NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:

The copyright law of the United States (title 17, U.S. Code) governs the making of photocopies or other reproductions of copyrighted material. Any copying of this document without permission of its author may be prohibited by law.

DYNAMICAL MODELING OF PHASE TRANSITIONS BY MEANS OF VISCOELASTICITY IN MANY DIMENSIONS
by

Piotr Rybka
Department of Mathematics
Carnegie Mellon University Pittsburgh, PA 15213

Research Report No. 91-100-NAMS-9
January 1991

University Libraries
Carnegie Mellon University
Pittsburgh, PA 15213-3890

Dynamical Modeling of Phase Transitions by Means of Viscoelasticity in Many Dimensions

PiotrRybka
Department of Mathematics
Carnegie Mellon University
Pittsburgh, PA 15213

Table of Contents

1. Introduction 1
2. The description of the problem 9
3. An existence result 12
4. Long time behavior for arbirary initial data 25
5. Stability of equilibria 34
Appendix 51
References 52

1. Introduction.

In this paper we study a model equation of viscoelasticity

$$
\begin{equation*}
\mathrm{j}^{*} \mathrm{fl}=\operatorname{div} \mathrm{G}(\mathrm{VM})+A u_{t} \quad \text { in } \mathrm{Q} \tag{1.1}
\end{equation*}
$$

in a multidimensional setting. The displacement u is vector valued, thus $V u$ is a matrix.

We impose the 'no-traction' boundary conditions

$$
\mathrm{a}(\mathrm{Vu}) 7 \mathrm{i}+\left\lvert\, \mathrm{i} \frac{d u_{t}}{\partial \mathrm{n}}=0\right., \quad \text { on } 3 \mathrm{ft}
$$

and initial conditions

$$
u(x, 0)=u_{0}(x), \quad u_{1}(x, 0)=u_{1}(x)
$$

We assume that there exists a function $W \mathrm{Jtf}{ }^{* x} *$-> IL such that $\mathrm{DW}(\mathfrak{£})=\mathrm{a}(£)$. For the sake of modeling phase transitions we do NOT assume that W is elliptic, Le. the condition

$$
\forall \xi, \eta \in \mathbf{R}^{n}, \quad \sum_{a, \cdot, j j} \frac{\partial^{2} W(F)}{\partial F_{\mathrm{G}} \partial F \xi} \xi_{j} \xi_{j} \eta_{a} \eta_{\mathrm{a}} \geqslant 0
$$

may be violated. We prove a rather general existence result assuming only a growth condition on W : we require merely that a be globally lipschitz-continuous. We show that for arbitrary initial data, \mathbf{u}, and $\operatorname{div}\left(o f \mathrm{Vu}^{\wedge} \mathrm{Vtt}\right.$,) tend to zero in appropriate spaces as \boldsymbol{t} goes to infinity. Finally, we prove dynamical stability for certain stationary solutions, including a class of equilibria with discontinuous gradient.

We also remark on existence of solutions to (1.1) with Dirichlet boundary conditions

$$
\mathrm{K}=0 \quad \text { on } d C l .
$$

To set our analysis in the proper context we briefly review the modeling of phase transition in solids based on minimization of the energy /

$$
\begin{equation*}
I(u)=\int_{0} W(\nabla u) d x \tag{1.2}
\end{equation*}
$$

(see for instance Maddocks and Parry [27], Ball and James [5]). If the material occurs in several phases then W has several local minima. (If W happens to be frame indifferent then they must be orbits of $\operatorname{SO}(n)$ instead of being isolated points). Such Ws typically are not elliptic. Therefore the functional / is not sequentially weakly lower semicontinuous (swlsc). This fact forces one to study minimizing sequences in place of minimizers, since the latter may not exist. The lack of ellipticity (E) may lead to development of fine oscillation in the gradients of minimizing sequences, which prevents the minimizing sequences from converging strongly in $W^{U p}$.

The variational approach just described is entirely static. In order to study dynamics we could try to solve the equations of elasticity

$$
\begin{equation*}
v_{u}=\operatorname{div} \tau \tag{1.3}
\end{equation*}
$$

where x is the stress tensor $\mathrm{T}=\mathrm{O}(\mathrm{VK})=\mathrm{DW}(\mathrm{VH})$. We would quickly encounter an obstacle, however, which is the lack of ellipticity of W. (If W were elliptic then (13) would be hyperbolic and if $n>1$ we would have short time existence in $\left.W^{2} * \wedge ; *^{11}\right), p>1+n / 2$; this
result is due to Hughes, Kato and Marsden [22], For n=l a global existence result has been established by DiPerna [10].)

When W is not elliptic, a possible method of achieving well-posedness is adding to the stress tensor a higher order regularizing term corresponding to viscosity:

$$
\tau^{\prime}=\tau+\mu \nabla u_{1} .
$$

Hence (1.3) becomes the equation of viscoelasticity

$$
\begin{equation*}
\mathbf{j}_{\mathrm{It}}=\operatorname{div} \mathbf{a}(\mathbf{V n})+\backslash_{\boldsymbol{x}} \& u_{t} . \tag{1.4}
\end{equation*}
$$

In this paper we adopt the 'no-traction' boundary condition

> du,
> $\mathrm{T} 71=\mathrm{O}(\mathrm{VK}) 7 \mathrm{H}+1 \cdot \wedge-0$,
> on
and initial conditions

$$
\mathrm{K}\left(\mathrm{JC}, \mathrm{O}>=\mathbf{U O}(\mathbf{X}) \quad \mathrm{II}^{\wedge} \mathrm{O}^{\wedge} \mathrm{J} \mathbf{C X}\right) .
$$

After scaling of time we may set $\mid \mathrm{i}=\mathrm{l}$. We note that more realistic viscous terms should be non-linear (see [25], [33], [34]), however we will stick to the model equation (1.4). One may also consider other regularizing terms, e.g. corresponding to capillarity ([7], [13]). A similar regularizing result may be achieved by introducing thermal effects, as for instance in the work of Niezg6dka, Sprekels [30]. Of course, different regularizations may lead to different dynamics.

No matter what the approach (viscoelasticity, thermoelasticity, etc.), the central questions are:
(I) Existence of solutions for all times;
(II) Stability of equilibria; and
(HI) Long time behavior
(a) do all solutions converge strongly in time?
(b) does the energy / (u (f)) decay to die minimum energy?

The need for global in time existence is clear without it the question of stability and long time behavior makes no sense. One particularly desires existence of dynamics in $\mathbf{V}^{\text {li2 }}\left(\mathrm{QiE}^{\prime \prime}\right)_{\mathrm{t}}$ the space of finite energy for fee functional /. Currently available results of this kind usually require ellipticity of W (cf. [17]).

As for stability, the Energy Criterion is classical. It calls an equilibrium stable if the second variation of the energy / is positive. However, the justification is difficult Only in 1982 did Potier-Ferry [33] prove that for $W^{2 *}$ equilibria of multidimensional viscoelasticity the criterion implies stability in $W^{\wedge} \mathbf{C Q} ;!^{11}$), $p>n$ (see also references in [33] for earlier results).

Apart from justifying the Energy Criterion we are interested in studying stability of local minimizers of/. The notion of local minimizer depends significantly on the underlying metric. That dependence is especially important in the case of non-elliptic W. It is not clear which type of local minimizer will be dynamically stable.

Our questions concerning behavior for large times are most interesting when / is not swlsc. In this case Ball and James [5] showed that / may not achieve its minimum, at least for some boundary conditions. On the other hand total energy decreases along trajectories. It is natural then to ask whether or not such highly oscillatory sequences are realized by dynamics.

We now briefly sketch the known results. The one-<iimensional case has been studied extensively. Existence of classical solutions and their asymptotic properties were first studied in papers by Dafermos [9], Greenberg, MacCamy, Mizel [19], and Greenberg [18]. Andrews [3], and Andrews and Ball [4] studied weak solutions. Pego [32] gave die most comprehensive answers to questions II and HI. He considered slightly different boundary conditions: his problem is

$$
\%=\left(\mathbf{a}\left(\mathbf{K}_{\mathrm{x}} \mathbf{H}^{\wedge}\right)_{\mathrm{x}} \quad<(0, \mathbf{r})=\mathbf{O},\left(\sigma\left(\mu_{x}\right)+u_{x}\right)(1, t)=0 .\right.
$$

His results may be summarized as follows.

- A steady state u_{0} is stable if (fiu^ytc >0. The stable states may contain a mixture of phases; they need not be strong minimizers of energy (in the $W^{\text {lt }} \sim$-topology). The admissible perturbations for this stability result are small in the $W^{\boldsymbol{h}}$ topology.
- For any initial data not exceeding some value of the total energy (kinetic + elastic), the solution converges strongly to an equilibrium.

Many authors (including [8], [11], [17], [31]) have studied the problem of existence and regularity of weak solutions when the number of dimensions exceeds one. Local in time existence is shown without additional assumptions on a. But in order to prove global in time existence the authors need some extra conditions on a or W, typically they use ellipticity of W (cf. [33], [17]).

As for the issue of stability, Potier-Ferry [33] proves exponential asymptotic stability in $\left.W^{\wedge} i C l^{\prime} X^{*}\right)^{*} p>n$ for equilibria such that the second variation of the energy functional $\mathbf{S}^{\mathbf{2}}$ / is positive. His stability result includes the assertion of long-time existence for initial states close to the equilibrium. In fact his existence result uses the ellipticity of W. He studies a quasi-linear viscoelasticity equation with Dirichlet boundary conditions.

We now describe briefly the method of Pego since we will generalize it to deal with the n-dimensional case. Pego employed a clever change of variables. (Earlier Andrews [3] also used this transformation, but his use was limited.) The new variables are

$$
p(x, t)=\int_{1}^{x} u_{x}(y, t) d y \quad q(x, t)=u_{\pi}(x, t)-p(x, t)
$$

Using these variables Pego reduced system (1.5) to the following

$$
\begin{aligned}
& p_{t}=p_{x}+\sigma(p+q) \\
& q_{i}=-\sigma(p+q) .
\end{aligned}
$$

Then he applied semigroup theory exposed in [20] to the new system (cf.[32]).

Our work generalizes Andrews-Pego's transformation to many dimensions. We set

$$
\operatorname{divP}=\mathrm{u}, \quad Q=V u-P
$$

where we require P and Q to be gradients, and F - $\mathrm{i}=\mathrm{O}$ at the boundary. In the new variables the equation of viscoelasticity (1.4) becomes

$$
\begin{align*}
& P_{t}=\nabla \mathrm{div} P+\pi_{2} \sigma(P+Q) \tag{1.6'}\\
& Q_{\Gamma}=-\pi_{2} \sigma(P+Q) \tag{1.6"}
\end{align*}
$$

with the boundary condition $P-n=0$. Here, $T^{\wedge} y$ denotes the gradient part of v in the Helmholtz decomposition. In section 2 we make these assertions rigorous.

Section 3 is devoted to proving existence of solutions of (1.6) (and therefore (1.1)). To achieve this we show that semigroup theory is applicable to system (1.6). The solution we construct is unique and defined for all times. We need only the condition that a be globally Lipschitz-continuous. Existence of a unique, global in time solution of (1.1) follows, since we can recover \boldsymbol{u} by the formula

$$
u\left(T y=\underset{\mathbf{0}}{T}\langle t i \backslash P Q) d t+u_{0 .} .\right.
$$

If the initial data satisfy $u_{o} e W^{U 2}\left(C 1 X \% \operatorname{UieL}^{2}\left(C I V R^{*}\right)_{9}\right.$ then our solution u is in the following spaces

$$
u e C\left([0, o o)_{t} w^{l^{2}}\left(C l X^{*}\right)\right), \quad \mathbf{j i}_{\mathrm{r}} € \mathrm{C}\left([0,00)_{\mathrm{t}} \mathrm{~L}^{2}\left(\mathbf{Q}^{* / 1}\right)\right), \quad *, € \mathbf{C}^{\mathrm{p}}\left((\mathbf{0}, \sim), \mathrm{L} 2\left(\mathrm{ft} ; \mathrm{X}^{\prime \prime}\right)\right), \quad \mathbf{p}>\mathbf{0} .
$$

We point out that for our existence result W is permitted to be frame indifferent, but it is not required. Unfortunately, the subsequent stability analysis does not permit frame indifferent W.

We have constructed dynamics in the space $W^{l, 2}\left(\& X^{H}\right)$ which is precisely the space of finite energy. It is natural to study stability in this space. One might expect that
proper local minimizers are dynamically stable. Indeed, this is the case for $W^{*} s$ permitting construction of potential wells, e.g. for W slightly better than quasiconvex (Theorem 5.1). Our proof exploits ideas of Ball and Marsden [$€$. We note that our existence result provides an essential ingredient for their considerations.

We also show exponential asymptotic stability of smooth equilibria for which merely the second variation of the energy $8^{2} /$ is positive in W^{12}. In addition, W evaluated at the equilibrium must be elliptic (Theorem 52). We change the underlying function spaces and we now consider perturbations in $\boldsymbol{W}^{2 t}{ }_{t} \boldsymbol{p}>\boldsymbol{n}$. We thus show a result corresponding to that of Potier-Ferry for Dirichlet boundary conditions.

The change of admissible perturbations is not just of technical nature, asymptotic stability is false in $W^{h 2}\left(\& X^{H}\right)$ for equilibria merely in $W^{\text {ia }}\left(\& J L^{H}\right)$. To this end, for a special choice of W consistent with the lack of ellipticity we construct a family $R=\left\{q_{E}\right\} d W^{i z z}\left(C l^{\prime} X^{*}\right)$ of equilibria with discontinuous gradient For each member of the family the second variation $6^{2} /$ is positive on $W^{1} *^{2}$, but asymptotic stability is false. The reason is that in any $W^{l} \wedge$-neighborhood of any member q_{E} of the family there is another $q g$ belonging to $R \backslash$ in particular, perturbations belonging to $W^{1 * 2}$ may move the discontinuity of equilibria.

For that same family we nevertheless prove a stability result, under some further assumptions on W and admitting only $W^{2 *}$ perturbations where $p>n$ (Theorem 5.7). The perturbations have continuous gradients, hence they do not move discontinuities in $\boldsymbol{V} \boldsymbol{q}_{E}$. A possible physical interpretation is that at least some equilibria containing several phases are dynamically stable under perturbations not moving the interface separating the phases.

For the long time behavior for arbitrary initial data, we are only able to prove results weaker than those presently known in the one-dimensional case. We show (sec$\boldsymbol{t i o n}{ }^{\wedge}$

$$
u_{t} \rightarrow 0 \text { in } W^{L_{*}} \text { and } \operatorname{div}\left(\mathrm{c}^{\wedge} \mathrm{VaHVu},\right)^{\wedge} \text { in } L^{2}
$$

The question of strong convergence of $u(t)$ in $W^{1,2}$ as $t \rightarrow \infty$ remains open. The decay of u_{t} in $W^{1,2}\left(\Omega ; \mathbf{R}^{n}\right)$ (which is equivalent to decay of P in $W^{2,2}\left(\Omega ; \mathbb{R}^{n \times n}\right)$) supports the idea that asymptotically the dynamics is governed by the equation

$$
\begin{equation*}
Q_{r}=-\pi_{2} \sigma(Q) . \tag{1.7}
\end{equation*}
$$

If $n=1$ then the projection π_{2} is equal to identity and the problem (1.7) reduces to an ordinary differential equation (see [32]). If $n>1$ then the projection is a nonlocal operator, making the analysis of (1.7) more difficult.

This paper is concerned mainly with the existence and stability of solution to the viscoelasticity equation with Neumann boundary condition. However, it is possible to extend the existence results for other boundary conditions like homogeneous Dirichlet boundary data

$$
\begin{equation*}
u=0 \text { on } \partial \Omega \tag{1.8}
\end{equation*}
$$

Only minor changes in proof are required to accommodate the new boundary condition. We will make remark on those modifications at the end of sections $2,3,4$.

We close this introduction with a brief list of problems that remain open, but which we hope our methods might be able to address with further work. We conjecture that for quasiconvex W (or at least under the slightly stronger assumption of Theorem 3.5) the strong limit of $u(t)$ always exists in $W^{1,2}\left(\Omega ; \mathbf{R}^{n \times n}\right)$. We base this conjecture on the fact that quasiconvexity dampens oscillations in minimizing sequences (cf. [12]). We hope that our stability analysis may be extended to frame indifferent W's. We think it should be possible to prove analogous existence and stability results for other boundary conditions. The key step in this direction would be a construction of the projection π appropriate for the given problem.

In order to simplify the notation we write $L^{p},\left(W^{1, P}\right.$, etc) instead of $L^{P}\left(\Omega ; \mathbf{R}^{n}\right)$ or $L^{p}\left(\Omega ; \mathbf{I}^{n \times n}\right)$. There is little danger of confusion since always in this paper u is vector valued and P, Q have values in $\mathbf{R}^{n \times n}$.

2. The description of the problem.

We study the system of nonlinear viscoelasticity

$$
\begin{align*}
& u_{u}=\operatorname{div} \sigma(\nabla u)+\Delta u_{t} \tag{2.1’}\\
& \sigma(\nabla u) \cdot n+\partial u_{t} / \partial n=0 \quad \text { on } \partial \Omega \\
& u(x, 0)=u_{0}(x) \quad u_{t}(x, 0)=u_{1}(x)
\end{align*}
$$

with mild assumptions on σ. We assume that the reference domain Ω is a bounded, connected region in \mathbf{R}^{n} with smooth boundary. We may assume without loss of generality that

$$
\begin{equation*}
\int_{\boldsymbol{Q}} u_{0}(x) d x=\int_{\boldsymbol{Q}} u_{1}(x) d x=0 . \tag{A}
\end{equation*}
$$

It is so because $u^{\prime}=u+a t+b$ is a solution to (2.1 $\left.{ }^{\prime}-2.1^{\prime \prime}\right)$ provided u solves the problem. We thus may choose a, b to make (A) hold. Moreover, the space average of $u_{t}(x, t)$ is constant in time because

$$
\frac{d}{d t} \int_{\Omega} u_{t} d x=\int_{Q}\left[\operatorname{div} \sigma(\nabla u)+\Delta u_{t}\right] d x=\int_{Q} \operatorname{div}\left(\sigma(\nabla u)+\nabla u_{t}\right) d x=\int_{\Omega}\left(\sigma(\nabla u)+\nabla u_{t}\right) \cdot n d S .
$$

The last integral vanishes because of the boundary conditions (2.1''). We thus showed

Proposition 2.1 If (A) holds then

$$
\int_{\Omega} u_{t}(x, t) d x=0 \quad \forall t \geq 0
$$

For the purpose of solving system (2.1) we generalize the change of variables due to Andrews [3] and Pego [32]. We set

$$
\begin{equation*}
\operatorname{div} P=u_{1} \quad \text { and } \quad Q=\nabla u-P \tag{2.2}
\end{equation*}
$$

where P and Q are $n \times n$-matrices. These definitions will be correct only if we impose some additional restriction on P and Q. We therefore require P, Q be gradients and P satisfy the boundary condition

$$
\begin{equation*}
P \cdot n=0 \text { at } \partial \Omega \tag{2.3}
\end{equation*}
$$

When we work with L^{p} spaces, the condition that P, Q are gradients means that we actually work with a closed subspace of L^{p} - the image of a projection n_{p}. The projection is closely related to the Helmholtz decomposition of vector fields: any smooth vector field may be represented as the sum of a gradient and a divergence-free field. For construction of $T i_{p}$ which is well-known (see [14]) and its properties we refer the interested reader to the Appendix.

Now we are in position to construct the new variables P_{9} and Q , precisely we show Theorem 22. Assume that u is a weak solution to (2.1) such that

$$
\begin{gathered}
u_{t}, \nabla u_{t} \in C\left([0, T], L^{2}\right) \quad u e C\left([0 . T]_{9} W^{2} *\right) \\
\pi_{2} \sigma(\nabla u)+\nabla u_{t} \in W^{1.2}
\end{gathered}
$$

and the mean value of u_{x} is zero. Then there exists a unique pair $\left(P_{t} Q\right)$ such that

$$
P \in C\left([0, T], W^{12}\right), \quad \mathrm{P}-\mathrm{n}=0
$$

$Q \in C\left([0, T], L^{2}\right)$
and $(/ \backslash Q)$ is a weak solution of

$$
\begin{align*}
& P_{r}=\pi_{2} \sigma(P+Q)+\nabla \operatorname{div} P \tag{2.4'}\\
& Q_{r}=-\pi_{2} \sigma(P+Q) .
\end{align*}
$$

Thus the transformation reduces the system (2.1) a degenerate parabolic system. The advantage of the new system is we may now apply methods of semigroup theory to construct solutions. After we solve (2.4) we will recover solutions to (2.1). Before we prove the Theorem we will show a Lemma we will rely OIL

Lemma 23 The map

$$
\operatorname{div}: n 2 L^{2} n W^{U 2} n\left\{P e \mathrm{~W}^{1}-^{2}: P-n=0 \quad \text { on } \quad d C l\right\}-» L^{2} n\left\{f e L^{2}: \underset{\mathbf{Z}}{\mathrm{f} /=0!}\right.
$$

is an isomorphism of Banach spaces.

Proof. Obviously div is continuous. It is also one-to-one and onto, for die equation

$$
\operatorname{div} P=u
$$

for $P=V \$$ is equivalent to

$$
\Delta \phi=u, \quad \frac{\partial \phi}{\partial n}=0 .
$$

The standard Laplace equation theory assures existence of solutions up to a constant (cf. [26]), thus $\mathrm{F}=\mathrm{V}<0$ is defined uniquely. Now, the Open Mapping Theorem yields that div \sim^{l} exists and it is continuous, in particular there is a positive constant y such that

$$
\begin{equation*}
\text { TdIPlku^}^{\wedge} l l \operatorname{divPlt}^{\wedge}{ }_{\boldsymbol{\gamma}} \mid l \mathrm{Pl}^{\wedge} \mathbf{u} \quad \mathbf{Q} \tag{2.5}
\end{equation*}
$$

Proof of Theorem 22 Since the average of u_{t} is always zero, it follows from the Lemma that P is well defined and it is a continuous function of time into $W^{i a}$. Thus from (2.2) we obtain that Q is continuous into L^{2}. We now substitute P and Q into (2.1)

$$
\operatorname{div} P,=\operatorname{div}(\sigma(P+Q)+\nabla \operatorname{div} P)
$$

We check that the normal component of $x=o(P+Q)+V \operatorname{div} P$ at the boundary is zero,

$$
\tau \cdot n=\left(\sigma(\nabla u)+\nabla u_{t}\right) \cdot n=0 .
$$

We see that

$$
\Xi=P_{t}-\tau
$$

is divergence-free and its normal component at the boundary of Q. is zero, it thus follows from the very definition of \boldsymbol{n}_{p} (see the Appendix) that

```
x2
```

, Since $\pi_{2} P=P, \pi_{2} \nabla$ div $P=V \& v P$ we obtain

$$
\begin{equation*}
\mathbf{P},=* 2 \mathrm{CF}(\mathbf{P}-\mathrm{H} 2)+\mathrm{VdivP} . \tag{2.6'}
\end{equation*}
$$

The equation of evolution of Q we obtain in a simpler way: by differentiation of the second equation in (2.2)

$$
\begin{equation*}
\left.Q r X_{4}-P r-w P+Q\right) \tag{2.6"}
\end{equation*}
$$

Remark. If we want to consider the homogeneous Dirichlet boundary conditions

$$
\begin{equation*}
u=0 \quad \text { on } 3 Q \tag{2.7}
\end{equation*}
$$

we may proceed in a similar fashion, defining new variables $P^{D} \backslash$ and Q^{D}

$$
\begin{equation*}
\operatorname{div} \mathbf{P}^{\wedge} \mathbf{u}, \quad Q^{D}=V u-P^{D} \tag{2.8}
\end{equation*}
$$

In order to make the choice of P^{D} and Q^{D} unique, we require that they be gradients of functions vanishing at the boundary. In other words we are looking for P^{D} and Q^{D} in $T P L^{2}$. By $T P$ we denote an orthogonal projection defined as follows

$$
{ }_{7 C}{ }^{i)} v=V\langle t\rangle \quad \$=0 \text { on an }
$$

and \upharpoonright is such that $\mathrm{V}_{-\mathrm{TC}^{\wedge} \vee} \mathrm{V}$ is divergence-free. Thus we have another form of Helmholtz decomposition. It turns out that $\mathbf{T U}^{0}$ is an orthogonal projection. Properties of $T \backslash P$ are summarized in the Appendix.

We may repeat the derivation of equations (2.6'), (2.6') to obtain

$$
\begin{align*}
& P_{r}^{D}=\pi^{D} \sigma\left(P^{D}+Q^{D}\right)+\nabla \operatorname{div} P^{D} . \tag{2.9}\\
& Q_{i}^{D}=-\pi^{D} \sigma\left(P^{D}+Q^{D}\right) \\
& \operatorname{di} \mid P^{D}=G \quad \text { at dft } \tag{2.10}
\end{align*}
$$

3. An Existence Result.

In the present section we prove existence and uniqueness of strong solutions to the system

$$
\begin{align*}
& P_{1}=\pi_{2} \sigma(P+Q)+\nabla \operatorname{div} P \tag{3.1'}\\
& Q_{t}=-\pi_{2} \sigma(P+Q) \tag{3.1'}
\end{align*}
$$

$$
\begin{equation*}
P(0)=P_{0} \quad G(0 H 20 \quad P-n=O \quad \text { andCl } \tag{3.1'"}
\end{equation*}
$$

provided W grows quadratically at infinity, and $<r$ is globally Lipschitz continuous (recall that $o=D W$). In order to achieve this goal we will apply results of Henry [20] for abstract evolution equations with the modified definition of solution due to Miklavtit [28]. The above equation may be rewritten as

$$
\begin{equation*}
z_{i}+A z=f(z) \tag{3.2}
\end{equation*}
$$

where $z=\left(P_{t} Q\right)$

$$
A= \begin{cases}f-V d i v & 6 \bullet \tag{3.3}\\ 0 & j\end{cases}
$$

and

$$
f(z)=\left\{\begin{array}{c}
\pi_{2} \sigma(P+Q) \tag{3.4}\\
-\pi_{2} \sigma(P+Q)
\end{array}\right]
$$

At the end of this section we shall show that P and Q determine solutions to the original equation (2.1).

We use several different norms in this papa. We always make clear which one we mean by adding an appropriate subscript We note that a subscript being number from the unit interval denotes the norm on the fractional power of the given Banach space X, we also use the convention \|ilo=\| ${ }^{\circ} \mathrm{lb}$)

We state the main result of this section

Theorem 3.1. Let us suppose a is gjobally Lipschitz continuous. We assume that QoEifeL ${ }^{2}$, and PoenJW ${ }^{*}{ }^{m} \& P_{o}$ is such that $P_{0}-n=0$ at the boundary of \mathbf{Q}. Then for any $T>0$ there exists a unique (strong) solution of (3.1) defined for $0 \mathrm{fr} \leq T$ with

$$
P \in C\left([0, T], \pi_{2} W^{1,2}\right) \cap C^{1}\left((0, T], \pi_{2} L^{2}\right) \cap C\left((0, T], \pi_{2} W^{2,2}\right)
$$

and $P-n=0$ at $X I$ for $t>0$, and

$$
Q \in C^{1}\left([0, T], \pi_{2} L^{2}\right)
$$

In order to establish existence of solutions to the abstract equation (3.2) in a Banach space X we need to know that A is sectorial on X and it is locally lipschitz-continuous on X^{a} into X, for some value of $a, 0<a<1$. We introduce first some notation, we shall write

$$
\mathbf{y},=\mathrm{V},{ }^{\prime}, Z p^{\wedge} f t s W^{1} *: \underset{\mathbf{Z}}{U p O\}} \quad \mathbf{K p}<\mathbf{0 0},
$$

and

$$
X=Y_{2} x Y_{2}
$$

For our existence result it is sufficient to establish that A given by (3.3) is sectorial on X or equivalently, $B=-V d i v$ is sectorial on Y_{2}. But in the sequel we shall need a more general result in our stability analysis of equilibria of (2.1). Thus we shall show that B is sectorial on $Y_{p>} \gg p$ <» with the domain

$$
\left.D(B)=\int \nabla \phi: \phi \in W^{3, p}, \partial \phi / \partial n=0\right\} .
$$

We start with the observation that the map

$$
\nabla: Z_{p} \rightarrow Y_{p}, \quad \phi \rightarrow \nabla_{\phi}
$$

is an isomorphism of Banach spaces. Obviously V is onto $\boldsymbol{Y}_{p \%}$ it is also one-to-one because all the elements of $7 y$ have zero average. This map is clearly continuous, since $I^{\wedge} M^{\prime} L^{\prime \wedge}$ IMIW $^{1}{ }^{1}-$ On the other hand, if 4 has zero average then Poincar6's inequality yields

$$
\|\phi\|_{L}, \leq c\|\nabla \phi\|_{L} .
$$

It follows that the inverse of V is continuous.

Let us define

$$
D\left(\Delta_{N}\right)=\left\{\phi \in W^{3} \mp: \partial \phi / \partial n=0 \text { at } \partial \Omega\right\}
$$

then for fyeD (A\#) we have

Thus $B=-V A^{\wedge} V \sim^{1}$, because V is an isomorphism. We also observe that

$$
D(B)=\nabla D\left(\Delta_{N}\right)
$$

In this way we reduce the question pertaining to B on Y_{p} to a problem concerning the Laplace operator on $Z \boldsymbol{p}$. In particular the resolvent of B may be expressed in terms of the Laplace operator

$$
(B-\lambda)^{-1}=\nabla\left(-\Delta_{N}-\lambda\right)^{-1} \nabla^{-1}
$$

It is now obvious that in order to show that B is sectorial it is enough to prove that -Atf is sectorial on Z_{p}. In order to accomplish this we will use the fact that the generator of a analytic semigroup is necessarily sectorial (cf [16], [20]). We are going to show that -A\# generates an analytic semigroup on $Z p$. It is well known that $-A_{N}$ with the homogeneous Neumann condition is sectorial on L^{p} (see [16]), Le. the estimate

$$
\begin{equation*}
\|\left(-\Delta_{N}-\lambda\right)^{-1}|\leq C /|\lambda| \tag{3.5}
\end{equation*}
$$

holds for X belonging to a sector

$$
\text { SA. © }=\text { Ae C: }(\mathbb{Q} \mid \arg (\mathbf{X}-\mathbf{A})+<K f c A\}
$$

where $\odot e\left(0^{\wedge} c / 2\right)$, and $\mathrm{A}<0$; and thus $-\mathrm{A} \#$ generates an analytic semigroup on L^{p}. We rather need the semigroup on $L * / 1$ where $E=k e r A \#$. It is easy to see that $Z / / R$ is invariant under the resolvent of -A\#, thus the space $\mathrm{Z} / / \mathrm{X}$ is invariant for the semigroup generated by -A\#.

Since B generates an analytic semigroup on $L^{P} I J L$ it also generates an analytic semigroup $\mathrm{cm}(1 * 7 *)^{m}([16],[20])$. To determine $(Z / / *)^{1 / 2}$ we shall use the following fact.

Lemma 3-2 We assume that A is sectorial on X with domain $D\{A \backslash K=k e t A$. Then

$$
X^{V 2} / K=(X / K)^{V 2}
$$

Proof. The left-hand-side is well defined; we need to show that the right-hand-side is well defined and both sides are equal.

We observe that if $S X{ }^{*}$ *X is linear with domain $D(5)$, and $S K c K$ then the map $[S]: X / L \rightarrow X / L$

[S][xMSx]

is well-defined and the domain of $[S]$ is $[D(S)]$ where we denote by $[x]$ the class of abstraction of x. If in addition S is bounded so is [5] and

$$
\backslash \ S \lambda \backslash \mid \backslash S \backslash
$$

It is easy to verify that if S is invertible and $S \sim^{l} K c z K$ then [S$]$ is also invertible and

$$
[S]^{-1}=\left[S^{-1}\right]
$$

Let us set $A i=A+a I$ where a is such that $o\left(A_{x}\right)>0$. We observe that $A j^{l} K \subset K$, because if $x € A T$ then

$$
A A_{1}^{-1} x=A_{1} A_{1}^{-1} x-a A_{1}^{-1} x=A_{1}^{-1} A_{1} x-a A ? x=A ?(A j x-a x)=A_{1}^{-1} A x=0
$$

We conclude that $[A]$ is sectorial on XIK.
Similarly, we will show that $A \|^{r 2} K c K_{\%}$ consequently $[A\}^{/ 2}$] is well defined. For xeJTwehave

$$
\left.A \mathrm{Al}^{/ 2} \times K A+\operatorname{tf0A}\right\}^{/ 2} x-\wedge r^{\wedge}=A_{1}^{1 / 2} A_{1} x-a A_{1}^{1 / 2} x=A_{1}^{1 / 2} A x=0
$$

Finally, we have to check that $[A i]^{y 2}=\left[\mathrm{Al}^{/ 2}\right]$. But it is enough to prove

$$
\left[A_{1}^{-1 / 2}\right]=\left[A_{1}\right]^{-1 / 2}
$$

This is clear from the definition of $A 7^{1 / 2}$ since

$$
A_{1}^{-1 / 2}=\frac{\sin (\pi / 2)}{1 / 2} \int_{0}^{-} \lambda^{-1 / 2}\left(\lambda+A_{1}\right)^{-1} d \lambda
$$

Continuity of the projection $x->[x]$ implies that we may interchange projection and Riemann integration.

By definition X^{m} is $D\left(A\left\{^{\prime 2}\right)\right.$ equipped with the graph norm, we conclude that the Lemma holds.

Taking into account that kerA\#=fc we obtain from Lemma 32 that

$$
\left(L^{P} / \mathbf{R}\right)^{1 / 2}=\left(L^{P}\right)^{1 / 2} / \mathbf{R} .
$$

The fact that the space of Bessel potentials $L^{l}+\left(Z^{H}\right)$ is equal to $W^{t t P}\left(J t^{n}\right)_{t}$ (see [20], [37]) and Theorem 6.7 in [15] enables us to conclude

$$
\left(L^{p}\left(\Omega ; \mathbf{R}^{n}\right)\right)^{1 / 2}=W^{1, p}\left(\Omega ; \mathbf{R}^{\kappa}\right)
$$

Summarizing, we proved

Proposition 33 The operator B is sectorial on Y_{p} for $1\langle p\langle «\rangle$.•

Having established that B is sectorial on Y_{p} for $\left.\backslash<p<«\right\rangle$, we turn our attention to the special case $p=2$. We want to show that

$$
Y_{2}^{1 / 2}=\pi_{2} W^{1,2}
$$

but first we need to prove positivity of B on \boldsymbol{Y}_{2}.

Proposition $3.4 B$ is positive definite on $n^{\wedge} L^{2 \prime}$ - there is a positive constant c such that for all $P \in D(B)$

$$
(B P J>) * c \backslash \backslash P \backslash \backslash b
$$

we may take c^{\wedge}, where \boldsymbol{y} is as in Lemma 2.3.

Proof. Let us compute ($B P, P$)

$$
\begin{equation*}
(B P, P)=\underset{\mathrm{D}}{\mathrm{O}} \underset{\mathrm{f}}{\mathrm{f}}(\mathrm{~V} \operatorname{div} />, ?)=\mathrm{J}(\operatorname{divF}, \operatorname{div} / \gg-\underset{\&}{\mathrm{~J}}(\operatorname{cttvP} \cdot P-\mathrm{nHldivPlli} * \tag{3.6}
\end{equation*}
$$

 in $M^{\mathrm{RX}} *$ the space of nx / i matrices defined by

$$
(F, G)=\mathrm{r} F^{\top} G=\sum_{i, j} f_{i j} g_{i j}
$$

We apply now the result of Lemma 2.3, this yields

$$
(B P, P) \geq \gamma^{2}\|P\|_{L^{2}}^{2}
$$

We will also need in the future equivalence of various norms, first we show
Lemma 3.5. There is a constant $\infty 0$, such that for all P in $D(B)$ we have

$$
\kappa^{-1}\|P\|_{w^{22}} \leq\|B P\|_{L^{2}} \leq x\|P\|_{W^{22}}
$$

Proof. Let us set

$$
V=D(B)
$$

Obviously B is continuous on V into L^{2}. Moreover, since by Proposition 3.4

$$
\|B x\|_{L^{2}} \geq y\|x\|_{L^{2}} \quad \forall x \in V
$$

the quantity

$$
|x|_{V}=\|B x\|_{L^{2}}
$$

defines a norm on V. The space V equipped with the norm $|\cdot|_{V}$ is a Banach space, because B is closed. The identity mapping

$$
I d:\left(V,\|\cdot\|_{W^{12}}\right) \rightarrow\left(V,|\cdot|_{V}\right)
$$

is continuous, thus it follows from the Open Mapping Theorem that the inverse of Id is continuous too. The Lemma follows.

We are now in position to determine the space $Y_{2}^{1 / 2}$. Let us take a P belonging to $D(B)$, then

$$
\|P\|_{1 / 2}^{2}=\left(B^{1 / 2} P, B^{1 / 2} P\right)
$$

We showed that B is positive and bounded below, hence it is self-adjoint, so is $B^{1 / 2}$. We obtain by (3.6)

$$
\begin{equation*}
\|P\|_{1 / 2}^{2}=(B P, P)=\|\operatorname{div} P\|_{L^{2}}^{2} \tag{3.7}
\end{equation*}
$$

By Lemma 3.5 we obtain that the norms $\|\cdot\|_{1 / 2}$ and $\|\cdot\|_{w^{2 / 2}}$ are equivalent. We may conclude that

$$
Y_{2}^{1 / 2}=\pi_{2} W^{1,2} .
$$

We may also determine $X^{1,2}$, since $D(A)=D(B) x Y_{2}$ we conclude that $X^{112 * * \wedge^{1} * * ? ~}$.

Now, we check that/given by (3.4) is globally lipschitz-continuous. If a is globally Lipschitz-continuous with the Lipschitz constant L, then

$$
\|\sigma(x)-\sigma(y)\|_{L^{2} \leq L^{2}}^{2}\|x-y\|_{L^{2}}^{2} .
$$

Since 712 is linear and bounded with norm 1 we conclude

$$
\|f(x)-f(y)\|_{0} \leq L\|x-y\|_{1 / 2},
$$

which means that/is globally Lipschitz.

We are now in position to complete the proof of Theorem 3.1

Proof of Theorem 3.1 We have already checked that the assumptions of Theorem 3.3.3 in [20] are satisfied, thus we are provided with local in time existence of a unique solution $z=(P, Q)$ which is in the following spaces

$$
\left.z(t) \in C\left([0, T], X^{a}\right) \cap C^{1}(0, T], X\right) .
$$

Actually a closer analysis reveals that (see remarks in the proof of Thm. 3.1 in [32])

$$
z(t) \in C\left([0, T], X^{\alpha}\right) \cap C^{1}((0, T], X) \cap C((0, T], D(A)) .
$$

Taking components of z we obtain the statement of our Theorem. Since we assume that a is globally Lipschitz continuous, we can obtain global existence from Corollary 3.3.5 in [20]. We have only to verify that

$$
\forall f(z) \|_{0} \leq K\left(1+\|z\|_{1 / 2}\right) \quad \forall z \in X^{1 / 2} .
$$

Recall that

$$
f=\left[\begin{array}{l}
\pi_{2} \sigma(P+Q) \\
-\pi_{2} \sigma(P+Q)
\end{array}\right]
$$

we have

$$
\|f(z)\|_{b} \leq \sqrt{2}\left\|\pi_{2} \sigma(P+Q)\right\| k^{2} \leq \sqrt{2} \| \sigma(P+Q)-\sigma(0)+\sigma(0) k^{2}
$$

```
S\sqrt{}{2}(L|P+Q-O||L\mp@code{L}||O(0)|\mp@subsup{L}{2}{2})\leq\sqrt{}{2}(L|P|\mp@subsup{|}{\mp@subsup{L}{2}{\prime}}{2}+L|Q|\mp@subsup{|}{L}{2}+|\sigma(0)|\mp@subsup{L}{2}{2})
SC (|P ||Ww:2+|Q||
```

We may now recover solutions of (2.1). We also determine the smoothness of the solutions constructed this way. If P and Q are the solutions to (3.1) with initial conditions P_{0} and2o»weset

$$
\begin{equation*}
u(T)=\int_{0}^{T} \operatorname{div} P(t d t+\mu \tag{3.8}
\end{equation*}
$$

divF is continuous on [0,«) with values in $I^{\mathbf{2}}$, thus the above integral, understood as the Riemann integral, is well-defined. We immediately obtain that

$$
u \in C^{1}\left([0, \infty), L^{2}\right) .
$$

To establish further smoothness of u and to show that u satisfies (2.1) we note that by Theorem 3.5.2 in [20] if z is a solution to (3.2) where A is sectorial, / is locally Lipschitz-continuous on $X^{a} \%_{o}$ and $z_{o} e X^{a}$ then the time derivative dzldt of a solution to (3.2) is a locally H51der continuous function with values in X^{T}, on ($f_{0}, f \mathbf{J}$ for any Y <1» and

$$
\begin{equation*}
\|d z / d t\|_{\gamma} \leq C\left(t-t_{0}\right)^{a-y-1} \tag{3.9}
\end{equation*}
$$

holds for some constant C. This fact enables us to prove:

Theorem 3.6. Let us assume that

$$
u_{0} \in W^{1,2}, u_{1} \in L^{2} .
$$

Then there is a unique solution u of the problem (l.V- $V^{\prime \prime}$) such that

$$
u e C\left([0, o o), W^{1 *}\right), \quad \text { a, } \mathrm{eC}\left([0,00)_{\mathrm{f}} \mathrm{~L}^{2}\right)
$$

the map $t \longrightarrow 7 \mathrm{C}_{2} \mathrm{Cr}(\mathrm{V}<(\mathrm{r}))$ is locally H51der continuous with values in L^{2} and

$$
\begin{equation*}
\int_{6}^{t} t^{-1 / 2} \| \pi_{2} \sigma \nabla u(s) k^{2} d s \rightarrow 0 \text { as } t \rightarrow 0^{+} \tag{3.10}
\end{equation*}
$$

In addition the unique solution given by (3.8) has the properties

$$
\operatorname{div}(\mathrm{o}(\mathrm{Vi} \ll\} \mathrm{fVtt}),{ }^{* 2 \mathrm{Cr}\left(\mathrm{ViO},{ }^{\mathrm{Vu}}{ }^{\gg}{ }^{*}{ }_{<}^{\mathrm{e}} C^{*}\left(\left(O_{t} T\right], \mathrm{I}^{2}\right), \mathrm{V} 7>0\right.}
$$

for some $\mathbf{P}>\mathbf{0}$.

Remark. We note that the solution we construct is almost classical if we write the equation in the conservative form. Then all the derivatives involved are at least continuous into L^{2}.

Condition (3.10) expressed in terms of variables P and Q is necessary for uniqueness of solutions to (3.1), see [28]).

Proof of Theorem 3.6. We show first the existence. We will show that the gradient of u defined by (3.8) exists and VUG $C\left([0,0 \odot), L^{2}\right)$. We claim that u is the limit in $W^{i a}$ of u_{5} where

$$
\underset{u_{6}(T)}{\substack{T \\ f_{0}}}
$$

Due to Theorem 3.1 the integrand is continuous with values in $W^{l J^{2}}$ thus $u s(T) e W^{i a}$. Since V is a continuous operation on $W^{\text {ia }}$ we may write

$$
\begin{aligned}
& T \quad T \\
& \text { 5 } \quad \nabla \text { div } P(t) d t+\nabla u_{0} . \\
& V_{5}\left(7>\text { Vfdiv }^{\wedge} \mathbf{r}\right) d t+{ }^{<}<_{0}=\mid
\end{aligned}
$$

But Vdiv? $=(\text { ? }-\mathrm{H} 2)_{\mathrm{f}}$ hence

$$
\nabla \mu_{8}(T)=(P+Q)(T)-(P+Q)(\delta)+P_{0}+Q_{0}
$$

Because of continuity of P and Q we deduce that $V_{«_{5}}$ is continuous with values in L^{2}. It is clear that $\mathbf{u} \$$ tends to u in L^{2} as $5->0$; we will show that the convergence is actually in $W^{U 2}$. We estimate the difference $u(T\}-u_{6}(T)$ in $W^{U 2}$

$$
\begin{aligned}
& 66
\end{aligned}
$$

and then

```
6
6 \(\leq \lim _{\text {im }} \mathbf{C}\left(\mathbf{f}| | \operatorname{divP}\left(\mathrm{OIL}^{\mathrm{a}} \mathbf{r f f}+\mathrm{fl} \mid V \operatorname{divP}\left(\mathrm{OllL}{ }^{8 *}\right)\right.\right.\) •
```

The first term is small because divP is continuous with values in \mathbf{L}^{2}. The observation $V d i \backslash P=(P+Q)_{t}$ helps estimating the second integraL We may apply inequality (3.9) to a solution of (3.1), we choose y to be $0<Y<1 / 2, c c=l / 2$. Since $\|z\| \mathrm{f} \in \mathrm{c}\|\mathrm{z}\| \mathrm{l}$ we obtain

$$
\left\|_{2}\right\|_{0} \leq c \mid z_{\mathrm{t}} \|_{7} \leq C_{t}^{1 / 2-r-1}
$$

Because of our choice of Y, the function $\boldsymbol{t}^{\boldsymbol{T} \text {, in }}$ is integrable over $[0,1]$, so are the components of $z_{t \%}$ Le. P_{t}, Q_{t} Thus we obtain

$$
\begin{aligned}
& \int_{\eta}^{h}\|\nabla \operatorname{div} P(t)\|_{2} d t=\int_{\eta}^{b}\left[\mid(P+Q)_{i}(t) L_{2} d t \leq C \int_{\eta}^{b} t^{-\gamma-1 / 2} d t\right. \\
& =C\left(\delta^{1 / 2-\gamma}-\eta^{1 / 2-\gamma}\right) /(1 / 2-\gamma) \leq=C\left(\delta^{1 / 2-\eta}\right) /(1 / 2-\gamma)
\end{aligned}
$$

We conclude that

$$
\frac{\int_{6}^{\delta} \nabla d i v P(t) d t k_{2} \leq C \delta^{1 / 2-\gamma}}{}
$$

in other words Ms->u in $W^{l *}$ if $\mathbf{y}<1 / 2$. We may now compute Vw_{w}

$$
\nabla u(T)=\lim _{\delta \rightarrow 0} \nabla u_{\delta}(T)=\lim _{\delta \rightarrow 0}[(P+Q)(T)-(P+Q)(\delta)+(P+Q)(0)]=(P+Q)(T) .
$$

Since the right-hand-side on the above equality is continuous on [0,») we infer that $u \in C\left([0, \infty), W^{1,2}\right)$.

We note that

$$
\left.r^{\wedge} a^{\wedge} u y^{\wedge} U r^{\wedge} h^{\wedge} P+\mathrm{j} 2\right)+\mathrm{Vdiv} \quad p=p_{t}
$$

inequality (3.9) applied to (3.1) with $Y=a=1 / 2$ yields

$$
\begin{equation*}
\left.\mathbf{C P}, . G,) e C><p, r] . I P^{1+* x L^{2}}\right), \quad \text { for some } p>0 . \tag{3.11}
\end{equation*}
$$

because $X^{1 / 2} \subset W^{1,2} \times L^{2}$. ItimpUesthat

$$
\pi_{2} \sigma(\nabla u)+\nabla u_{s} \in C^{\beta}\left((0, T], W^{1,2}\right), \quad u_{t} \in C^{\beta}\left((0, T], L^{2}\right), \quad \beta>0 .
$$

We may now see that \boldsymbol{u} satisfies (2.1)

$$
u_{u}=\operatorname{div} P=\operatorname{div}\left(\pi_{2} \sigma(P+Q)+\nabla \operatorname{div} P\right)=\operatorname{div}\left(\sigma(\nabla u)+\nabla u_{t}\right) .
$$

The initial conditions are satisfied, $\mathbf{u}(\mathbf{x}, \mathbf{O})=\mathbf{u o}(\mathbf{x})$ by definition of u, and $\mathrm{u},(\mathrm{x}, 0)=\operatorname{div} /^{\prime}(\mathrm{x}, O)=u i(x)$ by construction of P. The boundary condition also holds

$$
\left(\sigma(\nabla u)+\nabla u_{4}\right) \cdot n=\left(\pi_{2} \sigma(\nabla u)+\nabla u_{1}\right) \cdot n=P_{1} \cdot n=(P-n)_{t}=0 .
$$

The fact that

$$
\begin{aligned}
& t \\
& \mathrm{Jr}^{1 / 2} \operatorname{lto} 2 \mathrm{O}\left(\mathrm{Vi} 011 \mathrm{~L} * ~->0 \quad \text { as } \mathrm{r}^{\wedge} \mathrm{C}^{*}\right.
\end{aligned}
$$

holds since Theorem 3.1 yields solutions of (3.1) satisfying

$$
f^{t}-^{1 / 2} \mathrm{H} 7 \mathrm{c}_{2} \mathrm{a}\left(\left(^{\mathrm{J}}-\mathrm{H} 2\right) \mathrm{IIL} \mathrm{~L}^{2}-\wedge 0 \text { as } \mathrm{r}^{\wedge} \mathrm{CT}\right.
$$

The statements of smoothness of u follow from (3.11): since $Q r=-n i G(S u)$ and $\mathbf{V} u_{r}=V \operatorname{divF}=/{ }^{\prime}+\mathrm{j} 2_{\mathrm{r}}$ we obtain

$$
\% 2<y<y u \backslash \operatorname{Vu}_{r} \mathrm{ec}^{\mathrm{p}}\left(\left(\mathrm{o}_{\mathrm{f}} \mathrm{r}\right]_{\mathrm{f}} \mathrm{~L}^{2}\right) \quad \mathrm{vr}>0(\mathrm{p}>0)
$$

Uniqueness. Suppose we have two solutions u and w of (2.1) satisfying the conditions of the Theorem. By Theorem 3.1 we may construct in a unique way $P_{H}, Q_{u}, P_{w t} Q_{W g}$ such that

$$
\begin{gathered}
P_{k}, P_{w} \in C\left([0, \infty), W^{1,2}\right), \\
Q_{u}, Q_{w} \in C\left([0, \infty), L^{2}\right)
\end{gathered}
$$

Since condition (3.10) is satisfied, both (\mathbf{P} «,fij, ($\left.{ }^{\wedge} \mathbf{w} . G w\right)$ are solutions of (3.1), thus by Theorem 3.1 they coincide, and consequently $u=w . D$

We observe that the equation does not smooth out the initial data very much: $\mathrm{TC}<\mathrm{T}(\mathrm{VK})$ is merely in L^{2}, though the stress $T^{\prime}=7 t_{2} a(V t t)+V K_{r}$ is smoother (it is in $W^{1} *^{2}$).

We close this section by showing an analogue of Theorem 3.1 for Dirichlet boundary conditions. Thus the presented above development does not depend on the type of boundary conditions, provided we can construct an appropriate projection n. Since our goal is limited to showing existence we may give a simpler argument. We shall establish Theorem 3.7 Let us assume that a is globally lipschitz continuous, $Q^{D}{ }_{0} e x ? L^{2}$, and $P^{D} Q £^{*} P W^{I: Z}$ and P_{0}^{D} is such that $\operatorname{divF} \wedge^{\wedge}{ }^{\wedge}$ at the boundary of ft. Then for any $7>0$ there exists a unique (strong) solution ef (2.9) (2.10) defined for $0 £ f \leq T$ with

$$
P^{D} \in C\left([0, T], \pi^{D} W^{1,2}\right) \cap C^{1}\left((0, T], \pi^{D} L^{2}\right) \cap C\left((0, T), \pi^{D} W^{2,2}\right)
$$

such that $\operatorname{div} P^{D}=0$ at 3 ft for $t>0$, and

$$
\mathrm{G}^{\mathrm{x}>} \mathrm{eC}^{1}\left([\mathrm{O}, \mathbf{r}]_{\mathrm{f}} \mathrm{ic}^{\mathrm{D}} \mathbf{L}^{2}\right)
$$

Proof. The proof goes along the lines of proof of Theorem 3.1 with only minor changes. The main step is to show that the operator $\mathrm{f}^{\wedge \wedge} \mathrm{Vdiv}$ in $U P L^{2}$ is sectorial. The domain of B^{D} is

$$
D\left(B^{D}\right)=7^{\wedge} L^{2} n W^{\wedge} n\left\{P e W^{2: i}: \operatorname{diy} P=C \quad \text { at } \partial \Omega\right\}
$$

Since we intent to work only with $\mathbf{p}=2$ we may show a simpler version of Lemma 3.3. As before, we use an array of inequalities analogous to that of Lemma 2.3 and Proposition 3.5, they are

$$
x^{-1}\|P\|_{W^{\prime 2}} \leq\|d i v P\|_{L^{2}} \leq x\|P\|_{W^{\prime 2}} \quad \forall P \in \pi^{D} L^{2} \cap W^{1,2}
$$

$$
(B P, P) Z \mathrm{c}\|\mathbf{P}\| £ 2 \quad V P e D\left(B^{D}\right)
$$

$$
x^{-1}\|P\|_{W}{ }^{z 2} Z W B P H L t \& U P W w v \quad \operatorname{VPeD}\left(B^{D}\right)
$$

We skip their proofs since the same type of argument is used.

We will prove that in fact B^{D} is self-adjoint

Proposition $3 J 6 B^{\text {D }}$ is self-adjoint

Proof. The domain $D\left(B^{D}\right)$ of B^{D} is dense in $T P L^{2}$. We note first that $T P L^{2}=\left\{V \$: \quad 4 E E W^{U 2} Q\right\}$. Thus, if we take an element $\mathrm{P}=\mathrm{V}\langle\boldsymbol{J}\rangle$ of $\boldsymbol{i P l}{ }^{2}$. then there exists a sequence $\{\langle J\rangle J$ of functions in $\boldsymbol{C o}(Q)$ converging to 4\rangle in W^{12}. Since ${ }^{\wedge}$ have compact supports then $A \boldsymbol{H}_{\mathrm{n}}$ vanish at the boundary of H .

The operator B^{D} is closed as the inverse of a continuous operator ($\left.£^{\mathrm{D}}\right) \sim \backslash$ this follows directly from the inequalities above. We also saw that $\boldsymbol{B}^{\boldsymbol{D}}$ is positive

$$
\left(B^{D} P, P,\right) \geq C\|P\|_{L^{2}} \quad V P e D\left(B^{D}\right)
$$

for some positive c. Hence B^{\wedge} is self adjoint (see [23]). •

Since self-adjoint operators are necessarily sectorial (see [20]) we may repeat the rest of proof of Thm 3.1 to complete Thm 3.7. D.

Existence of a unique solution to (2.1'), (1.10), (2.1') comes as a corollary to Theorem 3.7 and it is shown along the lines of the proof of Theorem 3.6. The statement of Theorem 3.6 requires only trivial modifications.

4. Long time behavior for arbitrary initial data

Having established the existence of dynamics we wish to study the long time behavior. Unfortunately, we are not able to show that the limit as \boldsymbol{t} goes to infinity exists, as it was possible in the one-dimensional case. We show a partial result in this direction, namely that P and $\left.\mathbf{w}^{\wedge} \mathbf{C}^{\wedge}+G\right)$ converge to zero in $W^{2 *}$ and in L^{2}, respectively. These results correspond to those of Pego [32] and Andrews and Ball [4]. We may rephrase them in terms of K, the solution to (1.1), as follows: $u,->0$ in $W^{\boldsymbol{l}} *_{9}$ and $\operatorname{div}(G(V K)+V U)-,» 0$ in L^{2}. We cannot say much about the behavior of a(F-H2) because in constructing system (3.1) we lost information on the divergence-free part of a, Le. (/-7C2)a.

We assume throughout the section that W is C^{4} and $D^{2} W$ is globally bounded with

$$
\begin{equation*}
d+c|\xi|^{2} \leq W(\xi) \leq D+C|\xi|^{2} \quad \mathrm{c}, \mathrm{C}, \mathrm{D}>0 \tag{B}
\end{equation*}
$$

We first prove an energy estimate for (3.1). It shows that the total energy (kinetic plus elastic) is dissipated by the system.

Proposition 4.1. Let us assume that W satisfies the growth condition (B) and that (P, Q) is a solution of (3.1) as in Theorem 3.1, then

$$
\begin{align*}
& \int_{0}^{1 / 2} \operatorname{div}(P y \quad T)^{2}+W\left(P^{\wedge}\right)(y, T) d y_{0}^{T} l_{0}^{T} \nabla \operatorname{div} B(),\left.t y\right|^{2} d d t= \tag{4.1}
\end{align*}
$$

Proof. The proof is rather standard. We observe that since

$$
P \in C\left([\delta, T], W^{2,2}(\Omega) X \quad j 2 \mathrm{eC}\left(\left[0, \mathrm{r} \mathrm{U}^{2}(\mathrm{fl})\right) 5>0\right.\right.
$$

(Thm 3.1), it follows that the integral
is well defined and finite. Again, from (3.9) applied with ot=y we know

$$
\operatorname{div} P_{\mathrm{t}} \in C^{\beta}\left([\delta, T], L^{2}(\Omega)\right)
$$

so that we can differentiate (4.2) with respect to time. We obtain

$$
\left.\left.\wedge^{\wedge} \mathbf{j}(t)=\operatorname{div} P, \operatorname{div} P_{t}\right)+D W(P+Q)\left(P_{t}+Q_{t}\right)+\mid \nabla \operatorname{div} P{ }^{2}\right\}(y, t) d y
$$

We integrate by parts the first term, and use $P_{(}+Q_{t}=V \operatorname{div} P$:

$$
:^{\wedge}(\mathbf{r})=\mathrm{fY} \operatorname{divF}\left(/ \mathrm{r}^{\mathrm{K}} \boldsymbol{T}(? \mathbf{H} 2>\mathbf{H V} \operatorname{div} /)^{\prime} \mathrm{d} y+\mathrm{f}\left(\operatorname{divP}_{\mathrm{t}} / \mathrm{Vn}>\mathrm{iS}=0\right.\right.
$$

The boundary integral drops out since $P n=0$ at the boundary. The first integral is zero since (3.T) holds and ($\mathrm{T}^{\wedge} \mathrm{c}^{\wedge} \mathrm{V} \operatorname{div} / \wedge \mathrm{cV} \operatorname{divP}$) due to properties of \%. We conclude then $M(t)$ is equal to $M(5)$, and

Asymptotic* ${ }^{*} 27$ -

$$
M(5)=\underset{Q}{\mathbf{f}} \mathrm{f}\left[\mathrm{~V} 4|\operatorname{div} ?(\mathrm{y}, 8)|^{2}+W(P+Q)(y, \$)\right] d y .
$$

divP is a continuous function $\mathrm{cm}[0,7]$ into L^{2}, and taking the norm is a continuous operation, thus $r-\wedge J l d i v P \mid d x$ is continuous. It is a well-known result (see [24]) that condition (B) implies continuity of the composition $W(P+Q)$ as an operator from L^{2} into L^{1}. We conclude that $\left.t-*\right] W(P+Q) d x$ is continuous since $P_{9} Q$ are continuous into L^{2}. Thus we can pass to the limit S->0. Finally

$$
\begin{aligned}
& \mathrm{J}_{\Omega}\left[^{\wedge} \mid \operatorname{divP}\left(\mathbf{y}, 701^{2}+\mathrm{W}\left(\mathbf{P}^{\wedge}\right)(\mathrm{y}, 71]^{\wedge}+\int_{\mathrm{O}}^{\mathrm{T}} \int_{\mathrm{Q}}|\nabla \operatorname{div} P(y, t)|^{2} d y d t=M(0)\right.\right. \\
& =\int_{\mathrm{Q}}\left[1 / 2|\operatorname{div} P(y, 0)|^{2}+W(P+Q)(y, 0)\right] d y
\end{aligned}
$$

Since

$$
\iint_{0}^{T}|\nabla \mathrm{~d} i \backslash P(y, t)|^{2} \dot{d} y d t
$$

increases in time we see that

$$
L(t)=1 / 2 \int_{\varrho}\left[|\operatorname{div} P(y, t)|^{2}+W(P+Q)(y, t)\right] d y
$$

is a Liapunov function for system (3.1): $d L\{t) l d t<Q$, and in particular

$$
\underset{a}{d \lambda C \Lambda+\left[W(P+Q)\left(y_{t} T\right) d y f L(0)<o o .\right.}
$$

Before we study long time behavior of P and J^{\wedge} a we establish a preliminary, rather crude estimate.

Proposition 4.2. If the growth condition (B) is fulfilled then $P_{f} Q$ and consequently $\% \mathbf{a}(P+2)$ are bounded in L^{2}. the bound being independent of time.

Proof. Lemma 3.5 states that

From Proposition 4.1 we know that $\operatorname{HdivPII}^{\boldsymbol{\beta}} \mathbf{a}$ is bounded independent of time.

Combining these two facts we obtain that the L^{2}-norm of P is bounded independent of time.

The boundedness of Q follows from Proposition 4.1 and boundedness of P

$$
M(0)+|d||\Omega| \geq \int_{G}[W(P+Q)-d] \geq \int_{G} c|P+Q|^{2} \geq c\left|\|P\|_{L^{2}}-\|Q\|_{k^{2}}\right|^{2}
$$

thus

$\|Q\|_{L^{2}}$ sconst $+\|P\|_{L^{2}}$.

Finally the boundedness of $\pi_{2} \sigma(P+Q)$ is a result of σ being globally Lipschitzcontinuous:

$$
\left\|\pi_{2} \sigma(P+Q)\right\|_{L^{2}} \leq\left\|\pi_{2} \sigma(P+Q)-\pi_{2} \sigma(0)+\pi_{2} \sigma(0)\right\|_{L^{2}} \leq L\|P+Q\|_{L^{2}}+\|\sigma(0)\|_{L^{2}} \leq C
$$

The following lemma is a very useful source of estimates. This is refined version of Theorem 3.5.2 in [20] and it is due to Pego [32].

Lemma 4.3. (Lemma A. 3 in [32]). We assume that A is sectorial on a Banach space X, $f: U \rightarrow X$ is locally Lipschitz continuous on an open set $U \subset \mathbf{R} \times X^{\alpha}$ for some $0 \leq \alpha<1$, and $z(t)$ is a solution on $\left(t_{0}, T+t_{0}\right)$ of

$$
z_{t}+A z=f(t, z), \quad z\left(t_{0}\right)=z_{0}
$$

with $\left(t_{0}, z_{0}\right) \in U$. We assume

$$
\|f(t, z(t))-f(s, z(s))\| \leqslant K|t-s|+L\|z(t)-z(s)\|_{\alpha} .
$$

Then for any $0<\gamma<1$, there exists $C_{*}=C_{*}(\alpha, \gamma, T, L)$ so that for $0 \leq t_{0}<t<T+t_{0}$

$$
\left\|z_{t}(t)\right\|_{r} \leq C \cdot\left(\left(t-t_{0}\right)^{\alpha-r-1} H z z_{z}\left(t_{0}\right) \|_{c}+\left(t-t_{0}\right)^{-\Upsilon}\left(\sup _{t_{0} \leq \tau \leq t_{0}} \| f(\tau, z(\tau) \|+K)\right)\right.
$$

One of the consequences of the Lemma is the following bound which we will need later

Lemma 4.4.

$\|\nabla \operatorname{div} P\|_{L^{2}} \leq$ const $<\infty$, for $t \geq 1$.

Proof. The proof is an application of Lemma 43 to system (3.1) where A is given by (33) and $/$ is defined by (3.4). We set $0 \in \mathcal{Z}=\mathrm{V} 4$, and $7=1$, in our context $£=0$. In Proposition 42 we showed that IfaoCP+gHk* is bounded, hence so is $I /^{\prime}(\mathbf{z}) \|$. A bound on IMII/2 is also known: from (3.7) we obtain

$\|z\|_{1 / 2} \leq s\left(| | d i v P l_{L^{2}}+\|Q\|_{L^{2}}\right) ;$

next, Proposition $A 2$ and (4.1) give a bound on the right-hand-side. If we add up the components of $z_{i}=\left\{P_{t}, Q_{t}\right)$ we obtain a bound on (?-fO^VdivP. •

The plan of the proof that P goes to zero in $W^{2} *$ follows the idea of Pego [32]. We start with the observation that in order to show that a continuous function $\mathbf{v}(\mathbf{r})$ with values in a normed space X goes to 0 as r->» it suffices to prove ve $L^{2}\left({ }^{*+} ; X\right)$ and $\underset{d t}{-} \mathrm{HKOIli}^{\wedge}<^{\circ \circ}$ - We will apply this fact to prove $\| \mathrm{P} \mid \mathrm{byu}->0$ and $\mathrm{IIJ}^{\wedge} \mathrm{C}+\mathrm{OIIL}^{2}->0-$ Then we apply Lemma 43 to show decay in $W^{2} *^{1}$. Our proof that $\left.n 2<y(P+Q) e L^{2} Q L^{*} ; L^{2}\right)$ generalizes an argument of Andrews and Ball [4].

Proposition 4.5. If in addition to the assumptions of the existence Theorem (Thm. 3.1) we impose the growth condition (B), then the following is true

$$
\lim _{t \rightarrow \infty}\left\|\pi_{2} \sigma(P+Q)\right\|^{2}=0
$$

Proof. From (3.9) we know that P, is sufficiently smooth to take the divergence for $t>0$:

$$
\operatorname{div} P_{r}=\operatorname{div}\left(\pi_{2} \sigma(P+Q)+\nabla \operatorname{div} P\right) .
$$

We can take the inner product with a function $\left\langle b e C^{l} d S_{g} T\right]_{t} W^{l}{ }^{1}$) and integrate over
Qx[8,r]. After integrating by parts we obtain

We take Φ such that $\mathrm{VCfc}=\mathrm{n}_{2} \wedge^{\wedge}\left(\wedge^{\wedge} \mathrm{H} 2\right)$ and to make flie choice unique we impose

$$
\begin{equation*}
\int_{\underline{a}} \Phi=0 . \tag{4.4}
\end{equation*}
$$

Theorem 3.1 guarantees that Φ has the desired properties. Then the first term on the RHS of (4.3) is just what we want to study

$$
-f_{8}^{T}\left|\pi_{2} \sigma(P+Q)\right|^{2} d x d t=-\int_{8}^{T}| | \pi_{2} \sigma(P+Q) \|_{2^{2}}^{2} d t
$$

The third term on the RHS drops out due to the boundary conditions. The second is

$$
\begin{aligned}
& \mathbf{r} \quad \mathbf{r}
\end{aligned}
$$

and it is bounded since the elastic energy is bounded. We used here the fact that ($\left.7 \mathbf{t}_{2} \mathbf{v}, \mathbf{V} 4>\mathbf{H v}, \mathrm{V}<\mathrm{t}>\right)$.

The third term on the LHS is a constant The second is bounded since

$$
\begin{aligned}
& I f(\Phi(T), \operatorname{div} P(T)) d x \mid \leq\|\Phi(T)\|_{L^{2}}\|\operatorname{div} P(T)\|_{L^{2}} \leq \\
& C\|\nabla \Phi(T)\|_{L^{2}}\|\operatorname{div} P(T)\|_{L^{2}} \leq C\left\|\pi_{2} \sigma(P+Q)(T)\right\|_{k^{2}}\left\|\operatorname{div}^{2} P(T)\right\|_{L^{2}} \leq C
\end{aligned}
$$

We used here (4.4), Poincar6*s inequality and boundedness of lldivPI^a (Proposition 4.1) and $\backslash K_{2} C(P-H 2) \mathrm{IL}^{2}$ (Proposition A2).

We estimate the first term on the LHS in the following way. We observe

$$
\int \Phi_{t}=0
$$

which is a consequence of (4.4). Then by Poincar6's inequality we have

$$
\left\|\Phi_{r}\right\|_{2}=\leq C\left\|\nabla \Phi_{r}\right\|_{2}^{2}
$$

Since $\pi_{2} \sigma(P+Q)$ is differentiate in time and

$$
\frac{d}{d} \pi_{2} \sigma(P+Q)=\pi_{2}\left[D \sigma(P+Q)\left(P_{1}+Q_{t}\right)\right]
$$

Hence by Schwarz's inequality

$$
\iint_{\delta}^{T} \Phi_{\mathrm{t}} \mathrm{div} P d x d t \mid \leq C \int_{\delta}^{T} \quad[D \sigma(P+Q)(\nabla \operatorname{div} P)]\left\|_{L^{2}} \cdot H \mathrm{div} P\right\|_{L^{2}}
$$

Since we assumed that the derivative of \mathbf{a} is bounded, we obtain

T	T
	8

The mean value of $\operatorname{div} P$ over $C l$ is zero, so by Poincarfe's inequality
lldivPI^^CHVdiv?^!.

Then

$$
\int_{6}^{T} \int_{6}^{T}\left\langle b_{t} d i\right| P d x d t \mid \leq L C \int_{8}^{T}\|\nabla d i v P\|_{2}^{2} z d t \leq c o n s t a n t<\infty .
$$

We have proved that

$$
\int_{\delta}^{T}\left\|\pi_{2} \sigma(P+Q)\right\|_{L^{2}}^{2} d t \leq C<\infty,
$$

with a bound that is independent of T.

The time derivative of IteaCP+G)!!! $!^{2}$ is also bounded:

$$
\frac{d}{d t}\left\|\pi_{2} \sigma(P+Q)\right\|_{L^{2}}^{2}=2\left(\pi_{2} \sigma(P+Q), \pi_{2}\left[D \sigma(P+Q)\left(P_{i}+Q_{t}\right)\right]\right)
$$

By Schwarz's inequality and Lemma 4.4 we get

$$
\begin{aligned}
& \left|\frac{d}{d t}\left\|\pi_{2} \sigma(P+Q)\right\|_{L^{2}}^{2}\right|= \\
& \leq 2\left\|\pi_{2} \sigma(P+Q)\right\|_{L^{2}} \cdot \| \pi_{2}\left[D \sigma(P+Q)(\nabla d i v P)\left\|_{L^{2}} \leq L L\right\| \pi_{2} \sigma(P+Q)\left\|_{L^{2}} \cdot\right\| \nabla \operatorname{div} P \|_{L^{2}} \leq c o n s t .<\infty .\right.
\end{aligned}
$$

Knowing that

$$
\left.\int\left\|\left\|\pi_{2} \sigma(P+Q)\right\| L_{2}^{2}<\infty \text { and }\left|\frac{d}{d t}\right| \pi_{2} \sigma(P+Q)\right\|_{2}^{2} \right\rvert\,<\infty
$$

we deduce that

$$
\lim _{x \rightarrow \infty} \operatorname{lt} \% \mathbf{a}(P+2) 11^{\wedge} 2=0 . \quad Q
$$

Unfortunately, we are not able to determine the behavior of $\mathbf{c r}(\mathbf{P}-\mathbf{H} 2)$. The problem is
that we do not have any information on $(J-i h) o(P+Q)$.
We proceed to study P. The following Theorem is another application of Lemma

4.3.

Theorem 4.6. Assume that W satisfies the growth condition (B) stated above. Then for any initial data $\left(P o^{*} Q o\right)$ eih $W^{*} * x j i 2 L^{2}$ the solution (P, Q) of (3.1) has the properties

$$
\mathrm{it}_{2} \mathrm{a}\left(/^{\prime}+\mathrm{j} 2\right)+\mathrm{VdivP}->0 \text { in } W^{t *}, \quad P-» 0 \text { in } W^{2 \bar{*}} \text { asr-*0 }
$$

Proof. We will show first that P decays in $W^{l} \wedge$-topology. We know by (4.5) that

```
T T
\\\Gi\P\2
oa OQ
```

which combined with Lemma 3.5 yields $\operatorname{PeL}^{2}\left(E^{+} ; W^{i a}(Q)\right)$. It remains to prove the boundedness of the time derivative of $\mathrm{II}^{\wedge} \mathbf{I t}{ }^{\wedge}$ •

We will now invoke Lemma 4.3: we set

$$
f(t, z)=\left[\begin{array}{c}
\pi_{2} \sigma(P+Q) \\
-\pi_{2} \sigma(P+Q)
\end{array}\right]
$$

$\alpha=\gamma=1 /$, and $K=O$, we take $7^{\circ}=1$. We have already established in Lemma 4.4 and in Proposition 4.2 that

$$
\operatorname{supl}_{\mathbf{z}}|\mathrm{z}| \mathrm{li} / 2<\mathrm{C} \quad \operatorname{iuplir}_{t \geq}(\mathrm{z}(\mathrm{r})) \|<\mathrm{C}
$$

the constants are independent of time. Thus Lemma 4.3 gives us that

$$
\text { n/MhvwSC } \quad \text { Vr>8. }
$$

Summarizing, we know

$\int_{0}^{\infty}\|P\|_{W^{2}}^{2}, d t \leq C$

and the time derivative of $\operatorname{IIPII}^{21 \% 2}$ is bounded,

$$
\left|\frac{d}{d t}\|P\|^{2}\right|=2\left|\left(P_{,} P_{t}\right)\right| \leq\|P\|\left\|P_{s}\right\| \leq C
$$

We conclude that

$$
\lim _{x \rightarrow \infty}\|P\|_{W^{L^{2}}}=0
$$

In order to show the decay of $\|P\|_{w^{22}}$ we claim that Lemma 4.3 is applicable to the system

$$
P_{t}+B P=g(t, P)
$$

where $B=-\nabla \operatorname{div}$, and $g(t, P)=\pi_{2} \sigma(Q(t)+P)$. We already know that the operator B is sectorial on Y_{2} (Proposition 3.3), also we have established

$$
Y_{2}^{1 / 2}=\pi_{2} W^{1,2}
$$

The non-linear term is Lipschitz-continuous,

$$
\begin{aligned}
& \|g(t, P(t))-g(s, P(s))\|_{L^{2}}=\left\|\pi_{2} \sigma(P(t)+Q(t))-\pi_{2} \sigma(P(s)+Q(s))\right\|_{L^{2}} \\
& \leq L\|P(t)-P(s)+Q(t)-Q(s)\|_{L^{2}} \leq L\|P(t)-P(s)\|_{W^{12}}+L \sup _{t>s}\left\|Q_{t}\right\|_{L^{2}}|t-s| \\
& \leq L\|P(t)-P(s)\|_{W^{12}}+L \sup _{t>s}\left\|\pi_{2} \sigma(P(t)+Q(t))\right\|_{L^{2}}|t-s|=L\|P(t)-P(s)\|_{W^{12}}+L K(s)|t-s| .
\end{aligned}
$$

where we set

$$
K(s)=\sup _{t>s}\left\|Q_{i}\right\|(t)=\sup _{t>s}\left\|\pi_{2} \sigma(Q+P)\right\|(t) .
$$

We may then apply Lemma 4.3 with $\gamma=\alpha=1 / 2$ and $T=1$. Then we have for $t_{0} \leq t \leq t_{0}+1$

$$
\left\|P_{t}\right\|_{W^{12}} \leq C_{*}\left(\left(t-t_{0}\right)^{-1}\left\|P\left(t_{0}\right)\right\|_{W^{12}}+\left(t-t_{0}\right)^{-1 / 2}\left(\sup _{0 \leq \tau-t_{0} \leq 1}\|g(\tau, P(\tau))\|_{L^{2}}+K\left(t_{0}\right)\right)\right) .
$$

We let t_{0} go to infinity. Then the right-hand-side of the above inequality goes to zero, since $\|P\|_{w^{12}} \rightarrow 0$, and $\left\|\pi_{2} \sigma(P+Q)\right\|_{L^{2}} \rightarrow 0$ (Proposition 4.5). As a result we obtain

$$
\left\|\pi_{2} \sigma(P+Q)+\nabla \operatorname{div} P\right\|_{w^{12}} \rightarrow 0 \text { and }\|\nabla \operatorname{div} P\|_{L^{2}} \rightarrow 0
$$

In virtue of Lemma 3.5 the $W^{2,2}$-norm of P is bounded by $x\|\nabla \operatorname{div} P\|_{L^{2}}$ thus the Theorem is proved.

We may rephrase the result in terms of u :

Corollary 4.7.

$$
*,->0 \text { in } W^{1} *^{2} \text { and } \operatorname{div}(0(V j<)+V j<f)->0 \text { in } L^{2} Q
$$

Remark. We note that the results of this section, in particular Corollary 4.7, are valid also for Dirichlet boundary conditions, the proofs presented here do not need changes. We have used extensively Poincait's inequality, we may do so again due to the boundary conditions which elements of $T P L^{1}$ satisfy and the fact that for solution P^{D} to (2.9) and (2.10) the condition

$$
\operatorname{div} P^{D}=0
$$

holds at the boundary (Theorem 3.7). Only in Proposition 4.5 we replace the normalizing condition (4.4) by the following one

$$
0=0 \text { at } 3 \mathrm{tt} .
$$

5. Stability of equilibria

In the present section we study stability of certain equilibria of (2.1). In particular we are interested in showing stability of local strong minimizers of the energy /

$$
I\left(u_{\mathrm{Q}} \quad W(\nabla u) d x\right.
$$

We have constructed dynamics in W^{12} the space of finite eoergy, provided that the initial data $(\mathbf{u}(\mathbf{x}, 0), \mathbf{u},(\mathbf{x}, 0))$ are in $W^{t t Z} x L^{2}$. Thus it is natural to consider stability in this space. Furthermore, our dynamics provides an essential ingredient for a potential-well argument for proving stability. Actually, we show that proper local strong minimizers of / are
stable. For the argument to work we need an assumption on W consistent with existence of energy minimizers. Roughly, we require that W be "strong quasiconvex". Strong quasiconvexity of \boldsymbol{W} dampens oscillations in gradient of minimizing sequences of $/$, thus it forces weak and strong convergence to be equivalent (cf [12]). In our proof we use a
potential-well argument presented by Ball and Marsden [6].

We also show exponential asymptotic stability of smooth equilibria for which merely the second variation ef the energy $6^{2} /$ is positive. Moreover we need W evaluated at the equilibrium state to be elliptic. This result corresponds to that of Potier-Ferry [33] with the exception he worked with Dirichlet boundary conditions.

We prove our result by using the linearized Stability Principle (LSP), one of the tools available within the framework of semigroup theory. That is, to show stability of an equilibrium it suffices to establish that the spectrum of the linearized operator is in the right-hand half-plane separated away firom the imaginary axis. For the LSP to work we have to change the underlying function spaces. Now, the admissible perturbations must be in $\boldsymbol{W}^{2} * * p>n$, Le. gradients of perturbations must be continuous. We are thus forced to show a new existence result, at least for initial values close to the equilibrium.

The method of proving asymptotic stability works not only for smooth solutions but also for a family $R=\{q E)$ of states with discontinuous gradients. The family R is in $W^{\boldsymbol{I t} 2}$, gradients of all elements \boldsymbol{q}_{E} have at most two values $\mathbf{F}, \mathbf{G e M}^{* * *}$. Working with equilibria firom the family \boldsymbol{R} imposes some restrictions on behavior of W near the minima F and G. For the linearization argument to be correct W must be of the same shape in some neighborhoods of F and G.

The physical interpretation of our result is that at least for some equilibria of (2.1) which contain two or more phases are asymptotically stable under perturbation, provided the perturbation does not move the interface separating the phases.

It turns out that our asymptotic stability result for R is false if we admit perturbations merely in $W^{1 * 1}$. The reason for that is, if $n>1$ then $W^{1 * *^{2}}$ is not contained in the space of continuous functions. In fact for any $q_{E} \wedge R$ we can find in any $W^{1 * *^{2}}$ neighborhood of q_{E} another dement of the family R.

We show first stability of proper local minimizers of /. We do not touch upon the issue of existence of such minimizers which is beyond the scope of this paper. Our
precise result is this.

Theorem 5.1 We assume that W satisfies the conditions:

$$
\begin{equation*}
W(\&=G £\}+\mid V k \backslash \backslash \quad \text { SeAf }{ }^{* * * '}, \quad \mathrm{X}>0 \tag{a}
\end{equation*}
$$

G is quasiconvex, $0 \leq G(£) \leq A\left(1+\left.1 £\right|^{2}\right)$
for some constant A. We also assume that the equilibrium point $\boldsymbol{u}_{\boldsymbol{0}}$ of (2.1) is a proper local minimum of the functional /. Then for a given e there is a $\mathbf{8}$ such that if the initial data (u(0),u,(0))e $W^{i a} x L^{2}$ for equation (3.1) satisfy

$$
\left\|u_{0}-u(0)\right\|_{W^{12}}<\delta \quad \text { and } \quad f\left[\mathrm{Vi}|\mathrm{u},(0)|^{2}+W(\mathrm{Vu}(0))\right]<\mathrm{f}_{\delta} W\left(\nabla u_{0}\right)+\delta
$$

then

$$
\left\|u_{t}\right\|_{W^{1,2}}+\left\|u-u_{0}\right\|_{W^{1}}{ }^{2}<\varepsilon \quad V / \geq 0
$$

Our result is in the spirit of BaD and Marsden, who prove a similar result for polyconvex W.

We will first recall the notion of potential well. According to Ball and Marsden [6], we call $u e W^{t i 2}$ a proper local minimum of / if there exists e>0 such that $/(\mathrm{v})>/(\mathrm{w})$ whenever $0<\| v-t t| | w u £ £$. An element $u e W^{i a}$ lies in a potential well if for all e>0 sufficiently small there exists $Y(e)>0$ such that

$$
/(\mathrm{v})-/(\mathrm{K})>\boldsymbol{Y}(\mathrm{e}) \quad \text { whenever } \mathbf{H v}-\mathrm{K} \mid \mathrm{tau}=€
$$

The key observation in the proof of the Theorem is Proposition 4.3 in [6] rephrased as follows.

Proposition 52 (Proposition 4.3 in [6]). Let $u e$ fae $\left.W^{I_{-}}{ }^{2}: j^{\wedge}=O\right\}$ lie in a potential well. Given $\mathbf{e}>0$, there exists $8>0$ such that if $\left(u(0), u_{r}(0)\right) € W^{\wedge} \mathbf{x L}^{2}$ with

$$
\begin{equation*}
\left\|u(0)-u_{0}\right\|_{W^{1, \lambda}}<\delta \text { and } \underset{\gamma}{f}\left[\wedge\left|\mathbf{u}_{f}(0)\right|^{2}+^{\wedge}\left(V_{w}(0)\right)\right]<{\underset{h}{h}}_{\wedge}^{\wedge}(V i / 0)+5 \tag{5.1}
\end{equation*}
$$

then $\| \mathbf{u}(\mathbf{r})-\mathrm{ttoll} \underline{L}^{2}<\mathrm{e}$ for all $t \geq 0$.

Before we give the proof of our Theorem we recall the definition of quasiconvexity. We say that $W(£)$ is quasicon vex if for some fixed $p_{t} l<p<o o \quad$ (we takep $=2$) Wsatisfies

$$
\begin{equation*}
0 \leq W(\xi) \leq \Gamma\left(1+|\xi|^{p}\right) \tag{5.2}
\end{equation*}
$$

for some constant F and all $£ \mathrm{e} M^{* * *}$, and

$$
\underset{o}{f} \mathbf{f}(\mathrm{~A}) \leq \mathrm{JW}(\mathrm{~A}+\mathrm{V}<\mid>)
$$

for all open $\left.0 \mathrm{c} \mathrm{E} \backslash A e M^{K X}{ }^{\prime \prime},{ }^{\wedge} W^{\wedge}{ }^{\wedge} O,{ }^{* *}\right)$. It is a well-known result that if W is continuous, and it satisfies (52) then the functional / is weakly sequentially lower semicontinuous on $W^{\text {ttP }}\left(Q L j L^{*}\right)$ if and CKy if W is quasiconvex (cf. Morrey [29], Acerbi-Fusco [1]).

We will see that undo* the hypothesis of Theorem 5.1, weak convergence is improved to strong. The following Proposition may be found in [12].

Proposition S3 Let us suppose IP satisfies assumptions (a) and (p) of Theorem 5.1 Then

$$
u_{k^{*}} * u \text { weakly in } W^{U p} \text { and } I\left(u_{k}\right)^{\wedge}>I(u)
$$

implies

$$
u_{k^{*}} * u \text { strongly in } W^{I *}
$$Q

Proof of Theorem 5.1 We have to show that conditions (fi) and (a) imply that u lies in a potential well. Let us suppose that it is false, we can find then a sequence $u_{k} e W^{1 \boldsymbol{*} \boldsymbol{2}}$ such that

$$
I\left(u_{k}\right) \rightarrow I(u) \text { and } \lim _{k \rightarrow \infty}\left\|u_{k}-u\right\|_{W^{\prime 2}}=\varepsilon>0 .
$$

Because of the growth condition (p) we info- that u_{k} art bounded in $W^{i a}$, thus we can subtract a weakly convergent sequence, again denoted by $u_{k j}$ with limit v. The norm in $W^{U 2}$ is weakly sequentially lower semicontinuous, thus $\|w-v\|_{w} \mathbf{u}^{\wedge} \mathbf{e}$. We assumed that u is a proper minimum of / and/is weakly sequentially lower semicontinuous hence $<=v$.

We may apply now Proposition 53 to conclude that $u_{k^{-}}>u$ strongly in $W^{i a}$, which is a contradiction. Thus u lies in a potential well. We observe that Theorem 4.6 guarantees that $u_{t^{-}>0}$ in $W^{i a}$. Finally, we apply Proposition 5.2 to complete the proof of Theorem 5.1 •

Having proved stability of proper local minimizers of / we turn our attention to those smooth equilibria u for which the second variation of the energy $8^{2} /(u)$ is positive. We also relax our assumption on W. We no longer need W to be strongly quasiconvex (i.e. we no longer assume (a) and (p)). Instead, we require that W evaluated at u be elliptic. Since we relaxed our assumption on W we restrict admissible perturbations of u, they must be in $\mathrm{W}^{2} *, \mathrm{p}>\mathrm{n}$, i.e. gradient of pertuibations are now continuous. We first observe that equilibria of (2.1) satisfy

$$
\operatorname{divcr}(\mathrm{Vu})=0 \text { in } \mathrm{ft}, \quad \mathrm{a}(\mathrm{Vu}) 7 \mathrm{i}=0 \text { at } 3 \mathrm{ft} .
$$

It follows from the construction of n_{p} that the above equation is equivalent to

$$
\pi_{p} \sigma(\nabla u)=0 .
$$

Hence equilibria of (3.1) must satisfy

$$
\pi_{p} \sigma(Q)=0, \quad P=0 .
$$

We may now formulate our stability result for equilibria of (3.1). We set

$$
X_{p}=Y_{p} \times \pi_{p} W^{1, p}
$$

 tion of Theorem 4.6

$$
\begin{equation*}
\left.\mathrm{rf}+\left.\left.\mathrm{c}\right|^{\wedge}\right|^{2}<\mathrm{v} \mathrm{a}\right)^{\wedge} \mathrm{D}-\mathrm{K}:\left.\left.\right|^{\wedge}\right|^{2} \quad \mathrm{c}, \mathrm{C}, £ \gg 0 \tag{B}
\end{equation*}
$$

A smooth equilibrium state $\left(0, \mathrm{Q}_{0}\right)$ of (3.1) is asymptotically stable in $X \%$ for any $p>\mathrm{n}$, $1>001 / 2$ if

$$
\underset{\mathrm{a}}{\mathrm{j} D} W\left(\varrho_{0}\right)(\nabla \hbar, \nabla h) \ngtr\left\|\| \nabla h \mid \mathrm{g} \quad \forall h \in W^{12} ;\right.
$$

$$
\begin{equation*}
\forall \xi, \eta \in \mathbf{P}^{n}, \quad \sum_{a, \beta, j, j} \frac{\partial^{2} W\left(Q_{0}\right)}{\partial F_{\alpha}^{i} \partial F \dot{j}} \xi_{i} \xi_{j} \eta_{a} \eta_{\beta} \geq \beta|\xi|^{2}|\eta|^{2} . \tag{E}
\end{equation*}
$$

hold.

Proof. We first linearize system (3.1). If we subtract from the equation (3.1)

$$
\begin{aligned}
& \operatorname{Pr}=\operatorname{Vdiv} P+K 2 O(P+Q) \\
& Q=-\pi_{2} \sigma(P+Q)
\end{aligned}
$$

the steady state equations then we obtain the system for (5P.5Q) where $5 \mathrm{P}=\mathrm{P}-\mathrm{P}_{0}$, $\& Q=Q \mathrm{H} 2 \mathrm{o}$, we know that $P_{0}=0$,

$$
\begin{align*}
& \delta P_{r}=\pi_{2}\left[D \sigma\left(P_{0}+Q_{0}\right)(\delta P+\delta Q)\right]+\nabla \operatorname{div} 5 P+\wedge\left(5^{\wedge}+52\right) \tag{5.3}\\
& \delta Q_{t}=-\pi_{2}\left[D \sigma\left(P_{0}+Q_{0}\right)(\delta P+\delta Q)\right]-g(\delta P+\delta Q)
\end{align*}
$$

the term \wedge is defined below

$$
g(h)=\pi_{2}\left[\sigma\left(Q_{0}+h\right)-\sigma\left(Q_{0}\right)-D \sigma\left(Q_{0}\right)(h)\right] .
$$

We may rewrite this system as

$$
z_{z}+(A-S) z=\bar{g}(z)
$$

where $\dot{g}(z)=(g(z),-g(z))$, and $\mathrm{z}=(67>, 6 \mathrm{j} 2)$. We also define S as follows

$$
J=\left[\begin{array}{ll}
-V_{p} & -V_{p}
\end{array}\right]
$$

where

$$
\begin{equation*}
V_{p}=x_{p} D \sigma\left(Q_{0}\right) . \tag{5.4}
\end{equation*}
$$

We proved in Proposition 2.1 that B is sectorial on Y_{p} and consequently A is sectorial on $X_{p t}$ where $X_{p}=Y_{p} x n_{p} W^{\text {lif }}$. Since 5 is a bounded operator on X_{p} we conclude that $\mathbf{A}-5$ is sectorial as welL We may also apply Theorem 1.4 .6 in [20] to conclude that the domains of fractional powers of \boldsymbol{A} and $\boldsymbol{A} \boldsymbol{- S}$ are identical. Thus in particular

$$
X_{p}^{\alpha}=Y_{p}^{\alpha} \times \pi_{p} W^{1, p}
$$

We want to show that \tilde{g} is locally Lipschitz-continuous on X_{p}^{α} we first establish the following Lemma

Lemma 5.5 The function $g: W^{1, p} \rightarrow W^{1, p}$ as defined by

$$
g(h)=\pi_{p} \sigma\left(Q_{0}+h\right)-\pi_{p} \sigma\left(Q_{0}\right)-\pi_{p}\left[D \sigma\left(Q_{0}\right)(h)\right]
$$

where the composition $D \sigma\left(Q_{0}\right)$ is smooth, has the properties
$1^{0} g$ is locally Lipschitz-continuous on $W^{1, p}$ with values in $W^{1, p}$;
$2^{0} \quad$ If $h \in Y_{P}^{\alpha}$ then $\|g(h)\|_{W^{1}}=o\left(\|h\|_{Y_{P}^{*}}\right) \quad \alpha>1 / 2$
Proof. We use in the proof the standard results on differentiability of composition operators in Sobolev spaces (see [36]).

We set

$$
\Xi(h)=\sigma\left(Q_{0}+h\right)-\sigma(h)-D \sigma\left(Q_{0}\right)(h)
$$

for $h \in W^{1, p}$ in an neighborhood of zero. Since the map $h \rightarrow \sigma$ is differentiable we obtain that

$$
\|E(h)\|_{W^{1 p}}=0\left(\|h\|_{W^{1 \rho}}\right)
$$

Moreover, Ξ itself is continuously differentiable and $D \Xi(0)=0$ so Ξ is Lipschitz continuous in a neighborhood of 0 .

We note that from the construction of the projection π_{p} and from the elliptic regularity theory follows that π_{p} is continuous not only on L^{p} but also on $W^{1, p}$. Thus the first statement of the Lemma follows. In order to complete the proof of 2^{0} we observe that embedding theorem 1.6.1 in [20] implies $\|x\|_{W^{1}} \leq c\|x\|_{r_{p}}$ if $\alpha>1 / 2$. Thus

$$
\|g\|_{w^{\prime}}=\left\|\pi_{p} \equiv(h)\right\|_{w^{\prime}}=o\left(\|h\|_{r_{p}^{z}}\right)
$$

Since $X_{p}^{\alpha} \subset\left(\pi_{p} W^{1, p}\right)^{2}$ for $\infty 1 / 2$, it follows from Lemma 5.5 that \tilde{g} is locally Lipschitzcontinuous on X_{p}^{α} and

$$
\begin{equation*}
\|\tilde{g}(z)\|_{0}=o\left(\|z\|_{\alpha}\right) \tag{5.5}
\end{equation*}
$$

We may now invoke Theorem 3.3.3 in [20] to conclude existence of kxal in time solutions to (5.3). Proceeding as in the proof of Theorem 3.1 we conclude that

$$
\begin{gathered}
\delta P \in C\left([0, T], Y_{p}^{\alpha}\right) \cap C^{1}\left((0, T], \pi_{p} L^{p}\right) \cap C\left((0, T], \pi_{p} W^{2 p}\right) \\
\delta Q \in C^{1}\left([0, T], \pi_{p} W^{1, p}\right) .
\end{gathered}
$$

It follows from (53) that we may linearize (5.3). Thus we turn our attention to study of the spectrum of $A S$. Our ultimate goal is to show that the real part of spectrum of $(A S)$ is positive and separated away from 0 . But first we have to investigate $\operatorname{sp}(A)$. Certainly, $\operatorname{sp}(A)=\operatorname{sp}(B) v\{0\}$. It is natural to expect that B being equivalent to the Laplace operator will have pure point spectrum. As we saw the problem

$$
B \nabla \phi-\lambda \nabla \phi=\nabla f, \quad \partial \phi / \partial n=0
$$

is equivalent to

$$
\begin{equation*}
-\mathrm{A}<\mathrm{H} 4=/, \quad 3<\mathrm{t}>/ \mathrm{an}=0, \tag{5.6}
\end{equation*}
$$

where $\dot{J} /=0$. We can take Ao belonging to the sector $S j{ }^{\wedge}{ }_{W}$ then the estimate (3.5)

$$
\|\phi\|_{W^{2}} \leq C\|f\|_{\nu} /\left|\lambda_{0}\right|
$$

holds. The a priori estimates [2] give us

$\|\phi\|_{W^{2}} \leq C\left(\|f\|_{W^{1}}+\|\phi\|_{2}\right)$.

Combining these inequalities we obtain

In other words the map $\longrightarrow ゅ$ is continuous. It means that the resolvent operator $(-\mathrm{A}-\mathrm{Xo})^{\prime \prime+1}$ exists and it is continuous from W^{*} to $W^{* *}$ and consequently it is compact, , because the embedding $W^{3} * c: W^{t P}$ is compact by the Rellich-Kondrachov Theorem. It follows that (B-Ao) ${ }^{\prime 1}$ exists and it is a compact operator from Y_{p} into itself. The spectrum of a compact operator consists entirely of eigenvalues of finite multiplicity and at most one limit point at 0 . Therefore the spectrum of B is pure point, and the limit point is
at infinity. We have to rule out possibility of negative eigenvalues of B. We assumed that $p>n \geq 2$, then $L^{p} c L^{2}$. If there is an eigenvalue X, with non-positive real part, and

$$
B v-\mid v=O
$$

holds for some vector $v^{*} 0$, then we can compute the inner produa of the above equation with v. The result is

$$
\left.\mathrm{CBv}_{\mathrm{f}} \mathrm{v}\right)-\mathrm{X}\|\mathrm{v}\| \mathrm{L} »=0 .
$$

After applying Proposition 3.4 we obtain

$$
\left(\gamma^{2}-\lambda\right)\|v\|_{2} \leq 0
$$

which forces X to be real and $\gamma \leq \lambda$.

We also need to know that

$$
\begin{equation*}
/ t e C: \operatorname{ReX}<\mathbf{p} ; \mathbf{c p}(V,) \tag{5.8}
\end{equation*}
$$

for V defined by (5.4) acting on $n_{p} W^{l j>}$. We introduce the notation

$$
M=D G\left(Q_{0}\right)
$$

What we already know is that

$$
\left(7 \mathrm{C}_{2} \mathbf{M x} \wedge \mathbf{c}\right)=(\mathbf{M x}>x)^{\wedge}{ }^{\wedge} \mathrm{Pllr} \mid 112, \quad x e Y_{2}
$$

which is due to assumption (\mathbf{y}), so (5.8) holds on Y_{2}.

It follows directly from the definition on T^{\wedge} that the problem
*,(M-X)x=y
where $\mathrm{x}, \mathrm{yen}_{p} W^{l t P}$ is equivalent to the following one, where we set $\mathrm{x}=\mathrm{V} \$, \mathrm{y}=\mathrm{V} /$

$$
\begin{equation*}
\text { . } \operatorname{div}((\mathrm{M}-\mathrm{X}) \mathrm{V}<)>)=\mathrm{A} / \tag{5.10}
\end{equation*}
$$

$$
(M-\lambda) \nabla \phi \cdot n=\frac{\partial f}{\partial n}
$$

Because of assumption (e) the above problem is elliptic. Since (5.8) holds for $p=2$, so if $\operatorname{ReX}<\mathrm{p}$, yen $_{p} W^{\text {ttP }}$ then we have a unique solution x to problem (5.10) belonging to Y_{2}.

We have to show that in fact x is in $n_{p} W^{l}$. We can take the inner product of (5.9) with any element \boldsymbol{t} of $\boldsymbol{Y}_{\mathbf{2}}$

$$
\left(\pi_{p}(M-\lambda) x_{,}, t\right)=(y, t) .
$$

Since $f e v, V y)=(v, V y)$ we obtain for $r=V p$

$$
\int_{0}((M-\lambda) \nabla \phi, \nabla \psi)=\int_{\alpha}(\nabla f, \nabla \psi) .
$$

Because ye $W^{1 *}$ we can integrate by parts the second integral

$$
\int_{a}((M-\lambda) \nabla \phi, \nabla \psi)+\int_{\sigma}(\Delta f, \nabla \psi)-\int_{\partial \Omega}\left(\frac{\partial f}{\partial n}, \Psi\right)=0
$$

We thus obtain that $\phi e W^{1 *}$ is a weak solution to equation (5.10). The standard elliptic regularity theory (see [21]) implies thai $4>$ is in $W^{2} *$. The a priori estimates give continuity of the map $\mathrm{V} /$-» $\mathrm{V}<\mid>$. Hence, the inclusion

$(\lambda \in \mathbb{C}: \operatorname{Re} \lambda<\beta) \subset p\left(V_{p}\right)$

is valid for Vacting on $\left.n_{p}\right|^{1, p}$.
Our proof that $\operatorname{sp}(A S)>c>0$ takes advantage of some ideas of Pego (cf.proof of 4.1 in [32]) in a simplified form. First of all we establish that the essential spectrum of $A S$ is bounded away from the imaginary axis. Thai we shall show the same thing for eigenvalues of $A S$. Following [32] we decompose S as $S P S Q$ where

$$
s_{P}=\left[\begin{array}{ll}
V_{P} & g \\
-V_{p} & 0
\end{array} \quad s_{Q}=\left[\begin{array}{cc}
0 & V_{p} \\
0 & -V_{p}
\end{array}\right]\right.
$$

Since 0 does not belong to spectrum of B nor V_{p} it is possible to write down explicitly the inverse operator for

$$
A-S_{Q}=\left[\begin{array}{cc}
B & -V_{P} \\
0 & V_{P}
\end{array}\right]
$$

which is

$$
\left(A-S_{Q}\right)^{-1}=\left[\begin{array}{ll}
B^{-1} & B^{-1} \\
0 & V_{P}^{-1}
\end{array}\right]
$$

We have remarked earlier that due to a priori estimates (see (5.7)) the operator B^{-1} is compact. In virtue of the form of the operator $\left(A-S_{Q}\right)^{-1}$ the composition $S_{P}\left(A-S_{Q}\right)^{-1}$ is also compact. Thus, S_{P} is a compact perturbation of $A-S_{Q}$ and hence by Theorem A. 1 in ch. 5 in [20], $\operatorname{sp}_{\text {ass }}(A-S) \subset \operatorname{sp}_{\text {ass }}\left(A-S_{Q}\right)$. Due to the block structure of $A-S_{Q}$ we conclude that $\operatorname{spass}\left(A-S_{Q}\right) \subset \operatorname{sp}(V)$. In addition, we know by (5.8) that the spectrum of V_{p} is separated away from 0 .

At last we have to check that there is no eigenvalues of $A-S$ in the left half plane. Let us write the equation for eigenvalues for $A-S$

$$
(A-S)\left[\begin{array}{l}
\phi \\
\psi
\end{array}\right]=\lambda\left[\begin{array}{l}
\phi \\
\psi
\end{array}\right]
$$

or

$$
\begin{align*}
& \left(B-V_{P}\right) \phi-V_{p} \psi=\lambda \phi \tag{5.11'}\\
& V_{P} \phi+V_{P} \psi=\lambda \psi . \tag{5.11’}
\end{align*}
$$

We may assume $\lambda \neq 0$ otherwise we conclude $V_{p}(\phi+\psi)=0$ and $B \phi=0$, it follows $\phi=\psi=0$.
We can add together equations (5.11)

$$
B \phi=\lambda(\phi+\psi)
$$

and solve the above equation for ψ

$$
\psi=(B-\lambda) \phi / \lambda .
$$

We insert the result into (5.11')

$$
B \phi-V_{p} B \phi / \lambda=\lambda \phi .
$$

Since L^{p} is a subspace of L^{2} we can take the inner product with $B \phi$

$$
\begin{equation*}
\|B \phi\|_{L^{2}}^{2}-\left(V_{P} B \phi, B \phi\right) / \lambda=\lambda(B \phi, \phi) . \tag{5.12}
\end{equation*}
$$

If the real part of λ is non-positive, then the real part of the RHS of (5.12) is non-positive while the real part of the LHS of (5.12) is strictly positive, because $\|B \phi\|_{L^{2}} \geq \gamma^{2}\|\phi\|_{L^{2}}$ (Proposition 3.4) and V_{p} is positive. This contradiction proves claim that there is no
eigenvalues in the left half plane.

We may finally invoke Theorem 5.1.1 in [20] to complete the proof of our Theorem. For initial data sufficiently close in $X \%$ to the equilibrium ($0, \mathrm{Go}$) solutions to (3.1) exist for all times and we have the estimates

where $\mathrm{z}_{\mathrm{o}}=(\mathrm{O}, \mathrm{Go})$ - In other words,

$$
W\left(\text { Oliry }{ }^{\wedge} \mathrm{C}^{\wedge} \operatorname{die}(O\}-Q o \backslash \backslash i \nmid \# P(0) \| \wedge\right)
$$

and

$$
112\left(t y Q_{o} \backslash_{w} \wedge<C e^{\wedge} \wedge \backslash Q\left(O y-Q o \backslash \backslash w^{\wedge} \backslash \backslash P(0 \%),\right.\right.
$$

provided ${ }^{\wedge}\left(\mathrm{O}^{\wedge} \mathrm{o} 11^{\wedge}+\mathrm{I}^{\wedge} \mathrm{O}\right)!^{\wedge}$ is small.

Now, stability of equilibria of (2.1) comes as a corollary to Theorem 5.4.

Corollary 5.6 If u_{0} is a smooth equilibrium of (2.1) such that the conditions (y) and (e) hold, then u_{0} is exponentially asymptotically stable. Precisely, if the perturbation $\left(u\left(\mathrm{x}, O y-u_{0 i} u_{t}(x, 0)\right)\right.$ is small in $W^{\wedge} x W^{1} *$ then

$\left\|u-u_{0}\right\|_{w} w_{0} \leq e^{-\theta}$

and

$\left\|u_{1}\right\| \leq \leq e^{-a t}$

for some positive C and 9 .
Proof. We assumed that $u_{t}\left(x_{t} 0\right)$ is in $W^{l} *_{9}$ it implies that $P(x, 0)$ is in $W^{X p}$ and thus in $Y \%$ for $\mathrm{col} / 2$. We may use the results of Theorem 5.4.

The solution u of (2.1) is given by the formula

$$
\begin{aligned}
& T \\
& u(T)=l d i \backslash P(t) d t+u_{0} . \\
& 0
\end{aligned}
$$

We take gradient of u,

$$
\nabla u=\int_{0}^{T} \nabla \operatorname{div} P(t) d t+\nabla u_{0} .
$$

We showed in Theorem 3.6 that it is possible to interchange integration and differentiation. Since $\operatorname{Vdiv} P=(P+Q)_{t}$ we obtain

$$
\nabla u=P(T)+Q(T)-P(0)-Q_{0}+Q_{0}=P(T)+Q(T),
$$

where we set $Q_{0}=V u_{0}$. Theorem 5.4 yields

$$
\begin{aligned}
& \text { IIVU } 0 y-v u_{0}\left\|w^{*}=\right\| P(T)+Q(T)-Q_{0}\left\|_{w^{\prime}+s} S C\right\| P(T)\left\|_{r}+\right\| Q(T)-Q_{0} \|_{w^{\prime}} \\
& S C^{\prime} e^{-\theta T}\left(\|P(0)\|_{r} ;+\left\|Q(T)-Q_{0}\right\| w_{w^{\prime}+}\right) \leq C^{\prime} e^{-\theta T}\left(\left\|u_{1}\right\|_{\left.w^{\prime} s+\left\|u(0)-u_{0}\right\|_{w^{2}}\right)}\right.
\end{aligned}
$$

By Proposition 2.1 it follows that the space average of u must be equal to the space average of u_{0}. We also set the average of u_{0} to be zero (assumption (A)) thus by PoincarS's inequality we estimate the the difference $u-u_{0}$

$$
\left\|u-u_{0}\right\|_{\nu} \leq S C\left\|\nabla\left(u-u_{0}\right)\right\| \nu
$$

finally

$$
I^{\prime \prime} \quad C n-u_{o} b p * Z C e-e^{*}\left(\left\|u_{1}\right\|_{w^{1}+}+\left\|u(0)-u_{0}\right\| w^{2} z_{0}\right),
$$

and

$$
\left\|u_{i}\right\|_{L}=\|d i v P\|_{L} \leq C\|P\|_{w} \omega_{5} S C^{-}\|P\|_{r_{r}} \leq C^{\prime \prime} e^{-\pi} \cdot \square
$$

The method of the proof of Theorem 5.4 yields another result, namely stability of a family R to be constructed, of equilibria with discontinuous gradients. The idea is to make the composition $\operatorname{Dc}\left(Q_{0}\right)$ smooth. We will achieve our goal but at the expense of an additional assumption on W. But first we construct the family \boldsymbol{R}.

Let us suppose that W has two local minima at F and $G e M^{* * * *}$, where F and G are rank-one related, i.e. the condition

$$
\operatorname{rank}(F-G)=l
$$

holds. Since $\operatorname{DW}(F)=C T(F)=0=\left\langle T(G)=D^{\wedge}(G)\right.$, then $(0, F)$ and $(0, G)$ are steady states of
(3.1). Because F and G are rank-one related then there exist vectors a and $n e \ell^{n}$ such that

$$
F-G=a{ }^{\circledR} n .
$$

Let us choose E an open bounded subset of E, E is then at most countable union of open intervals. We set

$$
Q_{E}(x)=F \chi_{E}(x \cdot n)+\left(1-\chi_{E}(x \cdot n)\right) G \quad x \in \Omega
$$

We claim that Q_{E} is a gradient of an absolutely continuous function. If so, $\left(0, Q_{E}\right)$ form a family of equilibria of (3.1) since aG2£>=0. In particular, if $V q_{E}=Q_{E}$ then q_{E} are steady states for (2.1) because the boundary condition (2.1") is satisfied.

If $\left|\mathrm{E}-\mathrm{E}^{\prime}\right|$ is small, (|-| is the Lebesgue measure), then WQETQETWL ${ }^{1}$ is also small because of the continuity of the integral with respect to the set of integration. This means that in any L^{\wedge} neighborhood of a fixed Q_{E} we can find a steady state Q ?. It follows that in $W^{1} *^{2}$ asymptotic stability fails for q_{E}. We note that the example is valid for any bounded domain £1

We prove now our claim. We define

$$
\psi_{E}(t)=\int_{-\infty}^{i} \chi_{E}(s) d s
$$

The definition is valid since \mathbf{E} is bounded. Then $y_{y_{E}}{ }^{\prime}=\mathbf{X s}$ a.e. We also set

$$
\begin{aligned}
\tilde{q}_{E} & =G x+a \Psi_{E}(n \cdot x) \\
q_{E} & =\tilde{q}_{E}-\frac{1}{|\Omega|} \int_{\square} \bar{q}_{E}
\end{aligned}
$$

We see that q_{E} has zero mean, and

$$
D q_{E}=G+a \otimes_{n} \psi_{E}^{\prime}(x \cdot n)=G+(F-G) \chi_{E}(x \cdot n)=Q_{E} \quad \text { a.e. }
$$

The L^{2}-perturbations of Q_{E} (the $W^{\prime} \wedge$-perturbations of q_{E}) allow the discontinuities of the equilibrium point to move, and this is responsible for the lack of asymptotic
stability. We observe that if $W(F) \pm W(G)$ then the q_{E} need not be strong local minimizers, despite positivity of $5^{2} /(\wedge \mathfrak{£})$. Nonetheless, we show a kind of stability for q_{E}, but only for continuous perturbations, under which discontinuities do not move. We first prove stability of $Q E$.

Theorem 5.7 We assume that $W: M^{* * *->\&}$ is smooth, it has two local minima at F and G, such that $\operatorname{rank}(F-G)=1$. The growth conditions as in Theorem 5.4 are satisfied. In addition we assume

$$
\begin{align*}
& \exists \delta>0 \forall \xi \in M^{n \times n},|£|<8 \quad W\left(F+\mid y=W\left\{G{ }^{\wedge} \text { constant } \backslash\right.\right. \tag{5}\\
& \forall D^{2} W\left(Q_{E}\right)(y h y h)>K m \backslash b \quad \text { VfceW }{ }^{1}-{ }^{2} ; \tag{y}\\
& \forall \xi, \eta \in \mathbf{B}^{n}, \quad \sum_{\alpha, \beta, i, j} \frac{\partial^{2} W\left(Q_{E}\right)}{\partial F_{\alpha}^{i} \partial F_{B}^{i}} \xi_{i} \xi_{j} \eta_{\alpha} \eta_{\beta} \geq \beta|\xi|^{2}|\eta|^{2} .
\end{align*}
$$

Then all the equilibria $(0, Q E)$ are asymptotically stable under perturbations in $X \%, p>n$, ool/2.

Remark. Since ool/2 the space $X \%$ is embedded in $\left(W^{l *}\right)^{2}$. Because $p>n$ the allowed perturbations are continuous, and they do not move discontinuities of Q_{E}. The condition (5) means that in a neighborhood of the minima the stored energy function has the same shape. Since Q_{E} has only two values the assumptions (y) and (e) pertain only to the properties of W at the local minima F and G.

Proof. As in the proof of Theorem 5.4 we may subtract from (3.1) the equations of steady states to obtain

$$
\begin{align*}
& \delta P_{1}=\pi_{2}\left[D \sigma\left(P_{0}+Q_{0}\right)(\delta P+\delta Q)\right]+\nabla \operatorname{div} \delta P+g(\delta P+\delta Q) \tag{5.13}\\
& \delta Q_{1}=-\pi_{2}\left[D \sigma\left(P_{0}+Q_{0}\right)(\delta P+\delta Q)\right]-g(\delta P+\delta Q)
\end{align*}
$$

where

$$
g(h)=\pi_{2}\left[\sigma\left(Q_{0}+h\right)-\sigma\left(Q_{0}\right)-D \sigma\left(Q_{0}\right)(h)\right] .
$$

We observe first that due to assumption (6) and the fact that Q_{o} has only two values, the
composition $D G\left(Q_{0}\right)$ is smooth. Moreover, if $\|\mathrm{A}\| \mathrm{w}^{1 *}$ is so small that PIIL-<6 then the function $g(h)$ is in $W^{l t P}$ and Lemma 5.5 is applicable. Thus the above system considered for $\mathrm{z}=<5 / 5 \mathrm{j} 2$) with the initial data in $X \%$ has local in time solutions by Theorem 3.3.3 in [20], and

$$
\begin{gathered}
\delta P \in C\left([0, T], Y_{p}^{\alpha}\right) \cap C^{1}\left((0, T], \pi_{p} L^{p}\right) \cap C\left((0, T], \pi_{p} W^{2 \rho}\right) \\
\delta Q \in C^{1}\left([0, T], \pi_{p} W^{1, p}\right)
\end{gathered}
$$

We want to study stability of zero solution to (5.13). By Lemma 5.5 the linearized system is

$$
z_{i}+(A-S) z=0 .
$$

We may proceed as in the proof of Theorem 5.4 to establish that

$$
\operatorname{sp}(\mathrm{A}-S)<z\{\operatorname{ReXtc}>0\} .
$$

We may do so since in the proof of this fact we only used smoothness of $\operatorname{Do}\left(Q_{0}\right)$, (8) and (e). Hence we conclude existence of solutions to (5.13) for all times and existence of positive constants M and p such that

$$
\text { IK8P }\left(0,52\left(t M a Z M e^{-+\beta} \|\left(\delta P(0), \delta Q(0) \|_{a}\right.\right.\right.
$$

provided $\|(\mathrm{SP}(0), 52(0)) \mathrm{H}_{\mathrm{a}}$ is sufficiently small.

Let us define

$$
\mathrm{F}=5 \mathrm{P}, \quad Q=\delta Q+Q_{0}
$$

If we add to (5.13) the equation of steady state

$$
0=\pi_{2} \sigma\left(Q_{0}\right)
$$

$$
\left(Q_{0}\right)_{i}=-\pi_{2} \sigma\left(Q_{0}\right)
$$

then taking into account the definition of g we obtain

$$
\delta P_{r}=\pi_{2} \sigma\left(\delta P+\delta Q+Q_{0}\right)+\nabla \mathrm{div} \delta P
$$

$$
\left(\delta Q+Q_{0}\right)_{t}=-\pi_{2} \sigma\left(\delta P+\delta Q+Q_{0}\right),
$$

in other words, P, Q as defined above, satisfy (3.1).

Let us assume that at the initial time the data for (3.1) are (SP,62+Qo)(O) where $(6 P, 62)(0) \mathrm{eX} £$. Theorem 3.1 guarantees existence of solution $\left(P_{9} Q\right)$ to (3.1) far all times. Due to uniqueness of solutions of (3.1) we conclude that (SP.SgM^Q-Go) is in $X \%$. Thus we have showed that if initially a small perturbation belongs to $X \%$ then it stays in this space for positive times.

Since we have already proved that (5P.52) decays exponentially to zero in $\mathrm{X} £$ we have completed the proof of die Theorem. •

The result of Theorem 5.7 may be readily used to prove stability of q_{E} belonging to /?.

Corollary 5.8 Under the assumptions of Theorem 5.4 die equilibria q_{E} of (2.1) are exponentially asymptotically stable. Precisely, if the perturbed state $(\mathrm{K}(\mathrm{X}, 0), \mathrm{U},(\mathrm{X}, 0))$ is such that $\left(u(x, 0\}-q_{E}, u_{t}\left(x_{t} 0\right)\right)$ is small in $W^{\wedge} x W^{1 *} p>n$ then

$$
\left\|u-q_{E}\right\|_{W^{2}} \leq e^{-\theta t}
$$

and

$H u_{1} \mathrm{ll}_{2}=\mathrm{SC}^{-*}$

for some positive C and G.

Proof. Proof is entirely analogous to the proof of Corollary 5.6. •

Acknowledgement This paper is based on the author's Ph.D. thesis [35] written at New York University under the supervision of Prof. Robot V. Kohn. I wish to thank him for his advice and constant support along the way.

Appendix

We briefly recall the results of Fujiwara and Morimoto on Helmholtz deccxnposition [14]. They showed existence of the decomposition for vector fields in L^{p}. In fact, their ultimate goal is to construct a continuous map $P_{p} \pm^{p}-+L^{p}{ }_{\$} \backslash p<{ }^{*} \mathbb{C}$, the projection onto the closure of the set of smooth divergence free vector fields vanishing on the boundary of a region. However, it follows from section 3 in [14] that if we set

$$
\pi_{P}=I-P_{P}
$$

we obtain the desired projection. n_{p} is a continuous projection with the following properties, if v is in L^{p} then $n_{p} v=V f a$ for some $\$ e W^{l t P}$. The \downarrow is the sum $f a+f a$. Here $f a$ is the solution to

$$
\begin{equation*}
A 4>i=d i v v, \text { in } a, \quad \$=0 \text { on } 3 Q, \tag{A.1}
\end{equation*}
$$

moreover, the estimate
IWhllw^^CIML/
holds. And $f a$ the unique solution to

$$
A f a=4) \text { in } \mathrm{Q}, \frac{(\pi \mathrm{LH}}{\partial \eta}=\mathrm{v}^{*} / \mathrm{i} \frac{{ }^{\wedge} \mathrm{r}^{\prime} 1}{\partial n} \text { at } X I
$$

satisfying the estimate

It follows from the construction (see [14]) that

$$
(\mathrm{v}-\mathrm{JCpV}) 7 \mathrm{i}=0 \text { on } d C l \text { and } \operatorname{div}\left(y-n_{p} v y=O \text { in } C l .\right.
$$

We also have

$$
L^{P}=\pi_{p} L^{P} \Theta\left(I-\pi_{p}\right) L^{P},
$$

and

$$
\pi_{p}^{\prime}=\pi_{q}
$$

where $1 / p+1 / q=1$. If $p=2$ then π_{2} is an orthogonal projection and $\pi_{2} L^{2}$ is orthogonal to $\left(I-\pi_{2}\right) L^{2}$.

We define π^{D} in the following way, for $v \in L^{2}$ we set

$$
\pi^{D} v=\nabla \phi_{1}
$$

where ϕ_{1} is a unique solution of (A.1). The estimate (A.2) establishes continuity of π^{D}. It is a matter of easy integration by parts to show that π^{D} is an orthogonal projection.

We may also define the projection for tensor fields. Suppose we are given a tensor field $V \in L^{P}\left(\Omega ; M^{n \times n}\right)$

$$
V=\left[\begin{array}{c}
v_{1} \\
\cdot \\
v_{n}
\end{array}\right]
$$

where v_{j} are the rows of V, then we set

$$
\pi_{p} V=\nabla\left(\phi_{1}, \cdots, \phi_{n}\right)
$$

REFERENCES

1. E.Acerbi, N.Fusco, Semicontinuity problems in the calculus of variations, Arch. Rational Mech. Anal. 86 (1984), 125-145.
2. S.Agmon, A.Douglis, L.Nirenberg, Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions II, Comm. Pure Appl. Math. 17 (1964) 35-92.
3. G.Andrews, On the existence of solutions to the equation $u_{u t}=u_{x x t}+\sigma\left(u_{x}\right)_{x}$, J.Differential Equations. 35 (1980), 200-232.
4. G.Andrews, J.M.Ball Asymptotic behaviour and changes of phase in onedimensional nonlinear viscoelasticity, J. of Differential Equations 44 (1982), 316341.

REFERENCES

5. J.M.Ball, RJames, Fine phase mixture as minimizers of energy, Arch. Rational Mech.Anal. 100(1987), 13-52.
6. J.MBall, J£.Marsden, Quasiconvexity at the boundary, positivity of the second variation and elastic stability, Arch, Rational MechAnal. 86 (1984), 251-277.
7. GJl.Barsch, B.Horovitz, J.AJ£rumhansl, Dynamics of twin boundaries in martensites, Phys. Rev. Lett. 100 (1987), 1251-1254.
8. J. Clements, Existence theorems for a quasi-linear evolution equation, SIAM J. ApplMath. 26 (1974), 745-752.
9. CMDafermos, The mixed initial-boundary value problem for the equations of nonlinear one-dimensional viscoelasticity, J Differential Equations 6 (1969), 7186.
10. RDiPerna Convergence of approximate solutions to conservation laws, Arch. Rational MechAnal 82 (1983), 27-70.
11. H. Engler, Strong solutions for strongly damped quasilinear wave equations, Contemporary Math., 64 (1987), 219-237.
12. L.CJEvans, R.F.Gariepy, Some remarks on quasiconvexity and strong convergence, Proc. Roy. Soc. Edinburgh Sect. A 106 (1987) 53-61.
13. FJalk, Ginzburg-Landau theory of static domain walls in shape-memory alloys, $Z^{\wedge} \mathbf{y} \mathbf{j} 51$ (1983), 30-55.
14. D Jujiwara, JLMorimoto, An $L_{\mathbf{r}}$-theorem of the Helmholtz decomposition of vector fields, JJac. Sci. Univ. Tokyo, Sec. I, 24 (1977) 685-700.
15. DJujiwara, On the asymptotic behavior of the Green operators for elliptic boundary problems and the pure imaginary powers of some second order operators, JMathSoc. Japan, 21 (1969), 481-522.
16. A.Friedman, Partial Differential Equations, Holt, New York 1969.
17. A. Friedman, J.Necas, Systems of nonlinear wave equations with nonlinear viscosity Pacific J. of Math. 135, (1988), 30-55.
18. J.M.Greenberg, On the existence, uniqueness and stability of the equation $\rho_{0} X_{\mathfrak{t}}=$ $\mathrm{E}\left(\mathrm{X}_{\mathrm{x}}\right) \mathrm{X}_{\mathrm{xx}}+\lambda \mathrm{X}_{\mathrm{xxt}}{ }^{\text {J.Math.Anal. Appl. } 25 \text { (1969), 575-591. } . ~ . ~}$
19. J.M.Greenberg, R.C.MacCamy, V.Mizel, On the existence, uniqueness and stability of the equation $\sigma^{\prime}\left(u_{x}\right) u_{x x}+\lambda u_{x x t}=\rho_{0} u_{u t}$, J.Math.Mech., 17, (1968), 707-728.
20. D.Henry, Geometric theory of semilinear parabolic equations, Springer, Berlin 1981.
21. L. Hormander, The analysis of linear partial operators, vol.3, Springer, Berlin, 1985.
22. T. Hughes, T. Kato, J. Marsden, Well-posed quasi-linear hyperbolic systems with applications to nonlinear elastodynamics and general relativity, Arch. Rational Mech. Anal. 63 (1977), 273-304.
23. T.Kato, Perturbation Theory for Linear Operators, Springer, New York, 1966.
24. M.A.Krasnoselskij et al., Integral Operators in Spaces of Summable Functions, Noordhoff, Leyden, 1976.
25. K.Kutuler, D.Hicks, Initial-boundary value problems for the equation $\mathbf{u}_{\mathfrak{u}}=\left(\sigma\left(\mathrm{u}_{\mathrm{x}}\right)+\alpha\left(\mathrm{u}_{\mathrm{x}}\right) \mathrm{u}_{\mathrm{xt}}\right)_{\mathrm{x}}+\mathrm{f}$, Quart.Appl.Math. 46 (1988), 393-407.
26. JILLions, E.Magenes, Non-Homogeneous Boundary Value Problems and Applications vol. I, Springer, Berlin, 1972.
27. J.H.Maddocks, G.P.Parry, A model for twinning, J. of Elasticity, 16 (1986) 113135.
28. M.Miklavcić, Stability for semilinear parabolic equations with noninvertible linear operator, Pacific J. of Math, 118
29. CB.Morrey, Jr., Quasiconvexity and the lower semicontinuity of multiple integrals, Pacific J. of Math. 2 (1952), 25-35.
30. MNiezgMka, J.Sprekels, Existence of solutions for a mathematical model of structural phase transitions in shape memory alloys, Math. Methods Appl. ScL, 10 (1988), 197-223.
31. JLPecher, On global regular solution of third order partial differential equations, JMathAnalAppl., 73 (1980) 278-309.
32. RPego, Phase transitions in one-dimensional nonlinear viscoelasticity: admissibility and stability, Arch. Rational MechAnal. 97 (1987), 353-394.
33. M Potier-Ferry, On the Mathematical foundations of elastic stability, I. Arch. Rational Mech. Anal., 78 (1982), 55-72.
34. M. Renardy, WJ. Hrusa, J.A. Nohel, Mathematical Problems in Viscoelasticity, Longman, New York, 1987.
35. P. Rybka, Thesis, New York University, New York, 1990.
36. T. Valent, Boundary Value Problems of Finite Elasticity, Springer, New York, 1988.
37. WPJZiemer, Weakly Differendable Functions, Springer, New York, 1989.

REPORT DOCUMENTATION PAGE

