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1. Introduction.

In this paper we study a model equation of viscoelasticity

j*fl=div G(VM) + Aut in Q (1.1)

in a multidimensional setting. The displacement u is vector valued, thus Vu is a matrix.

We impose the 'no-traction' boundary conditions

duta(Vu)7i+|i—-=0, on 3ft
on

and initial conditions

We assume that there exists a function W Jtf *x*->lL such that DW(£)=a(£). For the sake

of modeling phase transitions we do NOT assume that W is elliptic, Le. the condition

OB)
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may be violated. We prove a rather general existence result assuming only a growth con-

dition on W: we require merely that a be globally lipschitz-continuous. We show that for

arbitrary initial data, u, and div (ofVu^Vtt,) tend to zero in appropriate spaces as t goes

to infinity. Finally, we prove dynamical stability for certain stationary solutions, includ-

ing a class of equilibria with discontinuous gradient.

We also remark on existence of solutions to (1.1) with Dirichlet boundary condi-

tions

K=0 on dCl.

To set our analysis in the proper context we briefly review the modeling of phase

transition in solids based on minimization of the energy /

(1.2)

(see for instance Maddocks and Parry [27], Ball and James [5]). If the material occurs in

several phases then W has several local minima. (If W happens to be frame indifferent

then they must be orbits of SO (n) instead of being isolated points). Such Ws typically

are not elliptic. Therefore the functional / is not sequentially weakly lower semicontinu-

ous (swlsc). This fact forces one to study minimizing sequences in place of minimizers,

since the latter may not exist. The lack of ellipticity (E) may lead to development of fine

oscillation in the gradients of minimizing sequences, which prevents the minimizing

sequences from converging strongly in WUp.

The variational approach just described is entirely static. In order to study dynam-

ics we could try to solve the equations of elasticity

(1.3)

where x is the stress tensor T=O(VK)=DW(VH). We would quickly encounter an obsta-

cle, however, which is the lack of ellipticity of W. (If W were elliptic then (13) would be

hyperbolic and if n > 1 we would have short time existence in W2*^;*1 1), p > l+n/2; this
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result is due to Hughes, Kato and Marsden [22], For n=l a global existence result has

been established by DiPerna [10].)

When W is not elliptic, a possible method of achieving well-posedness is adding to

the stress tensor a higher order regularizing term corresponding to viscosity:

Hence (1.3) becomes the equation of viscoelasticity

j*lf=div a(Vn) + \x&ut. (1.4)

In this paper we adopt the 'no-traction' boundary condition

du,
T71=O(VK)7H+1-^—=0,

on

and initial conditions
K(JC,O>=UO(X) I I ^ O ^ J C X ) .

After scaling of time we may set |i=l. We note that more realistic viscous terms should

be non-linear (see [25], [33], [34]), however we will stick to the model equation (1.4).

One may also consider other regularizing terms, e.g. corresponding to capillarity ([7],

[13]). A similar regularizing result may be achieved by introducing thermal effects, as for

instance in the work of Niezg6dka, Sprekels [30]. Of course, different regularizations

may lead to different dynamics.

No matter what the approach (viscoelasticity, thermoelasticity, etc.), the central

questions are:

(I) Existence of solutions for all times;

(II) Stability of equilibria; and

(HI) Long time behavior

(a) do all solutions converge strongly in time?

(b) does the energy / (u (f)) decay to die minimum energy?
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The need for global in time existence is clear without it the question of stability and long

time behavior makes no sense. One particularly desires existence of dynamics in

V l i2(QiE")t the space of finite energy for fee functional /. Currently available results of

this kind usually require ellipticity of W (cf. [17]).

As for stability, the Energy Criterion is classical. It calls an equilibrium stable if

the second variation of the energy / is positive. However, the justification is difficult

Only in 1982 did Potier-Ferry [33] prove that for W2* equilibria of multidimensional

viscoelasticity the criterion implies stability in W^CQ;!11), p >n (see also references in

[33] for earlier results).

Apart from justifying the Energy Criterion we are interested in studying stability of

local minimizers of/. The notion of local minimizer depends significantly on the under-

lying metric. That dependence is especially important in the case of non-elliptic W. It is

not clear which type of local minimizer will be dynamically stable.

Our questions concerning behavior for large times are most interesting when / is

not swlsc. In this case Ball and James [5] showed that / may not achieve its minimum, at

least for some boundary conditions. On the other hand total energy decreases along tra-

jectories. It is natural then to ask whether or not such highly oscillatory sequences are

realized by dynamics.

We now briefly sketch the known results. The one-<iimensional case has been stu-

died extensively. Existence of classical solutions and their asymptotic properties were

first studied in papers by Dafermos [9], Greenberg, MacCamy, Mizel [19], and Green-

berg [18]. Andrews [3], and Andrews and Ball [4] studied weak solutions. Pego [32]

gave die most comprehensive answers to questions II and HI. He considered slightly dif-

ferent boundary conditions: his problem is

%=(a(KxH^)x «(0,r)=O,

His results may be summarized as follows.
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• A steady state u0 is stable if (fiu^ytc >0. The stable states may contain a mixture

of phases; they need not be strong minimizers of energy (in the Wlt~-topology).

The admissible perturbations for this stability result are small in the Wl~-

topology.

• For any initial data not exceeding some value of the total energy (kinetic + elastic),

the solution converges strongly to an equilibrium.

Many authors (including [8], [11], [17], [31]) have studied the problem of

existence and regularity of weak solutions when the number of dimensions exceeds one.

Local in time existence is shown without additional assumptions on a. But in order to

prove global in time existence the authors need some extra conditions on a or W, typi-

cally they use ellipticity of W (cf. [33], [17]).

As for the issue of stability, Potier-Ferry [33] proves exponential asymptotic stabil-

ity in W^iCl'X*)* p >n for equilibria such that the second variation of the energy func-

tional S2/ is positive. His stability result includes the assertion of long-time existence for

initial states close to the equilibrium. In fact his existence result uses the ellipticity of W.

He studies a quasi-linear viscoelasticity equation with Dirichlet boundary conditions.

We now describe briefly the method of Pego since we will generalize it to deal

with the n-dimensional case. Pego employed a clever change of variables. (Earlier

Andrews [3] also used this transformation, but his use was limited.) The new variables

are

Using these variables Pego reduced system (1.5) to the following
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Then he applied semigroup theory exposed in [20] to the new system (cf.[32]).

Our work generalizes Andrews-Pego's transformation to many dimensions. We

set

divP=u, Q=Vu-P

where we require P and Q to be gradients, and F-/i=O at the boundary. In the new vari-

ables the equation of viscoelasticity (1.4) becomes

(1.6')

(1.6")

with the boundary condition P-n=0. Here, T^y denotes the gradient part of v in the

Helmholtz decomposition. In section 2 we make these assertions rigorous.

Section 3 is devoted to proving existence of solutions of (1.6) (and therefore (1.1)).

To achieve this we show that semigroup theory is applicable to system (1.6). The solution

we construct is unique and defined for all times. We need only the condition that a be

globally Lipschitz-continuous. Existence of a unique, global in time solution of (1.1) fol-

lows, since we can recover u by the formula

T

u(Ty=\<ti\PQ)dt+u0.
o

If the initial data satisfy uoe WU2(C1X% UieL2(Cl\R*)9 then our solution u is in the fol-

lowing spaces

ueC([0,oo)tw
l-2(ClX*)), jir€C([0,oo)tL

2(Q*'1)), *,€ Cp((0,~),L2(ft;X")), p>0.

We point out that for our existence result W is permitted to be frame indifferent,

but it is not required. Unfortunately, the subsequent stability analysis does not permit

frame indifferent W.

We have constructed dynamics in the space Wl'2(&XH) which is precisely the

space of finite energy. It is natural to study stability in this space. One might expect that
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proper local minimizers are dynamically stable. Indeed, this is the case for W*s permit-

ting construction of potential wells, e.g. for W slightly better than quasiconvex (Theorem

5.1). Our proof exploits ideas of Ball and Marsden [€\. We note that our existence result

provides an essential ingredient for their considerations.

We also show exponential asymptotic stability of smooth equilibria for which

merely the second variation of the energy 82/ is positive in W12. In addition, W

evaluated at the equilibrium must be elliptic (Theorem 52). We change the underlying

function spaces and we now consider perturbations in W2tP
t p >n. We thus show a result

corresponding to that of Potier-Ferry for Dirichlet boundary conditions.

The change of admissible perturbations is not just of technical nature, asymptotic

stability is false in Wh2(&XH) for equilibria merely in Wia(&JLH). To this end, for a

special choice of W consistent with the lack of ellipticity we construct a family

R={qE}dWi:z(Cl'X*) of equilibria with discontinuous gradient For each member of the

family the second variation 62/ is positive on W1*2, but asymptotic stability is false. The

reason is that in any Wl^-neighborhood of any member qE of the family there is another

qg belonging to R\ in particular, perturbations belonging to W1*2 may move the discon-

tinuity of equilibria.

For that same family we nevertheless prove a stability result, under some further

assumptions on W and admitting only W2* perturbations where p >n (Theorem 5.7). The

perturbations have continuous gradients, hence they do not move discontinuities in VqE.

A possible physical interpretation is that at least some equilibria containing several

phases are dynamically stable under perturbations not moving the interface separating the

phases.

For the long time behavior for arbitrary initial data, we are only able to prove

results weaker than those presently known in the one-dimensional case. We show (sec-

t ion^

in Wl* and div (c^VaHVu,)-^ in L2
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The question of strong convergence of u (t) in W1*2 as t - • » remains open. The decay of

ut in Wl *(&**) (which is equivalent to decay of P in W^ifrX**")) supports the idea

that asymptotically the dynamics is governed by the equation

If n=l then die projection %2 is equal to identity and the problem (1.7) reduces to an ordi-

nary differential equation (see [32]). If n > 1 then the projection is a nonlocal operator,

making the analysis of (1.7) more difficult

This paper is concerned mainly with the existence and stability of solution to the

viscoelasticity equation with Neumann boundary condition. However, it is possible to

extend the existence results for other boundary conditions like homogeneous Dirichlet

boundary data

u=0 on dCl (1.8)

Only minor changes in proof are required to accommodate the new boundary condition.

We will make remark on those modifications at the end of sections 2,3,4.

We close this introduction with a brief list of problems that remain open, but

which we hope our methods might be able to address with further work. We conjecture

that for quasiconvex W (or at least under the slightly stronger assumption of Theorem

35) the strong limit of u(t) always exists in W^QJl**"). We base this conjecture on

the fact that quasiconvexity dampens oscillations in minimizing sequences (cf. [12]). We

hope that our stability analysis may be extended to frame indifferent W*s. We think it

should be possible to prove analogous existence and stability results for other boundary

conditions. The key step in this direction would be a construction of the projection n

appropriate for the given problem.

In order to simplify the notation we write Lp
 % (WUp

t etc) instead of LP(Q&M) or

LP(CIXHXM). There is little danger of confusion since always in this paper u is vector

valued and P, Q have values in R"**.
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2. The description of the problem.

We study the system of nonlinear viscoelasticity

w) + Aut (2.1')

(2.1")

(2.1'")

with mild assumptions on a. We assume that the reference domain Q is a bounded, con-

nected region in R* with smooth boundary. We may assume without loss of generality

that

[ob) [iQ) Q. (A)

It is so because u'=u+at+b is a solution to (2.1'-2.rf) provided u solves the problem.

We thus may choose a, b to make (A) hold. Moreover, the space average of ut(x,t) is

constant in time because

div (a(Vw>+Vttl)d[r= f-7- \utdx= \[div O ( V J < ) + ^ 1 ^ = fdi
at b L

The last integral vanishes because of the boundary conditions (2.1*'). We thus showed

Proposition 2.1 If (A) holds then

For the purpose of solving system (2.1) we generalize the change of variables due

to Andrews [3] and Pego [32]. We set

div P = Ut and JS=VM-P (2.2)

where P and Q are nxn-matrices. These definitions will be correct only if we impose

some additional restriction on P and Q. We therefore require P, Q be gradients and P

satisfy the boundary condition

P-n = 0 at da. (2.3)
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When we work with Lp spaces, the condition that P, Q are gradients means that we actu-

ally work with a closed subspace of Lp - the image of a projection np. The projection is

closely related to the Helmholtz decomposition of vector fields: any smooth vector field

may be represented as the sum of a gradient and a divergence-free field. For construction

of Tip which is well-known (see [14]) and its properties we refer the interested reader to

the Appendix.

Now we are in position to construct the new variables P9 and Q, precisely we show

Theorem 22. Assume that u is a weak solution to (2.1) such that

ueC([0.T]9W
1*)

and the mean value of ux is zero. Then there exists a unique pair (PtQ) such that

) , P-n=0

and (/\ Q) is a weak solution of

(2.4')

Thus the transformation reduces the system (2.1) a degenerate parabolic system. The

advantage of the new system is we may now apply methods of semigroup theory to con-

struct solutions. After we solve (2.4) we will recover solutions to (2.1). Before we prove

the Theorem we will show a Lemma we will rely OIL

Lemma 23 The map

div : n2L2nWU2n{Pe W1-2: P-n=0 on dCl} -» L2n{feL2: f/=0/

is an isomorphism of Banach spaces.
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Proof. Obviously div is continuous. It is also one-to-one and onto, for die equation

for P = V$ is equivalent to

The standard Laplace equation theory assures existence of solutions up to a constant (cf.

[26]), thus F=V<() is defined uniquely. Now, the Open Mapping Theorem yields that

div ~l exists and it is continuous, in particular there is a positive constant y such that

TdlPlku^lldivPlt^lllPl^u Q (2.5)

Proof of Theorem 22 Since the average of ut is always zero, it follows from the Lemma

that P is well defined and it is a continuous function of time into Wia. Thus from (2.2)

we obtain that Q is continuous into L2. We now substitute P and Q into (2.1)

divP, = div

We check that the normal component of x=o(P +Q )+Vdiv P at the boundary is zero,

We see that

is divergence-free and its normal component at the boundary of Q. is zero, it thus follows

from the very definition of np (see the Appendix) that

V&vP we obtain

P,=*2CF(P-H2)+VdivP. (2.6')

The equation of evolution of Q we obtain in a simpler way: by differentiation of the

second equation in (2.2)
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QrXu-Pr-wP+Q) (2.6")

Remark. If we want to consider the homogeneous Dirichlet boundary conditions

u=0 on 3Q (2.7)

we may proceed in a similar fashion, defining new variables PD\ and QD

divP^u, QD=Vu-PD. (2.8)

In order to make the choice of PD and QD unique, we require that they be gradients of

functions vanishing at the boundary. In other words we are looking for PD and QD in

TPL2. By TP we denote an orthogonal projection defined as follows

7C
i)v=v<t> $=o on an

and (|> is such that V-TC^V is divergence-free. Thus we have another form of Helmholtz

decomposition. It turns out that TU0 is an orthogonal projection. Properties of T\P are sum-

marized in the Appendix.

We may repeat the derivation of equations (2.6'), (2.6") to obtain

D. (2.9)

di\PD=G at dft (2.10)

3. An Existence Result.

In the present section we prove existence and uniqueness of strong solutions to the sys-

tem

(3.1')

(3.1")
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G(OH2o P-n=O andCl (3.1'")

provided W grows quadratically at infinity, and <r is globally Lipschitz continuous (recall

that o=DW). In order to achieve this goal we will apply results of Henry [20] for abstract

evolution equations with the modified definition of solution due to Miklavtit [28]. The

above equation may be rewritten as

f(z) (3.2)

where z=(PtQ)
• «

f-Vdiv 6[ j
and

At the end of this section we shall show that P and Q determine solutions to the original

equation (2.1).

We use several different norms in this papa. We always make clear which one we

mean by adding an appropriate subscript We note that a subscript being number from the

unit interval denotes the norm on the fractional power of the given Banach space X, we

also use the convention ||ilo=ll°lbr»

We state the main result of this section

Theorem 3.1. Let us suppose a is gjobally Lipschitz continuous. We assume that

QoEifeL2, and PoenJW1* m& Po is such that P0-n=0 at the boundary of Q. Then for

any T>0 there exists a unique (strong) solution of (3.1) defined for 0£r<T with

and P-n=0 at XI for t >0, and



- 14 - Section 3

In order to establish existence of solutions to the abstract equation (3.2) in a Banach

space X we need to know that A is sectorial on X and it is locally Iipschitz-continuous on

Xa into X, for some value of a, 0<a<l. We introduce first some notation, we shall write

y,=V,' , Zp^ftsW1*: UpO} Kp<oo,

and

X=Y2xY2.

For our existence result it is sufficient to establish that A given by (3.3) is sectorial on X

or equivalently, B =-Vdiv is sectorial on Y2. But in the sequel we shall need a more gen-

eral result in our stability analysis of equilibria of (2.1). Thus we shall show that B is sec-

torial on Yp> \<p <» with the domain

We start with the observation that the map

is an isomorphism of Banach spaces. Obviously V is onto Yp% it is also one-to-one

because all the elements of 7y have zero average. This map is clearly continuous, since

II^MIL'^IMIW1-'- On the other hand, if 4 has zero average then Poincar6's inequality

yields

It follows that the inverse of V is continuous.

Let us define

at

then for fyeD (A#) we have

B V^=-Vdiv
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Thus B =-VA^V~1, because V is an isomorphism. We also observe that

In this way we reduce the question pertaining to B on Yp to a problem concerning the

Laplace operator on Zp. In particular the resolvent of B may be expressed in terms of the

Laplace operator

It is now obvious that in order to show that B is sectorial it is enough to prove that

-Atf is sectorial on Zp. In order to accomplish this we will use the fact that the generator

of a analytic semigroup is necessarily sectorial (cf [16], [20]). We are going to show that

-A# generates an analytic semigroup on Zp. It is well known that -AN with the homo-

geneous Neumann condition is sectorial on Lp (see [16]), Le. the estimate

(3.5)

holds for X belonging to a sector

S A. ©=Ae C: (Q< | arg(X-A) | <KfcA}

where ©e (0^c/2), and A<0; and thus -A# generates an analytic semigroup on Lp. We

rather need the semigroup on L*/ l where E=kerA#. It is easy to see that Z//R is

invariant under the resolvent of -A#, thus the space Z//X is invariant for the semigroup

generated by -A#.

Since B generates an analytic semigroup on LPIJL it also generates an analytic

semigroup cm (1*7* )m ([16], [20]). To determine (Z/ /* )1 / 2 we shall use the follow-

ing fact.

Lemma 3-2 We assume that A is sectorial on X with domain D {A\ K=ketA. Then

XV2/K=(X/K)V2.
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Proof. The left-hand-side is well defined; we need to show that the right-hand-side is

well defined and both sides are equal.

We observe that if S X-*X is linear with domain D (5), and SKcK then the map

[S][xMSx]

is well-defined and the domain of [S] is [D(S)] where we denote by [x] the class of

abstraction of x. If in addition S is bounded so is [5 ] and

\\[S]\\<\\S\l

It is easy to verify that if S is invertible and S~lKczK then [S ] is also invertible and

Let us set Ai=A+aI where a is such that o(Ax)>0. We observe that Ajl

because if x € AT then

?x=A? (A j

We conclude that [A ] is sectorial on XIK.

Similarly, we will show that A[r2KcK% consequently [A}/2] is well defined. For

xeJTwehave

AAl / 2xKA+tf0A} / 2x-^r^

Finally, we have to check that [A i]y 2=[Al / 2]. But it is enough to prove

This is clear from the definition of A71/2 since

Continuity of the projection x->[x] implies that we may interchange projection and

Riemann integration.
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By definition Xm is D (A{/2) equipped with the graph norm, we conclude that the

Lemma holds. •

Taking into account that kerA#=fc we obtain from Lemma 32 that

The fact that the space of Bessel potentials Ll+(ZH) is equal to WltP(Jtn)t (see [20],

[37]) and Theorem 6.7 in [15] enables us to conclude

Summarizing, we proved

Proposition 33 The operator B is sectorial on Yp for 1 <p <«>. •

Having established that B is sectorial on Yp for \<p <«>, we turn our attention to

the special case p=2. We want to show that

but first we need to prove positivity of B on Y2.

Proposition 3.4 B is positive definite on n^L2'- there is a positive constant c such that for

(BPJ>)*c\\P\\b

we may take c ^ , where y is as in Lemma 2.3.

Proof. Let us compute (BP,P)

(BP,P) = - f (Vdiv/>,?)=J(divF, div/>>- J (cttvP.P-nHldivPlli* (3.6)
D O &

where by the symbol (*,*) we denote the usual inner product in K" and the inner product

in MRX* the space of nx/i matrices defined by

We apply now the result of Lemma 2.3, this yields
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(BPj>y>?\\p\\b a

We will also need in the future equivalence of various norms, first we show

Lemma 3*5. There is a constant K>0, such that for all P in D (B) we have

Proof. Let us set

V=D(B)

Obviously B is continuous on VintoL2. Moreover, since by Proposition 3.4

the quantity

\X\V=\\BX\\L>

defines a norm on V. The space V equipped with the norm | • | v is a Banach space,

because B is closed. The identity mapping

Id:(V. «-||*u)->(V. | - | v )

is continuous, thus it follows from the Open Mapping Theorem that the inverse of Id is

continuous too. The Lemma follows. •

We are now in position to determine the space Y^2. L^ us take a P belonging to

Z>(£),then

\\P\\l2=(Bv2PrBv2P).

We showed that B is positive and bounded below, hence it is self-adjoint, so is B1/2. We

obtain by (3.6)

\\P\\l2=(BP9P)=\\tivP\\l2. (3.7)

By Lemma 3.5 we obtain that the norms ||-|li/2 and ||-|hvu are equivalent We may con-

clude that
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We may also determine X1'2, since D (A)=D (B)xY2 we conclude thatX1 1 2**^1**? 2.

Now, we check that /given by (3.4) is globally lipschitz-continuous. If a is glo-

bally Lipschitz-continuous with the Lipschitz constant L, then

Since 712 is linear and bounded with norm 1 we conclude

which means that / is globally Lipschitz.

We are now in position to complete the proof of Theorem 3.1

Proof of Theorem 3.1 We have already checked that the assumptions of Theorem

3.3.3 in [20] are satisfied, thus we are provided with local in time existence of a unique

solution z=(P,Q) which is in the following spaces

Actually a closer analysis reveals that (see remarks in the proof of Thm. 3.1 in [32])

Taking components of z we obtain the statement of our Theorem. Since we assume that

a is globally Lipschitz continuous, we can obtain global existence from Corollary 3.3.5

in [20]. We have only to verify that

Recall that

we have
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We may now recover solutions of (2.1). We also determine the smoothness of the

solutions constructed this way. If P and Q are the solutions to (3.1) with initial conditions

Poand2o»weset

T

( ) 0 (3.8)
o

divF is continuous on [0,«) with values in I 2 , thus the above integral, understood as the

Riemann integral, is well-defined. We immediately obtain that

To establish further smoothness of u and to show that u satisfies (2.1) we note that by

Theorem 3.5.2 in [20] if z is a solution to (3.2) where A is sectorial, / is locally

Lipschitz-continuous on Xa
% and zoeXa then the time derivative dzldt of a solution to

(3.2) is a locally H51der continuous function with values in XT, on (fo,f J for any Y <1»

and

(3.9)

holds for some constant C. This fact enables us to prove:

Theorem 3.6. Let us assume that

Then there is a unique solution u of the problem (l.V-V") such that

ueC([0,oo),W1*), a,eC([0,oo)fL
2);

the map t —>7C2cr(V«(r)) is locally H51der continuous with values in L2 and

(3.10)
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In addition the unique solution given by (3.8) has the properties

div (o(Vi«}fVtt,), *2Cr(ViO, Vu»» *«e C*((OtT], I 2 ) , V7>0

for some P>0.

Remark. We note that the solution we construct is almost classical if we write the equa-

tion in the conservative form. Then all the derivatives involved are at least continuous

intoL2.

Condition (3.10) expressed in terms of variables P and Q is necessary for unique-

ness of solutions to (3.1), see [28]).

Proof of Theorem 3.6. We show first the existence. We will show that the gradient of u

defined by (3.8) exists and VUG C ([0,O©), L2). We claim that u is the limit in Wia of u5

where

f
o

Due to Theorem 3.1 the integrand is continuous with values in WlJ2 thus us(T)eWia.

Since V is a continuous operation on Wia we may write

T T

VM 5 (7>Vfdiv/^r) dt +V«0=|

But Vdiv?=(?-H2)f hence

Because of continuity of P and Q we deduce that V«5 is continuous with values in L2. It

is clear that u$ tends to u in L2 as 5—>0; we will show that the convergence is actually in

WU2. We estimate the difference u(T}-u6(T) in WU2

6 6 €

and then

\\\()Wwm ( 0 | | * f ( ) * i * dt,
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6
a rff+fl|VdivP(OllL8 * ) •

The first term is small because divP is continuous with values in L2. The observation

Vdi\P=(P+Q)t helps estimating the second integraL We may apply inequality (3.9) to a

solution of (3.1), we choose y to be 0 < Y < 1 / 2 , cc=l/2. Since ||z||o€c||z|ly we obtain

Because of our choice of Y, the function t'T'in is integrable over [0,1], so are the com-

ponents of zt% Le. Pt, Qt. Thus we obtain

h b b

We conclude that

in other words Ms->u in Wl* if y<l/2. We may now compute Vw

Since the right-hand-side on the above equality is continuous on [0,») we infer that

We note that

r^a^uy^Ur^h^P +j2)+Vdiv p=pt,

inequality (3.9) applied to (3.1) with Y=a=l/2 yields

CP,.G,)eC>«p,r].lP1'*xL2), for some p>0. (3.11)

2. ItimpUesthat
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We may now see that u satisfies (2.1)

The initial conditions are satisfied, u(x,O)=uo(x) by definition of u, and

u,(x, 0)=div/>(x, O)=ui(x) by construction of P. The boundary condition also holds

The fact that

t

Jr1/2lto2O(Vi0llL* ->0 as r-̂ O*

holds since Theorem 3.1 yields solutions of (3.1) satisfying

t

fr-1/2H7c2a(/J-H2)llL2-^0 as r-̂ CT

The statements of smoothness of u follow from (3.11): since Qr=-niG(Su) and

Vur=VdivF=/>
f+j2r we obtain

%2<y<yu\ Vurecp((ofr]fL
2) vr>o (p>0).

Uniqueness. Suppose we have two solutions u and w of (2.1) satisfying the conditions of

the Theorem. By Theorem 3.1 we may construct in a unique way PH, Qu, Pwt QW9 such

that

Since condition (3.10) is satisfied, both (P«,fij, (̂ w.Gw) are solutions of (3.1), thus by

Theorem 3.1 they coincide, and consequently u=w. D

We observe that the equation does not smooth out the initial data very much: TC2<T(VK) is

merely in L2 , though the stress T/=7t2a(Vtt)+VKr is smoother (it is in W1*2).
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We close this section by showing an analogue of Theorem 3.1 for Dirichlet boun-

dary conditions. Thus the presented above development does not depend on the type of

boundary conditions, provided we can construct an appropriate projection n. Since our

goal is limited to showing existence we may give a simpler argument. We shall establish

Theorem 3.7 Let us assume that a is globally Iipschitz continuous, QD
0ex?L2, and

PDQ£*PWI:Z and PD
0 is such that d ivF^o^ at the boundary of ft. Then for any 7>0

there exists a unique (strong) solution erf (2.9) (2.10) defined for 0£f <T with

such that div PD=0 at 3ft for t >0, and

Gx>eC1([O,r]fic
DL2).

Proof. The proof goes along the lines of proof of Theorem 3.1 with only minor changes.

The main step is to show that the operator f^^Vdiv in UPL2 is sectorial. The domain

D(BD)=7^L2nW^2n{PeW2:i:diyP=C at

Since we intent to work only with p=2 we may show a simpler version of Lemma 3.3.

As before, we use an array of inequalities analogous to that of Lemma 2.3 and Proposi-

tion 3.5, they are

(BP,P) Z c||P||£2 VPeD (BD)

ZWBPHLt&UPWwv VPeD(BD)

We skip their proofs since the same type of argument is used.

i

We will prove that in fact BD is self-adjoint

Proposition 3J6BD is self-adjoint
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Proof. The domain D(BD) of BD is dense in TPL2. We note first that

TPL2={V$: 4KE WU2Q}. Thus, if we take an element P=V<J> of iPl2 then there exists a

sequence {<J>J of functions in Co(Q) converging to 4> in W12. Since ^ have compact

supports then A4>n vanish at the boundary of H.

The operator BD is closed as the inverse of a continuous operator (£ D )~ \ this fol-

lows directly from the inequalities above. We also saw that BD is positive

D , VPeD(BD)

for some positive c. Hence B^ is self adjoint (see [23]). •

Since self-adjoint operators are necessarily sectorial (see [20]) we may repeat the

rest of proof of Thm 3.1 to complete Thm 3.7. D.

Existence of a unique solution to (2.1'), (1.10), (2.1") comes as a corollary to

Theorem 3.7 and it is shown along the lines of the proof of Theorem 3.6. The statement

of Theorem 3.6 requires only trivial modifications.

4. Long time behavior for arbitrary initial data

Having established the existence of dynamics we wish to study the long time behavior.

Unfortunately, we are not able to show that the limit as t goes to infinity exists, as it was

possible in the one-dimensional case. We show a partial result in this direction, namely

that P and w^C^+G) converge to zero in W2* and in L2 , respectively. These results

correspond to those of Pego [32] and Andrews and Ball [4]. We may rephrase them in

terms of K, the solution to (1.1), as follows: u,->0 in Wl*9 and div (G(VK)+VU,)-»0 in

L2 . We cannot say much about the behavior of a(F-H2) because in constructing system

(3.1) we lost information on the divergence-free part of a, Le. (/-7C2)a.
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We assume throughout the section that W is C4 and D2W is globally bounded with

c, C ,D>0 (B)

We first prove an energy estimate for (3.1). It shows that the total energy (kinetic plus

elastic) is dissipated by the system.

Proposition 4.1. Let us assume that W satisfies the growth condition (B) and that (P,Q)

is a solution of (3.1) as in Theorem 3.1, then

T
\ [ \ ( y 9 ) \ ( ^ ) y ) } y l l \ y ) y (4.1)

J [ | o ( y ) | ( o ^ o ) 0 0 ] ^ const.
Q

Proof. The proof is rather standard. We observe that since

)X j2eC([0,rU 2(f l ) ) 5>0

(Thm 3.1), it follows that the integral

t

J [ ( y ) | ( H 2 ) 0 0 ] y | 0 , s ) | 2 d y < i r 6>0 (4.2)

is well defined and finite. Again, from (3.9) applied with ot=y we know

so that we can differentiate (4.2) with respect to time. We obtain

^ j ivP \2}(y,t)dy
Q

We integrate by parts the first term, and use P(+Qt=VdivP:

^(r)=fVdivF(/rKT(?H2>HVdiv/)dy+ f (divPt/Vn>iS =0.

The boundary integral drops out since Pn=0 at the boundary. The first integral is zero

since (3.T) holds and (T^c^Vdiv/^cVdivP) due to properties of %. We conclude

then M (t) is equal to M (5), and
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M (5)= f [V4 |div?(y,8) \2+W(P+Q)(y,$)] dy.
Q

divP is a continuous function cm [0,7] into L2, and taking the norm is a continuous

operation, thus r-^JldivP | dx is continuous. It is a well-known result (see [24]) that

condition (B) implies continuity of the composition W(P+Q) as an operator from L2 into

L1 . We conclude that t-*]W(P+Q)dx is continuous since P9 Q are continuous into L2 .

Thus we can pass to the limit S->0. Finally

T

J[^|divP(y,70l 2+W(P^)(y,71]^ +

Since

T

increases in time we see that

i\P(y,t)\2dydt

is a Liapunov function for system (3.1): dL {t)ldt<Q, and in particular

d\Cl\+[W(P+Q)(ytT)dy£L(0)<oo.
a

Before we study long time behavior of P and J^a we establish a preliminary,

rather crude estimate.

Proposition 4.2. If the growth condition (B) is fulfilled then Pf Q and consequently

%a(P +2) are bounded in L2 . the bound being independent of time.

Proof. Lemma 3.5 states that

IT1 llPHwu^lldivFlt^KllPl^u.

From Proposition 4.1 we know that HdivPll̂ a is bounded independent of time.
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Combining these two facts we obtain that the L2-norm of P is bounded independent of

time.

The boundedness of Q follows from Proposition 4.1 and boundedness of P

Q b

thus

Finally the boundedness of ttyXP+Q) is a result of a being globally Lipschitz-

continuous:

The following lemma is a very useful source of estimates. This is refined version of

Theorem 3.52 in [20] and it is due to Pego [32].

Lemma 43. (Lemma A 3 in [32]). We assume that A is sectorial on a Banach space X,

/ :t/-»X is locally Lipschitz continuous on an open set UdRxXa for some 0<a<l, and

z (0 is a solution on (to,T+to] of

z=/(f,r), z(to)=zo

with (f o,z<>)e U- ̂ e assume

Then for any ( k ^ l , there exists C»=C*(a,Y,rX) so that for 0<t0<t <r+ro

Q

One of the consequences of the Lemma is the following bound which we will need

later

Lemma 4.4.

||Vdiv P\\i2<const <~, for f £1.
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Proof. The proof is an application of Lemma 43 to system (3.1) where A is given by

(33) and / i s defined by (3.4). We set oe=¥=V4, and 7=1, in our context £=0. In Proposi-

tion 42 we showed that IfaoCP+gHk* is bounded, hence so is ll/"(z)llo. A bound on

IMI1/2 is also known: from (3.7) we obtain

next, Proposition A2 and (4.1) give a bound on the right-hand-side. If we add up the

components of z{={Pt,Qt) we obtain a bound on (? -fO^VdivP. •

The plan of the proof that P goes to zero in W2* follows the idea of Pego [32]. We

start with the observation that in order to show that a continuous function v(r) with

values in a normed space X goes to 0 as r->» it suffices to prove veL 2(*+;X) and

HHKOIl i^ <°°- We will apply this fact to prove ||P|byu ->0 and I I J ^ C + O I I L 2 ->0-
at

Then we apply Lemma 43 to show decay in W2*1. Our proof that

n2<y(P+Q)eL2QL*; L2) generalizes an argument of Andrews and Ball [4].

Proposition 4.5. If in addition to the assumptions of the existence Theorem (Thm. 3.1)

we impose the growth condition (B), then the following is true

Proof. From (3.9) we know that P, is sufficiently smooth to take the divergence for t >0:

We can take the inner product with a function <beCldS9T]tW
1*) and integrate over

Qx[8,r]. After integrating by parts we obtain

T

-fJ(* l fdiv/>)dirt+J(*^ (4.3)

T T

-f f[(V<fr,7i2a(P-H2)HV^,VdivP)]dxdt+f f (<&,(*2a(P +fiKVdivP)-n)dSdt
in l&x

We take <I> such that VCfc=n2̂ (̂ >-H2) and to make flie choice unique we impose
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= 0. (4.4)

Theorem 3.1 guarantees that <1> has the desired properties. Then the first term on the RHS

of (4.3) is just what we want to study

T T

-ff dt

The third term on the RHS drops out due to the boundary conditions. The second is

r r
Jf7t2CT(/5^)VdivPdxdf=JJ%a(P^X^r^r)<i«i=J^(i'-H2X7>ix-fW(P-H2)(5)ic
in ta a a

and it is bounded since the elastic energy is bounded. We used here the fact that

(7t2v,V4>Hv,V<t>).

The third term on the LHS is a constant The second is bounded since

'£'

We used here (4.4), Poincar6*s inequality and boundedness of lldivPl^a (Proposition 4.1)

and \\K2C(P -H2)IL2 (Proposition A2).

We estimate the first term on the LHS in the following way. We observe

which is a consequence of (4.4). Then by Poincar6's inequality we have

is differentiate in time and

Hence by Schwarz's inequality

T
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Since we assumed that the derivative of a is bounded, we obtain

T T

I ff<D,div/> I^LCfllVdivPlta-lldivFti.

The mean value of div P over Cl is zero, so by Poincarfe's inequality

lldivPI^^CHVdiv?^!. (4.5)

Then

T T

<btdi\Pdxdt

We have proved that

T

with a bound that is independent of T.

The time derivative of IteaCP+G)!!!2 is also bounded:

By Schwarz's inequality and Lemma 4.4 we get

Knowing that

we deduce that

lim lt%a(P+2)11^2=0. Q

Unfortunately, we are not able to determine the behavior of cr(P-H2). The problem is
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that we do not have any information on (J-ih)o(P+Q).

We proceed to study P. The following Theorem is another application of Lemma

4.3.

Theorem 4.6. Assume that W satisfies the growth condition (B) stated above. Then for

any initial data (Po*Qo)eihWl*xji2L2 the solution (P,Q) of (3.1) has the properties

it2a(/>+j2)+VdivP->0 in Wl* , P-»0 inW2* asr-*0

Proof. We will show first that P decays in Wl^-topology. We know by (4.5) that

T T

\\\6i\P\2dxdt<£\\\VdivP\2dxdt<£{M+\d\\Cl\).
oa OQ

which combined with Lemma 3.5 yields PeL2(E+; Wia(Q)). It remains to prove the

boundedness of the time derivative of ll^lto^ •

We will now invoke Lemma 4.3: we set

i, and K=O, we take 7=1. We have already established in Lemma 4.4 and in Pro-

position 4.2 that

supllz|li/2<C iuplir(z(r))||<C

the constants are independent of time. Thus Lemma 4.3 gives us that

n/MhvwSC Vr>8.

Summarizing, we know

and the time derivative of IIPIIw1*2 is bounded,
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We conclude that

In order to show the decay of \\P\\w2* we claim that Lemma 4 3 is applicable to the sys-

tem

where £=-Vdiv, and g (tJ>y=K2GQ2 (f}+P). We already know that the operator B is sec-

torial on Y2 (Proposition 3.3), also we have established

The non-linear term is Lipschitz-continuous,

II* (t,P (t)yg (s,

sLW oy-p (S)\\WV>+L sup \\Q,\y \ t-s \
t>s

U~s\=L\\P(tyP(s)\\w»+LK(s)\t-s\

we set

p p
t>t t>s

We may then apply Lemma 4.3 with y=Cb=lA and 1=1. Then we have for t

sup

We let f o go to infinity. Then the right-hand-side of the above inequality goes to zero,

since llPlbp1-2 —>0t and ifooiP -H2)IL2 —>0 (Preposition 4.5). As a result we obtain

and

In virtue of Lemma 3.5 the H^-norm of P is bounded by KUVdivPl^i thus the Theorem

is proved. •
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We may rephrase the result in terms of u:

Corollary 4.7.

*,->0 in W1*2 and div (o(Vj<)+Vj<f)->0 in L2 Q

Remark. We note that the results of this section, in particular Corollary 4.7, are valid

also for Dirichlet boundary conditions, the proofs presented here do not need changes.

We have used extensively Poincait's inequality, we may do so again due to the boundary

conditions which elements of TPL1 satisfy and the fact that for solution PD to (2.9) and

(2.10) the condition

holds at the boundary (Theorem 3.7). Only in Proposition 4.5 we replace the normalizing

condition (4.4) by the following one

0=0 at 3tt.

5. Stability of equilibria

In the present section we study stability of certain equilibria of (2.1). In particular we are

interested in showing stability of local strong minimizers of the energy /

Q

We have constructed dynamics in W12 the space of finite eoergy, provided that the initial

data (u (x, 0),u,(x, 0)) are in WltZxL2. Thus it is natural to consider stability in this space.

Furthermore, our dynamics provides an essential ingredient for a potential-well argument

for proving stability. Actually, we show that proper local strong minimizers of / are

stable. For the argument to work we need an assumption on W consistent with existence

of energy minimizers. Roughly, we require that W be "strong quasiconvex". Strong

quasiconvexity of W dampens oscillations in gradient of minimizing sequences of /, thus

it forces weak and strong convergence to be equivalent (cf [12]). In our proof we use a
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potential-well argument presented by Ball and Marsden [6].

We also show exponential asymptotic stability of smooth equilibria for which

merely the second variation erf the energy 62/ is positive. Moreover we need W evaluated

at the equilibrium state to be elliptic. This result corresponds to that of Potier-Ferry [33]

with the exception he worked with Dirichlet boundary conditions.

We prove our result by using the linearized Stability Principle (LSP), one of the

tools available within the framework of semigroup theory. That is, to show stability of an

equilibrium it suffices to establish that the spectrum of the linearized operator is in the

right-hand half-plane separated away firom the imaginary axis. For the LSP to work we

have to change the underlying function spaces. Now, the admissible perturbations must

be in W2** p >n, Le. gradients of perturbations must be continuous. We are thus forced to

show a new existence result, at least for initial values close to the equilibrium.

The method of proving asymptotic stability works not only for smooth solutions

but also for a family R-{qE) of states with discontinuous gradients. The family R is in

Wlt2, gradients of all elements qE have at most two values F, GeM***. Working with

equilibria firom the family R imposes some restrictions on behavior of W near the minima

F and G. For the linearization argument to be correct W must be of the same shape in

some neighborhoods of F and G.

The physical interpretation of our result is that at least for some equilibria of (2.1)

which contain two or more phases are asymptotically stable under perturbation, provided

the perturbation does not move the interface separating the phases.

It turns out that our asymptotic stability result for R is false if we admit perturba-

tions merely in W1*1. The reason for that is, if n>l then W1*2 is not contained in the

space of continuous functions. In fact for any qE^R we can find in any W1*2-

neighborhood of qE another dement of the family R .

We show first stability of proper local minimizers of /. We do not touch upon the

issue of existence of such minimizers which is beyond the scope of this paper. Our
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precise result is this.

Theorem 5.1 We assume that W satisfies the conditions:

W(&=G£}+\\k\\ SeAf**", X>0 (a)

G is quasiconvex, 0<G (£)<A(1+1 £ | 2 ) (P)

for some constant A. We also assume that the equilibrium point u0 of (2.1) is a proper

local minimum of the functional /. Then for a given e there is a 8 such that if the initial

data (u (0),u,(0))e WiaxL2 for equation (3.1) satisfy

and f[Vi|u,(0)|2+W(Vu(0))] < f

then

V/>0.

Our result is in the spirit of BaD and Marsden, who prove a similar result for polyconvex

W.

We will first recall the notion of potential well. According to Ball and Marsden [6],

we call ueWlt2 a proper local minimum of / if there exists e>0 such that /(v)>/(w)

whenever 0<||v-tt||wu££. An element ue Wia lies in a potential well if for all e>0

sufficiently small there exists Y(e)>0 such that

/(v)-/(K)>Y(e) whenever Hv-K|tau=€

The key observation in the proof of the Theorem is Proposition 4.3 in [6] rephrased as

follows.

Proposition 52 (Proposition 4.3 in [6]). Let ue fae W1-2: j^=O} lie in a potential well.

Given e>0, there exists 8>0 such that if (u (0),ur(0))€ W^xL 2 with

f[^|uf(0)|2+^(Vw(0))] < fand f[^|uf(0)|2+^(Vw(0))] < f^(Vi/0)+5 (5.1)
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then ||u (r)-ttolL2 <e for all

Before we give the proof of our Theorem we recall the definition of quasiconvexity. We

say that W(£) is quasicon vex if for some fixedptl<p<oo (we takep =2) Wsatisfies

(5.2)

for some constant F and all £e M ***, and

fW(A)<JW(A+V<|>)
o o

for all open 0 c E \ AeMKX", ^W^iO,**). It is a well-known result that if W is con-

tinuous, and it satisfies (52) then the functional / is weakly sequentially lower semicon-

tinuous on WltP(QLjL*) if and CKily if W is quasiconvex (cf. Morrey [29], Acerbi-Fusco

[1]).

We will see that undo* the hypothesis of Theorem 5.1, weak convergence is

improved to strong. The following Proposition may be found in [12].

Proposition S3 Let us suppose IP satisfies assumptions (a) and (p) of Theorem 5.1 Then

uk-*u weakly in WUp and I(uk)^>I(u)

implies

uk-*u strongly in W1* Q

Proof of Theorem 5.1 We have to show that conditions (fi) and (a) imply that u lies in a

potential well. Let us suppose that it is false, we can find then a sequence uke W1*2 such

that

Because of the growth condition (p) we info- that uk art bounded in Wia, thus we can

subtract a weakly convergent sequence, again denoted by ukj with limit v. The norm in

WU2 is weakly sequentially lower semicontinuous, thus ||w-v||wu^e. We assumed that u

is a proper minimum of / and / is weakly sequentially lower semicontinuous hence «=v.
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We may apply now Proposition 53 to conclude that uk->u strongly in Wia, which is a

contradiction. Thus u lies in a potential well. We observe that Theorem 4.6 guarantees

that ut->0 in Wia. Finally, we apply Proposition 5.2 to complete the proof of Theorem

5.1 •

Having proved stability of proper local minimizers of / we turn our attention to

those smooth equilibria u for which the second variation of the energy 82/(u) is positive.

We also relax our assumption on W. We no longer need W to be strongly quasiconvex

(i.e. we no longer assume (a) and (p)). Instead, we require that W evaluated at u be ellip-

tic. Since we relaxed our assumption on W we restrict admissible perturbations of u, they

must be in W2*, p>n, i.e. gradient of pertuibations are now continuous. We first

observe that equilibria of (2.1) satisfy

divcr(Vu)=0 in ft, a(Vu)7i=0 at 3ft.

It follows from the construction of np that the above equation is equivalent to

Hence equilibria of (3.1) must satisfy

We may now formulate our stability result for equilibria of (3.1). We set

Theorem 5.4 We assume that W: M*x"-»l is smooth, and it satisfies the growth condi-

tion of Theorem 4.6

rf+c|^|2<wa)^D-K:|^|2 c,C,£>>0. (B)

A smooth equilibrium state (0,Q0) of (3.1) is asymptotically stable in X%% for any p >n,

l>ool/2if

j 2 g 12 (y)
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hold.

Proof. We first linearize system (3.1). If we subtract from the equation (3.1)

Pr=Vdiv P+K2O(P +Q)

the steady state equations then we obtain the system for (5P.5Q) where 5P=P-P 0 ,

&Q=Q H2 o, we know that P 0=0,

iv 5P+^ (5^+52) (5.3)

the term ^ is defined below

We may rewrite this system as

where g(z)=(g (z),-g (z)), and z=(67>,6j2). We also define S as follows

where

(5.4)

We proved in Proposition 2.1 that B is sectorial on Yp and consequently A is sectorial on

Xpt where Xp=YpxnpW
ljf. Since 5 is a bounded operator on Xp we conclude that A -5 is

sectorial as welL We may also apply Theorem 1.4.6 in [20] to conclude that the domains

of fractional powers of A and A -S are identical. Thus in particular
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We want to show that g is locally Lipschitz-continuous on X% we first establish the fol-

lowing Lemma

Lemma 5.5 The function g iW^-tW1* as defined by

where the composition Do[Q 0) is smooth, has the properties

1° g is locally Lipschitz-continuous on WUp with values in Wlj>;

2° lfheY%\h&i\\g(h)\\w*=o(\\h\\Y;) a>l/2

Proof. We use in the proof the standard results on differentiability of composition

operators in Sobolev spaces (see [36]).

We set

for he WltP in an neighborhood of zero. Since the map A—XT is differentiable we obtain

that

Moreover, E itself is continuously differentiable and DZ(0)=0 so E is Lipschitz continu-

ous in a neighborhood of 0.

We note that from the construction of the projection np and from the elliptic regu-

larity theory follows that Kp is continuous not only on Lp but also on Wl+. Thus the first

statement of the Lemma follows. In order to complete the proof of 2° we observe that

embedding theorem 1.6.1 in [20] implies IWhru^lWlyj if c o l / 2 . Thus

a

Since X^c^KpW1^)2 for col/2, it follows firom Lemma 5.5 that g is locally lipschitz-

continuous on X° and

(5.5)
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We may now invoke Theorem 3.3.3 in [20] to conclude existence of kxal in time solu-

tions to (5.3). Proceeding as in the proof of Theorem 3.1 we conclude that

It follows from (53) that we may linearize (5.3). Thus we turn our attention to

study of the spectrum of AS. Our ultimate goal is to show that the real part of spectrum

of (AS) is positive and separated away from 0. But first we have to investigate sp(A).

Certainly, sp(A)=sp(B)v{0}. It is natural to expect that B being equivalent to the Laplace

operator will have pure point spectrum. As we saw the problem

is equivalent to

-A<H4=/, 3<t>/an=0, (5.6)

where J/=0. We can take Ao belonging to the sector Sj^ W then the estimate (3.5)

holds. The a priori estimates [2] give us

Combining these inequalities we obtain

. (5.7)

In other words the map /—>4> is continuous. It means that the resolvent operator

(-A-Xo)""1 exists and it is continuous from Wl* to W** and consequently it is compact,

because the embedding W3*c:WltP is compact by the Rellich-Kondrachov Theorem. It

follows that (B-Ao)"1 exists and it is a compact operator from Yp into itself. The spec-

trum of a compact operator consists entirely of eigenvalues of finite multiplicity and at

most one limit point at 0. Therefore the spectrum of B is pure point, and the limit point is
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at infinity. We have to rule out possibility of negative eigenvalues of B. We assumed

that p >n >2, then LpcL2. If there is an eigenvalue X, with non-positive real part, and

Bv-\v=O

holds for some vector v*0, then we can compute the inner produa of the above equation

with v. The result is

CBvfv)-X||v|lL»=O.

After applying Proposition 3.4 we obtain

which forces X to be real and

We also need to know that

/teC:ReX<p;cp(V,) (5.8)

for V defined by (5.4) acting on npW
lj>. We introduce the notation

M=DG(Q0)

What we already know is that

(7C2Mx^c)=(Mx>x)̂ Pllr|ll2 , xeY2

which is due to assumption (y), so (5.8) holds on Y2 .

It follows directly from the definition on T^ that the problem

*,(M-X)x=y (5.9)

where x, yenpW
ltP is equivalent to the following one, where we set x=V$, v=V/

. div((M-X)V<)>)=A/ (5.10)

Because of assumption (e) the above problem is elliptic. Since (5.8) holds for p=2, so if

ReX<p, yenpW
ltP then we have a unique solution x to problem (5.10) belonging to Y2.
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We have to show that in fact x is in npW
l*. We can take the inner product of (5.9) with

any element t of Y2

Since fev,Vy)=(v, Vy) we obtain for r=V\p

Because ye W1* we can integrate by parts the second integral

We thus obtain that <|>e W1* is a weak solution to equation (5.10). The standard elliptic

regularity theory (see [21]) implies thai 4> is in W2*. The a priori estimates give con-

tinuity of the map V/-»V<|>. Hence, the inclusion

is valid for V acting on np\

Our proof that sp(A S)>c >0 takes advantage of some ideas of Pego (cf.proof of

4.1 in [32]) in a simplified form. First of all we establish that the essential spectrum of

AS is bounded away from the imaginary axis. Thai we shall show the same thing for

eigenvalues of AS. Following [32] we decompose S as SPSQ where

Since 0 does not belong to spectrum of B nor Vp it is possible to write down explicitly the

inverse operator for

which is
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We have remarked earlier that due to a priori estimates (see (5.7)) the operator B~l is

compact In virtue of the form of the operator (A-SQ)~l the composition SP(A-SQ)~1 is

also compact Thus, S? is a compact perturbation of AS Q and hence by Theorem A.1 in

ch.5 in [20], sp w (A-S)csp w (A-S c ) . Due to the block structure of A-SQ we conclude

that sp«,(A-Sc)csp(\0. In addition, we know by (5.8) that the spectrum of Vp is

separated away from 0.

At last we have to check that there is no eigenvalues of A -S in the left half plane.

Let us write the equation for eigenvalues for A -S

or

(5.11')

, , (5.11")

We may assume X*0 otherwise we conclude Vpdbvyy=O and 2?<t>=0, it follows <J*=\y=O.

We can add together equations (5.11)

and solve the above equation for \p

We insert the result into (5.IT)

Since Lp is a subspace of L2 we can take the inner product withB$

(5.12)

If the real part of X is non-positive, then the real part of the RHS of (5.12) is non-positive

while the real part of the LHS of (5.12) is strictly positive, because I I S ^ ^ H ^ (Pro-

position 3.4) and Vp is positive. This contradiction proves claim that there is no
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eigenvalues in the left half plane.

We may finally invoke Theorem 5.1.1 in [20] to complete the proof of our

Theorem. For initial data sufficiently close in X% to the equilibrium (0, Go) solutions to

(3.1) exist for all times and we have the estimates

where zo=(O, Go)- In other words,

W (Oliry^C^die (O}-Qo\\wi+ ^

and

112 (tyQo\\w^<Ce^(\\Q(Oy-Qo\\w^\\P (0%),

provided ^ ( O ^ o l l ^ + I ^ O ) ! ^ is small. •

Now, stability of equilibria of (2.1) comes as a corollary to Theorem 5.4.

Corollary 5.6 If u0 is a smooth equilibrium of (2.1) such that the conditions (y) and (e)

hold, then u0 is exponentially asymptotically stable. Precisely, if the perturbation

(u (x, 0y-u0iut(x, 0)) is small in W^xW1* then

and

for some positive C and 9.

Proof. We assumed that ut(xt 0) is in Wl*9 it implies that P(x, 0) is in WXp and thus in

Y% for col/2. We may use the results of Theorem 5.4.

The solution u of (2.1) is given by the formula

T

u(T)=ldi\P(t)dt+u0.
o

We take gradient of u,
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We showed in Theorem 3.6 that it is possible to interchange integration and differentia-

tion. Since VdivP=(P+Q)t we obtain

where we set Q0=Vu0. Theorem 5.4 yields

IIVU oy-vu0\\w*

By Proposition 2.1 it follows that the space average of u must be equal to the space aver-

age of u0. We also set the average of u0 to be zero (assumption (A)) thus by PoincarS's

inequality we estimate the the difference u-u0

finally

I" Cn-uobp*ZCe-

and

The method of the proof of Theorem 5.4 yields another result, namely stability of a

family R to be constructed, of equilibria with discontinuous gradients. The idea is to

make the composition Dc(Q0) smooth. We will achieve our goal but at the expense of

an additional assumption on W. But first we construct the family R .

Let us suppose that W has two local minima at F and GeM***, where F and G are

rank-one related, i.e. the condition

rank(F-G)=l

holds. Since DW(F)=CT(F)=0=<T(G)=D^(G), then (0,F) and (0,G) are steady states of
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(3.1). Because F and G are rank-one related then there exist vectors a and ne\n such

that

F-G=a®n.

Let us choose E an open bounded subset of E, E is then at most countable union of open

intervals. We set

We claim that QE is a gradient of an absolutely continuous function. If so, (0,QE) form a

family of equilibria of (3.1) since aG2£>=0. In particular, if VqE=QE then qE are steady

states for (2.1) because the boundary condition (2.1") is satisfied.

If |E-E'| is small, (|-| is the Lebesgue measure), then WQETQETWL1 is also small

because of the continuity of the integral with respect to the set of integration. This means

that in any L ̂ neighborhood of a fixed QE we can find a steady state Q? . It follows that

in W1*2 asymptotic stability fails for qE. We note that the example is valid for any

bounded domain £1

We prove now our claim. We define

The definition is valid since E is bounded. Then \yE' = Xs a.e. We also set

We see that qE has zero mean, and
i

a.e.

The L2-perturbations of QE (the Wl^-perturbations of qE) allow the discontinui-

ties of the equilibrium point to move, and this is responsible for the lack of asymptotic
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stability. We observe that if W(F)±W(G) then the qE need not be strong local minimiz-

ers, despite positivity of 52/(^£). Nonetheless, we show a kind of stability for qE, but

only for continuous perturbations, under which discontinuities do not move. We first

prove stability of QE.

Theorem 5.7 We assume that W: M ***->& is smooth, it has two local minima at F and

G, such that rank(F-G)=l. The growth conditions as in Theorem 5.4 are satisfied. In

addition we assume

, |£|<8 W(F+\y=W{G ^constant \ (5)

\D2W(QE)(yhyh)>V\m\b VfceW1-2; (y)

Then all the equilibria (0,QE) are asymptotically stable under perturbations in X%, p >n,

ool/2.

Remark. Since ool/2 the space X% is embedded in (W1*)2. Because p >n the allowed

perturbations are continuous, and they do not move discontinuities of QE. The condition

(5) means that in a neighborhood of the minima the stored energy function has the same

shape. Since QE has only two values the assumptions (y) and (e) pertain only to the pro-

perties of W at the local minima F and G.

Proof. As in the proof of Theorem 5.4 we may subtract from (3.1) the equations of

steady states to obtain

(5.13)

where

We observe first that due to assumption (6) and the fact that Qo has only two values, the
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composition DG(Q0) is smooth. Moreover, if ||A||wl* is so small that P I I L - < 6 then the

function g (h) is in WltP and Lemma 5.5 is applicable. Thus the above system considered

for z=<5/\5j2) with the initial data in X% has local in time solutions by Theorem 3.3.3 in

[20], and

We want to study stability of zero solution to (5.13). By Lemma 5.5 the linearized

system is

We may proceed as in the proof of Theorem 5.4 to establish that

sp(A -S)<z{ReXtc >0}.

We may do so since in the proof of this fact we only used smoothness of Do(Q0), (8)

and (e). Hence we conclude existence of solutions to (5.13) for all times and existence of

positive constants M and p such that

IK8P (0,52 (tMaZMe

provided ||(SP (0),52 (0))Ha is sufficiently small.

Let us define

F=5P,

If we add to (5.13) the equation of steady state

then taking into account the definition of g we obtain
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in other words, P, Q as defined above, satisfy (3.1).

Let us assume that at the initial time the data for (3.1) are (SP,62+Qo)(O) where

(6P, 62)(0)eX£. Theorem 3.1 guarantees existence of solution (P9Q) to (3.1) far all

times. Due to uniqueness of solutions of (3.1) we conclude that (SP.SgM^Q-Go) is

in X%. Thus we have showed that if initially a small perturbation belongs to X% then it

stays in this space for positive times.

Since we have already proved that (5P.52) decays exponentially to zero in X£ we

have completed the proof of die Theorem. •

The result of Theorem 5.7 may be readily used to prove stability of qE belonging to

/? .

Corollary 5.8 Under the assumptions of Theorem 5.4 die equilibria qE of (2.1) are

exponentially asymptotically stable. Precisely, if the perturbed state (K(X,0),U,(X,0)) is

such that (u (x, 0}-qE,ut(xt 0)) is small in W^xW1* p >n then

and

for some positive C and G.

Proof. Proof is entirely analogous to the proof of Corollary 5.6. •

A c k n o w l e d g e m e n t This paper is based on the author's Ph.D. thesis [35] written at

New York University under the supervision of Prof. Robot V. Kohn. I wish to thank him

for his advice and constant support along the way.
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Appendix

We briefly recall the results of Fujiwara and Morimoto on Helmholtz deccxnposition

[14]. They showed existence of the decomposition for vector fields in Lp. In fact, their

ultimate goal is to construct a continuous map Pp±
p-+Lp

$ \<p <*©, the projection onto

the closure of the set of smooth divergence free vector fields vanishing on the boundary

of a region. However, it follows from section 3 in [14] that if we set

we obtain the desired projection. np is a continuous projection with the following proper-

ties, if v is in Lp then npv=Vfa for some $e WltP. The 4> is the sum fa+fa. Here fa is the

solution to

A4>i=divv, in a, $=0 on 3Q, (A.1)

moreover, the estimate

IWhllw^^CIML/ (A.2)

holds. And fa the unique solution to

(7UH ^ r l

Afa=4) in Q, =v*/i at XI

satisfying the estimate

on

It follows from the construction (see [14]) that

(v-JCpV)7i=0 on dCl and div (y-npvy=O in Cl.

We also have

and
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where lip+1/^=1. If p=2 then % is an orthogonal projection and T^L2 is orthogonal to

We define 7^ in the following way, for veL2 we set

where <fo is a unique solution of (A.1). The estimate (A-2) establishes continuity of TP . It

is a matter of easy integration by parts to show that TC0 is an orthogonal projection.

We may also define the projection for tensor fields. Suppose we are given a tensor

field VeLp(ClMHX*)

v

where vj are the rows of V, then we set
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