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Introduction Variational Principles which lead to Parametrized

Measure Solutions

The use of variational methods to study equilibrium configurations of crystalline solids has

led us to consider energy functionals which lack the property of lower semicontinuity.1 In these

circumstances the infimum of energy is achieved only in some generalized sense while a

minimizing sequence may develop finer and finer oscillations, reminiscent of a finely twinned

microstructure. The weak limit of a minimizing sequence for such a functional need not by itself

characterize sufficiently many properties of the configuration, at least not in an obvious way. We

trace the origins of this theory in thermoelasticity theory to Ericksen [24 - 35]. Our approach has

1 Transitions and Defects in Ordered Materials. Supported by the NSF and the ASOFR through grant DMS 871-8881 and
the ARO through grant DAAL03 88 K 0110 at the University of Minnesota.



Characterizations of Young Measures 2 8/3/90

been to study the parametrized measures, or Young measures, generated by minimizing sequences

whose function is to serve as an accounting device to summarize their oscillatory properties. The

primary objective in this note is to characterize these measures.

The oscillatory properties of a weak* convergent sequence of gradients may be decoupled

from its deformation properties, a localization property easily shown, cf. §2. Of greater interest is

that oscillations may be coupled to a sequence and limit deformation assuming only a kinematic

condition and technical condition. The possibility of assembling or coupling oscillations to a

deformation in this generality was asked us by Richard James. This suggests the question of what

measures, that is to say, ordinary measures not parametrized measures, may occur as limits of

sequences of gradients. They are necessarily probability measures. It turns out that they may be

characterized by a form of Jensen's inequality for a special class of quasiconvex functions, cf. §5.

This is not quite the characterization we set out to prove, which would be in terms of continuous

quasiconvex functions. The consequences of this disparity are of some interest in understanding

the sort of approximations, or processes, which lead to complicated microstructures and are

relevant to the nature of approximation by Lipschitz functions in general. We give a complete

discussion of this at the end of §6.

The point of view we adopt here is similar to Ball and James [5,6] and [16,42].

Additional material about this and relaxation of functionals is given in Ball [3,4], Ball and Murat

[7], Fonseca [37,38], and [45]. Ball and Zhang [9] have recently studied the relationship between

lower semicontinuity and Young measures based on Chacon's Biting Lemma, cf. also Ball and

Murat [8]. A complimentary point of view is adopted in [47], where the relationship between

functional convergence and the Young measure representation is examined. Our investigation here

was stimulated by the examination of Young measures which are supported on energy wells,

which we discuss separately in [46]. In [55] parametrized measures are studied in connection to

rank one convex and polyconvex functions. They are used to study questions about

ferromagnetism in [43,44]. The relationship of Young measures to other types of compensation

operators is discussed in [56]. Recent developments also include the role of Young measures in

the numerical analysis of nonconvex functionals, especially by Luskin, Collins, and Chipot

[15,18-21] and in the oc-p transition in quartz by Matos [49]. Fonseca provides and interesting

view of surface phenomena in [39,40]. Availaable microstructures and self accomodation in

martensite are studied by Battacharya [11,12], who employs among his methods the averaging

device we intorduce here in §2.

Young discovered that parametrized measures could serve as solutions to control problems

which lacked classical solutions. There is an extensive literature about them, cf. Berliocchi and

University Libraries
Carnegie Mellon Univet-uy
Pittsburgh, PA 15213-3890
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[13], Warga [60], and Balder [2]. A recent application in control theory is given by

Capuzzo Dolcetta and Ishii [14]. The use of Young measures in differential equations was first

introduced by Tartar [57], especially to study scalar conservation laws, cf. also [58,59]. This

subject has an extensive literature. Ball [4] gives a version of the existence theorem which is

tailored for use in the calculus of variations. His paper also contains an historical introduction and

references to some recent applications. A different version of the existence theorem appears in

Evans [36].

Finally, we wish to remark that the methods of this investigation are completely

elementary, relying on little more than Vitali's Covering Lemma and the Hahn Banach Theorem.

To introduce the Young measure in our context, we begin with the relationship between the

minimization question for a functional £ and its relaxation 1$. Given a bounded domain Q c

Rn, consider the functional

E(V) = f\V(Vv)dx, V G H ^ R 1 1 1 ) . (1.1)

Here we assume that W is smooth and nonnegative.

The relaxation of % is given by the integrand

W#(A) = infv j-^-y f w ( A + V Q d x , A e M, (1.2)

V = H ^ ^ R ™ ) ,
o

where M denotes m x n matrices. It is known that W* is continuous, quasiconvex, and

independent of the choice of the domain £2, as long as we insist that I dCl I = 0, Dacorogna

[22,23], Ball and Murat [7].

The notion of quasiconvexity to characterize integrands of lower semicontinuous

functionals was introduced by Morrey [51]. A function cp: M —» R is quasiconvex provided

<p(A) < j-^-j f<p(A + VOdx for A e M and £ e H^°°(n;Rm). (1.3)

Morrey proved that the functional
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<D(v) = fcp(Vv)dx

with (p continuous is sequentially lower semicontinuous in H1»oo(£iJRm) in the weak* topology

if and only if 9 is quasiconvex. In particular, the functional

2*(v) = fw#(Vv)dx, v e H 1 . 0 0 ^ 1 1 1 ) , (1.4)

is lower semicontinuous.

Under these hypotheses about W, one may deduce the relaxation property

infA f\V(Vv)dx = infy* f \V#(Vv)dx,

(1.5)

A = Aa(yo) = { v E H ^ a R ™ ) : v = yo on dQ } ,

where y o € H^^QiR111) is given. For the proof of this we refer toDacorogna [23]. Extensions

of Morrey's theorem under differing hypotheses about the smoothness of W or its dependence on

other variables are discussed by Acerbi and Fusco [1], Ball and Murat [7], and also [48].

If W is not quasiconvex, some information is lost by seeking minima of T?. It seems

sensible to regard the Young measure as a means of summarizing the oscillatory properties of a

minimizing sequence of (1.1), thus conserving at least some of that information.

For any sequence ( z k ) c L°°(Q;RN) with sup I zk I < C and zk -> z in L°°(Q;K)

weak*, where K = { £ e RN: I £ I < C }, we may find a family v = ( v x )x € a of

probability measures such that whenever \jr(£,x) is continuous in % and bounded in x, and a

subsequence of the ( z k ) which we do not relabel, such that

y(zk(x),x) -» \j/(x) in L°°(ii) weak*,

where (1.6)

YOO = Jv(S.x)dvx(§) a.e. in Q.
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The converse also holds. Given a family ( v x )x € Cl of probability measures in A/(K), there

exists a sequence ( z k ) c L°°(Q;RN) with the property (1.12). Since

Ll(n;C(K))' =

these remarks amount to characterizing the weak* closure of the measures

( | i ) = ((Hx )x € n ) c L~(Q;Af(K)) for which

Hx = Sf(x) for some f e L°°(Q;K).

This is discussed in Dacorogna [22], Tartar [57], and Young [61], for example. One form of

Jensen's inequality is that whenever (p is convex

J(p(z)dx < j j <p(£) dVx(£) dx

where (1.7)

z(x) = J §dv x ($ ) . XG O.
K

Jensen's Inequality characterizes proability measures: If (1.7) holds for all convex cp, then v =

( v x )x e ft is a family of probability measures.

The measures we intend to consider here are distinguished by the constraint that they are

limits of gradients. This places restrictions on their structure. Implicit in what we have written is a

second constraint, which is that the sequence determining the measure is bounded in H1»oo(Q;Rm).

Let us formalize this by agreeing that

v = ( v x )x G Q is a parametrized measure or Young measure provided there is a

sequence ( y k ) c H^-CftR111) such that

yk -> y in H^QiR" 1 ) weak*,

Fk = Vy*. F = Vy . and (1.8)

generates the parametrized measure ( v x )x € ci in the sense that

x)) -» \j/(x) = Jy(A)dv x (A) in L°°(Q) weak*
M

whenever y e C(M).
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If v = ( V X ) X 6 Q does not depend o n x e f l , we shall say the measure is

homogeneous and refer to it simpy by v. We shall refer to y(x) or F(x) = Vy(x) as the

underlying deformation for v = (v x )x e Q • Since F* -» F in L°°(Q) weak*, F is the first

moment of vx, namely

F(x) = <vx,A> = jAdv x (A) a.e. in Q,
• j

or \|/(A) = A is a weak* continuous function on H1»oo(f2;Rm). We remind the reader that other

known weak* continuous functions are the minors of the matrix of A.

An immediate consequence of (1.8) is a version of Jensen's Inequality for quasiconvex
functions. If cp is quasiconvex in Morrey's sense, then, for any subset D c Q,

x ,fcp(F)dx < j j <p(A) dvx(A)d
d D M

where (1.9)

F(x) = jAdv x (A) , x e Q.
M

Our major objective here is to understand the manner in which (1.9) characterizes parametrized

measures generated by sequences of gradients. The principal results are stated in THEOREM 5.1

and THEOREM 6.1.

Another consequence of (1.8) is that

supp v x c K , x € £2,

for any compact K with F^x) € K for all k. It will be useful for us to keep in mind the

converse of this statement.

PROPOSITION 1.2 Let ( u k ) c H^^QiRm) satisfy

l imsupk->~ fy (Vu k )dx < «> whenever yeC(M). (1.10)
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Then (u k ) are bounded in H^tftR"1).

Hence there is a subsequence ( u K ) of the ( u k ) which generates a parametrized

measure ( v x )x € Q and a compact K c M with supp v x c K , x e £}. Thinking slightly

differently, we may know for some reason that

lim k_>oo fy (Vu k )dx = J y ( A ) d n ( A ) , whenever \jf€ C(M),

for some measure |i with compact support K. The proposition then informs us that the sequence

(u k ) is bounded in H

PROOF Assume that

l i m s u p k - * ~ H V u k H Loo(n) = °°-

By choosing a subsequence and relabeling, we may assume that || Vuk || ^ > k . Let Ek =
L°°(w)

{ | Vuk | > k } and a k = I Ek I. Select cp e C(M), any function satisfying

Then by hypothesis, there is a constant C = C(<p) such that

Ok(p(k) < fcp(Vuk)dx < C for all k,

which is a contradiction. QED

We raise this issue to distinguish between what we have called Young measures or
parametrized measures in (1.8) and families of probability measures which arise in the same way
but may satisfy (1.8) only for y e CQ(M), thatis y such that lim | AI ->«>\ |> (A) = 0. These
latter are also called Young measures in some of the literature.

For any u e H^^Q-JR."1) we may define the the measure 5vu(x) and regard it as an
element of the dual space L1(fi;Co(M))f. Given a sequence ( u k ) , the set of measures ( 6 -
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has a weak* convergent subsequence with limit, say, ( v x )x € Q. • Under the very mild condition

that

l im r_>oosupk | { I Vukl > r } | = 0 ,

( v x ) x € o is even a family of probability measures, cf. Ball [4], and may also all have the same

compact support. Unfortunately, it may be difficult to recover much information about the nature

of oscillations of Vuk if we cannot verify the formula in (1.8) for a sufficiently wide class of

functions y . Necessary for this is that the sequence (\|<Vuk)) converges weakly in

One situation of interest here is simply the case of a sequence ( u k ) bounded in H

Such a sequence defines some sort of Young measure, the function \|/(A) = IA P is integrable

with respect to this measure, but I Vuk IP need not converge weakly and the representation

formula (1.8) may fail. However, if ( u k ) is a minimizing sequence weakly convergent to u e

H^P^) for a functional of the form (1.1) with the property that

0 < W(A)

c I A IP - 1 < W(A) < C I A IP + 1 ,

one may indeed show that (for a subsequence)

W(Vuk) -» W*(Vu) in L^Q) weakly and

W#(x) = W(x) = W#(F(x)),

cf. [47] and Matos [50].

There are aspects of our work which may be applied to other compensation conditions as

well. By this we mean parametrized measures which may arise as the weak or weak* limits of

vector valued functions u(x) satisfying

Eu = 0 in Q,

Eiu = X a i j k i £ • i = h ••••N-
Murat and Tartar have written extensively about this [52 - 54,58 - 60].
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Averaging and localization of parametrized measures

Among the elementary devices for analyzing parametrized measures are averaging and

localization. Localization is the decoupling mentioned in the introduction. We discuss them in

turn. Recall that our measures are constrained in the sense that they arise from gradients.

THEOREM 2.1 Suppose that Cl and D are domains in Rm with I dfil = I dD I = 0.

Let v = ( v x ) x 6 f l i e a parametrized measure with underlying deformation y(x), x e l i , which

has the properties

suppVx <z K, a.e. in Q for a fixed compact K c M, and

yOO = YoOO = Fo* on 3£2,

where Fo is a fixed m x n matrix. Then the family of measures ( vx )x € D given by vx =

v, where

<v,v> = j-^-j j J V(A)dvx(A)dx , (2.1)

is a parametrized measure. Moreover,

supp v c K and Fo = < v, A >. (2.2)

PROOF Suppose that

yk -^ y in H ^ Q i R " 1 ) weak*, yk = y0 on 3Q, and

( y k ) generates the parametrized measure v = (v x )* 6 ^ .

We may suppose that 0 e Q. Given an integer k, the collection of sets

{ a + eft: a e D , e < k " 1 ) is a covering of D from which, by the Vitali covering theorem, we

may select a countable or finite subset {ai + eiQ:i = 1,2,3...} of pairwise disjoint sets such

that
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D = U ( a i + eiQ) u N, | N | = 0.

Note that Z t a y H Q I = ID I. Define

[ e i y k ( 2 L z ^ i ) + Foai x G aj + eiO

v. yoOO otherwise

and let y 6 C(K) and £ e C(D). We compute the integral

)Cdx = Z. f

for x = ai + e£ . By the mean value theorem, there are points ^ e l 2 such that

J V(Vuk) 5 dx = ^ - j f V(Fk(^)) d^ E . C(ai + e^i) ^ I Q I.

Observing that the sum in the last term is a Riemann sum for the integral of £» we see easily that

for a subsequence of k, which we do not distinguish from the original sequence,

lim^oo J¥(Vu*)£dx = ra-[ JlJKV(A)dvx(A)dx f C d£ .

Thus the sequence uk determines the Young measure ( v x )x e D with the property

HKV(A)C(x)dvx(A)dx = J-^-J HK\|KA)dvx(A)dx U d^ .

To show that this Young measure is homogeneous, given a e i i , let C? = I BD I"1 Xi

compute that
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U(A)dva(A) = limp-,0 ]-g-jJ I V(A) dvx(A)dx J ; p dt,

= ri-f J 1 \|KA)dvx(A)dx ,1
K

for almost every a, which is independent of a.

Finally note that for any y e H^DJR111) with y = yo on 3 D ,

f V y d x = f y n d S = J yo-n dS = Fo I D I.

In particular,

< v , A ) I D I = limk_^oo fVu k dx = Fo I D I .

QED

We remaric that v is generated by a sequence ( u k ) with

range Vuk c G whenever KJ range VyJ c G.

In (1.8) we wrote

V(x) = Jv(A)dvx(A)

as the weak* limit of \|/(F^). In this way we may rewrite formula (2.1) as

< v,v> = rn~\ \ VWdx .

We caution the reader again that the average Young measure v is dif ferent from the

original Young measure v . In particular for a product
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whereas

f < v^.vo d̂  = rk~\la $K
 V(A) ̂ ^ J

Averaging a family of measures defines a mapping between spaces of measures. If \i e

L°°(£2;Af(K)), then its average

Avu = £ e A/(K)
where

< £ V) = r i l -f f V(A) d x̂(A) dx f v e C(K). (2.3)

Let d* denote the distance in the unit ball of M(K) and 5* denote the distance in the unit ball of

L°°(£2;A/(K)). For example, let { ry } be a dense sequence in L^Q) and { Vj } be a dense

sequence in C(K) satisfying

f | rjj | dx = 1, TII(X) = 1, and sup I Vj I = 1.

Then we may write

and

b\\L,\i') = Z 2-(i+ « | < ^ _ ^ ^ ¥ k > | , n, ^ e L°°(Q;Af(K)).

Since r|i(x) = 1,

Hence averaging is continuous. We summarize this using THEOREM 2.1. Introduce the notations

Y(Q;A/(K)) = the parametrized measures v with supp vx c K, and
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Y(K) = the homogeneous parametrized measures v with supp v x c K,

where K c M is compact. Recall that for homogeneous Young measures, we do not have to

specify the domain il since any (reasonable) il may be choscai as the domain of a sequence of
functions which generates v.

PROPOSITION 2.2 The mapping

Av: Y(Q;Af(K)) -» Y(K)

v -» v

defined by (2.3) is continuous.

Note that we do not claim that these sets of parametrized measures are closed.

Localization will enable us to interpret the family of measures (|XX )x e Q given by | ix =

v a , for a fixed a e ft, as a parametrized measure for almost every a. In other words, v a is a

homogeneous parametrized measure for almost every a. Here Q is the unit cube in Rn with

center at x = 0. This decouples the oscillatory properties of the sequence which determines the

parametrized measure from the underlying limit deformation. This and other localization properties

are based on two elementary facts: translation is continuous in L^iil) and the spaces C(K) and

Ll(Q) are separable. We refer also to [16].

THEOREM 2.3 Let v be a parametrized measure. Then v a is a homogeneous

parametrized measure for almost every a e Q. / / ( y k ) c H1*00^) is a sequence which

generates v and HVykll n < M, for a//k, then there is a sequence ( u ) c H 1 ' 0 0^) which

generates v a with the property that II Vua IL ̂ ^ < M, for all k.

PROOF Note that given any f e

f(a + ex) -» f(a) in L^QX a.e. in Q. (2.4)

This is a restatement of the translation property, namely, given £ e L°°(Q),

i j J (f(a + ex)-f(a)K«dxdal = i j J (f(a + ex) - f(a)) C(x) dadx I
a Q Q n
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< suP x l l f ( + e x ) - f ( ) l l L l ( n ) li;ilLOO(Q) -* 0 ,

as £ - » 0 . Hence by Lebesgue's Theorem,

f f(a + ex) £(x) dx -» f(a) f C(x) dx as e -> 0, a € Q a.e.

Suppose now that (v x )x e n is a parametrized measure. Introduce the local spatial average

<vao'V> = P^ J
>H a + pQ

Q

for a € A and p > 0. By the weak* convergence,

limk-^v* v> = JnLv(A)dv

y(a + px) dx .

By (2.3), or simply because almost every a € Q is a Lebesgue point of \\f,

f~ y> = \j/(a) = <v a ,y>, a.e. in fi. (2.5)

What we wish to point out is that a subsequence of (k,p) may be chosen so that (|ix )x e Q wi

l̂ x = va for each x e Q is a parametrized measure. It suffices to choose a subsequence of the

functions

-
P

k (2.6)

One merely observes that for a e il satisfying (2.5),
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iim p_>olim k_>oo f y(Vtik.P) £ dx

= lim p _> olim k ->~ f y(F k(a + px» £(x) dx

= lim p->o f V(a + px) C(x) dx

= y(a) fC(x)dx .

Hence for a subsequence (u a ) of the ( r ^ P ),

= fy(A)dva(A) k(x)dx .lim j _»o,

Q

QED

3 Coupling of measures to parametrized measures

In this section, our objective is to show how a family of measures may be assembled or

coupled to become a Young measure. This will be the converse of THEOREM 2.3.

THEOREM 3.1 Let Q, c Rn be a domain with I dQ. I = 0. Let (va )a € ft be a family

of measures on M with the properties

(i) there is a y e H^QjR111) such that

Vy(x) = j A d v x ( A ) , x e Q a . e . , (3.1)
M

(ii) va is a homogeneous parametrized measure for a e Cl,a.e.,and
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(iii) there are sequences (u*) c H^tQiR111) which generate va such that

llua"Hl.-<n) - M f 0 r a 1 1 k> a G " a ' e - ( 3 < 2 )

77i£/z v = (v x )x€ f t is a parcunetrized measure with underlying deformation y(x).

Knowing the sequences ( u a ) permits us to construct a sequence which generates v, but

this sequence is not unique. Two sequences may generate the same Young measure but their

difference need not converge in measure.

LEMMA 3.2 Let Cl <z Rn be a domain with 13Q I = 0 and let N c Q, be a null set. Given

a countable family { fj } c Ll(£l) and functions r̂ : Q, - N -» R+, there is a set of points

{ â i } c Q - N and positive numbers £&, £& < rk(aki), such that

are pairwise disjoint for each k,

eki^} u N k , w/iere INk l = 0, and

J fj dx = lim k -• oc Z i fj(aki) I eki^ I , for each j .

PROOF Let D c 12 be the intersection of the sets of Lebesgue points of the f/s and set E

= D \ N . For each k the family

Fk = { a + efl: a e D \ N , e<rk(a), ^ ^ JI fj(x) - fj(a) I dx < l-,
a i c*»

l<j<kanda+ei)cfi}

covers E in the Vitali sense by the Lebesgue Differentiation Theorem. Hence we may write

D \ N = U{aki + ekin} u l ^ , I ̂  I = 0,

or

U { kiQ} u N k , where I Nk I = 0.
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Now for fixed j and k>j ,

D.
fjdx - .(fj(x)-fj(aki))dx

a

i J _ | fj(x)-fj(aki) I dx
**

i X i | Eki

= J l Q I .

This proves the LEMMA.

PROOF of THEOREM 3.1 Step 1 To prove that a sequence ( y k ) e

generates v, it suffices to verify the formula

J j C(x)v(A)dvx(A)dx =
n M

JCv(Vyk)dx
n

QED

(3.3)

for a countable set of products whose linear combinations are dense in Li(Q;C(BM))t B M =

{ I A I < M } c M. We may suppose that £ e C(H) and y e C ( B M ) and that

sup | £ | < 1 and sup | y | < 1. We denote by C the set of all such products £(x)\|/(A). Let

= Jv(A)dvx(A)
M

(3.4)J
M

Step 2 Vitali Theorem and application of the LEMMA. Set F(a) = Vy(a). By Rademacher's

Theorem, y is differentiable in Q a.e. So let N be the null set where y fails to be differentiable

and where (3.1) fails. For a e i i - N and k a natural number, there is an ifc(a) > 0 such that

ly(a + ez ) -y (a ) - eF(a )z l < ^ for z e Hand e < rk(a). (3.5)

We apply the Lemma to the set of f = £ y , £ y e C , and i\(a) as above. Here, \j/ is defined

by (3.4). Thus there are { at i} c: Q - N and ê i < rjc(aki) such that
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ydx = limk-^oo EiC(aki) V(aki)l^i"l» C®V e C. (3.6)

Step 3 Construction of yk. Choose a sequence r|k of smooth cut-off functions such that

Tik = 0 in fik = { dist(x,afl) > l /k},

T|k = 1 on d£2, and

IVrikl < 2k.

Now v is a homogeneous Young measure since

sequence which generates v and satisfies

N. Let (u^ ) denote a

I Vuj\ I < M in n and

uki ~* F ( a k i ) z m H l weak*.

Define

yk(x) = y(x) otherwise,

where h = h(k,i) will be chosen later. Thus

Vyk(x) =

Jr

x - ai

— [y(x) - y(aki) - eki
Qd

eki

i) y(x)

x €

i)F(x)

£ki

A) F(x)

eki

I eki

(3.7)

+ iik + m k + rvk . (3.8)
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We first show that the I Vyk I are bounded for suitable choice of the sequence h = h(k,i).

From the choice of ( u ^ ),

I Ik I < M and I Dk I < M.

Since aid e Q - N, by (3.5)

lffikl < — %̂  2k = 2 .
£ki *

Finally, u ^ z ) —» F(aki)z uniformly in Q, so for h = h(k,i) sufficiently large,

I ujj(z) - F(aki)z I < £ . (3.9)

Hence

irv k l < ^2k = 2. (3.10)

Step 4 Generation of vx . Since ( y k ) is bounded in H1>oo(£i), it generates a parametrized

measure, which we must show is v. For each £®y e C and e > 0, for k sufficiently large,

f

i e ĵ f C(aki + ekiz)\|/(Vy^(aki + ekiz)) dz

= Z i eJV C(aid + EkiZfc) f V(Vyk(aid + eyz) ) dz

Jv(VuJ.(z))dz + £
n
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n

+ | + e . (3.11)

Here we have used the continuity of £, the boundedness of £ and y, and the smallness of

IQ - Qk I. Choose an index i = i(k) so that

i . (3.12)

For i < i, choose h = h(k,i) so large that the weak star distance in C(BM)1 satisfies

d* (|i]\ , v ^ ) < ^ , where ^i^ is the average of 8 h .

Thus if \|/ is the Nth function in the list of the \|/s, then

Using (3.12) and (3.13) in (3.11) yields that

fCV(Vyk)dx = S i £

Invoking Step 2, we conclude that

l imk^oo fCv(Vyk)dx = f

Convex combinations of parametrized measures
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Our characterization of measures which are generated by sequences of gradients relies on

the Hahn Banach Theorem. For this reason it is usefiil to understand convex combinations of

parametrized measures. Throughout we let Cl be a domain with \d£l\ = 0.

THEOREM 4.1 Let v and v* be homogeneous parametrized measures with the same

underlying affine deformation y(x) and with

suppv c K and suppv* c K,

for some compact K c E Then for each Xe [0,1], the measure (\-X)v + Xv* is a

parametrized measure with underlying deformation y(x) and

supp[(l-X)v + Xv*] c K.

If ( y k ) and ( y * k ) are sequences which generate v and v* respectively and satisfy

IIVykll < M and IIVy*kll < M,
J L°°(n) J L°°(n)

then there is a sequence ( u k ) which generates ( l - X ) v + Xv* which satisfies

IIVukll < M.

We first prove a simple lemma.

LEMMA 4.2 Let D c c £2 tove smooth boundary and let v , v* to homogeneous

parametrized measures with the same underlying deformation y e H^°°(Hm
yR

m). Then the

measure \i = ( | i x ) x e f t defined by

Vx x e D
v* x e Q - D ^ 4 1 >

X

is a parametrized measure and has underlying deformation y .

PROOF This follows from THEOREM 3.1 since there are only two sequences to consider in

(iii). If ( y k ) and ( y * k ) be sequences generating v and v* respectively, then ua = yk if
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a E D and u* = y*k if a e ft-D. Obviously (i) and (ii) are satisfied. QED

PROOF of THEOREM 4.1. Given v, v* and 0 < X < 1, choose D c Q with smooth

boundary and I D I = XI Q, I. Define ( v x )x € ft by

v x e D

v* x € Q - D '

which is a parametrized measure according to the lemma. Since the underlying deformation of |X

is y(x) = Fx, affine, we may apply THEOREM 2.1. Here v is given by

<v,\|f> = 7-A-r J J \|/(A)dnx(A)dx
1 ft K

= r r n J I V(A)dv(A)dx + i-i-r J J y(A)dv*(A)dx
1 " ' D K ' " ' ft-D K

= X j\|/(A)dv(A) + (1-X) J\|/(A)dv*(A)
K K

Let us briefly return to some implications of LEMMA 4.2. Given parametrized measures v

and v* with underlying deformations y(x) and y*(x) satisfying

y = y* = yo on d£2 where yo(x) = Fox,

then, for 0<X< 1,

\i = (1-X) v + X v* (4.2)

is a homogeneous parametrized measure with underlying deformation y o . Specifically, it is given

by the formula

< ̂  V > = (1 - X) j J \|/(A) dvx(A) dx + X j j y(A) dv*(A) dx . (4.3)
ft K ft K x

Now consider the situation where v is the delta function at F = Vy , that is
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vx = 5F(X) or <vx,\|f> = V(F(x)).

Here

< v, v > = y-^-j f y (F(x)) dx . (4.4)

If also v* is the delta function at F* = Vy* , then

is a parametrized measure with

< ]i, V > = 7 ^ 7 f V(F(x)) dx + ^ f V(F*(x)) dx . (4.5)

5 Characterization in terms of special quasiconvex functions

In this section we shall characterize parametrized measures by a form of Jensen's
inequality. For <p e C(M) the functional

fcp(Vu) dx

is (sequentially) lower semicontinuous with respect to weak* convergence in H^CftR111) if and

only if cp is quasiconvex, which means that

<p(A) < j -g- | fcp(A + VC)dx, for ^e HlfqniBe*) and A e M . (5.1)

A version of Jensen's inequality follows from this, as mentioned in the introduction. Given a
parametrized measure v = (v x )x 6 & , using the notations of (2.1), we have that for
quasiconvex <p
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J<p(F)dx < limk^oo Jcp(Fk)dx = J cpdx = j J cp(A) dvx(A)dx

for every measureable EczQ. Hence

<p(F(x)) < Jcp(A)dvx(A) where F(x) = fAdv x (A) a.e. in Q. (5.2)

The analogous fact for unconstrained parametrized measures, those of (1.12), holds for cp

convex and has a well known converse, Tartar [57], Young [61], Dacorogna [22]: A family of

probability measures ( v x )x 6 Q is a parametrized measure associated to some sequence ( z k )

which converges in L°°(Q.) weak* provided Jensen's inequality holds,

cp( J % dvx(£) ) < J cp(£) dvx(£) for cp convex.

We shall give an analogous characterization in terms of a special class of quasiconvex

functions

Qjvi = {cp: M —»R u {«>}: cp is quasiconvex and cp e C ( B M ) and

cp = +oo in M - B M } , (5.3)

where B M = { A e M : I A I < M } . Our characterization may also be applied to the

unconstrained case mentioned above. We do this in COROLLARY 5.3.

Two remarks about parametrized measures and the class QJA are in order. First, if v =

( v x ) x e n is a Young measure, then there is an M such that (5.2) holds for cp e QAI. This is

because of the local nature of the proof of Morrey's Theorem, which requires information about

the function cp only in a convex neighborhood of the ranges of the sequence (Vu k ) .

In §7, we point out that the relaxation y* of a function y e C ( B M ) extended to +°o

outside B M is in Q>f. This is shown in PROPOSITION 7.2. Other detailed properties of the

class QM are also given in §7. Obviously, it will suffice to set M = l . We set B = Biand Q,=
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THEOREM 5.1 Let KaBaM be compact and Fo € M. Then \i e Af(K) satisfies

cp(Fo) < Jcp(A) d^i(A) whenever (pe Q, where
K

(5.4)

Fo = fAdj i (A) ,

^flrtJ only if [i is a homogeneous parametrized measure and is generated by a sequence

(u k ) c H

IIVukll

Let us introduce the set 5Vf of homogeneous parametrized measures v with

suppv c B ,

Fo = jAdv(A) ,and (5.5)

B

v is generated by a sequence ( u k ) e H1»oo(f2;Rm) such that
IIVukll _ < 1.

Note that fftf * 0 since 8p G fW! For this subclass we may state

LEMMA 5.2 (i) The set M is weak* closed and convex in A/(B).

(ii) Let yo(x) = Fox and u G H^QiR1 1 1) satisfy u = yo on dQ, and

HVull ^ < 1. Then 8 v u e M and the set of all such 5vu^ Mis dense in M.

Recall that the action of the measure 8vu is given by

PROOF (i) M is convex by THEOREM 4.1. To check that it is closed, it suffices to show

that v G M(B) with v = lim vi is a parametrized measure. Thus we must produce a generating
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sequence satisfying (5.5). An appropriate subsequence of the (u^k) , where for fixed j the
sequence (ui»k) generates VJ, will suffice.

(ii) Given u satisfying the hypotheses of (ii), then 8vu e ^ by the averaging

theorem, THEOREM 2.1. To show the density, choose a sequence ( u k ) which generates a given

v and apply PROPOSITION 2.2. QED

PROOF of THEOREM 5.1 Observe that (5.4) implies automatically that î is a probability
measure. To verify this, first take cp(A) = ± 1 on B, so \i(K) = 1. Now let y e C(B) be

nonnegative. Then the convexification y**(A) is nonnegative and quasiconvex. We apply (5.5)

to it, so

< y**(Fo) < f $

K

**(A) d\i(A) <

K

We use the Hahn-Banach Theorem in the space Af(B) in the weak* topology. Let T be

any weak* continuous linear functional with

<T,v> > 0 forve fW: (5.6)

Thus there is a \\f e C(B) such that

<T,v> = <v,v> = Jv(A)dv(A) .
B

In particular, (5.6) implies that

JV(Vu)dx > 0

whenever u satisfies the conditions of hypothesis (ii) of LEMMA 5.2. Recalling the definition of

V*(A)t we have by (7.5) that

V(F0) > ^(Fo) = tofu-yoOn3Qj|Vu|sl JV(Vu)dx > 0.
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In other words, (5.6) means that Xj^OFo^O. Now xy*e C(B), so we may compute, using the

hypothesis on \i9

<T,H> =

B

* Jy*(A)d|KA)

> 0.

Hence \i cannot be separated from the closed convex 9^ whence lie iM

We have already noted in the remarks preceding the Theorem that the local nature of

Morrey's Theorem shows that any parametrized measure satisfies (5.4). QED

One should take note that the set f̂ f does not consist exactly of averaged Dirac masses,

that is, parametrized measures given by (4.4). Were this so, our theorem would be trivial.

Disparate scaling of a sequence easily gives rise to Young measures which are not averaged Dirac

masses, as Ball and Zhang [9] illustrate. Also, many of the Young measures used to describe

complicated microstructures consist of sequences which have disparate scaling [42],[55].

Any probability measure, that is, any unconstrained homogeneous parametrized measure in

the sense of (1.6), may be realized as the parametrized measure generated by a sequence of

gradients. Some reflection shows that this holds for the Dirac masses. Since they are the extreme

points of the probability measures, the conclusion follows. We provide a more entertaining proof

based on our THEOREM 5.1.

COROLLARY 5.3 L e / K c B c Rn be compact and \i e Af(K) be a probability measure.

Then \l is a homogeneous parametrized measure in the sense of (1.8).

PROOF In this case quasiconvex becomes convex and the class Q, reduces to

Q, = { <p: Rn —> R u {«>}: (p is convex and <p e C(B) and

cp=:+ooinRn-B},
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For any convex q>e C(Rn),

<p(E) = O
1 oo otherwise

has the property cp € Q, Now if p, e A/(K) is a probability measure, then

e B

so

< J<pft)d»ift) = J

The conclusion follows from THEOREM 5.1. QED

6 Characterization in terms of continuous quasiconvex functions

A natural class of functions to investigate is the set of continuous quasiconvex functions on
M,

= { <pe C(M): (p is quasiconvex }. (6.1)

If v is a homogeneous parametrized measure and cp e Qpo* by lower semicontinuity of the

fiinctional

4>(v) = Jcp(Vu)dx, v €

we have that

<p(Fo) < J<p(A)dv(A) when Fo = f A dv(A) . (6.2)
M M
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What is the relationship between parametrized measures and Q ô ? We shall infer a result slightly

weaker that THEOREM 5.1. The difference in the conclusion owes to the fact that C(M) is not a

Banach space and its dual

Af(M) = C(M)f,

the Radon measures with compact support, is not a space where sequences suffice, even though

closed bounded sets in the weak* topology are compact

Given K c M compact and Fo e M, let # C = f*C(Fo,K) be the homogeneous

parametrized measures v satisfying

supp v e K and Fo = IA dv(A) . (6.3)

According to THEOREM 4.1, fftC is convex but, unable to control the ranges of generating

sequences, it is not clear that it is closed. It is easy to see that the special parametrized measures

v = 5 V u , u € H ^ ( Q ; n u | a n = yOf

where yo(x) = Fox, are dense in f*C in Af(M) weak*.

THEOREM 6.1 Let KczM be compact and Fo e M. Then \i e Af(K) satisfies

cp(F0) < Jcp(A)d^(A) where Fo = J A d^i(A) , (6.4)
M M

whenever cp e Q,«>, if and only if |X e fWL», the weak* closure of ihCo .

PROOF As in the proof of THEOREM 5.1, (6.4) implies that |i is a probability measure.

Define the weak* continuous linear functional T by

<T,v> = < v , v > = Jv(A)dv(A) , v
M

where y e C(M). Suppose that
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<T, v ) > 0 whenever v € # C (6.5)

which, by (3.6), means that

JV(Vu)dx > 0 whenever ue H^QjR111), u = yo on 9Q.

We shall show that

<T,n> > 0 . (6.6)

According to (6.5) and the definition of \\ft ,

x > 0 , (6.7)

thus y#(F0) > 0 > -<». Hence by PROPOSITION 8.1, v * e C(M) and \|^ is \i - integrable.

Using (6.5) and (6.4), we compute that

J
M

> 0 .

This proves the claim. QED

We do not know if 5VC is closed. If it were, THEOREM 6.1 would provide another

characterization of parametrized measures generated by gradients. One approach to attacking this

question would be to use the hypothesis (6.4) to prove the hypothesis (5.4). A means to

accomplish this would be to prove that for any cp e Q,
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<p(A) = sup { f(A): fe Q,«> and f < 9 } . (6.8)

It would be interesting to determine if fftC is closed. From the functional analytic point of

view it would mean that all parametrized measures supported in a given compact set form a closed

convex set of measures.

With regard to microstructure, we might be confronted with a sequence of complicated

microstructures, not obviously finite rank laminates, which tend to an equilibrium microstructure

whose parametrized measure has compact support. We might even know that this sequence is

generated by a sequence of functions or a net of functions. Indeed, if it is generated by a single

sequence, then PROPOSITION 1.1 informs us that the sequence is bounded. But in general we do

not expect to know about existence of this sequence. If # C is closed, we would know that this

complicated process is generated by a sequence and that the sequence is bounded in H1*00, i.e., has

uniformly bounded gradients. Now, roughly speaking, when we have sequences of parametrized

measures which tend to minimizing configurations, they spend most of their time near minimum

enegy wells with their supports growing in an uncontrollable manner only when kinematic

compatibility requires oscillations to connect these wells together. This behavior is associated with

the formation of interfaces. If the limit configuration may be generated by a sequence with

bounded gradients, grounds for limitations on the size and energy of these interfaces result.

Measures |i e thLo do enjoy many properties. For example, given f e C(M), we may

extract a sequence ( u k ) c H^ftiR1 1 1) such that

f Cf(Vuk) dx -> J f(A) dn(A) f C dx , C G L~(G) .

By the de la Valle£ Poussin criterion, it follows that whenever

the sequence (y (Vu k ) ) converges weakly in L^fi), namely,

fCY(Vuk)dx -> Jy(A)dn(A) kdx
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Choosing, for example, f(A) = e I A I implies in particular the existence of a sequence ( u k )

bounded in H^P^R111) for every p, l < p < « > , with the property that (6.9) holds whenever

\|f has polynomial growth. Thus such measures \L have better properties than the H^P Young

measures we introduce in [55] and to which we alluded briefly in § 1.

7 The special class Q, of quasiconvex functions

In this section we explain some properties of the class Q M of quasiconvex

functions which was defined to be

Qj4 = {cp: M —»R u {«> }: cp is quasiconvex and cp e C ( B M ) and

cp = +oo in M - B M } , (7.1)

where B M = ( A E M : I AI < M }. An interesting feature of cp e Qjvi is that the functional

fcp(Vv)dx, v e H 1 - - ^ ) ,

is lower semicontinuous. We thank John Ball for insisting on this point.

PROPOSITION 7.1 Let cp e Qju and £1 c Rn be a domain with Idfii = 0. / /
uk -> u in H1 '0 0^) weak*, then

fcp(Vu)dx < liminfk->oo fcp(Vu k )dx . (7.2)

PROOF If the right hand side of (7.2) is infinite, then the conclusion holds. Suppose,
then, without loss in generality, that

lim J cp(Vuk) dx

Thus " ̂ u k "T OO/Q) - ^ and it follows by lower semicontinuity of the norm that

II Vu llLO.(n) < M .
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The idea now is to use the proof of Morrey's Theorem, cf.[51], which requires, however,

that <p be continuous in a convex neighborhood of the ranges of the (Vuk). We overcome this

by using the uniform continuity of (p in BM- Let (0 denote the modulus of continuity of <p. For

each t, 0 < t < 1,

tuk -» tu in H1'00^) weak*

and by [51],

Jcp(tVu)dx < liminfk^oo f<p(tVuk)dx

oo { fcp(Vuk) dx + f (cp(tVuk) - (p(Vuk)) dx

oo f(p(Vuk)dx + co((l-t)M).

Hence,

fcp(Vu)dx < liminfk-^oo f cp(Vuk) dx + 2co((l - t)M).

PROPOSITION 7.2 Let fl c R n be a domain with l i i l = 1 and \d£l\ = 0. Let

\ | / e C ( B M ) and set

V(A) = j V(A) A € BM . (7.3)
I « otherwise

Let

J#(A) = infHi.-(n) J v(A+VC)dx, (7.4)
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the relaxation of y . Then \f* e Qjvi &*& V* = V on

Note in particular that \|^(A) < «> for a given A implies that

x , (7.5)

so that \|/*(A) is given either by (7.5) or is +«>. This observation also makes it easy to check

that \jr is well defined, cf. the argument in [7] or [16], Lemma 3.2. The dependence of

on the radius M will be useful.

LEMMA 7.3 Given \\f e C(BM)> continue to denote by \\f any of its extensions to Co(M).

Define

P 'A *t" V ̂ 1 s p jJ

Then

VR (A) t $ J , (A) , I AI < M, as R l M and (7.7)

$ J (A) 4- $ J , ( A ) , I A I < M, as r T M . (7.8)

PROOF We give the proof of (7.7); that of (7.8) is analogous. First of all, it is
obvious that

(A) < $Jj (A) < vf (A) for R > M > r.

Let Rj—»M and let (o(s) be a modulus of continuity for y in some ball of radius Ro ^ supRj.
For each j , choose £j and tj such that

jVCj) dx < $J.(A) + | and
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jl < M, tj = § -» 1.

Then

JlV(A+tjV^)-v(A+V5j)ldx < (D((tj-1)M) = (Oj -» 0 as j

Thus

< y * (A) + CD] + T .
Kj J J

Proof of PROPOSITION 7.2. We proceed in steps. We may assume that M = 1 and denote by B

Step 1. ^ ( A ) = +oo for IAI > 1.

This is obvious. Let g(A) be any convex function satisfying

g(A) = I ° S _ . (7.9)
[ > 0 in M -B

Thus

> v(A) + ig(A), e > 0.

By Jensen's inequality, for every e > 0,

> inf v - f M g ( A + V Q d x

> inf\|/ + ^g(A).
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Hence

J $(A+VQ dx = oo for I A I > 1 and

for I A I > 1.

Step 2. $* e C(B)
Given A and A'e B, let e > 0 and choose £ such that

e + v#(A') > J \|f(Af+V0 dx .

Hence

V*(Af) > fv(A+VOdx + f(v(A'+VO-y(A+VO)dx

^ $J(A) - coOA-A'l), R = IA-A1 + 1.

According to the LEMMA, we may choose IA-Afl so small that

$J(A) > $#(A) - e,

whence

*(A) < liminfA-

Analogously,

V*(A) > lim sup A- -» A

Step 3.
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$*(A) = infAff f v ( A + V Q d x , (7.10)

where Aff denotes piecewise affine functions £ in H*'°°(Q). The proof of this is standard.

Step 4. $#(A) = V(A) for IAI = 1.

Given £ e Aff, £ * 0, we may write

V£ = ZZiXj . . with X Zi I Di I = 0.

So the convex combination of the matrices A + Z{,

Z ( A + Zi)IDil = A ,

a point on the boundary of the ball B, hence at least one Zk has the property that

B. Consequently, since \|/(A) is bounded below,

I y ( A + V 0 d x = +oo.

Hence there is a unique £ for which the integral is finite, namely £ = 0. This concludes Step 4.

Step 5. lim A A ^ (An) = y(Ao) for Ao e 9B.

Let An -> Ao e dB with rn = I AQ - An I -^ 0. Given any £ € H^°°(Q), suppose that

I An + V ; | < 1 (7.11)

and write

- U(An+V0dxl +

- fv(An+VC)dxl. (7.12)

The essence of the demonstration is to show that
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U m An-»Ao 'V(An)-JvCAn+VQdxl = 0 ,

uniformly in £ subject to the constraint (7.11). Introduce the sets

Hp = { A e B: A • Ao < p 2 }, 0 < p < 1, and

Kp = Kp(n) = { x G Q: An+V£ G Hp }.

Both Hp and B - Hp are convex and

Jiy(A n +VC)-V(A n ) ldx < (0(2^1 - P 2 ) . (7.13)

In addition, the averages

An = n r i / ( A n + V Q d x e H p and

Meanwhile, we may write An as the convex combination

An = I Kp I A* + (1 - I Kp I) A" ,
r n r n

SO that

An - Ac = I Kp I (A^ - Ao) + (1 - I Kp I) (An- Ac) .

Now by elementary geometry, as n —> «>,

I A ^ - A o l - ^ 0 and I A ^ - A o l > 1 - p .

Thus I Kp I —»0 as n —> «>. Consequently, in view of (7.13), given e > 0, we may choose p

and then np so that

IV(An)- f v ( A n + V 0 d x l < e for n > np .
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By the continuity of y and the definition of ^ ( A ) , we may choose n so large and then £ so

that each of the first two terms in (7.12) is dominated by e.

Step 6. To complete the proof of the PROPOSITION, we show that xj/^A) is quasiconvex.

Suppose that A G B and C G H^°°(fl). If

then l{x € fl: IA + V£ | > 1 }l > 0 , whence

$*(A) < + « = J \jr#(A+VC) dx

So suppose that

We proceed in a standard manner. Given e > 0, we may find a £E e H0
>oo(Q), which may be

taken piecewise affine, such that

IIA + VCellL . ( n ) < t < 1 and

J I \}r#(A+VO - \Jr#(A+VCe) I dx < £. (7.14)

Writing
V£e = ZZiXj. , with lA + Zjl < t < 1,

1 00

and each Di a finite union of simplices, we may find r|i e H ' (Pi) such that

^ 1

- e. (7.15)

Let TIG H1$°°(i2) be defined by r| = rn in Di. From (7.14) and (7.15),
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J \Jf*(A+VOdx > J $#(A+Vk)dx - e

= Z ^ ( A + ZOIDjI - e

> E JV(A+Zi+VT|i)dx - 2e

= J\|r(A+V(Ce+Ti))dx - 2e

- 2e.

For IAI = 1, the proof of Step 4 shows that \|̂ *(A) is quasiconvex at A. Similarly, if

IA I > 1, one easily verifies that

J y#(A+VQ dx = +00 for any £ € H ^ Q ) .

QED

8 The class Q,«> of continuous quasiconvex functions

For y e C(M), we set

\|^(A) = inf v rcTl Jy(A + VQdx , A e M (8.1)
1 " ] d

o

The facts of the proposition below are well known but appear scattered in the literature and

under varying hypotheses. It is important for us not to assume that y is bounded below.

Obviously,
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-oo < infy < \|^(A) < \|/(A) for A e M .

PROPOSITION 8.1 Let y e C(M) and define Xj/* by (8.1). Then

(i) Xj/* is independent of £2, i.e., is well defined,

(ii) and it is rank-one convex.

(iii) if \|^(Ao) > - oo for some AQ G M, r/î n xi/* e C(M) , <

(iv) if \\ft € C(M), /Aen zr iy quasiconvex.

Proof (i) Following Ball and Murat [7], let us provisionally set y f t and \|/D the

infima taken over HlfOO(Q^lm) and H1>o°00^m), respectively. As in the proof of THEOREMo o

2.1, given Co > 0, the collection of sets { a + eD: a e £2, e < £ o } i s a covering of D from

which, by the Vitali covering theorem, we may select a countable or finite subset

{ ai + £iD: i = 1,2,3 ...} of pairwise disjoint sets such that

Q = LJ(ai + £iD) u N, | N | = 0.

Note that Z (ti^ ID I = I Q I. Let £ G H l fOO(D*m) and define
o

J £i C(2 L- l i) x e a i + £iD
V(X) = < £i

I 0 otherwise

Then

fV(A

J
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^ ) n

Thus \ j ^ (A) < ^ ( A ) . Interchanging the roles of ft and D gives that \\ft is well defined.

(ii) To show that \\ft is rank-one convex, we use the method of [16], Lemma 3.3. Choose F
e M, a e Rm and b G Rn, I b I = 1. Let D c R n b e a unit cube with one face perpendicular
to b. FOTXE (0,1), let x(0 denote the characteristic function of (0,X) c (0,1) extended
periodically so that x(t + k) = x(0 for k G Z. Set xH*) = XC1^ *b)- Determine uk e

H^^DiR"1) such that

Vuk = F + xk a®b and uk -» y in H1'00^*111) weak *,
where y(x) = (F + X a®b)x .

Since uk —> y uniformly, we may choose a subsequence of k and cut-off functions Tik such

that

T|k = 1 on a subcube D^ c D with I D - D k l - ^ O a s k - > o o ,

Tlk = 0 on 3D, and

vk = y + n ^ - y ) -* y in H^-CDjR"1) weak*.

In particular, IVvkl are bounded and with

= { x e Dk: xk = 0 } and D\ = { x G Dk: xk = 1 } ,

-> l-X and ID^I -^ Jt as k

Note that

Jv(Vvk)dx| < £k ^ 0,
D-Dk
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Choose £ G H^DjR111) with supp £ c E^ and note that

V ( v k + 0 = F + ^ a ® b + V w forsome w€ HlfOD(D;Rm).
o

Thus

fv(Vvk

k + V£)dx + JV(Vvk)dx
Dk D-Dk

< J\|f(Vuk +VQdx + ek
D

a®b + VQdx + £k .

Now choose £ so that £ = 0 on 3DQ u 3D1 . We may thai vary £ independently in the two

k k
sets DQ and D j , so that taking the infimum of the right hand side above gives that

a®b)+ ek .

Passing to the limit as k —» «> gives the result.

(iii) Suppose that ^ ( A Q ) > - °° for some A Q G M . Then for any a,b, f(t) =

^ ( A o + t a ®b) is convex by (ii) and continuous for - «> < t < «> since it is finite at some

point. Hence, of course, for any a\b\ the function g(s) = x^CAo + t a ®b+ s a'®bf) is

convex and continuous in s, - °© < s < «>. Since any F may be connected to AQ by a sequence

of such paths it is easy to check that \y* is finite every where and continuous.

(iv) The proof of this is standard, cf. [23].

QED
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