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1. Introduction.
In this paper we study a model equation of viscoelasticity
j*a=divG(VM)+Au,  in Q (1.1

in a multidimensional setting. The displacement u is vector valued, thus Vu is a matrix.

We impose the 'no-traction' boundary conditions
. .du
a(Vu)7|+||E;-=0, on 3ft

and initid conditions

u{x, 0)=uo(x), ki (x, 0)=u {x)
We assume that there exists a function WJtf ***->IL such that DW(£)=a(£). For the sake
of modeling phase transitions we do NOT assume that Wis elliptic, Le. the condition

n PWF)
Vi nek”, u%‘,u 3FLaF} §&Mamp20 0B)
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may be violated. We prove arather general existence result assuming only a growth con-
dition on W: werequire merely that a be globally lipschitz-continuous. We show that for
arbitrary initial data, u, and div (of Vu”Vtt,) tend to zero in appropriate spaces ast goes
to infinity. Finally, we prove dynamical stability for certain gationary solutions, includ-

ing a class of equilibria with discontinuous gradient.

We also remark on existence of solutions to (1.1) with Dirichlet boundary condi-

tions

K=0 on dCl.

To set our analysis in the proper context we briefly review the modeling of phase

trandtion in solids based on minimization of the energy /

Iw)= lW(Vu)dx (1.2)

(see for ingtance Maddocks and Parry [27], Ball and James [5]). |f the material occursin
several phases then W has several local minima. (If W happens to be frame indifferent
then they must be orbits of SO (n) ingead of being isolated points). Such Ws typically
are not eliptic. Therefore the functional / is not sequentially weakly .Iower semicontinu-
ous (swlsc). This fact forces one to study minimizing sequences in place of minimizers,
since the latter may not exist. The lack of dlipticity (E) may lead to development of fine
oscillation in the gradients of minimizing sequences, which prevents the minimizing

sequences from converging strongly in WP,

The variational approach just described is entirely static. In order to sudy dynam-

ics we could try to solve the equations of elagticity
¥ =divt (1.3)

where x is the stress tensor T=0(VK)=DW(VH). We would quickly encounter an obsta-
cle, however, which is the lack of dlipticity of W. (If Wwere dliptic then (13) would be

hyperbolic and if n > 1 we would have short time existence in W2+~ ;*11) p>|+n/2; this
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result is due to Hughes, Kato and Marsden [22], For n=| a global existence result has

been established by DiPerna [10].)

When Wis nat dliptic, a possible method of achieving well-posedness is adding to

the stress tensor a higher order regularizing term corresponding to viscosity:
T =1HiVu,
Hence (1.3) becomes the equation of viscoelagticity
j*r=div a(Vn) + \x&u;. (1.9

In this paper we adopt the 'no-traction' boundary condition

du,
T71=0(VK)7H+1-*—=0,
on
and initial conditions
K (JC,0>=UO(X) [1A0rJCX).
After scaling of time we may st |i=l. We note that more realistic viscous terms should

be non-linear (see [25], [33], [34]), however we will gick to the modd equation (1.4).
One may also consgder other regularizing terms, e.g. corresponding to capillarity ([7],
[13]). A smilar regularizing result may be achieved by introducing thermal effects, as for
ingtance in the work of Niezg6dka, Sprekels [30]. Of course, different regularizations

may lead to different dynamics.

No matter what the approach (viscoelagticity, thermodadticity, etc.), the central
gquestionsare
(1) Existence of solutions for all times;
(1)) Stqbility of equilibria; and
(HI) Long time behavior

(a) doall solutions converge grongly in time?

(b) doestheenergy/(u (f)) decay to die minimum energy?
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The need for global in time existence is clear without it the question of stability and long
time behavior makes no sense. One particularly desires existence of dynamics in
V'"2(QiE"), the space of finite energy for fee functional /. Currently available results of
thiskind usually require dlipticity of W (cf. [17]).

As for stability, the Energy Criterion is classical. It calls an equilibrium stable if
the second variation of the energy / is positive. However, the judtification is difficult
Only in 1982 did Potier-Ferry [33] prove that for W?* equilibria of multidimensional
viscoelasticity the criterion implies stability in WACQ;!™), p>n (see also references in
[33] for earlier results).

Apart from justifying the Energy Criterion we are interested in studying stability of
local minimizers of/. The notion of local minimizer depends significantly on the under-
lying metric. That dependence is especially important in the case of non-éliptic W. It is

not clear which type of local minimizer will be dynamically stable.

Our questions concerning behavior for large times are most interesting when / is
‘not swisc. In this case Ball and James [5] showed that / may not achieve its minimum, at
least for some boundary conditions. On the other hand total energy decreases along tra-
jectories. It is natura then to ask whether or not such highly oscillatory sequences are
realized by dynamics.

We now briefly sketch the known results. The one<iimensional case has been stu-
died extensively. Existence of classical solutions and their asymptotic properties were
first studied in papers by Dafermos [9], Greenberg, MacCamy, Mizel [19], and Green-
berg [18]. Andrews [3], and Andrews and Ball [4] studied weak solutions. Pego [32]
gave die most comprehensive answers to questions |1 and HI. He considered dightly dif-

ferent b®ndwy conditions. his problem is

%=(a(KxH")x  «(0r)=0, (O(ugrig)(1,0=0.

Hisresults may be summarized as follows.
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. A deady date ug is stable if (fiurytc >0. The stable states may contain a mixture
of phases; they need not be strong minimizers of energy (in the W'~-topology).
The admissible perturbations for this stability result are small in the W--
topology.

. For any initial data not exceeding some value of the total energy (kinetic + elastic),

the solution conver ges strongly to an equilibrium.

Many authors (including [8], [11], [17], [31]) have studied the problem of
existence and regularity of weak solutions when the number of dimensions exceeds one.
Local in time existence is shown without additional assumptions on a. But in order to
prove global in time existence the authors need some extra conditions on a or W, typi-
cally they usedlipticity of W (cf. [33], [17]).

Asfor the issue of sability, Potier-Ferry [33] proves exponential asymptotic stabil-
ity in WACI'X*)* p>n for equilibria such that the second variation of the energy func-
tional S% is positive. His stability result includes the assertion of long-time existence for
initial states close to the equilibrium. In fact his existence result uses the élipticity of W.

He studies a quasi-linear viscoelasticity equation with Dirichlet boundary conditions.

We now describe briefly the method of Pego since we will generalize it to deal
with the n-dimensonal case. Pego employed a clever change of variables. (Earlier
Andrews [3] also used this trandformation, but his use was limited.) The new variables

are
p(x.r)=[u,o.r)a5r q(x.0) = 5, (x,0)-p (x.1).

Using these variables Pego reduced system (1.5) to the following

P=Pa+O(p+q)

g=0(p+9)-
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Then he applied semigroup theory exposed in [20] to the new system (cf.[32]).

Our work generalizes Andrews-Pego's transformation to many dimensions. We

divP=u, Q=Vu-P

where we require P and Q to be gradients, and F-/i=O at the boundary. In the new vari-

ables the equation of viscoelasticity (1.4) becomes
P=Vdiv P+ny,o(P+() (1.6")
Q=-m20(P +Q) (1.6")

with the boundary condition P-n=0. Here, Ty denotes the gradient part of v in the

Helmholtz decomposition. In section 2 we make these assertions rigorous.

Section 3 is devoted to proving existence of solutions of (1.6) (and therefore (1.1)).
To achieve this we show that semigroup theory is applicable to system (1.6). The solution
we condruct is unique and defined for all times. We need only the condition that a be
globally Lipschitz-continuous. Existence of a unique, global in time solution of (1.1) fol-

lows, since we can recover u by the formula

T
u(Ty:%<ti\PQ)dt+uo.

If the initial data satisfy use W**(C1X% UieL%(CI\R*), then our solution u is in the fol-

lowing spaces

ueC([0,00)W-%(CIX*)),  ji,€C([0,00)L%(Q*'Y)),  *,€ CP((0,~),L2(ft;X")), p>O0.

We point out that for our existence result W is permitted to be frame indifferent,
but it is not required. Unfortunately, the subsequent stability analysis does not permit

frame indifferent W.

We have constructed dynamics in the space W"%&X™) which is precisdly the

space of finite energy. It is natural to sudy stability in this space. One might expect that
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proper local minimizers are dynamically stable. Indeed, thisis the case for W*s permit-
ting condtruction of potential wells, e.g. for W dightly better than quasiconvex (Theorem
5.1). Our proof exploits ideas of Ball and Marsden [€\. We note that our existence result

provides an essential ingredient for their consider ations.

We also show exponential asymptotic stability.of smooth equilibria for which
merely the second variation of the energy 8%/ is positive in W™ In addition, W
evaluated at the equilibrium mug be elliptic (Theorem 52). We change the underlying
function spaces and we now consider perturbations in W2*; p>n. We thus show aresult

corresponding to that of Potier-Ferry for Dirichlet boundary conditions.

The change of admissible perturbations is not just of technical nature, asymptotic
sability is false in W2(&X") for equilibria merdy in W3(&JL™). To this end, for a
special choice of W consistent with the lack of dlipticity we congtruct a family
R={ge}dW"HCI'X*) of equilibria with disc;ontinuous gradient For each member of the
family the second variation 67/ is positive on W*?, but asymptotic stability is false. The
reason is that in any W*-neighborhood of any member g of the family there is another
qg belonging to R\ in particular, perturbations belonging to W2 may move the discon-
tinuity of equilibria.

For that same family we nevertheess prove a stability result, under some further
assumptions on W and admitting only W perturbations wherep >n (Theorem 5.7). The
perturbations have continuous gradients, hence they do not move discontinuities in V(.
A possible physical interpretation is that at least some equilibria containing several
phases are dynamically stable under perturbations not moving the interface separating the

phases.

For the long time behavior for arbitrary initial data, we are only able to prove
results weaker than those presently known in the one-dimensional case. We show (sec-

tion”

%0 in W* and div (cAVaHVu,)-" in L?
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The question of strong convergence of u(f) in W2 as t -0 remains open. The decay of
u, in W'2(Q;R™) (which is equivalent to decay of P in W22(Q;R ")) supports the idea

that asymptotically the dynamics is governed by the equation

0=m0(Q). a7

If n=1 then the projection =, is equal to identity and the problem (1.7) reduces to an ordi-
nary differential equation (see [32]). If n>1 then the projection is a nonlocal operator,
making the analysis of (1.7) more difficult.

This paper is concerned mainly with the existence and stability of solution to the
viscoelasticity equation with Neumann boundary condition. However, it is possible to
extend the existence results for other boundary conditions like homogeneous Dirichlet

boundary data
u=0 on 9Q (1.8)

Only minor changes in proof are required to accommodate the new boundary condition.

‘We will make remark on those modifications at the end of sections 2, 3, 4.

We close this introduction with a brief list of problems that remain open, but
which we hope our methods might be able to address with further work. We conjecture
that for quasiconvex W (or at least under the slightly stronger assumption of Theorem
3.5) the strong limit of u(r) always exists in W!2(Q;R™*). We base this conjecture on
the fact that quasiconvexity dampens oscillations in minimizing sequences (cf. [12]). We
hope that our stability analysis may be extended to frame indifferent W’s. We think it
should be possible to prove analogous existence and stability results for other boundary
conditions. The key step in this direction would be a construction of the projection &
appropriate for the given problem.

In order to simplify the notation we write L?, (W', etc) instead of LP(Q;R") or
LP(Q;R™*). There is little danger of confusion since always in this paper u is vector

valued and P, Q have values in R,
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2. The description of the problem.

We study the system of nonlinear viscoelasticity

u=div 6(Vu) + Ay, Q.1
o(Vu)-n+du,/on=0 on oQ 2.1
u(x,0=uo(x) u(x,0)=u;(x) @.1)

with mild assumptions on 6. We assume that the reference domain Q is a bounded, con-
nected region in R” with smooth boundary. We may assume without loss of generality

that

Luo(X)dx = iul(x)dx =0. (&)

It is so because u'=u+ar+b is a solution to (2.1°-2.1"") provided u solves the problem.
We thus may choose a, b to make (A) hold. Moreover, the space average of u,(x,?) is

constant in time because
% updx= i{div o(Vu)+Au)dx= idiv (O(Vu)+Viu,)dx= ‘L(O(Vu)+Vu,)-ndS.

The last integral vanishes because of the boundary conditions (2.1°"). We thus showed

Proposition 2.1 If (A) holds then

iu,(x,t)dx:O Vi>0 O

For the purpose of solving system (2.1) we generalize the change of variables due

to Andrews [3] and Pego [32]. We set
div P=u, and Q=Vu-P .2

where P and Q are nxn—matrices. These definitions will be correct only if we impose
some additional restriction on P and Q. We therefore require P, Q be gradients and P

satisfy the boundary condition

Pn=0 at oQ. (2.3)



- 10- Section 2

When we work with LP spaces, the condition that P, Q are gradients means that we actu-
ally work with a closed subspace of L” - the image of a projection n,. The projection is
closely related to the Helmholtz decomposition of vector fields: any smooth vector field
may be represented as the sum of a gradient and a divergence-free field. For construction
of Tip, which is well-known (see [14]) and its properties we refer the interested reader to

the Appendix.

Now we are in position to construct the new variables Py and Q, precisely we show

Theorem 22. Assume that u is aweak solution to (2.1) such that
%, VaeC(0,T1,L? ueC([0.T]W™)
R 0(Vu)+Vu,e Wi
and the mean value of uy is zero. Then there exists a unique pair (P,Q) such that

PeC(0,TLW'?), P-n=0

QeC(0,T1.LY
and (/\ Q) isaweak solution of
P=m,0(P+QH+VdivP (2.4)
Q=m,0(P +Q). 24’

Thus the transformation reduces the system (2.1) a degenerate parabolic system. The
advantage of the new system is we may now apply methods of semigroup theory to con-
struct solutions. After we solve (2.4) we will recover solutions to (2.1). Before we prove

the Theorem we will show aLemmawe will rely OIL

Lemma 23 The map

div : n2L2nW“’n{Pe W% P-n=0 on dCl} -» L°n{feL% f/=0/
a

is an isomorphism of Banach spaces.
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Proof. Obvioudy div is continuous. It is also one-to-one and onto, for die equation
div P=u

for P=V$is equivalent to
Ad=u ﬂ=0
’ on

The standard L aplace equation theory assures existence of solutions up to a constant (cf.
[26]), thus F=V<() is defined uniquely. Now, the Open Mapping Theorem yields that

div ~' existsand it is continuous, in particular there isa positive constant y such that
TdIPIku’\IIdivPIt"_‘I'IIPI"u Q (25)

Proof of Theorem 22 Since the average of u, is always zero, it follows from the Lemma
that P is well defined and it is a continuous function of time into W, Thus from (2.2)

we obtain that Q is continuousinto L ?. We now subgtitute P and Q into (2.1)
divP, = div (o{P +O+VdivP).
We check that the normal component of x=o(P +Q)+Vdiv P at the boundary is zero,
Ta={o(Va Vi) n=0.
We see that
E=P—

is divergence-free and its normal component at the boundary of Q. is zero, it thus follows

from the very definition of n, (see the Appendix) that
%, Z=0.
Since %, P=P, %, Vdiv P=V&VP we obtain
P,=*2CF(P-H2)+VdivP. (2.6')

The equation of evolution of Q we obtain in a smpler way: by differentiation of the

second eguation in (2.2)
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Qr Xu-Pr-wP+Q) (2.6")
Remark. If wewant to consder the homogeneous Dirichlet boundary conditions
u=0 on 3Q 2.7)
we may proceed in a similar fashion, defining new variables P°\ and Q°
divPru, QP=Vu-F°. (2.8)

In order to make the choice of P° and QP unique, we require that they be gradients of
functions vanishing at the boundary. In other words we are looking for P° and Q° in

TPL%. By TP we denote an orthogonal projection defined as follows
AVt $=0 on an

and ¢ issuch that v-Tcrv i s divergence-free. Thus we have another form of Helmholtz
decomposition. It turns out that TU isan orthogonal projection. Properties of T\P are sum-

marized in the Appendix.

We may repeat the derivation of equations (2.6'), (2.6") to obtain
PP =nPo(PP+QP)+VdivPPD. (2.9)
0° =n’o(PP+Q")

di\P’=G at dft (2.10)

3. An Existence Result.

In the present section we prove existence and uniqueness of grong solutions to the sys-

tem
P, =m0(P+QHVdivP 3.1

0, =-m,0(P+0) (3.1")



Exigence -13 -

P@=Py G(OH20 P-n=0 andCl (3.1")

provided W grows quadratically at infinity, and <r is globally Lipschitz continuous (recall
that 0=DW). In order to achieve this goal we will apply results of Henry [20] for abstract
evolution equations with the modified definition of solution due to Miklavtit [28]. The

above equation may berewritten as

2t Az =f(2) (3.2
where z=(PQ)
Vdiv € |
A= N a (3.3)
and
_ { m0(P+Q)
f@)= [_MG(P +Q}. (34)

At the end of this section we shall show that P and Q determine solutions to the original

equation (2.1).

We use several different norms in this papa. We always make clear which one we
mean by adding an appropriate subscript We note that a subscript being number from the
unit interval denotes the norm on the fractional power of the given Banach space X, we

also usethe convention [ilo=ll°lbr»
We gtate the main result of this section

Theorem 3.1. Let us suppose a is gjobally Lipschitz continuous. We assume that
QoEifeL? and PoenJW™ ™& P, is such that P;-n=0 at the boundary of Q. Then for

any T>0thereexistsa unique (strong) solution of (3.1) defined for OEr<T with
PeC(10,T).m W' HNCH(O,T1.mLHNC (0.T).m W >?)
and P-n=0 at XI for t>0, and

0ecCHI0,T1.xL2).
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In order to establish existence of solutions to the abgract equation (3.2) in a Banach
space X we need to know that A is sectorial on X and it is locally lipschitz-continuous on

X2 into X, for some value of a, O<a<|. We introducefir st some notation, we shall write

y,=V,", Zp ftswit: ng} K p<oo0,

and
X=YoxYo.

For our existence result it is sufficient to establish that A given by (3.3) is sectorial on X
or equivalently, B =-Vdiv is sectorial on Y,. But in the sequel we shall need a more gen-
eral result in our gtability analysis of equilibria of (2.1). Thus we shall show that B is sec-

torial on Yps \<p <» with the domain
D (B)X={V¢: b W, 3¢/8n=0}.
We dart with the observation that the map
V:Z, 5%, ¢V
is an isomorphism of Banach spaces. Obvioudy V is onto Yy, it is also one-to-one
because all the elements of 7y have zero average. This map is clearly continuous, since
HAMIL'AIMIWS- On the other hand, if 4 has zero average then Poincar6's inequality
yields
el <c VIl .

It follows that the inverse of V is continuous.

Let us define

D (Ap)={0c W3%: 2p/an=0 4 30},

then for fyeD (A#) we have

BVA=-Vdiv Vé=VAp.
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ThusB =-VA"V~, because V isan isomor phism. We also observe that

D(B)YVD(4y).

In this way we reduce the question pertaining to B on Y, to a problem concerning the
Laplace operator on Zp. In particular the resolvent of B may be expressed in terms of the

L aplace operator
@B-A)1=V (a2 VL

It isnow obvious that in order to show that B is sectorial it is enough to prove that
-Atf is sectorial on Z,. In order to accomplish this we will use the fact that the generator
of a analytic semigroup is necessarily sectorial (cf [16], [20]). We are going to show that
-A# generates an analytic semigroup on Zp. It is well known that -Ay with the homo-

geneous Neumann condition is sectorial on LP (see [16]), Le. the etimate
IK=Aa—2) " IC 7 A (3.5)
holds for X belonging to a sector
SA.©=AeC: @ |arg(X-A)}<KfcA}

where ©e (0°c/2), and A<O; and thus -A# generates an analytic semigroup on LP. We
rather need the semigroup on L*/l where E=kerA#. It is easy to see that Z//R is
invariant under the resolvent of -A#, thus the space Z//X isinvariant for the semigroup

generated by -A#.

Since B generates an analytic semigroup on L71JL it also generates an analytic
semigroup cm (1*7* )™ ([16], [20]). To determine (Z//* )*'? we shall use the follow-

ing fact.
Lemma 3-2 We assume that A is sectorial on X with domain D {A\ K=ketA. Then

XV2IK=(X/K)"2.
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Proof. The left-hand-gde is well defined; we need to show that the right-hand-side is

well defined and both sides are equal.

We observe that if SX-*X islinear with domain D (5), and SKcK then the map

[S1X/L—X/L
[SIXMSX]

is well-defined and the domain of [S] is [D(S)] where we denote by [x] the class of

abdraction of x. If in addition Sisbounded sois[5] and
\[SJ\<\S\
It iseasy to verify that if Sisinvertible and S~'KczK then [S] isalso invertible and
577 =157

Let us set Ai=A+al where a is such that o(A)>0. We observe that Aj' K cX,

becauseif x€AT then
AAT x=A AT x—aAT x=AT A x—aA 2X=A? (A j x—~ax)=AT Ax=0
We conclude that [A] issectorial on XIK.

Similarly, we will show that A["*>KcKs, consequently [A}?] is well defined. For

xeJTwehave
AAI2XK A+tfOA} 2x-A 1 A =A12A 1 x—aA] 2x =412 Ax=0.

Finally, we haveto check that [Ai]Y?=[Al'?]. But it is enough to prove
[AI1’2]=[A1]"”2.

Thisis clear from the definition of A7Y? since

Apr=SE (302044,

Continuity of the projection x->[x] implies that we may interchange projection and

Riemann integration.
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By definition X™ is D (A{'?) equipped with the graph norm, we conclude that the
Lemma holds.
Taking into account that ker A#=fc we obtain from Lemma 32 that
(me )l."z = (Lp)lu"z‘(l-

The fact that the space of Bessel potentials L'+(Z") is equal to W™(Jt"), (see [20],

[37]) and Theorem 6.7 in [15] enables usto conclude
LAQR™)? = WP (@QR"),

Summarizing, we proved

Proposition 33 The operator B is sectorial on Y, for 1<p <. »

Having established that B is sectorial on Y, for \<p <<, we turn our attention to

the special casep=2. We want to show that
Yi"2=u2W1‘2.
but first we need to prove positivity of B on Y.

Proposition 3.4 B is positive definite on n*L?- there is a positive constant ¢ such that for

all Pe D (B)
(BPJ>)*\P\\b

wemay takec” ,whereyisasin Lemma 2.3.

Proof. Let us compute (BP,P)

(BP,P) = - £(Vdiv/>,2)=](divF, div/>>-J (cttvP.P-nHIdivPIli* (3.6)
DO &

where by the symbol (**) we dencte the usual inner product in K" and the inner product

in MR the space of nx/i matrices defined by
F.G)=xFTG=3 f;g;.
W

We apply now theresult of Lemma 2.3, thisyields
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BP.PAIPI}: O

We will also need in the future equivalence of various norms, first we show
Lemma 3.5. There is a constant x>0, such that for all P in D (B) we have
X ||P lhwaa SIBP | 2 <P [l
Proof. Let us set
V=D (B)
Obviously B is continuous on V into L 2. Moreover, since by Proposition 3.4
IBx|i22Mixl:  VxeV
the quantity
1x | y=liBx||.2

defines a norm on V. The space V equipped with the norm |-|y is a Banach space,

because B is closed. The identity mapping

I1d:(V, lw2) =V, I-1y)

is continuous, thus it follows from the Open Mapping Theorem that the inverse of Id is

continuous too. The Lemma follows. O

We are now in position to determine the space Y3'2. Let us take a P belonging to

D (B), then
WP} .=(B"*P,B2P).

We showed that B is positive and bounded below, hence it is self-adjoint, so is B'/2. We

obtain by (3.6)
IWPI13,2=(BP,P)=||div P||}2. (3.7

By Lemma 3.5 we obtain that the norms ||']l;,» and |I/ly12 are equivalent. We may con-

clude that
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it =mw'2,
We may also determine X''?, since D (A)=D (B)xY, we conclude that X112 *Alxx o,

Now, we check that /given by (3.4) is globally lipschitz-continuous. If a is glo-

bally Lipschitz-continuous with the Lipschitz congtant L, then

llotx) -2 <L2jix-yl 2.

Since 712 islinear and bounded with norm 1 we conclude

If &>f OlosLlix-ylhs2, -
which means that /is globally Lipschitz.
We are now in position to complete the proof of Theorem 3.1

Proof of Theorem 3.1 We have already checked that the assumptions of Theorem
3.3.3in [20] are satisfied, thus we are provided with local in time existence of a unique

solution z=(P,Q) which isin the following spaces
(e C((0,T1LX*)INC (0,T1.X).
Actually a closer analysis reveals that (see remarksin the proof of Thm. 3.1 in [32])
2(NeC0,TLXNNCHO.TLX)NC ((0.T1,D (A)).

Taking components of z we obtain the satement of our Theorem. Since we assume that
ais globally Lipschitz continuous, we can obtain global existence from Corallary 3.3.5

in [20]. We haveonly to verify that
If (o<K QHizlly ) VzeX'2,
Recall that

f=[ﬂzﬂ(P+Q)J
-1 O(P+Q

we have

I oSVZ i 0P +Q)l[ 21 SVZ (P +Q )0 (03+0 (Ol »
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SNZ(LIP +Q -0l HISOM )SVZ WP +LIC I+ HIo(O)llz2)

SC (P w2 HIQ s+ 1)SC (2l 2+ 1. a

We may now recover solutions of (2.1). We also determine the smoothness of the
solutions congructed thisway. If P and Q are the solutionsto (3.1) with initial. conditions

P,and2o»weset
T
w(TEfdivP (¢ Jr+y . (3.8)
0
divF is continuous on [0,«) with valuesin | ?, thus the above integral, understood as the
Riemann integral, is well-defined. We immediately obtain that

ue C1([0,), L2).

To establish further smoothness of u and to show that u satisfies (2.1) we note that by
Theorem 3.5.2 in [20] if z is a solution to (3.2) where A is sectorial, / is locally
Lipschitz-continuous on X%, and z,eX® then the time derivative dzdt of a solution to
(3.2) is a locally H51der continuous function with values in X', on (f,,fJ for any Y <1»
and

Bdz/delh<C (1= o)* 1 (3.9)
holds for some congtant C. Thisfact enables usto prove:

Theorem 3.6. Let usassume that
W2, wel?
Then there is a unique solution u of the problem (1.V-V") such that
ueC([0,00),W™),  a,eC([0,00);L?);

the map t—>7Ca (V«()) is locally H51der continuous with values in L? and

!

£:“”2 I o(Vu (2 ds -0 ast—0". (3.10)
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In addition the unique solution given by (3.8) has the properties

div (o(Vi«}fVit,), *2Cr(ViO, V"»» * «® C*((OT], 12), V7>0
for some P>0.

Remark. We note that the solution we congtruct is almost classical if we write the equa-
tion in the conservative form. Then all the derivatives involved are at least continuous
intoL 2.

Condition (3.10) expressed in terms of variables P and Q is necessary for unique-

ness of solutionsto (3.1), see [29]).

Proof of Theorem 3.6. We show first the existence. We will show that the gradient of u
defined by (3.8) exists and VUG C ([0,00), L?). We claim that u is the limit in W? of us

where

T
R;(T)==idiVP(I) df-HJo.

(o]
Due to Theorem 3.1 the integrand is continuous with values in W2 thus us(T)eW".

Since V is a continuous operation on W2 we may write

T T
. VdivP({) dr+Vug.

VMs(7>VEdiviAr)dt+V«e=|

But Vdiv?=(?-H2); hence
V(=P +QXTHP+O)EHPo+Qo

Because of continuity of P and Q we deduce that V «s is continuous with valuesin L 2. It
isclear that u$ tendsto u in L? as 5—>0;, we will show that the conver gence is actually in
WY2. We estimate the difference u(T}-ug(T) in WY?

| 6 6 €

"""ﬂallw13=\yt@mw 12 Eupﬂ rdivP( Odf| *a<lim [{divP t If * df,

and then
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3 6
Slim C(f||divP(OIL2r ff+f1|VdivP(OlIL 3 )e

Thefirst term is small because divP is continuous with values in L2. The observation
Vdi\P=(P+Q); helps estimating the second integraL We may apply inequality (3.9) to a

solution of (3.1), we chooseyto be o<y <1/2, cc=I/2. Since ||z||o€c||z|ly we obtain
B2eloSc izl SCr! 21,

Because of our choice of Y, the function t' ™™™ is integrable over [0,1], so are the com-

ponents of zg, Le. P;, Q. Thus we obtain
h b b
1vdiv P (0)fiz2dr=(1KP +Q), (1)l de<Ce ™ 2d
n n n

=C (V1 EN(112-9<=C (V)1 12-y)
We conclude that

[
j]J;VdivP(r)dr][,_asCS“H

in other words Ms>u in W™ if y<1/2. We may now compute VVw
Vu (T=lim VuaG')=61i_mw[(P +QIDHP +)EHP+XN=(P+2XT).

Since the right-hand-side on the above equality is continuous on [0,») we infer that

ue C({0,02), Wh),

We note that
rraruyUr™MAP - H2+Vdiv  p=p,
inequality (3.9) applied to (3.1) with Y=a=I/2 yields

CP,.G,)eC>«p,r].IP*"*xL?), for some p>0. (3.11)

because X'2cWi?xL2 |timpUesthat

£,0(Vu)+Vu,e CB(O,T1,W!2), weCP((0,T),L?), B>0.
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We may now see that u satisfies (2.1)

u=div P =div (m,o6(P +Q 1+ Vdiv P)=div (o(Vu)}+Vi,).

The initial conditions are satisfied, u(x,0)=uo(x) by definition of u, and

u,(x, 0)=div/>(x, O)=ui(x) by congtruction of P. The boundary condition also holds
(O(Vur Vi yn=(n,o(Vu+-Vu,y»=P -n=(P-n)=0.

The fact that

t
Jr¥to20(ViollL* ->0 as r-~O*
Q

holds since Theorem 3.1 yields solutions of (3.1) satisfying

t
l{r-ﬂzH7c2a(/J-H2)||LZ-Ao as r°CT

The statements of smoothness of u follow from (3.11): since Qr=-niG(Su) and

Vu,=VdivF=/"1+j 2, we obtain
%2<y<yu\ Vu,ec’((orr1sL?) vr>o (p>0).
Uniqueness. Suppose we have two solutions u and w of (2.1) satisfying the conditions of

the Theorem. By Theorem 3.1 we may congtruct in a unique way Py, Qu, Pw Qws such

that
Pk' P,EC([O,H), Wl.ﬁ)'
0.. 0, C([0,), L?)

Since condition (3.10) is satisfied, both (P«,fij, (*w.Gw) are solutions of (3.1), thus by

Theorem 3.1 they coincide, and consequently u=w. D

We observe that the equation does not smooth out the initial data very much:; TC<T(vK) is

merely inL 2, though the stress T=7t,a(Vtt)+VK, issmoother (it isin W*?).
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We close this section by showing an analogue of Theorem 3.1 for Dirichlet boun-
dary conditions. Thus the presented above development does not depend on the type of
boundary conditions, provided we can congruct an appropriate projection n. Since our

goal islimited to showing existence we may givea smpler argument. We shall establish

Theorem 3.7 Let us assume that a is globally lipschitz continuous, Q%ex?L? and
PPoerPW'Z and PP, is such that divF~o” at the boundary of ft. Then for any 7>0

there exists a unique (strong) solution ef (2.9) (2.10) defined for OEf <T with
PPeC (0,712 W HACH((0,T1,x°LHC((0,T),.n" W32
such that div P°=0 at 3ft for t>0, and
G*eC([O,r]sicPL?).

Proof. The proof goes along the lines of proof of Theorem 3.1 with only minor changes.
The main step is to show that the operator fA*Vdiv in uPL? is sectorial. The domain

of B is
D(BP)=7"L2nW"2n{PeW?:diyP=C  at a5}

Since we intent to work only with p=2 we may show a smpler verson of Lemma 3.3.
As before, we use an array of inequalities analogous to that of Lemma 2.3 and Proposi-

tion 3.5, they are
¥ IP w2 Sdiv Pl sSufiPilws ¥V Pen®Linw!2
(BP,P) Z c||P|lE2  VPeD (B®)
%Pl ZWBPHLI& UPWwWY  VPeD(BP)

We kip ther proofs since the same type of argument is used.

We will prove that in fact B is self-adjoint

Proposition 3J6B® is self-adjoint
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Proof. The domain D(B®) of BP is dense in TPL2 We note first that
TPLZ={V$: &EWY2Q}. Thus, if we take an element P2V<> of iPI then there exists a
sequence {<IX of functions in CB(Q) converging to 4> in W', Since » have compact

supports then A4, vanish at the boundary of H.

The operator B isclosed as the inverse of a continuous operator (£°)~\ this fol-

lows directly from the inequalities above. We also saw that B® is positive
(B°P.Py2c|Plp:  VPeD(B")
for some positive c. Hence B” is self adjoint (se'e [23]). «

Since sdlf-adjoint operators are necessarily sectorial (see [20]) we may repeat the

rest of proof of Thm 3.1 to complete Thm 3.7. D.

Existence of a unique solution to (2.1'), (1.10), (2.1") comes as a coradlary to
Theorem 3.7 and it is shown along the lines of the proof of Theorem 3.6. The satement

of Theorem 3.6 requires only trivial modifications.

4. Longtime behavior for arbitrary initial data

Having established the existence of dynamics we wish to sudy the long time behavior.
Unfortunately, we are not able to show that the limit as t goes to infinity exists, as it was
possiblein the one-dimensional case. We show a partial result in this direction, namely
that P and wAC”+G) converge to zero in W and in L?, respectively. These results
correspond to those of Pego [32] and Andrews and Ball [4]. We may rephrase them in
terms of K, the solution to (1.1), as follows: u,->0 in W'* g and div (G(VK)+VU,)-»0 in
L 2. We cannot say much about the behavior of a(F-H2) because in constructing system

(3.1) we logt information on the divergence-free part of a, Le (/-7C2)a.
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We assume throughout the section that Wis C* and D°W s globally bounded with
d+c [E1?sWR)<D+CIE1? ¢, C,D>0 (B)

Wefirg prove an energy estimate for (3.1). It shows that the total energy (kinetic plus
elagtic) is disspated by the system.

Proposition 4.1. Let us assume that W satisfies the growth condition (B) and that (P,Q)
isasolution of (3.1) asin Theorem 3.1, then

;
\ % WikPy T PAW(PN )(yT) ¢ ¥ | VavE()eW?d di= (4.1)
e o0

=] % |divPy ) |%¥" Po) 0 0] ~ =const.

Proof. The proof israther ¢andard. We observe that since
PeC([8.TLW> Q)X j2eC([0,r U%(fl)) 5>0

(Thm 3.1), it follows that the integral

M=) e D |.( A& PO 0 }.yw{gvdﬁm y<ir 650 (42

iswell defined and finite. Again, from (3.9) applied with ot=y we know
divP,e CP([8,T1.LA(Q))

so0 that we can differentiate (4.2) with respect to time. We obtain
~ j-(:)=Q div P, div P DWW (P +OXP +0. 1+ | VdivP \3(y,t)dy
We integrate by parts thefirst term, and use P+Q=VdivP:
A(r)=f\divF(/ KT(?H2>HVdiv/dy+ f (divP/Vn>iS =0.

The boundary integral drops out since Pn=0 at the boundary. The first integral is zero
since (3.T) holds and (T*c*Vdiv/*cVdivP) due to properties of %. We conclude

then M (t) isequal toM (5), and
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M (5)=,f V4 |div?(y,8) \*+W(P+Q)(y.$)] dy.
Q

divP is a continuous function cm [0,7] into L?, and taking the norm is a continuous
operation, thus r-*JldivP | dx is continuous. It is a well-known result (see [24]) that
condition (B) implies continuity of the composition W(P+Q) as an operator from L? into
L®. We conclude that t-*]W(P+Q)dx is continuous since Py Q are continuous into L 2.

Thus we can passto thelimit S->0. Finally
-
J[divP(y,701%+W (PA)(y,71] " +Ql‘7’divP(r.f)|2dy\dr=M(0)
Q

= l[v: Idiv P(y, 0) | 2+W (P+0)(y, O)}dy 1

Since

ILIVdi\P(y,t)\Zdydt

increases in time we see that

L@)= %t[[ [div P(y,t} |2+ W (P+QXy.0)] dy

isaLiapunov function for system (3.1): dL {t)Idt<Q, and in particular

A\CI\+[W(P+Q)(y.T)dyEL (0)<00.
a

Before we study long time behavior of P and J*a we establish a preiminary,

rather crude estimate.

Proposition 4.2. If the growth condition (B) is fulfilled then Py Q and consequently

% a(P+2) are bounded in L 2. the bound being independent of time.

Proof. Lemma 3.5 states that
ITHIPHWUA T DiVEI-A K ITPIA U,

From Proposition 4.1 we know that HdivPI*a is bounded independent of time.
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Combining these two facts we obtain that the L2-norm of P is bounded independent of
time.
The boundedness of Q follows from Proposition 4.1 and boundedness of P

M(0)+|d| IQIZ£W(P+QH]2£C IP+Q |22¢ 1IPllLa—IQ 2 |2

thus

Q2 <const+|IPl.2.

Finally the boundedness of m,c(P+(Q) is a result of o being globally Lipschitz-

continuous:
Itz (P +Q)l2 Slimz 6(P +0 1260+ R, 6 (Ol 2 <LIP +Q [l 2 +llo(O)|L:<C O

The following lemma is a very useful source of estimates. This is refined version of

Theorem 3.5.2 in [20] and it is due to Pego [32].

Lemma 43. (Lemma A.3 in [32]). We assume that A is sectorial on a Banach space X,
f:U—>X is locally Lipschitz continuous on an open set UcRxX® for some 0<a<1, and

z(¢) is a solution on (1,7 +¢¢] of
z+Az=f (1,2), z(to)=z¢
with (¢(,20)e U. We assume
IWf @z (O)f (5,2 (HUSK [t=5 |+LIz(t)2 (5)llg.
Then for any O<y<1, there exists Ce=C.(a,,T,L) so that for 0<ty<t <T+1,
Nz (DI SCe ((1=10)™ " iz (o)l H(t —10) " (2, 2@k O

One of the consequences of the Lemma is the following bound which we will need
later

Lemma 4.4.

IVdiv P||;2<const<ee, for t21.
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Proof. The proof is an application of Lemma 43 to syssem (3.1) where A is given by
(33) and/i sdefined by (3.4). We set 0e=¥V4, and 7=1, in our context £=0. In Proposi-
tion 42 we showed that IfaoCP+gHk* is bounded, hence so is lI” (2llo. A bound on

IMI12 is also known: from (3.7) we obtain

fizlly 2Se (div Pl 2 HIQ N2 s

next, Proposition A2 and (4.1) give a bound on the right-hand-side. If we add up the

components of z{={P,Q;) we obtain a bound on (? -fO*VdivP. *

The plan of the proof that P goes to zero in W?* follows the idea of Pego [32]. We
gart with the observation that in order to show that a continuous function v(r) with
values in a normed space X goes to 0 as r->» it suffices to prove veL ?(**;X) and
?j["lK Ollin <°°- We will apply this fact to prove ||Plbyu ->0 and 113~C+011L? ->0-
Then we apply Lemma 43 to show decay in W*'. Our proof that

n2<y(P+Q)eL’QL*: L?) generalizes an argument of Andrews and Ball [4].

Proposition 4.5. If in addition to the assumptions of the existence Theorem (Thm. 3.1)

we impose the growth condition (B), then the following is true

im[n,0(P+Q)ll.2 = 0.
[ 40
Proof. From (3.9) we know that P, is sufficiently smooth to take the divergence for t>0:

div P =div (r,0(P +Q )+ Vdiv P).

We can take the inner product with a function <beC'dSgT]\W**) and integrate over

Qx[8,r]. After integrating by parts we obtain

T
'fd:(* irdiv/>)di I"['ll;.] (* 1 div P(N)dx—{(®(8), div P (§))dx= (43)
T T

f r}‘[(v<fr,7i2a(P-H2)HV" ,VdivP)]dxdt+f|&f, (<& (*a(P +iK VdivP)-n)dSdt
| X

We take <> such that VCfe=n*(*"H2) and to make flie choice unique we impose



- 30 - Sattion 4
£¢ =0. (4.4)

Theorem 3.1 guarantees that <> hasthedesired properties. Then thefirg term ontheRHS

of (4.3) isjust what we want to study

T T
-ggmocr +Q)IZM=-IIMG(P+Q)IIE= ot

The third term on the RHS drops out due to the boundary conditions. The second is

r r
Jé?tZCT(/SA)Vdidexdf:JJ% a(PAXAPA)<i«i=dA (i'-H2X 7>ix-fW (P-H2)(5)ic
i ta a a

and it is bounded since the elastic energy is bounded. We used here the fact that

(Ttv, VA>Hv V<t>).

Thethird teem on theLHS isa constant The second isbounded since

'gmn,divrm)dxlswmmamivrmivs

CIVRD i idiv PNl 2SClimp (P +Q Wiz Mdiv P (D2 <C

We used here (4.4), Poincar 6*s inequality and boundedness of lldivPI™a (Proposition 4.1)

and \K,C(P-H2)IL? (Propostion A2).

We egtimate thefirst term on the LHS in the following way. We observe

lc:»,:o

which isa consequence of (4.4). Then by Poincar6's inequality we have

Bl SCHY D,z

Since myo(P+Q) isdifferentiatein timeand
2 210P +QYm DO +QXPAHO).

Hence by Schwar Z's inequality

T T
} I l¢,djvpdzd: Iscl' [Da(P +0 )(Vdiv Pl 2 Iidiv P||a.
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Since we assumed that the derivative of ais bounded, we obtain

T T
| fi<Ddiv/> I*L CflIVdivPlta-lIdivFti.
%o %

The mean value of div P over Cl iszero, so by Poinoar'fés inequality
[IdivPIN CHVdiv?hl, (4.5)

Then

T T _
|{£<b[di\dedt 1.<.Lcl[||Vdianz=d:_<.comaa: <oo,

-

We have proved that

T

{imotrm)llzzd: <C <eo,

with a bound that is independent of T.

The time derivative of IteaCP+G)!!!? is also bounded:
2 a0 +Q)li1=2m; 0P Q) D SP QNP Q).
By Schwarz's inequality and Lemma 4.4 we get
d 2, 1=
{5 2o P+D)ilt: 1=

Lm0 +Q)ll2 w2 [DOSP +QXVdiv P2 S2LIImy o (P -+ Mz 2 I Vdiv Plig2Sconst. <ee.

Knowing that
[ImaoP )< sd 1m0+ 1<

we deduce that

lim 1t%a(P+2)1172=0. Q
f—rm

Unfortunately, we are not able to determine the behavior of cr(P-H2). The problem is
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that we do not have any information on (J-ih)o(P+Q).

We proceed to gudy P. The following Theorem is another application of Lemma

4.3.

Theorem 4.6. Assume that W satisfies the growth condition (B) stated above. Then for

any initial data (Po* Qo)eihW"*xji2L? the solution (P,Q) of (3.1) has the properties
it,a(/"+j2)+VdivP->0 in W* | P-»0 inW* asr-*0

Proof. We will show first that P decays in WA-topology. We know by (4.5) that

T T
\\6i\P\Zdxdt<£\VdivP\’dxdt<£{M-d\CI\).
oa oQ

which combined with Lemma 35 yields PeL ?(E*; W#(Q)). It remains to prove the
boundedness of the time derivative of [I"[to” «

We will now invokeLemma4.3; we set

P
255

o=¢=Yi, and K=0, we take 7=1. We have aready established in Lemma 4.4 and in Pro-

position 4.2 that
supllz|li/2<C iupljr (z(r))||<C
= >
the congtants are independent of time. ThusLemma4.3 gives usthat

nMhwSC Vr>8.

Summarizing, we know

!IIPII%'M!SC
and the time derivative of IPI#*? is bounded,

| %ur I 1=21(P.P,} | SIPIIP,ISC.
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We conclude that

‘;1112 VP llw2=0.
In order to show the decay of ||P|lw2: we claim that Lemma 4.3 is applicable to the sys-
tem

P+BP=g(1,P)

where B=—Vdiv, and g (¢,P)=m,0(Q (1)}+P). We already know that the operator B is sec-

torial on Y, (Proposition 3.3), also we have established
yé/Z - MWI'Z.
The non-linear term is Lipschitz-continuous,
llg (. P (0))-g (s.P (s Dl 2=lim20(P (1 HQ ())-120(P (sHQ ()l

<LIP (0}=P (sHQ (1)-Q (N2 SLIP (1)=P ($)llwr2+L sup [1Qslle2 |t =s |
SLIP ()P ()liwr2 +L suplinzo(P (0+Q (D)l 11=s I=LIP ()P ()llw2 +LK (s) [1=s |

where we set
K (S)==§l>11‘>llQ:|l(f)=§g§>Hﬂ20(Q +P)Ii(e).
We may then apply Lemma 4.3 with y=0=% and T=1. Then we have for ¢(<t <z y+1
WP w22 <Co ((t=10) ™" 1P (10)lhwr2H—t o)"’z(“gpﬂllg (TP (ODI2+K (10)))-
We let 1o go to infinity. Then the right-hand-side of the above inequality goes to zero,
since ||P|lw2 —0, and |, 6(P +0)ll.2 =0 (Proposition 4.5). As a result we obtain
Jn,0(P+Q)+Vdiv Plly2 -0 and |[VdivP|: —0.

In virtue of Lemma 3.5 the W22-norm of P is bounded by xi|Vdiv P||; 2 thus the Theorem

is proved. O
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We may rephrase theresult in terms of u:

Corollary 4.7.
* ->0 in W*2 and div (o(Vj<)+Vj<f)->0 in L? Q

Remark. We note that the results of this section, in particular Corollary 4.7, are valid
also for Dirichlet boundary conditions, the proofs presented here do not need changes.
We have used extensively Poincait's inequality, we may do so again due to the boundary
conditions which elements of TPL! satisfy and the fact that for solution PP to (2.9) and

(2.10) the condition
div PP=0

holds at the boundary (Theorem 3.7). Only in Proposition 4.5 wereplace the normalizing

condition (4.4) by thefollowing one

0=0 at 3tt.

5. Stability of equilibria

In the present section we sudy stability of certain equilibria of (2.1). In particular we are

interested in showing stability of local srong minimizers of the energy /

Iw W(Vudr
Q

We have constructed dynamics in W' the space of finite eoer gy, provided that the initial
data (u (x, 0),u,(x, 0)) arein W'xL?. Thusit is natural to consider stability in this space.
Furthermore, our dynamics provides an essential ingredient for a potential-well argument
for proving stability. Actually, we show that proper local strong minimizers of / are
stable. Fé)r the argument to work we need an assumption on W consistent with existence
of energy minimizers. Roughly, we require that W be "drong quasiconvex". Strong
guasiconvexity of W dampens oscillations in gradient of minimizing sequences of /, thus

it forces weak and strong convergence to be equivalent (cf [12]). In our proof we use a
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potential-well argument presented by Ball and Marsden [6].

We also show exponential asymptotic stability of smooth equilibria for which
merely the second variation ef the energy 6%/ is positive. Moreover we need W evaluated
at the equilibrium sate to be dliptic. This result corresponds to that of Potier-Ferry [33]

with the exception he worked with Dirichlet boundary conditions.

We prove our result by using the linearized Stability Principle (L SP), one of the
tools available within the framework of semigroup theory. That is, to show sability of an
equilibrium it suffices to etablish that the spectrum of the linearized operator is in the
right-hand half-plane separated away firom the imaginary axis. For the L SP to work we
have to change the underlying function spaces. Now, the admissible perturbations must
bein W?** p>n, Le gradients of perturbations must be continuous. Weare thusforced to

show a new existenceresult, at least for initial values close to the equilibrium.

The method of proving asymptotic stability works not only for smooth solutions
but also for a family R={qE) of states with discontinuous gradients. The family R isin
W'"2, gradients of all dements ge have at most two values F, GeM***. Working with
equilibriafiromthe family R imposes someresrictionson behavior of W near the minima
F and G. For the linearization argument to be correct W must be of the same shape in

some neighborhoods of F and G.

The physical interpretation of our result is that at least for some equilibria of (2.1)
which contain two or more phases are asymptotically stable under perturbation, provided

the perturbation does not move the interface separating the phases.

It turns out that our asymptotic stability result for R is false if we admit perturba-
tions merdly in W', The reason for that is, if n>I then W*? is not contained in the
space of continuous functions. In fact for any gg®R we can find in any W%

neighborhood of ge another dement of the family R .

We show first stability of proper local minimizers of /. We do not touch upon the

issue of existence of such minimizers which is beyond the scope of this paper. Our
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precise result isthis.

Theorem 5.1 We assume that W satisfies the conditions:
W(&=GE}+\\K\\ SeAfr*" X>0 (a)
G isquasiconvex, 0sG (F)A(1+1£|?) (P)

for some congant A. We also assume that the equilibrium point uy of (2.1) is a proper
local minimum of the functional /. Then for a given e thereis a 8 such that if the initial

data (u (0),u,(0))e WL? for equation (3.1) satisfy

W g—s (O)itwr2 <& and g[ViIU,(O)IszW(VU(O))] <£W(Vno}+5

then

Bu b2 Hlu—glhpa<e  V/20.

Our reault isin the spirit of BaD and Marsden, who prove a smilar result for polyconvex

W.

We will first recall the notion of potential well. According to Ball and Marsden [6],
we call ueW"™ a proper local minimum of / if there exists e>0 such that /(v)>/(w)
whenever O<||v-tt|wuff. An element ueW? lies in a potential well if for all e>0

aufficiently small there exists Y (€)>0 such that
I(V)-/(K)>X(e) whenever Hv-K|tau=€

The key observation in the proof of the Theorem is Proposition 4.3 in [6] rephrased as

follows.
Proposition 52 (Proposition 4.3 in [6]). Let ue fae W'-% jA=0} lie in a potential well.

Given e>0, there exists 8>0 such that if (u (0),u,(0))€ W~ xL ? with

Has (O)-uolipra <® and g[" lus(0) P+ (Vu(0))] < g" (Vilo)+5 (GHN)
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then |ju (r)-ttolL? <efor all 120.0

Before we give the proof of our Theorem we recall the definition of quasiconvexity. We

say that W(£) is quasiconvex if for some fixedpl<p<oo (we takep=2) Wsatisfies
0w (E)sl‘(1+lél";). (5.2)

for some congtant F and all £eM ***, and

TWAIWAH<P)
(0] (0]

for all open 0cE\ AeM ", AWAO**). It is a well-known result that if W is con-
tinuous, and it satisfies (52) then the functional / is weakly sequentially lower semicon-
tinuous on WF(QLjL*) if and CKily if W is quasiconvex (cf. Morrey [29], Acerbi-Fusco
[1D).

We will see that undo* the hypothesis of Theorem 5.1, weak convergence is
improved to strong. Thefollowing Proposition may be found in [12].
Proposition S3 Let us suppose | P satisfies assumptions (a) and (p) of Theorem 5.1 Then

uc*u weakly in W' and [(u)”>l(u)

implies

uc-*u grongly in W*  Q

Proof of Theorem 5.1 We have to show that conditions (fi) and (a) imply that u liesin a
potential well. Let us suppose that it is false, we can find then a sequence ue W*? such

that

I (u)—I{u) and ;m =i |lwra=€>0,

Because of the growth condition (p) we info- that uy art bounded in W, thus we can
subtract a weakly convergent sequence, again denoted by uy; with limit v. The norm in
WY2 is weakly sequentially lower semicontinuous, thus |Jw-v/||,u”e. We assumed that u

isa proper minimum of / and / is weakly sequentially lower semicontinuous hence «=v.
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We may apply now Proposition 53 to conclude that u->u strongly in W2, which is a
contradiction. Thus u lies in apotential well. We observe that Theorem 4.6 guarantees

that u->0 in W2, Finaly, we apply Proposition 5.2 to complete the proof of Theorem
51 o

Having proved stability of proper loca minimizers of / we turn our attention to
those smooth equilibria u for which the second variation of the energy 82/(u) is positive.
We aso relax our assumption on W. We no longer need W to be strongly quasiconvex
(i.e. we no longer assume (a) and (p)). Instead, we require that W evauated at u be ellip-
tic. Since we relaxed our assumption on W we restrict admissible perturbations of u, they
must be in W2, p>n, i.e. gradient of pertuibations are now continuous. We first

observe that equilibria of (2.1) stisfy

diver(Vu)=0 in ft, a(Vu)7i=0 at 3ft.
It follows from the construction of n, that the above equation is equivalent to

n,o(Vu)=0.
Hence equilibria of (3.1) must stisfy
£,0(0)%0, P=0.
We may now formulate our stability result for equilibriaof (3.1). We set
X, =Y, x, Wi,

Theorem 5.4 We assume that W: M**"'-»| is smooth, and it satisfies the growth condi-
tion of Theorem 4.6

rf+c]P<wa)"D-K: |2 ¢,C,£>>0. (B)

A smooth equilibrium state (0,Qo) of (3.1) is asymptoticaly stable in X%, for any p>n,
[>o00l/2if

jp W (QoXVAVAYBIVA § VheW?, (v)
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n FW Qo)
N B e

EEMane2B 1L 12 im )2, ©
hold.
Proof. Wefirstlinearize system (3.1). If we subtract from the equation (3.1)

Pr=Vdiv P+K20(P+Q)

Q=—n,0(P+2)

the seady sate equations then we obtain the system for (5P.5Q) where 5P=P-Py,

&Q=QH20, we know that P,=0,
OP =, IDS(P o+ o X8P+30))}+Vdiv 5P+ (57 +52) (5.3
80 =—1,(DS(P o+Q o YOP +5Q)1-2 (GP +0Q)
theterm » is defined below
& (hy=m;[0(Q o+h)-0(Q o -Do(Q 0)(R)).
We may rewrite this system as
2 HA-S)=§(z)

where 9(2=(g (2),-9 (2)), and z=(67>,6j2). We also define S as follows

s -VJ
where

V’ﬂ’DG(Q 0)- (5-4)

We proved in Proposition 2.1 that B is sectorial on Y, and consequently A is sectorial on
X Where X,=Yxn W', Since 5 is a bounded operator on X, we conclude that A -5 is
sectorial aswdl We may also apply Theorem 1.4.6 in [20] to conclude that the domains

of fractional powers of A and A -Sare identical. Thusin particular

X5 = Ypxm, W',
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We want to show that g is locally Lipschitz-continuous on X we first establish the fol-
lowing Lemma
Lemma 5.5 The function g :W ¥ —W ¥ as defined by
& (hFm,0(Q o+h)m,0(Q o), [DS(Q 0)()]
where the composition Do(Q o) is smooth, has the properties
1°  gis locally Lipschitz-continuous on W'+ with values in W?;
2°  If heYy then lig (W)lwro=o (lhllyy) 0>1/2
Proof. We use in the proof the standard results on differentiability of composition
operators in Sobolev spaces (see [36]).

We set

E(h)y=0(Q o+h}-0(h)y-Dc(Qo)(h)

for he W% in an neighborhood of zero. Since the map h—a is differentiable we obtain

that

(M)l e=o0 (lhllw:»).

Moreover, Z itself is continuously differentiable and D Z(0)=0 so Z is Lipschitz continu-
ous in a neighborhood of 0.

We note that from the construction of the projection n, and from the elliptic regu-
larity theory follows that =, is continuous not only on L” but also on W2 Thus the first
statement of the Lemma follows. In order to complete the proof of 2° we observe that

embedding theorem 1.6.1 in [20] implies lixliy<clixliyy if a>1/2. Thus
kglwe=limZ(R)lwe=o(lhly;) O

Since X},’c(u,,Wl"")2 for c>1/2, it follows from Lemma 5.5 that g is locally Lipschitz-

continuous on X and

1i2(2llo = 0 (lzl). (5.5)
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We may now invoke Theorem 3.3.3 in [20] to conclude existence of kxal in time solu-

tionsto (5.3). Proceeding as in the proof of Theorem 3.1 we conclude that
&PeC([0,T1.YNCHO. TR, LA INC (0, T), %, W)

8Qe C1(10,T).x,W'?).

It follows from (53) that we may linearize (5.3). Thus we turn our attention to

sudy of the pectrum of AS. Our ultimate goal is to show that the real part of gpectrum

of (AS) is positive and separated away from 0. But first we have to investigate sp(A).

Certainly, sp(A)=sp(B)V{0}. It is natural to expect that B being equivalent to the Laplace

operator will have pure point spectrum. Aswe saw the problem
BV¢-AVE=V{, 0¢/an=0
isequivalent to
-A<H4=/, 3<t>/an=0,
where J/=0. We can take Ao belonging to the sector §j* \ then the etimate (3.5)
Wllw2 SCllflles / [ Ao |
holds. Theapriori estimates[2] giveus
Wl e <C (flhwro Hidllr ).
Combining these inequalities we aobtain

Wt SCl [ .

(5.6)

(5.7)

In other words the map /4> is continuous. It means that the resolvent operator

(-A-X0)"" ! exists and it is continuous from W"* to W** and consequently it is compact,

because the embedding W c: W' is compact by the Rellich-Kondrachov Theorem. It

follows that (B-A0)" ! exists and it is a compact operator from Y, into itsdlf. The spec-

_trum of a compact operator consists entirely of eigenvalues of finite multiplicity and at

most one limit point at 0. Therefore the gpectrum of B is pure point, and the limit point is
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at infinity. We have to rule out possibility of negative eigenvalues of B. We assumed
that p >n 22, then LPcL? If there is an eigenvalue X, with non-positive real part, and

Bv-\v=0

holds for some vector v*0, then we can compute the inner produa of the above equation

with v. Theresult is
CBv)-X|V|IL»=0.
After applying Proposition 3.4 we obtain
P-Mlivli2<0
which forces X tobereal and ysA.

We also need to know that
/teC:ReX<p;cp(V,) (5.8
for V defined by (5.4) acting on n,W/>. We introduce the notation
M=DG(Qo)
What we already know isthat
(TCMX ) =(MxX)"PlIr 2 , xeYz
which is due to assumption (y), so (5.8) holdson Y, .
It follows directly from the definition on T~ that the problem
*,(M-X)x=y (5.9)
wherex, yeanV"P is equivalent to the following one, where we set x=V$, v=V/
div((M-X)V<)>)=A/ (5.10)
M —l)V¢°n=-aa‘E.

Because of assumption (€) the above problem is dliptic. Since (5.8) holds for p=2, so if

ReX<p, yean\/|tP then we have a unique solution x to problem (5.10) belonging to Y-.
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We have to show that in fact x isin an'*. We can take the inner product of (5.9) with

any dement t of Y,

(=, (M-N)x,0=(,1).

Since fev,Vy)=(v, Vy) we obtain for r=V\p
g«m -x>V¢.Vw)=£ch. vy).
Because ye W™ we can integrate by parts the second integral
i} o[ s
[ca-2ve. 9w [as. V) [ (w0,

We thus obtain that e W™ is a weak solution to equation (5.10). The standard élliptic
regularity theory (see [21]) implies thai 4> isin W?*. The a priori estimates give con-

tinuity of the map V/-V<p>. Hence, theincluson

{Ae €: ReA<B)cp(V,)

isvalid for V acting on n ¥,

Our proof that sp(A S)=¢ >0 takes advantage of some ideas of Pego (cf.proof of
4.1 in [32]) in a smplified form. Firg of all we establish that the essential spectrum of
AS is bounded away from the imaginary axis. Thai we shall show the same thing for

eigenvalues of AS. Following [32] we decompose S as SPSQ where

=04 s-fpr)

Since 0 does not belong to spectrum of B nor V, it is possible to write down explicitly the

B -

inver se operator for

which is
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We have remarked earlier that due to a priori estimates (see (5.7)) the operator B! is
compact. In virtue of the form of the operator (A-Sp)™ the composition Sp(4-Sg)~" is
also compact. Thus, Sp is a compact perturbation of A —-Sg and hence by Theorem A.1 in
ch.5 in [20], Spe,(A —S)CSPa, (A —Sg). Due to the block structure of A-Sp we conclude
that sp,,,(A-Sg)csp(V). In addition, we know by (5.8) that the spectrum of V, is

separated away from 0.

At last we have to check that there is no eigenvalues of A-S in the left half plane.

Let us write the equation for eigenvalues for A -S

wolgrg

or
(B-V,)0-V,y=Ao (5.11)
Vpb+V =2y, (5.117)

We may assume A#0 otherwise we conclude V,(¢+y)=0 and B ¢=0, it follows ¢=y=0.

We can add together equations (5.11)

Bo=Mo+y)
and solve the above equation for y
w=(B-A)/A.
We insert the result into (5.11")
B¢~V Bo/A=\d.

Since LP is a subspace of L2 we can take the inner product with B¢
1B ¢IIZ:~(V,B,B¢)/A=MB ,0). (5.12)

If the real part of A is non-positive, then the real part of the RHS of (5.12) is non-positive
while the real part of the LHS of (5.12) is strictly positive, because |IB¢|b_zZY2||¢|[L: (Pro-

position 3.4) and V, is positive. This contradiction proves claim that there is no
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aégenvaues in the lft hdf plane.

We may findly invoke Theorem 5.1.1 in [20] to complete the proof of our
Theorem. For initid data suffidently close in X% to the equilibrium (0, Go) solutions to

(3.2) exigt for dl times and we have the estimates
2 O)2oHaSCe Pz (O)-2zolla
where z,=(0, Go)- In other words,
W (Oliry~"C~die (O}-Qo\wiHi? (B)ll M)
and
12 (tyQo\/ ' <Ce(\Q(Oy-Qo\\WM\P(0%),
provided A (O” ol IM+1720O) !N isamal. o
Now, gtahility of equilibria of (2.1) comes asa cordllary to Theorem 5.4.

Corallary 56 If Uy is a smooth equilibrium of (2.1) such that the conditions (y) and (€)
hold, then u, is exponentidly asymptoticaly stable. Precisdy, if the perturbation
(u (X, Oy-Ugit(x, 0)) issmal in W»W** then

W —stpliwresCe™™
and

Mgl <Ce ™

for some positive Cand 9.
Proof. We assumed that u(x 0) isin W* g it implies that P(x, 0) isin W and thus in
Y% for col/2. Wemay usetheresults of Theorem 5.4.

The solution u of (2.1) isgiven by the formula

.
u(m)=1di\P(t)dt+ U,
(0]

We take gradient of u,
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T
Vn=£Vd.ivP(l)dt+Vu°.

We showed in Theorem 3.6 that it is possible to interchange integration and differentia-

tion. Since VdivP=(P+Q), we obtain

VusP (THQ (TP (0-Qo+2 =P (M2 (M),

where we set Qp=Vuo. Theorem 5.4 yidds
VU Oy-VU\\W* =liF (THQ (T2 ollwro SCIP (Tllye +I2 (T)Qoliws
SC'e (1P (Ml HIQ (-Q ollw12)SC”e ™ (i i Hit (O)—sigllwzs )

By Proposition 2.1 it follows that the space average of u must be equal to the space aver-
age of ug. We also st the average of ug to be zero (assumption (A)) thus by PoincarS's

inequality we estimate the the difference u-ug
T —id o lle » SCI V(e —200) Lo
finally
1" Cn-uobp*ZCe-* (Ml liwso+i O)ollwae),

and

e ler =lidiv Pl SCIIP lrro SCHPllys SCe .02

The method of the proof of Theorem 5.4 yields ancther result, namely stability of a
family R to be congructed, of equilibria with discontinuous gradients. The idea is to
make the composition Dc(Qy) smooth. We will achieve our goal but at the expense of

an additional assumption on W. But first we congruct the family R .

L et us suppose that W has two local minima at F and GeM*** whereF and G are

rank-onereated, i.e. the condition
rank(F-G)=l

holds. Since bW (F)=CT(F)=0=<T(G)=D*(G), then (0,F) and (0,G) are steady sates of
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(3.1). Because F and G are rank-one related then there exist vectors a and ne\" such

that
F-G=a®n.

Let us choose E an open bounded subset of E, E isthen at most countable union of open

intervals. We set

Qe(x) = Faelxn - {1-xe(xn))GC xef)

We claim that Qg is a gradient of an absolutely continuous function. If so, (0,Qg) form a
family of equilibria of (3.1) since aG2£>=0. In particular, if Vge=Qg then g are steady

gates for (2.1) because the boundary condition (2.1") is satisfied.

If |E-E'| is small, (|-| is the Lebesgue measure), then WQETQETWL® is also small
because of the continuity of the integral with respect to the set of integration. This means
that in any L “neighborhood of a fixed Qg we can find a Seady sate Q? . It follows that
in W2 asymptotic stability fails for ge. We note that the example is valid for any

bounded domain £1

We prove now our claim. We define

vl = [xe(s)ds

The définition isvalid sinceE isbounded. Then \yg' = Xs a.e. We also set

gr = Gx + ayg(n-x);

gs =2
E=qE— Q] l E.
We seethat g has zero mean, and
Dgp=G+a®@ny'g(x'n)= GHFGle(x'n 0 ae

The L%perturbations of Q= (the W”-perturbations of qe) allow the discontinui-

ties of the equilibrium point to move, and this is responsible for the lack of asymptotic
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sability. We observe that if W(F)xW(G) then the ge need not be srong local minimiz-
ers, despite positivity of 5%/(*£). Nonetheless, we show a kind of stability for qe, but
only for continuous perturbations, under which discontinuities do not move. We first

prove stability of QE.

Theorem 5.7 We assume that W: M ***->& is smooth, it hastwo local minima at F and
G, such that rank(F-G)=I. The growth conditions as in Theorem 5.4 are satisfied. In

addition we assume

>0 VEeM™™ | |£]<8 W(F+\y=W{G "constant \ )

ADZW(QE)(yhyh)>V\m\b Vicew )
FW

veners, ¥ S2Cn neBigiint ©

ofij OFaOFh
Then all the equilibria (0,Qe) are asymptotically stable under perturbations in X%, p >n,
ool/2.

Remark. Since ool/2 the space X% is embedded in (W*)2 Because p >n the allowed
perturbations are continuous, and they do not rhove discontinuities of Qg. The condition
(5) means that in a neighborhood of the minima the stored energy function has the same
shape. Since Qg has only two values the assumptions (y) and (e) pertain only to the pro-

perties of W at thelocal minimaF and G.

Proof. As in the proof of Theorem 5.4 we may subtract from (3.1) the equations of

steady statesto obtain
&P =m, [DO(P o+Q o XOP +DQ)}+ Vdiv 8P +g (8P +HQ) (5.13)

80,=-m) (D o(P o H2 o HEP +50)]-g (6P +0Q)

where

& (A2 [0(Q0+h)-0(Qo}-Do(Q o)A

We observefirg that due to assumption (6) and the fact that Q, has only two values, the
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composition DG(Qy) is smooth. Moreover, if |JAJw* is so small that PI1L-<6 then the
function g (h) isin W''F and Lemma 5.5 isapplicable. Thus the above system considered
for z=<5/\5j 2) with the initial data in X% has local in time solutions by Theorem 3.3.3 in

[20],and
&PeC([0.T].Y)NCHQO. T LANC ((0.T)m, W)

80 C([0.T].x,W"P).

We want to study stability of zero solution to (5.13). By Lemma 5.5 the linearized
system is .
z,HA-8)z=0.

We may proceed as in the proof of Theorem 5.4 to establish that

P(A -S)<z{ReXtc >0}.

We may do so since in the proof of this fact we only used smoothness of Do(Qy), (8)
and (€). Hence we conclude existence of solutions to (5.13) for all times and existence of

positive congants M and p such that
IK&P (0,52 (tMazMe™PH(EP (0),5Q (O)ll
provided ||(SP (0),52 (Q))H, is sufficiently small.
Let us de‘in'e
F=5P,  Q@=30+Q,

If weadd to (5.13) the equation of seady sate

O=m,3(Q0)

(@) =m20(L0).
then taking into account the definition of g we abtain

8P =m O(8P +50 +Qo )+ Vidiv 8P



- 50 - Section 5

(3Q+20)=m6(0P +80+0 ).
in other words, P, Q as defined above, satisfy (3.1).

Let us assume that at the initial time the data for (3.1) are (SP,62+Q0)(0O) where
(6P, 62)(0)eX£. Theorem 3.1 guarantess existence of solution (PgQ) to (3.1) far all
times. Due to uniqueness of solutions of (3.1) we conclude that (SP.SgM " Q-Go) is
in X%. Thus we have showed that if initially a small perturbation belongs to X% then it

staysin this space for positive times.

Since we have aready proved that (5P.52) decays exponentially to zero in X£ we

have completed the proof of die Theorem. ¢

The result of Theorem 5.7 may be readily used to prove gability of ge belonging to

2.

Corollary 5.8 Under the assumptions of Theorem 5.4 die equilibria gz of (2.1) are
exponentially asymptotically stable. Precisdly, if the perturbed state (K (X,0),U,(X,0)) is

such that (u (x, 0}-gg,ui(X; 0)) is small in WAXW* p>n then
I ~gltwro<Ce ™
and
NiellzrSCe™®

for somepositive C and G.

Proof. Proof is entirely analogous to the proof of Corollary 5.6. ¢
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Appendix

We briefly recall the results of Fujiwara and Morimoto on Helmholtz deccxnposition
[14]. They showed existence of the decomposition for vector fidldsin LP. In fact, their
ultimate goal is to construct a continuous map PyP-+LPs \<p <*©, the projection onto
the closure of the set of smooth divergence free vector fields vanishing on the boundary

of aregion. However, it follows from section 3 in [14] that if we set
%=/-F,

we obtain the desired projection. n, is a continuous projection with the following proper-
ties, if visin L then nv=Vfa for some $eW'™". The 4 is the sum fa+fa. Here fa is the

solution to
Ad>i=divv, in a, $=0 on 3Q, (A.D)
mor eover, the estimate
IWhIMACIML/ (A.2)
holds. And fa the unique solution to

el

Afa=4) in Q,ﬁgt—#/iﬁn—al X
satisfying the estimate
1K ey SCIY ac.m -
It followsfrom the construction (see [14]) that
(v-JCpV)7i=0 on dCl and div (y-npvy=0 in Cl.
We also have
L? =, LPO{—=®,)L7,

and
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where 1/p+1/g=1. If p=2 then =, is an orthogonal projection and n,L2 is orthogonal to
(-ny)L2.
‘We define = in the following way, for ve L2 we set
1I:DV=V¢1
where ¢, is a unique solution of (A.1). The estimate (A.2) establishes continuity of . It
is a matter of easy integration by parts to show that ©° is an orthogonal projection.
We may also define the projection for tensor fields. Suppose we are given a tensor
field Ve LP(Q:M ™)
Vi
Vs
where v; are the rows of V, then we set
ﬂpV=V(¢1 7 0n)
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