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1. INTRODUCTION.
Equilibrium problems for materials that may change phase usually lead to the minimization

of functional involving bulk and interfacial energies. For solid crystals with sufficiently small

grains, HERRING [11] claims that the bulk contribution is negligible with respect to the surface

tension. In this case, the energy reduces essentially to its surface energy component which, due to

its anisotropy, plays a definite role in determining the shape of a crystal approaching an equilibrium

configuration of minimum energy. Assuming that interfaces are sharp, the surface tension

considered by HERRING [11] was of the type

r(nE(x)) dHN.!(x) (1.1)

where E is a smooth subset of 1RN, nE is the outward unit normal to its boundary and F denotes the

anisotropic free energy density per unit area.

In this paper we obtain uniqueness (up to translations and sets of measure zero) of the

solution for the geometric variational problem

(P) Minimize (1.1) subject to the volume constraint meas(E) = constant

Clearly, when F is constant the problem (P) reduces to the classical isoperimetric inequality. For

anisotropic F, one of the first attempts to solve this question is due to WULFF [16] in the early

1900's. His work was followed by that of DINGHAS [4], who proved formally that among

convex polyhedra the Wuljfset (or crystal ofF)

W r := {x € IRN | x.n < F(n), for all n € S^1}

is the shape having the least surface integral for the volume it contains. The key idea of this proof

is the use of the Brunn-Minkowski inequality. Later, using the same argument and geometric

measure theory tools, TAYLOR [13], [14] and [15] rendered DINGHAS's [4] proof precise,

obtaining existence and uniqueness of a solution for (P) among measurable sets of finite perimeter.

Recently, DACOROGNA & PFISTER [3] presented a completely different proof in IR2, which

does not involve the Brunn-Minkowski theorem and is purely analytical. This approach, however,

cannot be extended to higher dimensions and the minimization is only carried out over a certain

subclass of the class C of all measurable sets with finite perimeter.1 Finally, in FONSECA [8]

existence of solution for (P) in C is obtained using the theory of functions of bounded variation,

hopefully rendering this problem more accessible to analysts. This proof relies on the Brunn-

Minkowski Theorem and on the parametrized indicator measures (see FONSECA [7],

RESHETNYAK [12]). These probability measures are very helpful to handle oscillating weakly

converging sequences of surfaces and continuity and lower semicontinuity of functional of the

1 TAYLOR [13], [14], [15] considers only bounded sets.



type (1.1). They are a refined version of the generalized surfaces of YOUNG [17] and they were

studied by ALMGREN [2] (see also ALLARD [1]) under the name of varifolds.

In Section 2 we review some concepts of the theory of functions of bounded variation and

we recall briefly some of the results obtained in FONSECA [8] which are relevant for this work. In

Section 3 we obtain the proof of uniqueness within the class C. As in TAYLOR [14], our proof is

based on the Brunn-Minkowski Theorem and on the existence of an inverse for the Radon

transform (see GEUFAND, GRAEV & VILENKIN [9]). The main new idea is to use a sharpened

version of the Brunn-Minkowski inequality, see Lemma 3.5.

2. PRELIMINARIES.
We recall briefly some results of the theory of functions of bounded variation (see EVANS

& GARIEPY [5], FEDERER [6], GIUSTI [10], ZEEMER [18]). Let ft C RN be an open set and
define SN~! := {x e [RN| ||x|| = 1}.

Definition 2.1.

A function u € Ll(Cl) is said to be & function of bounded variation (u € BV(Q)) if

f { f
f f

f |Vu(x)| dx := sup { f u(x). div cp(x) dx | cp € Cj (Q; 1RN), ||cp||.. < l l <
•to I «to J

A particular case of a function of bounded variation is the characteristic function of a set of
finite perimeter.

Definition 2.2.
If A is a measurable subset of [RN then the perimeter of A in Q is defined by

Pern(A) := J |V X A(x)\ dx = sup j J div cp(x) dx | cp e c{ (Q; RN), ||cplL ̂  l | ,

where X A denotes the characteristic function of A.

If A has finite perimeter in IRN then for any borel set E

where HN-1 denotes the N-l dimensional Hausdorff measure, d* A is the reduced boundary of A

and || V X AII is the total variation measure of the vector-valued measure V X A- Al$°> * c r e exists a

||VXA|| -measurable map nA : d*A -» SN~J such that nA(x) is the outward normal to 9*A at x,

-nA | |VxA | | = V x A in £'(IRN)
and the generalized Green-Gauss theorem holds, namely



f div cp(x) dx = f cp(x). nA(x) d]|VXA | |

= cp(x). nA(x) dHj^Cx;
Ja*A

forallcpe d(K N ; IRN).

Lemma 2.3.

Let E be a set of finite perimeter in IRN, let £ € SN-! and set
A(s) := { x € IRN | x.£ < s}; E(s) = E n A(s).

Then for almost all s e IR

9*E(s) = (O*E)nA(s)) u (E(s)n9A(s))

up to a set of HN-I measure zero.

Proof. The result is well known but as we are not aware of a precise referencewe include
a proof for the convenience of the reader. First, E(s) has finite perimeter for a.e s (see e.g. [18,
Lemma 5.5.3]). Secondly, one deduces as in [18, Lemma 5.5.2] that for f e S)(IRN) and for

a.e. s

f D>f dx = - f f dCD.Xn) + [ «y) Si
JE^(s) l JA(S) l E JEnaA(s) l

= f. %) (nE(y))i dH^Cy) + f f(y) fe dH^Cy).
^9 E n A(s) JEn 3A(s)

Applying the Gauss - Green formula to the term on the left hand side one has

•'a ((Er\A(s))

= f • , % ) (nE(y))i dHN-i(y) + f
Ja E n A(s) J

E n A(s)

This identity holds for almost every s, simultaneously for a countably family of f s and hence for
all continuous f with compact support The desired assertion follows and one finds that moreover

nEr^A(s)= nE on 9 E n A(s), BEOACS) = S o n E n 9A(s).

We will use the change of variables formula



f K u(x) Idet Vf(x)| dx = f (f x u(z) dH^fe)") dy (2.4)

where N > p, f:[RN-*IRPisa Lipschitz function and u : RN -» OR is measurable, as well as the

Fleming-Rishel co-area formula

I |Vu(x)| dx = I Per^ {x € IRN| u(x) > t} dt (2.5)
• t o *-<*>

for u € BV(Q). The next lemma shows that a bounded set of finite perimeter can be approached in

BV by a sequence of C°° sets with the same volume. The proof can be found in FONSECA [8].

Lemma 2.6.
Let E C IRN be a bounded set of finite perimeter. There exists a sequence of open, bounded

sets En C [RN such that

(i) 9 En € C°° and En, E C B(0, R) for some R > 0;

(ii)XEn ~ > X E inL!([RN);

(iiiJPerCEn) ->Per(E);

(iv) meas(ED) = meas(E).

Now we summarize some of the results obtained in FONSECA [8] concerning the Wulff

set. In what follows T: SN"1 —> [0, +«>) denotes the surface free energy of a solid. For crystalline

materials, HERRING [11] proposes some constitutive hypotheses for T based on molecular

considerations where surface energies arise from interatomic interactions of finite range. It turns

out that for ordered materials (i. e. materials with a lattice structure) T is not differentiable with

respect to certain crystallographically simple directions. In this case, if we plot T radially as a

function of the direction n, this plot will present cusped minima in certain directions corresponding

to surfaces of particular simple structure with respect to the lattice. At each point of this polar plot

construct a plane perpendicular to the radius vector at that point. Then the volume Wp which can be

reached from the origin without crossing any of the planes is the Wulff set. Precisely, assuming

that F is continuous and bounded away from zero, i. e. there exists a > 0 such that

T(n )>a for all n, | |n | |=l , (2.7)

we have

Definition 2.8.
The Wulff set (or crystal of H is the set W r := {x € IRN | x.n < T(n) for all n e SN-]}.



Clearly, if T= 1 then W r is the closed unit ball. Also, using HERRING'S [11] idea it is

easy to show that for solid crystals the lack of differentiability of T implies that its crystal is a

polyhedron.

Proposition 2.9.
(i) Wp is convex, closed and bounded;

(ii) r**(x) = sup {y .x | y € Wp}, where F** is the lower convex envelope of T (T being extended

to 1RN as a homogenous function of degree 1);

(iii) if x € 9Wp and if n is normal to Wp at x then x.n = T(n) = F**(n);

(iv) the crystal of F** is the equal to the crystal of F;

(v) 0 € int (Wr).

It turns out that the Wulff set minimizes (1.1) among all sets that have the same volume.

Theorem 2.10.

Let E C RN be a set with finite perimeter and such that meas(E) = meas(Wp). Then

f r(nE(x)) dHN_!(x) £ f F(nw (x))
Jd*E Jd*Wr

 r

Changing variables, it follows immediately that

Corollary 2.11.

The dilation XWp minimizes the surface energy functional (1.1) among all sets of finite

perimeter with volume equal to XNmeas(Wp).

The key idea of the proof of Theorem 2.10 is the use of the Brunn-Minkowski inequality2.

This was exploited formally by DINGHAS [4] and later made precise in the context of geometric

measure theory by TAYLOR3 [13], [15]. For two sets A and B in IRN we let

A + B = {x + y | x e A, y € B}.

Brunn-Minkowski Theorem 2.12.
If A and B are nonempty sets of IRN then

2 In DACOROGNA & PF1STER [3] existence is obtained for a certain class of sets in IR2 whithout using the Brunn-

Minkowski Theorem.

3We generalize TAYLOR'S [37] result to unbounded sets.



meas(A + B) > (meas(A)1/N + meas(B)1/N)N.

The other fundamental tool used in the proof of Theorem 2.10 is the notion of indicator

measures (see FONSECA [7], RESHETNYAK [12]). They allow one to establish continuity and

lower semicontinuity properties for energies of the type (1.1).

Theorem 2.13.
Let E£ C [RN be a sequence of bounded sets with finite perimeter in 1RN. If {meas(E£) +

Per(E£)} is bounded and if ^ -4 X£inL1(lRN) then

f F(x, nE(x)) dHN_x(x) < lixn inf f F(x, nE (x)) dH^Cx)
Ja*E * - > ° Jd*E£

 e

for all nonnegative, continuous functions F such that F(x,.) is convex and homogeneous of degree

one for all x € KN. Moreover, equality holds for an arbitrary F € C(IRNxlRN) with compact

support in the first variable if Per(E£) —»Per(E).

In order to prove Theorem 2.10, a lower bound for the relaxed energy was obtained in

FONSECA [8].

Lemma 2.14.

Let E be a C°°, open, bounded domain. Then
r meas(E + eWr) - meas(E)

r**(nE(x)) d H ^ x ) > lim inf ^ .

3. THE WULFF THEOREM: UNIQUENESS.

We show that the Wulff set or translations of it are, up to sets of measure zero, the only

solutions for the variational problem

(P) Minimize j r(nE(x)) dHN.j(x)

among all measurable sets E C IRN of finite perimeter with meas(E) = meas(Wr). This result was

first obtained by TAYLOR [14] using geometrical arguments, in particular a delicate approximation

of sets of finite perimeter by polyhedra. DACOROGNA & PFISTER [3] provided a proof in K2

which is entirely analytical but it concerns a more restrictive class of sets E and it cannot be

extended to higher dimensions. As in TAYLOR [14], the proof presented is based on the existence

of an inverse for the Radon transform (see GELT AND, GRAEV & VTLENKIN [9]). Also, as the

proof of Theorem 2.10, it relies on the Brunn-Minkowski Theorem 2.12, on the lower



semicontinuity results of Theorem 2.14 and on Lemma 2.15. The main new ingredient is Lemma
3.5.

Let E, € SN"] and let E C [RN be a measurable set In what follows we use the notation :
E4(s) := {x € E | x.£ < s},
gE£(s) =meas({x € E | x.£ < s})/meas(E)

and
({x € E | x.£ = s})/meas(E).

We first show that solutions of (P) must be bounded (up to sets of measure zero).

Theorem 3.1.
Let E C IRN be a measurable set of finite perimeter. If E is a solution of (P) then E = Ei u

E2 where Eir\E2 = 0 , meas(E2) = 0, HN.I(9*E2) = 0 and Ei is bounded. In addition, for all £ e
S^1 the function gn^ is strictly increasing on the set {s 10 <gEi£ (s) < 1}.

Proof of Theorem 3.1. Assume that E is a solution of (P), fix £ € SN 1 and set

Let -00 < s0 = so(^) := sup {s | g(s) = 0} and si = Si(£) := inf {s | g(s) = 1} < +00. By Lemma 2.3

and Theorem 2.10, for almost all so < s < si we have

J L r ( l W ^=S(S)<N">/N 1[{±T««)nn)
VV ( ) J J

L 1 [ {
VV g(s

. , v(N-l)/N f

- g ( s )

In a similar way, with E(s)' :={x e E I x.e £ s} = E \ E(s),

Adding up these two inequalities and using Lemma 2.3 yields

f T(nE) dHN_! + 2 f nt) dHN_! £
h*E E J{xeE| x.^ = $}

and so, by Theorem 2.10 and the fact that E is a solution of (P)
h(s) ^ C* [gCs^yN + (l-gCs))^-1)^ - 1] (3.2)( ) [ g C ^ ( g

where C* := rrr: TTTTT I Hn w ) dHN_i and M := max T(v). By the co-area formula
2Mmeas(Wr) Ja*wr

 r ves^ 1

(2.5) and by Fubini's theorem, g is absolutely continuous and
g'(s) = h(s) for a. e. s € (so, si) (3.3)



which implies by (3.2) that

g is strictly increasing in the interval (so, Si). (3.4)

Let

By (3.2) and (3.3) it follows that

Jo F(s) *^
{ei, e2,..., en) be the canonical orthonormal basis of IRN and consider a e [RN such that

B(a, C/C*) D {x e (R* | So(ei) < x.q < site), i = 1,.... N}.

Hence
meas(E \ B(a, C/C*)) < meas(E \ {x € IRN I so(ej) < x.e; < s ^ ) , i = 1,..., N »

N

meas(E \ {x e IRN I sotej) < x.ei < sfc)})
l

= 0.

Setting Ei := E n B(a, C/C*) and E2 := E \ Ei one has meas(E2) = 0, which by Definition 2.2

implies that HN-I(9*E2) = 0.

The following sharpened version of the Brunn-Minkowski inequality will be useful.

Lemma 3.5.

Let % € SN-] and let A and B be bounded sets such that meas(A) = meas(B) and the

functions gA£ and gB£ are strictly increasing on the sets, respectively, {s | 0 < gA,£(s) < 1} and {s

10 < gB£(s) < 1}. Then for all e > 0

(7* %(t)

where yA£(t) :

Proof. For simplicity of notation we set

gA:» gA.̂ , hA:= hA>^ and yA := YA.V

By the co-area formula (2.5) and by Fubini's theorem, gA is absolutely continuous and

g'A(s) = hA(s) for a. e. s e (s0, Si)

where s0 := sup {s | gA(s) = 0} and si := inf {s | gA(s) = 1}. As A is bounded



-°° < so < si < +<»,

and by hypothesis gA admits an inverse g^ : (0, 1) —> (so, Si). Setting

we obtain

T1 i
i taa.e.t (3.6)

We can assume, without loss of generality, that £ = ei and write x = (xi, x1). Let

At := {x1 e IRN-i | (xi, x') e A and xi = g^t)}, for t e (0,1).

As

{ S A W + S B W ) X (At + BJ C A + B,A B
setting z(t) := gA

!(t) + gg (t) by (3.6) we have

meas(A + B ) > HN_1(Az-»(d + B2-i(s)) ds
Mo)

fi
= HN^CAt + B^z'Wdt

Jo

= f HN.!(At + Bt) f-^rr + -^] dt.
Jo l U A W YBWJo A B

By the Brunn-Minkowski Theorem (see Theorem 2.12)

HN-i(At + BO1'^-1) ^ H N - I C A O 1 ^ ' 1 ) + HN-

= (yA(t) meas(A))1/(N-1) +

and so

meas(A + B)> f1 [(YA(t)meas(A))1/(N'1) + (yB(t)meas(B))1/(N"1)]N"1| - y r + " 4 T I dt(3.7)
Jo V Y A W Y B W ;

It is easy to verify that

hCB£(s) = hB£(s/e)/e, gEB,^(s) = gB.^(s/e) and YeB,̂ (t) = TB^CO/E

which, together with (3.7) and the assumption meas A = meas B imply

meas(A + eB) * meas(A) £ [ ^ " ( O + e ̂ M ^ - L - + JL-) dt

1 N-iJ



Theorem 3.8.
IfE is a solution of (P) then | | X E + C " XWJJIL1 =0, where

c := ^TTTl I x dx - x dx 1
meas(Wr)^Jwr JE J

Proof. Let E be a solution of (P) and consider the translated sets E' := E - a and W := W -

b, where
a:== W r f xdx andb:= W r f xdx (39)

meas(Wr) JE meas(Wr) JW r

By Theorem 3.1 we can suppose that E is bounded and that for all £ e S1^1 the function gE,* is

strictly increasing on the set {s | 0 < gE,£ < 1}. Hence, by Lemma 2.6 there exists a sequence of

smooth, open, bounded sets EnC IRN such that En, Ef C B(0, R) for some R > 0, measCEn) =

meas(Ef), Per(ED) -> Per(Ef) and measfEnXE1) + measCE'XEa) -> 0. In addition (see FONSECA

[8]) gEn^are strictly increasing on the sets {s | 0 < gEn^(s) < 1} for all ^ e S1^"1, n € IN. Fix 2; €

SN"]. As in the proof of Lemma 3.5 we set

gE := gE£> h£ := h££ and YE := Tfe,̂

By Lemma 2.14, by Lemma 3.5 and by Fatou's Lemma we have
meas(ED + eW) - meas(W')

(x)) dHN_x(x) > lim inf ;

r ) lim inf
1 £-»o Jo

f J
meas(Wr) lim inf --̂  ^ - 2 — dt

1 o Jo e
> meas(WT (N-l) dt.

As hEn(s) = 0 if |s| > R, setting t = gEs(s) we obtain (recall y= h o g'1, g'= h)

f r(nE (x)) dHN_j(x) ^
J3*E •

meas(W
R

(N-l) (3.10)_RL \ E, ( ) J
On the other hand, as meas(En\E') + meastE1^) ^ 0 we have Hh^ - hE'lli,1 -» 0 and ||gEa- gE|
—> 0 and so, by Theorem 2.13, (3.10) and Fatou's Lemma we conclude that

10



f r(nE(x))dHN.1(x)i

2: meas(Wr)
r J-

(N-l) hE-(s) ds.
V M s ) J YwCgE^)).

As gE* is strictly increasing in (so(E\£), Si(E',£)) C (-R, R), by the change of variables formula

(2.4), by Theorem 2.10, by Proposition 2.9 (iii) and by the generalized Gauss-Green theorem we

have

N meas(Wr) = f T(nw (x)) dHN , (x) = f T(nE(x)) dHN i(x) ^

£ meas(Wr)
l/CN-l)

+ dt (3.11)
J

However (N-l) a17^1) + I/a > N and equality holds only if a = 1. Thus (3.11) implies that
YE<t) = YwW for almost all t e (0,1)

which, by (3.6) and (3.9) yields
gjE-1 (t) = gw'W + C for some constant C and for all t

Hence
gE.(s + C) = gw(s) for all s

which, after differentiating, implies that
hE<s + C) = hW'(s) for a. e. s € IR. n

We claim that C = 0. Indeed, by (3.9) and (3.12)

0 = J x.£ dx = J s hE.(s) ds = J (s + C) hE(s + C) ds

= J s hE(s + C) ds + Cl hE.(s + C) ds

= | x.^ dx + C meas(Wr) = C meas(Wr).
J ŵ

Thus, and returning to the original notation,
hE.^(s) = hw^(s) for a. e. s € IR and for all ^ € SN""\

and so, due to the existence of the inverse of the Radon transform (see GELT AND, GRAEV &

VILENKIN [9]) we conclude that ||%E - Xwll 1 = 0.
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