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Weak convergence of integrands and the Young measure representation

David Kinderlehrer and Pablo Pedregal

Abstract  Validity of the Young measure representation is useful in the study of microstructure
of ordered solids. Such a Young measure, generated by a minimizing sequence of gradients
converging weakly in LP, often needs to be evaluated on functions of pth power polynomial
growth. We give a sufficient condition for this in terms of the variational principle. The principal
result concerns lower semicontinuity of functionals integrated over arbitrary sets, THEOREM 1.2.
The question arose in the numerical analysis of configurations. Several applications are given. Of

particular note, Young measure solutions of an evolution problem are found.
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1 Introduction
For a lower semicontinuous functional of the form
P(v) = n[ ¢(Vv)dx, ve HLP(Q;RmM),
the convergence property

®uk) - ®u) and uk — u in HLP(Q;RM) weakly

for a particular sequence (uk) does not by itself inform us of the behavior the sequence
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( @(Vuk))1. Here we show that if ¢ is nonnegative and has polynomial growth, then ( @(Vu¥))
is weakly convergent in L1(Q2) to @(Vu). A consequence is that the Young measure generated by
(Vuk) represents the weak limit of a sequence ( W(Vuk)) when v is dominated by ¢. Our
interest in this question arose in the attempt to estimate convergence properties of numerical
methods for functionals which are not lower semicontinuous, where ¢ plays the role of the
relaxed density. Validity of the Young measure representation is useful knowledge in the study of
the microstructure of ordered solids, cf. Ball and James [5,6], Chipot and Kinderlehrer [10],
Ericksen [18-29], Fonseca [31-34], James [35], James and Kinderlehrer [36], Kinderlehrer [37],
Kinderlehrer and Pedregal [38], Matos [41], and Pedregal [45,46]. We do not give any explicit
applications to the numerical analysis in this paper except to say that our results confirm the validity
of the Young measure representation for the limits of the approximations generated by finite
element methods when the energy density has appropriate polynomial growth at infinity. We refer
to [9,11,12,13,14] for discussions of these developments.

The proof of this and related facts is based on a method of Acerbi and Fusco [1] and
subsequent application of the Dunford and Pettis criterion for weak convergence in L1. Weak
convergence of a sequence (fk) in L! is sufficient but not necessary to give sense to the Young
measure representation. Ball and Zhang [8] use the Chacon biting lemma to study this question
under hypotheses weaker than ours.

The proofs of our results are in §1 - 3. Three applications are given in §4,5, and 6. The
example of constraint management in §4 is a generalization of a result of S. Miiller [44], cf. also
K. Zhang [51]. In §5 adiscussion of the Young measure representation when surface energies
are present in the system, cf. [39]. Both of these use the convergence property above, or (1.3)
below, without assuming that the functional is being driven to a minimum. An application to an
evolution problem is given in §6, where it is shown how Young measure solutions may be found.
This builds on some recent work of Slemrod [47]. Useful discussions of Young measures are
given by Young [50] and Tartar [48,49], and more recently by Ball [3] and Evans [30]. One
consequence of our considerations is that they lead to a notion of Young measures generated by
functions whose gradients are in LP for finite p, [45]. We begin with a description of our
principal results.

THEOREM 1.1 Let @ be continuous and quasiconvex and satisfy

0 < @A) < C(1+1AIP), AeM, (1.1)
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ARO through DAALO3 88 K 0110 at the University of Minnesota.
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where 1 < p < oo, Suppose that

uk = u in HLXQ) weakly and (1.2)

‘! o(Vu)dx = limy, J ¢(Vuk) dx . (1.3)

Then there is a subsequence (not relabled) of the (uk) such that

¢Vuk) = @(Vu) in LYQ) weakly.

THEOREM 1.2 Let @ be continuous and quasiconvex and satisfy
0 < ¢A) < COQ+1AIP), AeM,

where 1 < p < oo, If vk = u in HLP(Q) weakly , then

E[ ¢(Vu)dx < liminfy, e E[cp(vuk)dx (1.4)

for every (measurable) E c Q.

We wish to discuss THEOREM 1.2 a little prior to giving the proof. First note that
according to the generalizations of Morrey's Theorem [43], for example Acerbi and Fusco [1],
(1.4) holds whenever E is a domain with Lipschitz boundary. This information is insufficient to
deduce (1.4) for more general sets, which is the crux of the problem.

The case of THEOREM 2 with p = oo is automatic since { ¢(Vuk) } are uniformly
bounded in this case. Indeed, choose M with the property

Il @(Vuk < .
®(Vu )"L“’(Q) M forallk

Given E, let U be an open neighborhood of E with IU-E| < € Now U is the union of
countably many cubes { D} with disjoint interiors and for each Dj, (1.4) holds. Hence

Jcp(Vu)dx < X chp(Vu) dx
i
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IA

T timinf [ @(Vuk)dx
D;

A

lim ian(p(Vuk) dx.

Finally, we have that

J(p(Vu) dx € lim inf!cp(Vuk)dx + 2Me.

Thus, if vk = u in H1(Q) weak*, then

J @(Vu)dx < liminf J @(Vuk) dx (1.5)

for any measurable E c Q.
The case p = 1 for Theorems 1 and 2 is easy and will not be discussed.

To illustrate how the preceding results apply to the Young measure representation, let us
introduce the Banach space, for p> 1 fixed,

- : Al
E = {ye C(M): SUPM TA el S }. (1.6)
THEOREM 1.3 Let @ be quasiconvex and satisfy, for some constants C 2 ¢ > 0,
max {clAIP-1,0} € @A) £ C1+I1AIP), AeM, .7

where 1 < p < oo, Suppose that

uk 5 u in HYX(Q) weakly and (1.8)

d[ O(Vu)dx = limy_ e J @(Vuk) dx . (1.9)

Let v = (Vx )xe Q be aYoung measure generated by (uk). Then for any € E, the sequence
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W(Vuk) =y in o(LI(Q).L=(Q)) where

v = [wA)dviA) in Q ae. (1.10)
M

Further, consider W € C(M) satisfying
WA 2 0

and (1.11)
c(AIP-1) < WA) < CUAIP + 1)

forsome p > 1 and 0 < ¢ < C. Let
AQ(Yo) = {ve HIP(Q): v = y, on dQ} where yoe HIP(Q).

COROLLARY 1.4 Let W satisfy (1.11). Suppose that (uk)c Aq(yo) satisfies

lim g e JW(Vuk)dx = inf JW(VV) dx . (1.12)
AQ(yo)

uk 5 u in HLP(Q) weakly.
Let v = (Vx)x e o be aYoung measure generated by (uk). Then for any € E, the sequence

W(Vuk) =y in 6(LYQ),L=(Q)) where

v = [wA)dvxA) in Q ae. (1.13)
M

In particular, the (W(VuK)) converges to a limit energy density W in o(LY(Q),L=(Q)) where

W) = [W(A) dvx(A) in Q ae. (1.14)
M

A version of COROLLARY 1.4 has also been proved independently by Matos [42] who
obtains an improved class E by combining Ekeland's Lemma with the reverse Holder inequality,
although the convergence is then restricted to o(L1(Q'),L=(Q") for Q' cc Q.
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Note that a particular consequence of THEOREM 1.3 is that the sequence { |M - Vuk p 3,
for a constant matrix M, converges weakly in L1(Q), although notto |M - Vu [P. Another
consequence concerns the relaxation of W, or its quasiconvexification, cf. [7,15,16] for example.
Assume that p > 1. The integrand

WHE) = ian:‘”(Q)l—glﬂ JW(F«-VC) dx (1.15)

is quasiconvex and relaxes the variational principle (1.8) in the sense that

inf Q[W(Vv)dx - inf

JW#(VV) dx .
Aq(o)

AQ(Yo)
Obviously a minimizing sequence for (1.12) is also a minimizing sequence for the functional with
the integrand W¥. For a given F, the infimum in (1.15) may or may not be realized, but given a

minimizing sequence uk(x) = Fx + {¥(x) e HLP(Q;RM),

WHE) | Q| = limg e ﬁ[W(Vuk)dx.

Let B = (Hyxe Q beaYoung measure generated by (uk). We may assume that iy is
independent of x € Q, although we pass over the details of that here. Applying COROLLARY 1.4,
we obtain in particular that

WHE) = [W(A) du(a) (1.16)
M

so the infimum is attained in a Young measure fashion. Moreover, the inequality W# < W
insures that

supp . < {A: W(A) = W#A) }.

Of course, if ¢ is any other Young measure generated by some sequence of the form (vK)
HLP(Q,R®M) with vk = Fx on 0Q, then

[w@ydua) < [wa)doa),
M M

so W satisfies an ersatz minimizing principle as well.
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2 Proof of Theorem 1.2
Our aim is to give a proof of the second result. THEOREM 1.1 will be a corollary of it.

For this we adopt a technique of Acerbi and Fusco which has an important ingredient from a paper
of F.-C. Liu [40]. The technique uses these facts from Acerbi and Fusco:

LEMMA 2.1 Let GCR" have | G| < o, Assume that { My } is a sequence of subsets of G
such that for some € > 0

IMg! > ¢ for all k.

Then there is a subsequence X; for which
MM, = 0.
j

LEMMA 2.2 Let { fi } beasequence bounded in LY(Q). Then for each € > 0, thereisa
triple (Ag, 3, S), where Ag c Q with | Agl < €& 8 > 0,and S is an infinite subset of the
natural numbers, such that

Dj|fk|dx < €

whenever DN Ag = @ and IDI < 4.

For any ve C(R"), we set

M*v(x) = M(vx)) + M(IVv(x)l)
where

Mf(x) = sup,>oﬁ B.I[)I f(z) | dz
X

is the maximal funtion of f. It is well known that if v € C:(IR“), then M*v e C(R") and
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It M*v "LP(R“) < Cp)liv "H’-P(R")‘ 1 <p < oo 2.1
and in particular, for any A > 0,
I{M*v 2 A}l < C,p)APllv g1 pgny 1< P < o (2.2)

LEMMA23 Let ve Co(R") and A > 0. Set H» = {M*v < A ). Then

'—‘%‘y’—}ﬁ' < C)h xye H, 2.3)

where C(n) depends only on n.

We shall also make use of the well known fact that a Lipschitz function defined on a subset
of R" may be extended to all of R without increasing its Lipschitz constant.

PROOF OF THEOREM 1.2  Weregard uk and u as extended to functions in HI.P(R") with
norms controlled by their HI.P(Q2) norms. Let € > 0.

Step 1. Since the functional of (1.4) is continuous in H.P(R") in the norm topology,
because of the upper bound on @, we may find z,zK € C': (RM) with

[10(Vu) - o(V2)dx < e 2.4)
Rn
Ilcp(Vuk) -@(Vz+ VzK)ldx < ¢ (2.5)
Rn
and
lu — uk — zkJ| <1
Hl.PR") k-

Thus zk — 0 in HIP(R") weakly and

HZK gy pny € M < o= (2.6)

Set
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H* = (Mz2<A) and H' = {M'Zk <1},

According to LEMMA 2.3, we may find {k,n e HL.=(R") such that {k = zk on Hﬁ and n =

z on H* with

NN oy S 126 "L"’(l-[i‘) < A

and
Il gk I'H‘"“(R“) < C)A,
and the same for 1. After extraction of a subsequence we may suppose that
k - { in HL=(R") weak*.
We apply LEMMA 2.2 to the sequence { M*(zk)P }. By (1.2) and (2.1) these functions

are bounded in L1(Q2). So given €' > 0, there is a triple (Ag, 8, S) with
lAgl < € and

lj[M‘*(zk)p dx < ¢

whenever DN A, = @ and ke S.

Nowlet G = {{ # 0}. Sincethe zZKk —» 0 in LP(R") in norm, we may assume that
zk — 0 pointwise a.e.in Q. Thusif weset Go = GN {xe Q: ZXx) — 0}, then 1G, |
= |G |l. We write G, as a union,

Go = (GoNH}) U (Gon (R*-H})).

By (2.2),
1GoN®RA-H}) < CAPM forall k. Q.7

This implies that

IGo!l = IGl £ 2CAPM. (2.8)
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Otherwise, namely if

IGol > 2CAPM, then 1GoNHYI > CAPM,

by (2.7). Applying Lemma 2.1, there would be a subsequence k; such that

Gom(ﬁHi'j) + 0,

and for x in this intersection,
{x) = lim{k(x) = limzkx) = 0,

which contradicts the definition of the set G. Hence (2.8) holds.

Step 2 Since @(Vu) e L1(Q), we may find 6,0 <06 <¢g, and A large enough that
J(p(Vu) dx < €, 2.9
AgUQ-HMG

cf. (2.8) above. Let E c Q be measurable and assume a subsequence of the uk chosen (but
not relabled) so that

lim J(p(Vuk) dx = liminf J(p(Vuk)dx.

og = J(p(Vuk)dx.

Since @ > 0, by (2.5)

o 2 [ o(vuk) dx
ENHAHME(Q-Ag)
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\%
|
m
+

I ©(Vz+Vzk) dx .
EnHANHMKN(Q-Ag)

But Vz = Vn and Vzk = V{k in HMHAK so that

o > - + [ o(Vn +vER) dx
EnNHAMHMN(Q-Ag)

| o(vn +vLRyax - | ovn +VEK) dx
ENHM(Q-Ag) EnHM(Q-HM)N(Q-Ag)

"
!
m
+

-+ Px - %.

Since V(n + {¥) is uniformly bounded and @ is quasiconvex, by the remark (1.5), we have that
for K sufficiently large

Bk + € 2 f o(Vn +V{)dx
ENHAM(Q-A)

We now inspect Y. Using the bounds on Vn and VX, and choosing A large enough,

< C1+AP) 1 (Q-HNHNQ-Ag)!

A

CIQ-HM + | cM*@xp dx
(Q-HM)(Q-Ag)

IN

Ce + Co < 2Cs.

Consequently, for k sufficiently large,

o > —Ce + [ o(vn+v0ax . (2.10)
EnHM\(Q-Ag)
Step 3. Again using the positivity of ¢, from (2.10)
o > —Ce + [ o(vn +v)ax

ENHM\(Q-Ag)(Q-G)
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Since { = 0 in Q -G, wehavethat V{ = 0 in Q -G, so,since N = z in H*, we deduce
that

a =2 -Ce + j o(Vn) dx
ENHM(Q-Ag)N(Q-G)

> -Ce + [ o2 dx
ENHM(Q-A6)N(Q-G)

By (2.4) and (2.9),

o 2 —(1+Ck + [ 9(Vu) dx
EnH*(Q-Ag)N(Q-G)

v

—(1+0C)k + J o(Vu)dx - [ 9(Vu) dx
EN[AgU(Q-HMUO)

v

-2+0C)k + EI({)(Vu)dx

Since € > 0 is arbitrary, the theorem is proved.

3 Proofs of the other results

PROOF OF THEOREM 1.1 This follows from the Dunford-Pettis criterion. Assume that the
sequence ( @(VuK)) isnot o(L!,L>) relatively compact. Then for some € > 0 and every 9 >

0, thereis an A5 Q and an integer kg suchthat 1Agl < & and

I(p(Vuka)dx > €.
A

Since @(Vu) € L1(Q), thereisa 8, > 0 suchthatif |E| < &, then
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I=jcp(Vu)dx < €. (3.1)

Let us choose in particular §; = 273 8, . Then there is a sequence Aj, | Ajl < §;, and k;

such that

I(p(Vukj)dx > ¢ forall j.
Aj

Let E = UAj,s0 |EI £ &, and (3.1) holds. Thus

e < [ouax < [oVuax — [o(Vukix
Q°E
Letting kj — o, we have by THEOREM 1.2 and the hypothesis (1.3) that
g < n[(p(Vu) d) - [e(Vu) dx
Q°E
= l!cp(Vu)dx < €,

a contradiction.

PROOF OF THEOREM 1.3: This also follows by the Dunford-Pettis criterion, using THEOREM 1.1.

4 Constraint management in a limit case

Certain variational principles in elasticity constrain the admissible variations v €
H1.s(Q;RM), where Q < R, to satisfy
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detVv > 0 in Q ae.
In the limit case p =n, det Vv e L1(Q) for ve HLN(Q;RM) but it is not necessarily integrable
to any higher power. Thus it is not automatic that if u¥ —u in H!/(Q;R") weakly, that det Vuk
— det Vu in L}(Q) weakly. In fact, without additional requirements, this condition does not

hold. One may refer to the counterexamples in Ball and Murat [7]. However, much is known
about this situation, as we summarize below.

First of all, the determinant is a null lagrangian, namely, if u,v € HL.Y(Q;R") and u

Jdequdx = Jdethdx. : @.1)

Assume that uk,u e HI(Q;R") and
uk — u in HIYQ;RM) weakly. 4.2)
Then for a subsequence of the ( uk), not relabeled, cf. eg. [2] ,
det Vuk - detVu in D'(Q). 4.3)
Very recently, S. Miiller [44] has shown that if (4.2) holds and det Vuk > 0, then

detVuk — detVu in Llloc(Q) weakly. 4.4)

We give a slight generalization of Miiller's result. With it, altenate proofs of some results in
elasticity may be given, for example, some of those in Zhang [51].

THEOREM 4.1 Let uku e HLYQ;RM) satisfy
vk > u  in HYWQ;R") weakly, 4.5
detVuk > 0 in Q ae.,and (4.6)
K| =
u Ian Uo I - 4.7

where u, € HLWQ;RD) is fixed. Then
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det Vuk > detVu in LY(Q) weakly. 4.8)

PROOF First of all, u = u, on 0. From Miiller's result (4.4), we deduce that det Vu
2 0 in Q ae. By (4.1),

JdetVudx = n[ det Vukdx = J det Vugdx ,forall k.  (4.9)

Now let

®(A) = max {detA,0}, Ae W,
which is continuous, quasiconvex, and satisfies

0 < @A) < CAO+1AD"Y, AeM.

Then @(Vuk) = det Vuk and ¢(Vu) = det Vu, so, trivially, by (4.9),

J @(Vu)dx = limy_; « J @(Vuk) dx .

Consequently, by THEOREM 1.1, possibly for a subsequence which we do not relable,
det Vuk — detVu in L1(Q) weakly. QED

We wish to remark that we used Miiller's result to conclude that det Vu > 0 in Q a.e.
We could also have used the biting convergence theorem of Zhang [51] for this purpose. The idea
of THEOREM 4.1 is that the sequence (uk) may arise as a minimizing sequence for some
variational principle subject to (4.6). Additional information then follows from the theorem.

5 Application to functionals with surface energies

We consider a simple situation where cooperative bulk and surface energies are minimized.
Let Q < R" have smooth boundary I'" and set

EW) = JW(Vv)dx + lj wWVv,v)dS, ve CLQRmM), 5.1)
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where v denotes the exterior normal to I'. The infimum of E over C1(Q;R™) is not necessarily
the sum of the infima of its two summands, so we envision an application of our results when
(1.3) will hold for each of the two terms but where these quantities will not be the unrestricted
infima of their portions of the functional.

Assume that W is continuous and satisfies, for some p>1 and C 2 ¢ > 0,
max {clAIP-1,0} < W(A) < C(1+I1AIP), Ae M (5.2)
About T we assume that it is continuous and, for some s> 1,

0 £ 1A,vy) and

Ae M, (5.3)
clAanlts-1) £ ©AyV) < ClAIS+1),

where Awn = A(1-v®v) is the tangential part of A.

For a fixed ve S™1, let D'c {x-v =0} be a domain and let dx' denote the (n - 1)-
Lebesgue measure on D'. By D' x (-1,1), r > 0, we abbreviate the name of the set

{xeR™m x'=(1-v ®V)xe D' and |xvl<r}.
Let [E] denote the n - 1 dimensional Lebesgue measure of E. We define

¢EY) = info i [+ VI, Eve Mxsm,
D

(5.4)
C’ = Cy(D' x (-11)).

We always suppose that [0D'] =0. Clearly 1 > 0 and is independent of r. The relaxation of
the functional E is given by

Ef(v)= J WHVv)dx + J ™(Vvv)dS, ve CUQ;RM), (5.5)

where W¥(A) is the ordinary quasiconvexification of W and t* is defined by (5.4). A special
property of t¥ is that
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™AY) = ™(AmmV), Ae M,
which implies that
clAunls-1) < TAyY) < ClAB+1), AeM, (5.6)
and that 1 is well defined on H!.S(I';R™). An easy generalization of [39] tells us that
inf 1 @ Ev) = inf E¥(v), V = HLWP(QRM)x HLSTRM). (5.7)

Let (uk) c V be a minimizing sequence for E. Then (uk) is a minimizing sequence for E¥,
which is bounded in V. Suppose that ue V and uk — u in V weakly. By lower
semicontinuity,

F*(u) = limg . E#v) = inf @ Ev) = ianE#(v) and

JW#(Vu) dx = limp_ JW#(Vuk) dx

(5.8)
lj’t#(Vmu,v) dS = limy, « ,J'c#(Vuk,v)dS .

We may apply THEOREM 1.3, or a slight generalization of it in the case of (T#(Vuk,v)), to
deduce that

WHVuK) - W#Vu) in L1(Q) weakly and
™(Vukv) = 1™#(Vimu,v) in LYT) weakly .

If u = (Ux )x e Q denotes a Young measure generated by ( Vuk ), we have the limit energy
representations

W) = WHVu) = [W(A) dux(A), xe @,
M
X = T(Viuu)vx) = ]j THAV(X) dux(A), xe T,

and

JW(x) dx + ,J"t(x) dS = inf cl@) Ev).
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6 Measure valued solutions of an evolution problem

Some of our methods may be employed to study measure valued solutions of evolution
problems. A more extensive treatment is given by Slemrod [47]; here we wish to explain merely
how such solutions may come about. For further developments we refer to Demoulini [17]. To
fix the ideas, we consider a scalar case. Suppose that ¢ € CI(RD) satisfies

max (clal?2-1,0) < @@ < Clal2+1) ac R" 6.1

IVe@a)l £ Clal

where 0 <c<C. Let q(a) = V@(a). Our interest is in solutions, possibly Young measures,
which in some sense satisfy

—div q + % = 0 in Qx R¥, (6.2)

R* = (0,0=), subject to appropriate boundary conditions.

To render this more precise, let us agree that v = (vx; dxpe QxR* 1S a Young measure
solution of (6.2) provided that

V is a family of probability measures and
ue L=(R+; H‘l)(ﬂ)) with % e L2(Q x R*) which satisfy

—divq + % = 0 in H(QxRY), (6.3)

u I aQ= Uo | 2’ where 6.4)

axt = [q@ dvxia) and
Rn

; +
Vuxt) = Ia dvy 1(a) in Qx Rt ae. 6.5)
Rl’l

Above, u, € H:)(Q) is given. Moreover, we shall impose the condition that
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v is generated by a sequence (Vuh),h > 0, where uh e L=(R*; H;(Q)). (6.6)

The equation (6.5) means that

fowfn( q-V¢ + % {)dxdt = 0 for {e HL(Q x R¥). 6.7)

We shall give an outline of the proof of

THEOREM 6.1 Assume (6.1) about @. Then there exists a Young measure solution v =
(vt )(x.t) e QxR' of

—-div q + %“t— = 0 in Qx R+,
satisfying (6.3) - (6.6). In addition
supp vxi € {ae R™ ¢@(a) = ¢**(a) }, in Qx R* ae., (6.8)
where @** is the convexification of ¢ .
Recall that if ¢ € CI(RM), then ¢** € C1(R"), whence
q@a) = q**@) in {ae R™ @a) = ¢**(a) },
where q**(a) = V¢**(a). Note also that ¢** satisfies (6.1). Hence the

COROLLARY 6.2 Assume (6.1) about ¢ andlet v = (vx )(x.t) e QxR beaYoung
measure solution satisfying (6.8). Then Vv is a solution of the relaxed problem

—div ¢** + % =0 in QxR+ (6.9)

The constructed solution has some additional properties which we shall describe in the sequel.

Stepl An equilibrium problem. Let w e H})(Q) and h> 0 and consider
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D) = Dpv) = J (e(Vv) + %‘ lv-wi2)dx, ve H:’(Q), and (6.10)
(V) = J((p"(Vv) +2-lv-wi2)dx, ve HYQ), (6.11)

where @** is the convexification of @. By a known relaxation theorem, cf. [16],

I = ian(l)(Q) d(v) = ian:(Q) D**(v). (6.12)

Now let ( vk) be a minimizing sequence for ®(v). We may assume thereisa u € H(l)(Q) such

that

vk > u in H(Q) weakly as k — .

By lower semicontinuity,
D(vk) > P*™(u) as k- oo,

and by the Rellich Theorem,

lek—wlzdx N ,fQIu—wlz dx as k — oo,

Hence

J(p"(Vu) dx = limy e J(p"(Vvk) dx = Hm g e J(p(Vvk) dx .

Hence by THEOREM 1.1,

¢**(Vvk) > ¢**(Vu) in LI(Q) weakly and
®VWK) = ¢**(Vu) in LI(Q) weakly.

Denoting by v = (vx )x e Q the Young measure generated by ( Vvk),
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suppv  {aeR™ ¢(a) = ¢} ,

¢*(Vu) = ¢ = ¢ and q = ¢** in Q ae, (6.13)

where

—\y(x) = Iw(a) dvx(a) in Q ae.
Rn

In fact, the Young measure representation holds for any y € E, where

A
E = {ye COM): supMI—X“-fz—%—-l-<oo}.

We may now apply the technique developed in [10] to discuss stable Young measure
minimizers of variational principles, cf. §5. As a consequence of this, we may write an
equilibrium equation

d[( -Vi+lw-wdx =0 for LeH\Q. (6.14)

Finally, the Young measure representation provides us with an elementary estimate for a
Indeed, using the estimates of (6.1) and (6.13),

J| q2dx < IQ IRnlq(a) 12 dvy(a)dx

IA

C IQ JRn | a 12 dvy(a)dx

IN

c/ 0 Ikn (¢(a) + 1) dvx(a)dx

C J((p"(Vu) +1)dx (6.15)
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Step 2 Approximate solution Let ug € H‘l)(Q) be given and h > 0. We define a sequence of

Young measure solutions v and underlying functions uhJ by setting
vho = and uho = y,

- uo

and vhit! the solution of (6.12) with w = uhJ and uhJ*! its underlying function. We then
are in possession of the energy densities

@ (Vuhd) = (Vhi@) = (vhi,g@") (6.16)
and the flux densities
qhd = (vhig) = (vhig™). (6.17)

Let Ihy = [hj, h(j+1)), xMi = xhd , and

0 t < hj
xhj(t)={th-1 hj <t < h(j +1)
1 h(j+1) € 1t
Set
whxt) = X {(1 - ki) uhi(x) + ARi(r) uhitl(x)} € L=R+H.(Q) (6.18)
and
vi,o= Zj g v e E. (6.19)

Now from (6.18),

b 1pg g = . 3. Thiyhi
o = p@brl—ul) and gt = (vhq) = 25 gqhixhi (6.20)
comprise a solution of

—div qh + duh = i -1
q o 0 in H-}(Q), foreach t,

from which it is elementary to check that
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jo fn( g VE+5- {)dxdt = 0 for {e H(Qx R¥).

6.21)

h
Step 3 Estimates  Uniform estimates are available for uh e L=(R*HL(Q)) and le‘ €

L%(QxR*). Tobegin, uhj is admissible in the variational principle for uhj+1, so

J (@**(Vuhi+l) 4 IE | uhj+1 — yhij| 2)dx < n[(p“(Vuh-j) dx .

Hence

n[ @7 (Vuhi)dx < J ¢ (Vug)dx = M2

and

L3 luhivt —ui]2 < ,{ 0™ (Vuo)dx = MZ

Since @** satisfies (6.1), the inequality (6.22) tells us that

IVuhill 20 < M.
By convexity of the L2 norm and (6.24) we have that
lhub I L.e(w;H;(Q» < M.
Rearranging a little in (6.23) and noting (6.20),
fonfn l%h |2dxdt < M2,
Introduce the function

whix,t) = Zj uhii(x) xBi(t) e L“(R"’;H(l,(ﬂ)) )

(6.22)

(6.23)

(6.24)

(6.25)

(6.26)

(6.27)
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Then (6.24) implies that

Finally, we wish to estimate q? using (6.15), which provides the estimate

I @l =gta2qy < C J((p"(Vth)+l)dx < CM2+1). (6.29)

Step 4 Passage to the limit We let h — 0. From the estimates (6.25), (6.26), (6.28), and
(6.29), we may extract a subsequence of h as h— 0 and

V= (Vxt)xne xR’ € E with suppv c { o) = ¢"*(a) }
and v is a Young measure,

we L*®*HL(Q) wih Vw = (va),

qe L~®*LAQ)) with q = (v.q) = (v.q**), and
ue L*®R+*HL(Q) with %[He L2Q x R¥)

which satisfy

J] (T vee R o = 0 for ge Hi@x RY) (630)

In fact, (6.30) above holds for { e L°°(]R+;H(1)(Q)). We remark that v is a Young measure but it

is not generated by the sequence ( Vuh) of (6.18), but rather by a diagonal subsequence of the
functions which generate the (vh) of (6.19).

It remains to show that the Young measure v and the limit function u are connected. We
claim that u = w. In fact, we shall show that Vu = Vw by means of an easy lemma.

LEMMA 6.3 Let (i) c bounded set of L%(Q) for h>0 and j=1.23,..., and set

fhx,b)
gh(x,1)

3 thix) xMit) and
25 {1 = Abiq) ficx) + Ak fhitl(x)),
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where Y is the characteristic function of [hj, h(j+1)) and

0 t < hj
Abi(t) = { ﬁ—j hj < t < h(j +1)
1 h(j +1) £t
Suppose that
f > f and gh— g in leoc(Qx]R'*) weakly.
Then f = g.
PROOF It suffices to show that

Jow JQ fldxdt = jom JQ g L dxdt

for { e C':(Q) of the form {(x,t) = w(x)z(t). Let zhd = z(hj) and

Chxt) = wx) 2 zhdi xhi(y),

Ehxt) = wx) 25 {(1 - AB() 2B + Ahi(r) zhi-1} .

It is elementary to check that {h — { and &' — { uniformly since z is smooth. Since
“f o hdxdt = T e h dxdt ,
JT menaxae = [ 7] ent

the lemma follows. QED
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