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1. INTRODUCTION.

DAVINI [4] and DAVINI & PARRY [5, 6] introduced a model for slightly defective

crystals where non-elastic defect-preserving deformations are called neutral and generally they

involve some kind of rearrangement representing the slip mechanisms of the classic

phenomenological plasticity theories. Neutral deformations can be factorized into components

which are exclusively elastic at the macroscopic level or exclusively slip at the microscopic level.

Essentially, a neutral change of state of a perfect crystal corresponds to a lattice matrix

L(u(x)) = Vu(x){Vv(x)}-i,

where u is the elastic deformation of the reference configuration Q Q [R3 into u(Q) and v represents

the slip or plastic deformation with det Vv = 1 a. e. in Cl.

Taking the viewpoint that equilibria correspond to some kind of variational principle, in

DAVINI & PARRY [4, 5] and in FONSECA & PARRY [10] the implications of including in the

class of admissible variations the neutral changes of state were analyzed. Precisely, FONSECA &

PARRY [10] considered the minimization of the total stored energy functional

E(u, v) := fw(Vu(x){Vv(x)}-1) dx (1.1)

where W represents the strain energy density in the class of admissible pairs

& := {(u, v) G W ^ ^ D R ^ W 1 * - ^ ^ 3 ) ! u = uo on 3Q, det Vu > 0 and det Vv = 1 a. e. in Q}.

Of course, S& includes the elastic deformations in the case where v is the identity map. Formally,

minimizing E(.,.) in s& involves variations of the reference domain ; indeed, setting co := u (v1)

the integral (1.1) becomes

W(Vco(y))dy.£,
As it is well known, the bulk energy W for ordered materials is not quasiconvex (see

ERICKSEN [7], , FONSECA [8], KINDERLEHRER [11]) and so, the functional E(.,.) is not

lower semicontinuous. Hence, we cannot use the direct methods of the calculus of variations in

order to obtain existence of minimizers of the energy and in general, such minimizers exist only in

the generalized sense. Using the parametrized probability measures of YOUNG and the theory of
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compensated compactness of MURAT & TARTAR (see TARTAR [12]), FONSECA & PARRY

[10] examined the behavior of minimizing sequences for defective crystals and their state

functions.

In this paper we study the existence and regularity properties for minimizers of (1.1) where

W satisfies some convexity assumption. It should be pointed out immediatly that the direct

methods of the calculus of variations fail to apply to this problem. Indeed, sequential weak lower

semicontinuous of E(.,.) (see Propositions 3.8 and 3.10) is not sufficient to ensure existence of

minimizers. Precisely, setting

W(X) =
N

where IIXII2 := j , X y, we shall establish that minimizers exist if and only if r > N (See Theorem

2.2 and Proposition 4.1). This is in sharp contrast with the usual Dirichlet problem of minimizinginf{ JllVu(x)llr dx I u = uo on dQ, u e
d

which has solutions for every r > 1. Surprisingly the problem behaves in fact very similarly to

(Q) inf { fldet Vu(x)lr/N dx I u = uo on

(cf. Corollary 2.5 and Proposition 4.3). This is in agreement with the continuum theory for elastic

crystals where it can be shown that, due to the crystallographic material symmetries, the relaxation

of the bulk energy depends only on the determinant of the deformation gradient (see ERICKSEN

[7], FONSECA [8], KINDERLEHRER [11]).

Another interesting feature of this problem is that, under some convexity-type hypotheses

on W satisfied by W(X) = IIXIIr, r > N, there are solutions (u*, v*) verifying

Vu*(x){ Vv*(x)}-1 = Xo for every x e Q,

where Xo is a constant matrix. In the case where W(X) = IIXIIr, r > N, it turns out that Xo = XR

where R is an orthogonal transformation and XN = meas UQ(Q) I meas Cl.



2. THE CASE W(X) = ||X||r.

Although the results obtained in this section are srtictly included on the next, we present

them beforehand for the sake of clarity. We start by introducing some notations.

Notations : i) MNxN denotes the set of NxN matrices and if X € MNxN then adj X denotes the

matrix of cofactors. In particular, if A is invertible then
„! _ (adjX)T
A ~ detX

and (2.1)

<X, adj X> = N detX

where
N

<X, Y> :=

ii) Let Q C [RN be a bounded, open set with strongly Lipschitz boundary 3Q. If k > 1

is an integer and if 0 < a < 1 then by Diffk*a(i2) we mean the set of diffeomorphisms u :

u(Q) such that u, u"1 € Ck 'a(Q, u(Q)), where Ck»a stands for the usual set of Holder continuous

functions. In the case k = ~ w e shall write Diff°°(Q).

iii) With the above notations, if uo e Diff^a(Q) with det Vuo > 0 in Q is given we let

£^k,a '= {(u, v) G Di f f^Q) x Diffca(Q) I u = uo on dQ and det Vv(x) = 1 in £1}

and in the case k = «> we write simply £#oo. Finally, for r > 1 consider the problem

(P) inf {E(u, v) := JllVu(x)(Vv(x))-1ll^ dx I (u, v) e #Zk,a}-

Remark 2.1. We note that, formally, problem (P) reduces to the minimization of

functional where both the domain and the deformation are varying. Indeed, if v was invertible then

H i l l \f ) *"~ I V l l l Y )I V VI Y ) I II MY

IIVu*(y)Hr dx,•L
where u*(y) :=



Theorem 2.2

Let k > 1 be an integer, 0 < a < 1, let Cl Q [RN be a bounded, open set with Ck + 3 ' a

boundary and let uo e Diff^a(Q), det Vuo > 0 in Q. Then (P) attains its minimum at every (u*,

v*) € S#±a such that

Vu*(x)(Vv*(x))-1 = X R i n Q

where XN = meas uo(n)/meas Q and R is an orthogonal transformation. Thus

inf {E(u, v) I (u, v) G saKa} =E(u*, v*) = N^ meas (Q)i*/N (meas uo(Q))r/N.

The proof of Theorem 2.2 is based on the following lemma.

Lemma 2,3

If A G MN x N then IIAIIN > NW Idet Al. Furthermore, the equality holds if and only if A =

A,R, for some X e IR and some orthogonal transformation R.

Proof. If det A = 0, then the inequality is trivially valid. Suppose that det A > 0. Using

the polar decomposition, we can write

A = RU,

where U = U7 > 0 and R is an orthogonal transformation, i. e. RT R = R RT = 11, det R = 1. Thus,

U = QT diag(?ii,..., XN) Q, where Q is an orthogonal transformation and A,i,..., ^N > 0 and so
N

HAH = IIRUII = HUH = ( \ X \ ) 1 / 2 . (2.2)

i = 1

As In is a concave function, we have
f N >t N f N

In (det A) = In Ĵ  y \
Vi= 1

hence, by (2.2) and (2.3)

i = 1



Finally, if det A < 0 choose Rf to be an orthogonal transformation such that det R' = -1. Then, as

det (R!A) > 0, by the first part of the proof we have

IIAIIN = IIR'AIIN> N N ^ Idet (R'A)I = NN« Idet AL

Due to the strict concavity of the logarithmic function, it follows immediatly from (2.3) that

equality holds if and only if X\ = X2 = — = N̂» m which case A is proportional to an orthogonal

transformation.

Remark 2.4.

By abuse of language we shall call a matrix A such that IIAIIN = NN / 2 Idet Al harmonic. In

[R2, a matrix A such that II All2 = 2 Idet Al is of the form

either [.baJ or [b J.

Proof of Theorem 2.2. If (u*, v*) e s4^a then, as det Vv*(x) = 1 in ft, as r > N by

Lemma 2.3 and by Holder's inequality we have

E(u*,v*):= f IIVu*(x)(Vv*(x)r1Hrdx

(j Hx))""1^ dxj

Idet Vu*(x)l d x j

j

NN / 2 lJ det Vu*(x) dxl

r/N

detVuo(x)dxJ . (2.4)

Let
^ meas Q . ^ 1/M
X := meas uo(Q) ^ V° := X U°'

As vo e D i f f * - 0 ^ ) , meas VQ(Q) = meas Q and since 3Q e Ck+3>a, by Theorem 1 iin

DACOROGNA & MOSER [3] there exists v € Di f f c^Q, vo(Q)) such that
det Vv(x) = 1 in Q.

v(x) = vo(x) on BQ



and define

Clearly

u = uo on

and we have

E(u, v) := f

= J_f,II l l |Ndx

Nr/2meas (fl)

meas (Q) 1 -^ (meas uo(Q))r/N

which, together with (2.4), finishes the proof.

Corollary 2.5

Under the hypotheses of Theorem 2.2, and in particular if r > N, then

inf {E(u, v) I (u, v) G £0 t o t } = Nr/2 inf I f Idet Vu(x)lr/N dx I u = ^ on dQ and u

Moreover, if (u*, v*) is a solution then there exist a rotation R(.) and a scalar X(.) such that

Vu*(x) = X(x) R(x)Vv*(x) for every x e Q .

Proof. As det Vuo > 0, for all u eDiffca(Q) with u = uo on 3Q we have

I Idet Vu(x)l dx > 11 det Vu(x) dxl = | det Vuo(x) dx > a
Ja JQ Jft

where

a := inf {Jldet Vu(x)l dx I u = uo on dQ and u € Diff^a(Q)}.

Thus, by Theorem 2.2 we obtain

inf {E(u, v) I (u, v) G S&^a) = N'tf measCQ)1-^ aJt". (2.5)

On the other hand, as r > N using Holder's inequality we deduce that



ar/N = in f j ( [ Idet Vu(x)l dx] I u ^ o n d Q a n d u e D i f r t

"1 inf { J Idet Vu(x)lr/N dx I u = UQ on dQ and u 6 Di

which, together with (2.5) implies that

inf {E(u, v) I (u, v) 6 W , . a } < Nr/2 inf j J Idet Vu(x)lr/N dx I u = UQ on 8Q and u e Di f f^Q) j

and the reverse inequality follows immediatly from Lemma 2.3.

Finally, by Lemma 2.3 if (u*, v*) is a solution then

J Idet Vu*(x)lr/N dx > inf j J Idet Vu(x)lr/N dx I u = UQ on BQ and u € D i f r t f t ) !

= N-r/2 inf {E(u, v) I (u, v) e ^ k > a }

= N"r /2f IIVu*(x)(Vv*(x))"1llrdx•to
> f ldetVu*(x)lr/Ndx

and so

J{ldet Vu*(x)lr/N - N-f/2 HVu*(x)(Vv*(x))-1llr} dx = 0 (2.6)

which, together with Lemma 2.3, implies that

HVu*(x) (Vv*(x))-M|N = NN^ Idet (Vu*(x) (Vv*(x))-1)l a. e. in fi.

Thus

Vu*(x) = X(x) R(x)Vv*(x) a. e. in Q

for some rotation R(.) and some scalar X(.). From (2.6), Theorem 2.2 and using Holder's

inequality we deduce that

( m e a s n ) 1 " ^ ! Idet Vu*(x)lr/N dx) =

= N"r/2 [(meas fi)"1+r/N inf{E(u, v) I (u, v) e ^a}]
m

= f det Vuo(x) dx•to
= I det Vu*(x) dx < f Idet Vu*(x)l dx

a .N/r

ldetVu*(x)lr/Ndx] .

Hence



f [detVu*(x)dx-ldetVu*(x)l]dx =

which implies that det Vu* > 0 in Q.

If uo is affine then we can obtain existence of minimizers under less restrictive hypothesis

on BQ, namely

Proposition 2.6.

Let Q be a bounded, open set with Lipschitz boundary. Let uo(x) = Ax + b where A €

MNxN with det A > 0 and b € [RN. Then (P) admits a solution (u, v) e S&*.

This result relies on the fact that any affine deformation is harmonic up to a volume

preserving transformation. Precisely

Lemma 2.7.

If det A * 0 then there exists a matrix B such that det B = 1 and IIABIIN = NN# Idet Al.

Proof. Suppose that det A > 0. As in the proof of Lemma 2.3, we can write

A = RQTdiag(^i,..., ^N)Q> where R and Q are orthogonal transformations and X\,..., X^

> 0. Set

B:=QTdiag(pi, . . . ,pN)

where

ft fll - ^N)1 / N

P i : = Xi '

Then det B = 1 and

IIABIIN = H^ ... ^N)i/N m|N = fa... XN) H11IIN = NN/2 det A.

If det A < 0, it suffices to multiply A by an orthogonal transformation R1 with det R' = -1

and to apply the previous case to the matrix RfA.



Proof of Proposition 2.6. Setting u* : = uo and Vv* := B 1 , as in the proof of

Theorem 2.2 it follows that (u*, v*) is a solution for (P).

3. EXISTENCE AND REGULARITY RESULTS.

Now we show that the results of Section 2 can be generalized in the following way.

Hypothesis (H): Let W : MNxN -»[0, +<») be continuous and such that there exist Xe OR and Xo

e MNxN with
, meas uo(Q)

d e t X o = measQ

and

W(X) - X det X > W(X0) - X det Xo for every X € MN*N

Remark 3.1. (i) In some sense the X appearing in (H) can be seen as a Lagrange

multiplier.

(ii)IfW

(3.1)

<-rrr(X0), X$> meas(Q)

N meas \iQ(Q.)

Indeed, as Xo is a minimum for W(X) - X det X we have

0 = ^ ( W ( X ) - X det X)lXo

* X ) ^ adJ X °
and so, by (2.1) and (H)

^ = X N det X

meas up(Q)
measQ

which proves (3.1).
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Consider the problem

(P) minimize in £$^a the functional

E(u, v) := JwCVuCxXVvCx))-1) dx

where the class of admissible pairs is defined by

&kjn •= t(u, v) € Diff^a(Q) X Diff^a(fl)| u = uo on 9Q and det Vv(x) = 1 a. e. in ft}

and, as in Section 2, uo e Diff^Cft) is such that det Vuo > 0 in ft.

Before stating the main result of this section, we give examples of functions satisfying the

condition (H).

Proposition 3.2

The following functions W : MN x N -» DR verify (H).

i) Let N > 2, let g : [R2 -> [R be convex, C1 and is increasing with respect to the first variable and

set

W(X) = g(IIXIIN, det X).

In particular, (H) holds for

W(X) = IIXIIr if and only if r > N.

ii) Let N = 2 and let

W(X)=

with aijki = akiij and W a strictly rank one convex function, i. e.

W(k®ii) > a ia®^ill2

for some a > 0 and for all X, |i e [R2, where (X®|i)ij := %+ |ij for i, j = 1, 2.

Remark 3.3.

There are other examples of functions satisfying (H), namely for N = 2

W(X) = IIXII4 - 2(det X)2 and W(X) = ̂ X2
n + X2

n + X ^ ) + J x J 2 -

n



Proof of Proposition 3.2. i) Set

XQ := £R with ^N = meas uo(£2)/ meas(Q) and R a rotation.

As g = g(t, s) is convex we have

W(X) - W(Xo) > |f(HXollN, det Xo)(HXIIN - IIXollN) +^IIXollN, det Xo)(det X - det Xo),

and so, as -^ > 0 and since by Lemma 2.3

HX||N > NN/2 d e t x and IIX0H
N = NN# det Xo,

we conclude that

W(X) - W(X0) > X(det X - det Xo)

where

X := NN/2 ̂ (IIXOIIN, det Xo) + 3f<IIXollN, det Xo).

If W(X) = IIXIIr then (H) is violated if r < N (see also Proposition 4.1). Indeed, in this case (3.1)

reduces to

and, as Xo must be parallel to its adjugate matrix, Xo is a harmonic matrix and

Xo = % R for some % € [R, % > 0 and some rotation R.

If in (H) we set X = p R, with p € [R, p > £, then we obtain

pr N1/2 - £r N1/2 > X($F - £N) (3.2)

and so, either X < 0 and then (3.2) fails for p < £, or X > 0 and (3.2) is false for p large enough,

(ii) Since W is rank one convex and as N = 2, then W is polyconvex (see DACOROGNA [2]) and

so

s u p { ^ ^ l d e t Y < O } < i n f { ^ : l d e t Y > 0}. (3.3)

Choose
7 > 0} (3.4)

and observe that the infimum is attained. Indeed, since W is quadratic there is no loss of generality

in assuming that a minimizing sequence has norm 1 and so, up to the extraction of a subsequence,

we have

12



_> Xy Yn -> X, det Yn > 0 and IIYnll = 1. (3.5)

Note that det X > 0 otherwise X = a ®b for some unit vectors a, b, and using the strict rank one

convexity and (3.5) we would have for every e > 0

W(Yn) v W(X) ^ a

e + det Yn e + det X e

Letting e -» 0+ we would obtain

which contradicts (3.3), (3.4), (3.5). Hence det X > 0 and setting

*n - FY u/hPFP F2 - measup(Q) 1 X meas uo(Q)
X0 . -^X where ^ .- m e a s Q d e tX~W(X) meas Q

it follows from (3.3) that

W(Y) - X det Y > 0 = W(X0) - Xdet Xo.

and
meas uo(Q)

d e t X o = measQ '

Theorem 3.4.

Let k > 1 be an integer, 0 < a < l , ( i a bounded, open set with Ck+3 'a boundary and let uo

e Diff^a(Q) with det Vuo > 0 in Q. If (H) holds then (P) admits a solution (u*, v*) e £ 0 t o such

that

Vu*(x) (Vv*(x))-1 = Xo for every x e Q

and

inf { fw(Vu(x)(Vv(x))-i) dx I (u, v) e &±a} = W(X0) meas Q.

Remarks 3.5.

(i) As it will become clear in Section 4, in some sense the condition (H) is optimal to guarantee

existence of solution.

13



(ii) The set S&^a of admissible pairs of functions (u, v) was chosen so as to give immediatly a

regularity result as well as existence of solution.

(iii)If

W(X) =

for r > N, by Proposition 3.2 i) we can take Xo = XR where R is a rotation and
y N _ meas up(Q)

meas Cl

Then, according to Theorem 3.4 we can find a minimizer (u*, v*) such that

Vu*(x)(Vv*(x))-1 = X R a. e. in Q

and the minimum value of the energy functional is given by

W(X0) meas Q = \\XR\\T meas Q

= XT Nr# meas Cl

= N^ meas Cl1^ (meas uo(ft))r/N

which is in agreement with Theorem 2.2 and Corollary 2.5.

Before giving the proof of Theorem 3.4 we state a theorem which is proved exactly as the

preceding one but requires less regularity on dQ (see also Proposition 2.6).

Theorem 3.6.

Let Q. be a bounded, open, Lipschitz domain, let uo(x) = Ax + b where A e MNxN and b €

[RN and assume that W satisfies (H). If det A * 0 then (P) admits a solution (u*, v*) € Stf* with u*

= uo on dQ and det Vv*(x) = 1 in Q. Furthermore, if det A = 0 and if W(X) -> 0 when 11X11 -> 0

then (P) has no solution unless A = 0.

Proof of Theorem 3.4.

Let Xo e MNxN be a matrix for which (H) holds. By Theorem 1 in DACOROGNA &

MOSER [3], we find a mapping u* e Diffc^Q) such that

14



' det Vu*(x) = det Xo in Q

u*(x) = UQ(X) on 3Q.

Setting

v* := ^ u*.

we have

det V v*(x) = 1 in Q, Vu*(x) (Vv*(x))-! = Xo in Q,

and, by (H), if (u, v) € £0k,a we have

JwtVuCxXVvtx))-1) dx >
d

fw(Vu*(x)(Vv*(x))-1) dx + X J[det Vu(x) - det Vu*(x)] dx. (3.6)

As u = u* on dQ. we obtain

f (detVu(x)-detVu*(x))dx = O

which, together with (3.6) implies that

f W(Vu(x) (VvCx))"1) dx >f W(Vu*(x)(Vv*(x)r1)dx = meas(Q)W(X0).

The proof of Theorem 3.6 requires the following lemma.

Lemma 3.7.

If det A = 0 then there exists a family of matrices B£ such that det B£= 1 and IIAB£II -» 0 as

Proof. Using the polar decomposition for A we can assume that

A = R diag(^i, ..., X-u ..

where R is a rotation and X{ = 0. Set

B£ := diag(bi(e),..., bN(e))

where

15



Clearly det Be = 1 and IIABEII < (N-l)1/2e.

Proof of Theorem 3.6. Suppose that det A * 0. Setting u* := uo and v*(x) := sign (det

A) XQ1 U*, by (H) it foUows that

det Xo = Idet Al

and so

det Vv* = 1 in Q.

As in the proof of Theorem 3.4, we conclude that

inf {J\V(Vu(x)(Vv(x))-1) dx I (u, v) e ^ t a } = W(X0) meas Q = E(u*, v*).

Finally, if det A = 0 with A * 0, by Lemma 3.7 consider a sequence {Be} such that det B£= 1 and

IIABEII -> 0 as e -» 0+. Setting u£ = uo and VvE = B"£ we obtain

E(ue, v£) = meas (Q) W(AB£) -^ 0.

It is clear that in this case (P) admits no solution since, if

E(u*, v*) = inf {E(u, v) I (u, v) e S#Ka} = 0,

then Vu*(x) (Vv*(x))"1 = 0 in Q, i. e. Vu*(x) = 0 in £1 Hence u* must be constant and as A * 0,

this is in contradiction with the condition u* = uo on

Finally, we conclude this section with a result on the weak lower semicontinuity of E(.,.).

However, we insist that this property is not sufficient to ensure existence since, in general, no

weak compactness can be obtained for the minimizing sequences regardless of the coercivity of W.

16



Proposition 3.8

Let Q c [RN be a bounded, open set. Let p > 1, q > N and 1/p + (N-l)/q < 1. If

(u£, v£) -* (u, v) weakly in W1^ x W1^

and if det Vve = 1 a. e. in Cl then det Vv = 1 a. e. in Q, and

Vue(x) (Vve(x))-1 -> Vu(x) (Vv(x))-i weakly in IA

Consequently, if W : MNxN -» [0, -H*>) is convex then

x))-1) dx < lim inf JwCVueCxXVv^x))-1) dx.

Conjecture.

In Proposition 3.8 we used the convexity of W to obtain the weak lower semicontinuity of

the energy functional E(.,.). As, formally, Vu (Vv)-1 is the gradient of uov1, we conjecture that if

W is quasiconvex and if (ue, ve) converges weakly to (u, v) then

Jw(Vu(x)(Vv(x))-1) dx < lim inf Jw(Vue(x)(Vve(x))-i) dx.
d d

Proof of Proposition 3.8. As det Vv = 1 a. e. in £2, we have

(Vu(x) (Vv(x))-i)ij = (Vu(x) (adj Vv(x))T)ij = m(x). ^(x)

where r|i is the gradient of the i* component of u and £j is the jA row of adj Vv. Hence

curl r|i = 0 and div £j = 0

and by the div-curl lemma (see TARTAR [12]) we conclude that if p > 1, q > N and if 1/p + (N-

l ) /q<l then

Vu£(x) (Vv^x))-1 -> Vu(x) (Vv(x))-1 weakly in L1 (3.7)

whenever

• (u£, v£) -» (u, v) weakly in W1* x W1^.

Finally, if W is a convex, nonegative function then by (3.7) the functional (u,v) -» E(u,v) is lower

semicontinuous (see DACOROGNA [2]).

17



Remark 3.9.

Let p > 1, q > N and 1/p + (N-l)/q < 1 and consider the class of admissible pairs to be

given by

£0p,q := {(u, v) € W ^ Q ; [RN) X W 1 ^ ; IRN) I u = uo on BQ, det Vv(x) = 1 a. e. in Q

and Jv(x) dx = 0 = Jx dx} .

Suppose that W is convex, W(X) > CiHXIIr - Co with Ci > 0. By Proposition 3.8 (P) has a

solution in £#p,qif there is a minimizing sequence {(u£, v£)} bounded in WX»P X W1^. Suppose

that r > p —^-r and that {v£} is bounded in W1^. Let s be such that

By Holder's inequality

f IIVu£(x)llpdx= f HVugCxXVvgCxWV
•to Jn

<(( IIVu£(x) (VvgCx))"1!!^ dx) (j IIVv£(x)lls'dx)

< Const, ff HVueCxXVvgCxW^irdxl (\ IIVve(x)llq dxl

and so {u£} is bounded in W^P . We conclude that if there exists a minimizing sequence {(u£, v£)}

where {v£} is bounded in W1^ then (P) admits a solution in £#p,q.

We next show that the set of solutions is weakly closed.

Proposition 3.10.

Let Q be an open, bounded, Lipschitz domain, let W be a convex function, let uo €

; FtN) and let p > 1, q > N, 1/p + (N-l)/q < 1 and r £ 1. If {(un, vn)} is a sequence of

solutions of (P) in S&VA and if (un, vj converges weakly to (u, v) in W 1 ^ ^ ; (RN) x W^q(Q; [RN)

then (u, v) is also a solution of (P).
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Proof. As q > N standard results imply that

adj Vvn converges weakly in L ^ - 1 ) to adj Vv.

Moreover, as

det Vvn converges in the sense of distributions to det Vv,

we must have

det Vv = 1 a. e. in Q.

and so

(u, v) € Stfp,q.

Finally, using the div-curl lemma we deduce that

Vun(x) (Vvn(x))-1 ->Vu(x) (Vv(x))-i weakly in L1

and as W is convex we conclude that

J\V(Vu(x)(Vv(x))-1) dx < lim inf Jw(Vun(x)(Vvn(x))-1) dx
d d

= inf {E(u, v) I (u, v) € ^ p , q } .

4. NON EXISTENCE RESULTS.

In this section we present two types of non existence results showing that, despite the

resemblance of our problem to the classic Dirichlet problem of minimizing Jll VUIIP, problem (P) is

in fact very different in nature. It turns out to be much closer to

(Q) inf { fldet Vu(x)lP dx I u = uo on 3Q, u €{

as already seen in Corollary 2.5 and as it will be illustrated bellow. Indeed, restricting our attention

to

W(X) = IIXII r ,r>l,

Theorem 3.6 provides a first type of non existence result. Namely, if uo(x) = Ax for some A e

MN x N , A * 0 with det A = 0, then (P) does not admit a solution. This is in sharp contrast with the

minimization of Jll VUIIP.
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We have seen in Theorem 2.2 and Corollary 2.5 that if r > N then (P), as well as (Q) (with

p = r/N > 1), admit solutions. Now we show the second type of non existence result, proving that

if r < N then neither (P) (see Proposition 4.1) nor (Q) (see Proposition 4.3) have solutions.

Proposition 4.1.

Let Q. = {x € [R2I llxll < 1}, let uo(x) = x and let 0 < r < 2 = N. Then

inf{ JllVu(x)(Vv(x))-1llrdx I (u, v) e W1--(Q)xW1--(Q)f u = uo on 9Q, det Vv = 1 a. e. in Q} =

0 and hence the infimum is not attained.

Remarks 4.2.

i) In order to avoid some technicalities, in the previous proposition we considered u and v in

. However, the result remains valid if instead we assume that the admissible pairs (u, v) e

ii) Similarly, we take the boundary condition uo(x) = x just for the sake of illustration, since it

could be replaced by any UQ € Diffca(

Proof of Proposition 4.1. Using polar coordinates we define

- (x ,y ) if re (0, e)

un(x, y) := \

—(x, y) if r e (e, 1),

where e := (2n)k/*-2) -> 0, and
vn00 •= ~T==-(cos 2n9, sin 2n9)

\2n

where r = Vx2 + y2. A direct computation gives

detVv n (x)^ l ,
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1(1 , f . , n <r<e

1 ( 1 k/2

if e<r< 1,

and

E(u», Vn) = n(2n + ̂ Oas n -»

Finally, we conclude this section with a similar result on problem (Q).

Proposition 4.3.

If an e C3 'a for some 0 < a < 1, if uo € DifiP^CQ) with det Vuo > 0 in Q and if 0 <

1 then for all p > 1

infj J Idet Vu(x)lP dx I u = UQ on dQ and u € Diff1>a(Q)| = 0

and thus the infimum is not attained1.

Proof. Let xo e Q and let B(xo, 2e) C Q. Let cpn be a family of smooth functions such

that 0 < cf̂  < 1 and
(\ if t< 1

0 ift>el/n

and define

Clearly, fn > 0, fn are smooth and fn > 1. In addition,

G \$ fC X -XA 9 ^ (f1

fn(x)dx > I——-rdx >Const.
a J ^ix-xoi<£ E ) yJo

lrrhe same result holds for u e W1*, with p > PN.
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= Const.——^—r (4.1)
(N + 2n)P

f fn(x)Pdx< Const. + f

= Const. + Const.
N + 2np'

and so, from (4.1) we conclude that

lim

(Jfifn(x)dx)
; nlim j:onst.(l + N +

!
2 np)(N + 2n)P = 0. (4.2)

Using Theorem 1 in DACOROGNA & MOSER [3], we find a sequence un e Diff^^Q) such that

meas Un(Q)
fn(x) inQ

fn(x) dx

Un(x) = UQ(X) if X €

From (4.2) it follows that

lim Idet Vun(x)r dx = meas UQ(£2) lim = 0

5. QUALITATIVE PROPERTIES.

We remark that if (P) has one solution then, if 9Q is sufficiently smooth2, there are

uncountably many solutions. In fact, if

min E(u, v) = E(ui, vi)

2If the class of admissible functions is $&\^a then dQ must be Ck+3»a. If we are considering the set s#p%q then we

assume that dQ. is Lipschitz.
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and if f is such that3

detVf(x) = 1 infl

f(x) = x on

then (ui°f, vi<>f) is admissible and, as f(£2) = Q. we obtain

E(uiof, viof) = fw(Vui(f(x))Vf(x) (Vf(x))-i(Vvi(f(x)))-i) dx

= Jw(Vui(f(x))(Vvi(f(x)))-i) dx

= Jw(Vui(y)(Vv1(y))-i) dx
f(fi)

= E(ui, vi).

In Remark 3.9 we noted that if W(X) = IIXIIr, r > N, and if there exists a minimizing

sequence {(ue, ve)} where {ve} is bounded in W1^ then (P) admits a solution in £#p,q. By the

preceeding remark, it would suffice to show that given a sequence {ve} in W1^ then there exists a

sequence fe e W1'00^, Q.) such that
' detVf£(x) =1 inQ

f£(x) = x on

and{v£°fE} is bounded in W1^. However, such sequence {fe} may fail to exist since (P) has no

solution if uo(x) = Ax + b, b e [RN, A e MNxN, det A = 0 and A * 0 (see Theorem 3.6).

As we mentioned before, the minimization of (P) corresponds, formally, to a minimization

of a functional where the domain is varying. Theorem 3.4 provides a sufficient condition under

which there is existence of solution. Here, v(£2) becomes the domain of the solution. It is natural to

ask what type of domains may correspond to solutions of (P). The following proposition partially

answers that question.

3Here f € C**a in the case where the class of admissible functions is £0k,ct and f is Lipschitz if we are considering

the class £0p,q.
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Proposition 5.1.

Let k > 1 be an integer, 0<cc < 1, let Q ^ [R2 be a bounded, open set with Ck+3c t

boundary and let u0 € Diff^CQ) with det Vu0 > 0 in Q. Let W(X) = IIXII2 and assume that

3uo(f2) is an analytic Jordan curve. If Y C IR2 is such that meas Y = meas Q and if 9Y is an

analytic Jordan curve then there exists a minimizer (u, v) of E(.,.) on £#k,a such that v(Q) is a

translation of Y.

Proof. By the Riemann Mapping Theorem there exists a conformal equivalence f e

Diff^~(Y, uo(£2)). Thus we have f = (fi, fi) where
3f2

dy2

3f2

Set

v o r s f ^ u o i Q ^ B C O , R).

As v0 € Diffk'ot(ii), we have

meas vo(Q) = meas Y = meas Q

and since dQ e Ck+3-a, by Theorem 1 in DACOROGNA & MOSER [3] there exists vi €

S; Y) such that

detVv!(x)=l inQ

v2(x) = vo(x) on

Finally, set

v(x) := vi(x) + C, where the constant C is such that

I v(x)dx = 0,

and define

u := fo(v - C) € ""

Clearly
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u = uo on

and as v is invertible (see BALL [1], Theorems 1 and 2), we have

E(u, v) := I HVu(x)(Vv(x)) II dx

= f IIVuGOOfyGOrVdx

= f HVftvjtv^ty))) Vv1(v71(y))Vv71(y)ll2 dy

= f IIVf(y)ll2 dy.
Jv,(Q)

Therefore, by (5.1) we deduce that

= 2 f det Vf(y) dy

= 2 f det Vu(v7*(y)) det Vv^ty) dy

= 2 f det Vu(x) dx

= 2 fdet Vuo(x) dx. (5.2)

From (2.4) and (5.2) we deduce that (u, v) is a solution of (P) and

v(Q) = vo(Q) + C = Y + C.

Next, and pursuing the discussing of the nature of the set of solutions of (P), we give some

uniqueness results.

Proposition 5.2.

Let Q be an open, bounded, Lipschitz domain in [RN, let r > N and let p > r > N, q > N.

W(X) = IIXIIr and if (ui, v) and (U2, v) are solutions of (P) in Ptfp,q then ui = U2 a. e. in Q.
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Proof. Clearly, if 6 e (0, 1) then (0ui + 8u2, v) is admissible and

JllV(eui+eu2)(x)(Vv(x))-1llrdx < 6 JllVui(x)(Vv(x))-1llrdx

d d
+ (1 - 0) JllVu2(x)(Vv(x))-i|lrdx

d

unless Vui(x)= Vu2(x) a. e. in Q, and so, as ui = u2 on dQ. we conclude that ui = u2 a. e. in Q.

Proposition 5.3.

Let Q be an open, bounded, Lipschitz domain in [RN, let r > N and let p > r > N, q > N. If

W(X) = IIXIIr and if (u, vi) is a solution of (P) in £0pq such that vi is invertible and vi(Q) is a

Lipschitz domain4, then (u, v2) is another solution of (P) if and only if there exist a constant

rotation R and a constant C € [RN such that v2(x) = Rvi(x) + C a. e. in Cl.

Proof. Suppose that v2(x) = Rvi(x) + C a. e. in Q. By Corollary 2.5

Vvi(x) a.e. in Q

for some rotation Q(.) and some scalar X(.). Hence,

Vu(x) = X(x) Q(x)RTVv2(x) a. e. in Q

and so

JllVu(x)(Vv2(x))-i|lr dx = Nr/2 JlA.(x)l' dx

= JllVu(x)(Vvi(x))-i|l'dx

and so, (u, v2) is also a minimizer. Conversely, if (u, vi) and (u, v2) are solutions of (P) then by

Corollary 2.5 we must have det Vu > 0, Vu(x) = Xi(x)Qi(x)Vvi(x) and Vu(x)=X2(x)Q2(x)Vv2(x)

a. e. in £2, where X\, X2 € [R and Qi, Q2 are rotations. Thus X\9 X2 > 0,

4Here we will use the fact that if v e W1*, q > N, v is invertible, v(ft) is a strongly Lipschitz domain and if detVv

= 1 a. e. then

(i) v1 € W1**^1), Vvl(y) = (Vv(x))"1 a. e., where y = v(x);

(ii) Wev € W1-1 and V(wov)(x) = Vw(v(x)) Vv(x) a. e. in Q, whenever w € W1*, p > q/(q-l).
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Vvi(x) = ^1(x)X2(x)Qy(x)Q2(x)Vv2(x) a. e. in Q

and as det Vvi(x) = 1 we have

X\(x) = ^200 a. e. in Q.

We conclude that

Vv2(x)(VVl(x))-i = Ro(x) (5.3)

for some rotation R(.). Setting

0)2(y) :=v2(v;1(y)) and R0(y) := RoCv^Cy)) ,

(5.3) reduces to

Vo>2(y) = Ro(y) a. e. y € vi(Q)

and we conclude that (see FONSECA [9], Proposition A.I)

Ro(.), and therefore Ro, must be constantly equal to a fixed rotation R

which, together with (5.3) implies that

v2(x) = Rvi(x) + C a. e. in Q.
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