical geometric motion. Chen [Ch 1990] has very recently generalized



much of this work and given simpler proofs, as has N. Korevaar in unpublished work.

All these arguments require knowledge that the mean curvature flow be smooth, and

consequently fail once geometric irregularities appear. The main accomplishment of this work

is consequently our verification that the generalized motion {Ft}t>Q does indeed determine the

antiphase boundary for all positive time, with the one proviso (discussed in §5) that the sets

{Ft} t>0 do not develop interiors.

This assertion, by the way, provides an independent check on the reasonableness of the

level set model of Evans-Spruck and Chen-Giga-Goto. The generalized motion {I\}t>Q can

behave in all sorts of odd ways (cf. Evans & Spruck [ES 1989a, §8]) and so it is reassuring to

learn {Tt}t>Q nevertheless controls asymptotics for the scaled Allen-Cahn equation. Finally,

we note that a general weak theory of moving fronts (by using the signed distance function) has

been recently formulated by Barles, Soner k Souganidis [BBS 1991]. This theory provides a

general framework to the study of front propogation.

We have organized this paper by first providing in §2 a quick review of the level set

approach to mean curvature flow, followed by a detailed analysis of the distance function d to

the motion. The key assertion is that d is a supersolution solution of the heat equation in the

region {d > 0}, in the weak, that is, viscosity sense. This observation is at the heart of Soner's

work [So 1990]. In §3 we build supersolutions of the scaled Allen-Cahn equations out of d

and the standing wave solution q of the one-dimensional Allen-Cahn equation. Such change

of variable have already been employed by Fife & McLeod [FM 1977], Barles, Bronsard k

Souganidis [BBS 1990], Rubinstein, Sternberg & Keller [RSK 1989], etc. Our construction is

thus deeply motivated by previous work, the new contribution being various adjustments such

as cutting off d near I \ and adding a small positive term. Finally in §4 we extend the

maximum principle to our general setting and prove solutions of the scaled Allen—Cahn

equation lie everywhere beneath our supersolutions. An analogous assertion for subsolutions

completes the proof.



In §5 we discuss the possibility the sets {Ft} t>0 may develop an interior. We do not

know whether our assumptions in fact exclude this possibility.



2. The Distance function to a generalized motion by mean curvature

In this section we recall the level set construction in Evans-Spruck [ES 1989a,b] and

Chen-Giga-Goto [CGG 1989] of a generalized evolution by mean curvature, and then study

properties of the distance function to the motion.

Given a compact subset To C Rn, n > 2, choose a continuous function g : Rn -* R

satisfying

(2.1) To = {x € Rn | g(x) = 0}

and

(2.2) g is constant outside some ball.

We consider then the mean curvature evolution PDE

(2.3)

Ut = (**i ~ - j i ^ K i X j i n R n

u = g on Rn x {t = 0}.

As explained in [ES 1989a] this PDE asserts on each level set of u evolves according to mean

curvature flow, at least in regions where u is smooth and Du t 0. In addition there exists a

unique, continuous weak solution of (2.3). See [ES 1989a], [CGG 1989] for the relevant

definitions, proofs, etc. We accordingly define the compact sets

(2.4) r , = {x e Rn | u(x,t) = 0} (t > 0)

and call {rt)t>Q the generalized motion by mean curvature starting from Fo. Consult [ES

1989a, §5], and [CGG 1989, Theorem 7.1] for a proof that the definition (2.4) does not depend



on the choice of the particular function g verifying (2.1), (2.2).

Let t = inf {t > 0 | Ft = 0} denote the extinction time. For each finite time

0 < t < t*, let us set

(2.5) d(x,t) = dist(x,rt) (x E Rn),

the distance of x to I \ in Rn. (Warning: We will later modify this definition, in (2.30)).

Notice that the continuity of u implies IV is nonempty, and consequently the distance

function is defined at t . Also, the function d is Lipschitz continuous in the spatial variable,

but may be discontinuous in the time t.

First we verify that d is lower semicontinuous and continuous from below, (cf. Lemma

7.3 in Soner [So 1990].)

Proposition 2.1 (i) For each x E Rn and 0 < t < t*,

(2.6) d(x,t) <lim inf d(y,s).

s->t

(ii) For each x 6 Rn and 0 < t < t*,

d(x,t)=limd(y,s).
y-»x
• Tt

Proof 1. Choose {yk}£= 1 C Rn, {sk}J= 1 C [0,t*] so that yk -• x, sk -»t and

d(yk,Sk) -»lim inf d(y,s).
y-»x



As Fs is compact and nonempty, there exists a point zk 6 Fg for which

d(yk,sk) = dist(yk,rSk) = | y k - z k | (k = 1,2,...)

We extract a subsequence {z^.}0?* c {zk}u—i and a point z e R n so that zk -> z. As

zk G Ts , we have u(zk,Sk) = 0 (k = 1,...); and consequently u(z,t) = 0. Thus z 6 Tt. Hence

d(x,t) = dist(x,rt) < |x -s | = lim |yk. - z k . |
j J J

= limd(yk.,sk.)

= lim inf d(y,s).

s-»t
This proves assertion (i).

2. To verify property (ii) suppose instead d(x,t) < lim sup d(y,s) and choose {yk}£_i C Rn,

{sk}f=1 C [0,t] satisfying yk -• x, sk f t and d(yk,sk) -»lim sup d(y,s). There exists a number

s ]t
r e R satisfying

(27) d(x,t) < r < d(yk,sk)

for all sufficiently large k, say k > k0. In particular

(2.8) B(yk,r) C [Rn \ r sJ (k > k0).

Now set B(yk,r) = A* and let {A*}s>s denote the subsequent evolution of the ball A* by

the mean curvature flow. According to Evans—Spruck [ES 1989a] (2.8) implies Ag fl Fs = 0



for all times s > Sk- But a direct computation [ES 1989a, §7.1] reveals A* = B(yk,ik(s))

(sk < s < t) for rk(s) = (r2 - 2(n-l)(s-sk))1 / 2 . As A* n I \ = 0 , we deduced d(yk,t) > rk(t)

(k > ko). Now send k to infinity to discover d(x,t) > r , a contradiction to (2.7).

D

Next we verify that d is a supersolution of the heat equation off the set T = {d = 0}.

In whatever follows, the sub and supersolutions are interpreted in the "viscosity" sense of

Crandall-Lions [CL 1983], Crandall-Evans-Lions [CEL 1984] and Lions [1983].

Theorem 2.2 Let d be the distance function, as above. Then

(2.9) dt - Ad > 0 in {d > 0} c Rn x (0,t*).

Proof 1. Fix a test function <p 6 Cw (Rn « (O,QD)) and suppose

(2.10) d — <f> has a minimum at a point (xo,to) 6 Rn * (0,t*) ,

where

(2.11) d(xo,to) > 0.

We must demonstrate

(2.12) <f>t-A<p>0 at (xo,to).

2. Adding if necessary a constant to 4> we may assume

(2.13)

Owing to (2.10) and (2.12) we have
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(2.14) d(x,t) > <f>{x,t) (x G Rn, 0 < t < t*).

- Choose z0 € Tt so that
o

(2.15) d(x0 )t0)= | x o - z o | = 6.

Upon rotating coordinates we may assume

(2.16) x0 = z0 + 6 en ,

where en = (0,...,0,l). Set

(2.17) ^x,t) = <p{x + x0 - z0)t) - 6 (x 6 Rn, t > 0).

Then

(2.18) VKto) = 0.

3. We now claim

(2.19) { ^ > 0 } c { d > 0 } .

To verify this inclusion select any point (x,t) € Rn * (0,t*) where i^x,t) > 0. Then (2.14),

(2.17) force d(x + x0 - zo,t) > ^(x + x0 - zo,t) > 6. Now if d(x,t) = 0 , then

6 < d(x + xo — zo,t) — d(x,t) < |xo — zo| = S, a contradiction. Assertion (2.19) is proved.

4. For use later, let us pause to verify

(2.20) D#xo , to) = en ,

and
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(2-21) <px x (xo , to) < 0.
n n

Indeed (2.13), (2.14) imply

#x , t 0 ) - <f>(xo,to) < d(x,t0) - d(xo,to) < |x - x o | (x e Rn).

Consequently | D^(xo,to) | < 1. On the other hand, let us consider next the scalar function

$(s) = <p(z0 + sen,t0) (s > 0). By (2.14) we have

$(s) < d(z0 + sen, t0) < s ,

since z0 € r t 0 . In addition $(^) = d(z0 + ^en , t0) = d(xo,to) = 6. Thus

$'(£) = 1, $"{6) < 0 ;

that is, <f>x (xO)to) = 1, <px x (xo,t0) < 0.
n n

5. We return now to the main task at hand, verifying the inequality (2.12). Replacing u by

| u | if necessary, we may assume

u > 0 in Rn x [O,QD).

(Recall from Evans—Spruck [ES 1989a, §2.4] that | u | is also a solution of the mean curvature

evolution PDE.) Thus {d > 0} = {u > 0} ; whence (2.19) implies

(2.22) {^> 0} C { u > 0}.

We next build a continuous function * : [O,QD) -> [0,®) such that
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(2.23)

and

*(0) = 0, *(z) > 0 if z > 0

(2.24) ,t) < ¥(u(z,t)) for all (z,t) near (z0)t0).

To carry out this construction, define the compact sets

= { x e R n , 0 < t < t * - * o | < 1 , | t - t o | <

for k = 1,.... Write fa = inf u. Owing to (2.22) fa > ... > fa > /3k+i - > 0. Furthermore
E k

l i m & = 0, since u(zo,to) = ^zO)to) = 0. Pass to a subsequence {P^}W:=i C {iftj^-i

satisfying /3k. > ^k. (j = 1,...) and define tp : [O,OD) -• R by

linear on [/?k. , /?k . ] .

Then if (x,t) € Ek . \E k . ,

Thus (2.24) is valid on the set

J=l

Since (2.24) is trivial on {ip < 0}, we deduce (2.24) is valid for all points near (zo,to).
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6. Now $(u) is a solution of the mean curvature PDE according to Evans-Spruck [ES 1989a,

§2.4]. As (2.18), (2.24) imply

a local minimum at (zo,to),

we have

/ ^x x- - ^ a*

Now

according to (2.17). Thus (2.20), (2.21) force

<t>t-A<P=<t>t- (6ij li—i)0XiXj - ^ >• 0 at (x0)t0).
|D^|2 n n

This is inequality (2.12). o

Our proof has a geometric interpretation. In view of (2.17), (2.20) the set {i> = 0} is a

smooth hypersurface S near (zo,to), and owing to (2.18), (2.19) this (smooth) surface is

tangent to the (possibly nonsmooth) set T at (zo,to).
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(zo.'o)

Figure 1. Cross-sections of S and T at time fo-

It then follows from the definition of a solution for the mean curvature evolution PDE that

^ 1

This means that the velocity of S at (zo,to) is greater than or equal to (n—1) times the mean

curvature of S at (zo,to). This interpretation is related to observations in Soner [So 1990,

§14A].

Remark In fact d is a supersolution of the heat equation all the way up to time t*. In other

words,

(2.25) d t - Ad > 0 in {d > 0} c Rn * (O,t*J

To verify this, we assume that for a <f> as above

d — 4> has a minimum at a point (xo,to)
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with t0 = t* and d(x0)t0) > 0.

Upon modifying <f> if necessary, we may assume that d — <f> has a strict minimum at

(xo,to). Finally, given e > 0 we write

/ ( x , t ) E flX|t) + - £ - (x € Rn, 0 < t < t*).
t-t*

Since d is lower semi continuous and (p = —CD on {t = t*}, d — <f>e has a minimum at a point

(x£)t£) € Rn x (0>t*), with

(2.26) x £ . - tx o andt £ - t to = t* as e->0.

Since d(xo,to) > 0 and d is lower semi continuous, we have d(x ,t ) > 0 for sufficiently

small e. Consequently Theorem 2.2 implies

tf?-A/>0 at(x£,t£).

Now

Thus

fc-A0>O at(x£ltc).

Now let e -» 0. D

We conclude this section by modifying our notation, as follows. We will henceforth

assume To is the boundary of a bounded, open set U C R, and choose a continuous function g
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so that

(2.27)
> o if x e u
= 0 if x € r o

< 0 if x 6 Rn - V

We solve the mean curvature PDE (2.3), and then define

(2.28)
and

(2.29)

It = {x € Rn | u(x,t) > 0}

Ot H {x G Rn | u(x,t) < 0}.

( t > 0 )

In view of (2.4) and (2.27) we may informally regard It as the "inside" and Ot as the

"outside" of the evolution at time t. We also write

(2.30)

and

(2.31)

I = {(x,t) € Rn x (0,GD) | u(x,t) > 0}

O = {(x,t) 6 Rn * (O,oc) | u(x,t) < 0}.

Let us now change notation, hereafter writing

(2.30) d(x,t) =
dist(x,r t) if x e I t

0 if x 6 Tt

-dist(x,r t) if xe Ot.

for x 6 RD, 0 < t < t*. We henceforth call d the signed distance function.

We recast Theorem 2.2 into the new notation.

Theorem 2.3 Let d be the signed distance function, as above. Then

(2.31) dt - Ad > 0 tn I n {0 < t < t*} ,
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and

(2.32) dt - Ad < 0 in 0 n {0 < t < t*} .

In Soner [So 1990] a set valued map {Ct) t>0 is called a viscosity solution of the mean

curvature flow problem if both (2.31) and (2.32) hold. Hence the above theorem establishes a

connection between the level set solutions of Evans—Spruck and Chen—Giga—Goto, and that

constructed in [So 1990]. In particular, these two definitions coincide if 5It = 001 f°r all

t i t . A more detailed discussion of this point is given in [So 1990, §11].
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3. Supersolutions

We intend next to utilize the signed distance function d to build sub— and

supersolutions of the Allen-Cahn PDE.

For definiteness let us take the free energy per unit volume F to be the quartic

(3.1) F(Z)=4(z2-l)2 (zeR),

so that

(3.2) f(z) = F'(z) = 2(z3-z) (z€R).

(Our arguments however are still valid without significant change, if F is any W—shaped

potential, whose two wells are of equal depth.) For this free energy the ODE

(3.3)
q" (s) = f(q(s)) (seR)

l im q ( s ) = ± 1
S-»±0D

has an explicit standing wave solution

q(s) = tanh(s) = e25 - 1
e25 + 1

(s e R) .

We record for later use the equalities

(3.4)
' q' (s) = sech2(s) = =

(es + e"5)2

. q" (s) = - 2 sech2(s) tanh(s)

(s e R).
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Next fix 0 < 6 « 1 and consider a smooth auxiliary function T? : R -» R satisfying

(3.5)

' r?(z) = - 6 (- OD < z < 6/4)

7]{z) =z-6 (z > 6/2)

.O< v' <C, |r?"| < § ,

where C is a constant, independent of 6.

Suppose in addition {r\}tvQ is a generalized motion by mean curvature, and d is the

corresponding signed distance function.

Lemma 3.1. There exists a constant C, independent of 6, such that

(3.6) r}{d)t-AT)(d)>-j in Rn « (0,t*]

and

(3.7) i7(d)t - A?7(d) > 0 in { d > i } c R n « (0,t*]

Proof 1. Take (j> € C" (Rn « (O,CD)) and assume 7/(d) — <f> has a strict minimum at point

(xo,to) 6 Rn « (0,t*).

2. Assume first d(xo,to) > 0. Fix e > 0, write

v (z) = rtfz) + ez (z e R),

and set

Then rj (d) is lower semi continuous near (xo,to) and thus V£(&) — <P ^ a s a minimum at a

point (x£,t£) € Rn * (0,t*), with



20

(3.8) X£~4X°> *£**to ** £-*0.

Adding a constant to <p if necessary we may assume TJ (d) — <p = 0 at (x ,t ). Thus

7/ (d) > # and so

(3.9) d > p (<f>) = ^

for all (x,t) near (x ,t ), with equality at (x ,t ). Since d(xo,to) > 0 and d is lower

semi continuous near (xo,to)

d(x£,t£) > 0

for all small e > 0. According to (3.9) and Theorem 2.2

that is,

(3.10) p'JMfo-Ati-p'' («^)|D^|2>0 at(x

Now

and so (3.10) yields

(3.11) *
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by (3.5) at (x ,t ). We employed in this calculation the bound | D ^ | < 1, which follows from

(3.9). Sending e -» 0 we deduce

(3.12) 0 t — A0>— -J at (xo,to).

3. Assume next d(xo,to) < 0. Since d is continuous from below, we have 7/(d) = — 6 on the

set {|x—XQ | < a, to — tr < t < to} for some a > 0. Thus

o,to) > 0,

and so

(3.13) <f>t-A<p>0 at (xo,to).

4. If 7/(d) — <p has a minimum at a point (xo,t*), we argue using the Remark after Theorem

2.2. Assertion (3.6) is proved.

5. To prove (3.7), suppose d(xo,to) > 6/2. Then for small e > 0, d(x£,t£) > 6/2. By (3.5) we

conclude that —1\" (ipe) = 0 at (x ,t ). Using this in (3.11), we arrive at (3.7). o

Our intention next is to build using q and d a supersolution of the scaled Allen—Cahn

equation. For this let us take constants a,(3 > 0 (to be selected later) and write

(3.14) w£(x,t) = q(7Ad(x^)) + °*) + ep (x E Rn, 0 < t < t*).

Since the cut—off function r/ depends on the parameter 6, so does the above function w .

However for notational simplicity we suppress this dependence in the notation.
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Theorem 3.2 There exist a = a(6) > 0, fi = P(6) > 0 and e0 = £o(£) > 0 such that

(3.1b) w? - Aw6 + - f(w£) > 0 in Rn « (0,t*]
e2

for all 0 < e < e0- -fa addition a,(3 = 0(5) as £-* 0.

Proof 1. As usual choose (p € C0D(Rn x (0,QD)) and suppose

(3.16) vfE — <p has a minimum at (xo,to) G Rn x (0,t*]

vrith

(3.17) we-tf> = 0 at (xo,to).

We must demonstrate

(3.18) <£ t- A<̂> + — f((^) > 0 at (xo,to),

provided e is sufficiently small, depending only on 6 and not on (f>.

2. Write

and set ^(x,t) = eq'l((f>(x,t) — eft). This function is defined near (xO)to) since

- 1 < 0(xo,to) - eft = q ( ^ ^ + a t ) < 1. Owing to (3.14), (3.16), (3.17)

(3.19) r/(d) — (i> — at) has a minimum at (xo,to),
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with T7(d) - (i>- at) = 0 at (xo,t0).

According to Lemma 3.1 we have

(3.20) i>t-Aip>a-j at (xo,to)

and

(3.21) ipt-Ai>>a at (xo,to) if d(xo,t0) >

3. Since

we can compute

(3.22)

e2

± q" (|)(1 - | D*|2) + ± [f(q(|) + efi -

at the point (xo,to), where we utilized the ODE (3.3) to derive the last equality.

We now must estimate the various terms in (3.22).

Case 1 d(xo,to) > | .

In this situation d > -* near (xo,to) and so r/(d) = d — 6 near (xo,to). Then (3.19) implies
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|DV<x o , t o ) |= l .

Thus (3.21) and (3.22) yield

£ 2

(3.23)

Fix 0 < 7 < 1 so that

inf f'(z) = a i > 0 .

Then set

inf q'(s) = a 2 > 0 ,
lQ(s)|<7

define

(3.24) a = - L

We consider two further possibilities:

Subcase 1 | q ( | ) | > 7.

Then (3.23) implies

at(xo,to)
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if e is small enough, depending only on S.

Subcase 2 | q ( | ) | < 7.

Then (3.23) implies

T CD

L

> 0 at (x0>t0)

for small £, depending on 6.

Both subcases therefore yield (3.18).

Case 2 d(xo,to) < j .

We use the same choices of a and p as in the previous case. In this situation 7/(d) < — ^

and so

**<-!,

according to (3.24). Hence (3.19) yields the inequality

(3.25) i>< - j at (xo,to).

Statement (3.19) and the definition (3.5) of r/ imply also |D^| < C at (xo,to).

We then compute utilizing (3.20), (3.22)

(3.26) fa -
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But since q" > 0 on (-OD,O], (3.25) and (3.4) force

Similarly

p -6/2e
< - T e =o( l ) as e-.O.

e2

We analyze the remaining terms on the right hand side of (3.26) as in the two subcases of

Case 1.

The conclusion is

<pt-A<p + — i(<p) >0 at(xo>to)

for all 0 < e < eo(6), £Q(6) sufficiently small. As the constant appearing in the above argument

is independent of <p, the choice of eo{6) does not depend on <p.

D
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4. Asymptotics for the Allen—Cahn equation

We at last turn to the scaled Allen—Cahn equation

vf - Av* + — f (v£) = 0 in Rn x (0,*)

(4.1),
[ve = he on Rn x {t = 0},

the cubic f given by (3.2) and the initial function hE described below.

We intend to prove ve -> 1 in a region I C Rn x [0,00), Y€ -»—1 in another region

0 c Rn x [O,QD), the "interface" T between I (the "inside") and 0 (the "outside") being a

generalized motion governed by mean curvature.

To induce this behavior, however, we must choose appropriate initial functions. More

specifically, let To henceforth denote the smooth boundary of a bounded, connected open set

U c Rn. Let d be the signed distance function to r0 , and set

(4.2) he(x) = q(^fl) (x 6 R»).

Thus h6 is approximately equal to 1 within U, is approximately equal to —1 within Rn \U,

and has a transition layer of width approximately e across the surface IV Moreover, by the

maximum principle, —1 < v < 1 in Rn x [0,©).

We will show that \ e roughly maintains this form at later times, the transition layer

forming across the generalized motion by mean curvature starting with Fo. To this end, we

choose a continuous function g : Rn -> R satisfying (2.27), solve the mean curvature evolution

PDE (2.3), and define T t, I t , O t , 1,0 by (2.4), (2.28)-{2.31).
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Theorem 4.1 We have

(4.3)' ve -» 1 uniformly on compact subsets of I

and

(4.4) v£ -» -1 uniformly on compact subsets of 0.

Remark Assertions (4.3), (4.4) provide a great deal, but by no means all, of the desired

information about the limiting behavior of the {\6} Q. We note in particular it is not known

whether the "interface" T can develop an interior, see the discussion following in §5.

Proof 1. As To is smooth we may choose g to be smooth, with |Dg| = 1 near IV Thus if

6 > 0 is small enough the set

is smooth. We let

(4.6) r f = {x 6 Rn | u(x,t) = -26} (t > 0)

be the generalized evolution starting with To, and take d to denote the signed distance

function to F t , d0 being the signed distance function to TQ. Let t*c be the extinction time

Choose rj( •) as in §3 and set

for {rf

(4.7)
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a and 0 are given by (3.24), with t^ replacing t*. Then for 0 < e < e<>(6) we have

(4.8) w ? / - Aw£)* + — f(w£'5) > 0 in Rn x (o,tJ) .

2. We first claim

(4.9) w£'5(x,0) > h£(x) (x € Rn).

To verify this inequality it suffices in view of (4.2) to prove

Ttfdo(x)) > d(x) (x e Rn).

Now owing to (4.5) d£(x) > d(x) + 26; and so i?(do(x)) > v(d{x) + 26)(xe Rn). It is

therefore enough to show

(4.10) d(x) < r^d(x) + 26) (x 6 Rn).

But if d(x) > - nf , then d(x) + 26 > | ; whence

r^d(x) + 26) = d(x) + 6> d(x).

On the other hand, if d(x) < - 1 5, (4.10) is obvious as ij> -6.

3. Now write

(4.11) w = e ~ A V ' t f (A > 0).

We next claim
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<TAt w
(4.12) w t - Aw + Aw + ^ - f(eAtw) > 0 in Rn * (0,tJ

To check this, select as always <f> € C(B(Rn * (0,a>)) and assume

w — <p has a minimum at a point (xo,to) eK n « (

with w - 4> = 0 at (xo,to). Then

e~Xiwe'6= w > 4> in Rn * (O.tjj,

with equality at (xo,to)- Hence

in

with equality at (xo,to), for ^ = e <p. Assertion (4.8) then implies

— i(i>) > 0 at (xo,to).

We rewrite the last inequality to read

* it
- A<p + \<p + -— f(eAV) > 0 at (xo,to).

e2

This establishes (4.12).

4. We hereafter set
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A = A =

Then for each t the mapping

- A t A
(4.13) z H Az H f(e z) is strictly increasing.

e2

5. We now assert

(4.14) w e ^> ve in Rnx [O,t:

Indeed if not, then

wE} <\£ somewhere in Rn

and consequently

w < v somewhere in Rn x

for w = e w£) , v = e"" ve. The function w is lower semi continuous. In addition

w > v on Rn x [t = 0],

and

l i m w > e~A t(- l + e0) > l i m • = - e At .
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Hence there exists a point (xo,to) G Rn « (0,t^] such that

(4.15) (w-v)(xo,to) = min (w-v) = b < 0.

Now (4.14) and (4.1). yield

(4.16) v t - Av + Av + - — f(eAtv) = 0 in Rn

If

(4.17) 4> = v + b,

then tf> e C^R11 x [0)(B)) and (4.15) says

w — <j> has a minimum at (xo.to)

with w — <p = 0 at (xo,to). According to step 3 above, we conclude

(TXt At
(4.18) <pt - A<p + \<f> + -— i(e 4>) > 0

e2

at (xo,to). However since b < 0, <p < v. Consequently (4.13), (4.17), (4.18) imply

.-At Xi
v t - Av + Av + -— t(eA\) > 0

e2

at (xO)to). This contradicts (4.16) and thereby proves (4.14).

6. Utilizing (4.14) and the definition (4.7) of the auxiliary function we> , we discover

(4.19)
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for x e Rn, 0 < t < t J. Now if

x 6 of = {x € Rn | u(x,t) < -26}, 0 < t < t J ,

we have d (x,t) < 0 and so

ij{d. (x,t)) + at <c - 6 + at ̂

£ - | < 5 by (3.24) (with t^ replacing t*).

Thus

e-0 c

In view of (4.19) we have

l i m v ^ t )

uniformly on 0 = {(x,t) € Rn * [0,t̂ ] | u(x,t) < -2£}. In particular,

(4.20) limve(x,t) = - l
e-»0

uniformly on compact subsets of O for sufficiently small 6. For large 6 > 0, a minor

modification of the above proof yields (4.20). Since

0 = U OS,
6>0

the proof of (4.4) is now complete. A similar argument proves (4.3).
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5. Uniqueness?

In this concluding section we elaborate upon the remark following Theorem 4.1. Let us

return to the scaled Allen—Cahn PDE and calculate the time derivative of the scaled excess free

energy:

i f | | Dv£ | 2 + I F(v£)dx = [ eDv£ • D vf + I f( ve) vf dx
a tJRn^ £ J R n

 £

= [ v £ ( -
Rn

(v£)2dx<0.
Rn

Thus

T
(5.1) sup [ I |Dv£|2 + iF(v£)dx + J [ (v£)2dxdt<[ £ |Dh£| + 1 F(h£)dx

0<t<TJRn^ £ JoJ|Rn JR n
2 £

< C < in,

in view of the special form (4.2) for the initial function h£. Since this inequality implies

T
f f F(v£)dx <
JoJRn

as e -• 0 for each T > 0, we deduce

(5.2) ( v £ ) 2 - l a.e. in Rn
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2

In addition if we set G ( z ) = ^ - - z and write

v£ = G(v£) ,

we have (cf. Bronsard-Kohn [BK 1989])

[ |Dv£ |dx=[ |(v£)2-l | |Dv£| dx
Rn Rn

<-l
Rn

and

f [ | v £ | d x = [ [ | ( v £ ) 2 - l | |vf|dxdt
J 0 J R n J0JR n

T

"J 1 n £^2 + h F(v C)d x d t * C < »•

Thus { v e } £ > 0 is bounded in BV(Rn » (0,T)) for each T > 0, and so is precompact in

Lioc(Rn x (°>T))- Xt foUows that { v £ } £ > 0 is precompact in L{oc (R
n x (0,T)). Consequently,

passing if necessary to a subsequence we have

(5.3) v£j -. ± 1 in Rn x [0,*).

Our Theorem 4.1 augments this simple fact with the assertion

(5.4) v £ -» l in I , v £ - » - l in 0 .
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However we do not know

T = Rn x [O,CD)\[I U 0]

has (n+l)-dimensional Lebesgue measure zero, and consequently (5.4) does not imply (5.2),

(5.3). The problem is that the sets {Ft} t>0 could conceivably develop an interior for times

t* > t > t , t denoting the first time the classical evolution by mean curvature has a

singularity. See [ES 1989a, §8] for an example of a nonsmooth 1—dimensional compact set

To C R2 for which Ft has an interior for times t > 0.

On the other hand Evans—Spruck [ES 1990 ] have recently proved for smooth Fo that

where Hn"! is (n—1)—dimensional Hausdorff measure and F* = #IY Thus Ft has positive

n-dimensional Lebesgue measure if and only if F t has an interior. Finally, [BSS 1991] gives a

general but by no means sharp geometric condition which guarantees no interior. This

condition is used by Soner—Souganidis [So Sou 1991] to show that rotationally symmetric

surfaces which look like the torus, do not develop interior.

Now if in fact int(Ft) + 0 in Rn for some time t+ < t < t*, then int(F) #0 in Rn x

[O,CE). In this case assertion (5.3) tells us that for some subsequence vej -» ± 1 a.e. within F,

whereas (5.4) provides no information at all regarding \e inside F.

Should this be possible, it seems most likely that the regions when veJ -> 1 and v£j"-» -1

would be separated by an "interface" evolving by mean curvature in the sense of Soner

[So 1990]. Such a motion is generally nonunique. And perhaps different subsequences

correspond to different interfaces, or the initial profile picks the particular interface to which

the solutions convergence. At present it is unclear whether these circumstances can arise and,

if so, how the solutions ve of the scaled Allen-Cahn equation would behave within the interior

of F.
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