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Weak convergence of integrands and the Young measure representation

David Kinderlehrer and Pablo Pedregal

Abstract Validity of the Young measure representation is useful in die study of microstructure

of ordered solids. Such a Young measure, generated by a minimizing sequence of gradients

converging weakly in U \ often needs to be evaluated on functions of p * power polynomial

growth. We give a sufficient condition for this in terms of the variational principle. The principal

result concerns lower semicontimiity of functionals integrated over arbitrary sets, THEOREM 1.2.

The question arose in the numerical analysis of configurations. Several applications are given. Of

particular note, Young measure solutions of an evolution problem are found.
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1 Introduction

For a lower semicontinuous functional of the form

<D(v) = fcp(Vv)dx, v 6 H l . P ( Q ; R n

the convergence property

0>(uk) -» O(u) and uk -» u in H^P^R™) weakly

for a particular sequence ( u k ) does not by itself inform us of the behavior the sequence
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((p(Vuk) )1 . Here we show that if (p is nonnegative and has polynomial growth, then (cp(Vuk))

is weakly convergent in L !(Q) to <p(Vu). A consequence is that the Young measure generated by

( V u k ) represents the weak limit of a sequence (\|/( Vuk)) when y is dominated by (p. Our

interest in this question arose in the attempt to estimate convergence properties of numerical

methods for functionals which are not lower semicontinuous, where cp plays the role of the

relaxed density. Validity of the Young measure representation is useful knowledge in the study of

the microstructure of ordered solids, cf. Ball and James [5,6], Chipot and Kinderlehrer [10],

Ericksen [18-29], Fonseca [31-34], James [35], James and Kinderlehrer [36], Kinderlehrer [37],

Kinderlehrer and Pedregal [38], Matos [41], and Pedregal [45,46]. We do not give any explicit

applications to the numerical analysis in this paper except to say that our results confirm the validity

of the Young measure representation for the limits of the approximations generated by finite

element methods when the energy density has appropriate polynomial growth at infinity. We refer

to [9,11,12,13,14] for discussions of these developments.

The proof of this and related facts is based on a method of Acerbi and Fusco [1 ] and

subsequent application of the Dunford and Pettis criterion for weak convergence in L1. Weak

convergence of a sequence ( f * ) in L1 is sufficient but not necessary to give sense to the Young

measure representation. Ball and Zhang [8] use the Chacon biting lemma to study this question

under hypotheses weaker than ours.

The proofs of our results are in § 1 - 3 . Three applications are given in §4,5, and 6. The

example of constraint management in §4 is a generalization of a result of S. Miiller [44], cf. also

K.Zhang [51]. In §5 a discussion of the Young measure representation when surface energies

are present in the system, cf. [39]. Both of these use the convergence property above, or (1.3)

below, without assuming that the functional is being driven to a minimum. An application to an

evolution problem is given in §6, where it is shown how Young measure solutions may be found.

This builds on some recent work of Slemrod [47]. Useful discussions of Young measures are

given by Young [50] and Tartar [48,49], and more recently by Ball [3] and Evans [30]. One

consequence of our considerations is that they lead to a notion of Young measures generated by

functions whose gradients are in LP for finite p, [45]. We begin with a description of our

principal results.

THEOREM 1.1 Let <p be continuous and quasiconvex and satisfy

0 < <p(A) < Cd + IAIP), A € M , (1.1)

transitions and Defects in Ordered Materials. Supported by the NSF and the ASOFR through DMS 87-18881 and the
ARO through DAAL03 88 K 0110 at the University of Minnesota.
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where 1 < p < «>. Suppose that

uk -» u in Hl'P(Q) weakly and (1.2)

f<p(Vu)dx = l im^oo U ( V u k ) d x . (1.3)

Then there is a subsequence (not relabled) of the ( u k ) such that

- • <p(Vu) m L\Cl) weakly.

THEOREM 1.2 Let cp be continuous and quasiconvex and satisfy

0 < cp(A) < C(l +1 A IP), A G M ,

where 1 < p < «>. If uk -> u m H ^ Q ) weaitfy, r/ien

J(p(Vu)dx < liminfk^oo Jcp(Vuk)dx (1.4)

for every (measurable) E c Q.

We wish to discuss THEOREM 1.2 a little prior to giving the proof. First note that

according to the generalizations of Morrey's Theorem [43], for example Acerbi and Fusco [1],

(1.4) holds whenever E is a domain with Lipschitz boundary. This information is insufficient to

deduce (1.4) for more general sets, which is the crux of the problem.

The case of THEOREM 2 with p = «> is automatic since {<p(Vuk)} are uniformly

bounded in this case. Indeed, choose M with the property

II cp(Vuk) II < M for all k.
Y L~(n)

Given E, let U be an open neighborhood of E with IU - E I < e. Now U is the union of

countably many cubes { Dj} with disjoint interiors and for each Dj, (1.4) holds. Hence

fq>(Vu)dx < £ J<p(Vu)dx
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< Z lim inf J cp(Vuk) dx

< liminf Jcp(Vuk) dx.

Finally, we have that

Jcp(Vu)dx < liminf Jcp(Vuk)dx + 2Me .

Thus, if uk -» u in H^^Q) weak*, then

J(p(Vu)dx < liminf Jcp(Vuk) dx (1.5)

for any measurable E c Q.

The case p = 1 for Theorems 1 and 2 is easy and will not be discussed.

To illustrate how the preceding results apply to the Young measure representation, let us

introduce the Banach space, for p > 1 fixed,

E = { V e C(M): sup M j -^rj - j" < - } . (1.6)

THEOREM 1.3 Let <p be quasiconvex and satisfy, for some constants C > c > 0,

max {cl A I P - 1 , 0 } < q>(A) < C(1 + IAIP), A e M , (1.7)

where 1 < p < «>. Suppose that

uk -> u in H^FCQ) weakly and (1.8)

J<p(Vu)dx = limk-^oc J ( p ( V u k ) d x . (1.9)

Let v = ( v x )x € n be a Young measure generated by ( u k ) . Then for any yeE,the sequence
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\|<Vuk) -> v in o(p(a)Xr(O)) where

\j/(x) = Jv(A)dvx(A) in Q a.e. (1.10)
M

Further, consider W e C(M) satisfying

W(A) > 0

and (1.11)

c (I A IP - 1) < W(A) < C (I A IP + 1)

for some p > 1 and 0 < c < C. Let

An(yo) = { v e H^P(Q): v = yo on an } where y o e H ^ Q ) .

COROLLARY 1.4 Let W satisfy (1.11). Suppose that (u k ) cAQ(y o ) satisfies

limk_>oo f\V(Vuk)dx = inf f \V(Vv)dx . (1.12)
& ^n(yo) CL

and

uk -^ u in H^P(Q) weakly.

Let v = ( v x )x € Q be a Young measure generated by (u k ) . Then for any yeE,the sequence

\y(Vuk) -> V m o(Ll(n)L°°(n)) where

= Jy(A)dvx(A) in Q a.e. (1.13)
M

In particular, the (W(Vuk)) converges to a limit energy density W in o(Ll(Q)L°°(Q)) where

W(x) = J\V(A)dvx(A) in Cl a.e. (1.14)

A version of COROLLARY 1.4 has also been proved independently by Matos [42] who
obtains an improved class E by combining Ekeland's Lemma with the reverse Holder inequality,
although the convergence is then restricted to oG-1^1)^0 0^1)) for Q1 c c £1
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Note that a particular consequence of THEOREM 1.3 is that the sequence { | M • Vuk |P },

for a constant matrix M, converges weakly in L 1 ^ ) , although not to | M • Vu |P . Another

consequence concerns the relaxation of W, or its quasiconvexification, cf. [7,15,16] for example.

Assume that p > 1. The integrand

W#(F) = inf H
1-- -j^ fw(F + VOdx (1.15)
o LI

is quasiconvex and relaxes the variational principle (1.8) in the sense that

inf f\V(Vv)dx = inf f \V#(Vv)dx.

Obviously a minimizing sequence for (1.12) is also a minimizing sequence for the functional with

the integrand W#. For a given F, the infimum in (1.15) may or may not be realized, but given a

minimizing sequence uk(x) = Fx + ^ x ) e H1'P(Q;Rm),

W#(F)|O| = limic^oo f \V(Vuk)dx.

Let |i = (|ix)x 6 ft be a Young measure generated by (u k ) . We may assume that | ix is

independent of x e Q, although we pass over the details of that here. Applying COROLLARY 1.4,

we obtain in particular that

W#(F) = Jw(A)d^A), (1.16)
M

so the infimum is attained in a Young measure fashion. Moreover, the inequality W# < W
insures that

supp \i c {A: W(A) = W#(A) }.

Of course, if o is any other Young measure generated by some sequence of the form ( v k) <z
,Rm) with vk = Fx on 3D, then

J < Jw(A)do(A),
M M

so JLX. satisfies an ersatz minimizing principle as well.
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2 Proof of Theorem 1.2

Our aim is to give a proof of the second result. THEOREM 1.1 will be a corollary of it.

For this we adopt a technique of Acerbi and Fusco which has an important ingredient from a paper

of F.-C. Liu [40]. The technique uses these facts from Acerbi and Fusco:

LEMMA 2.1 Let G c Rn have I G I < «>. Assume that { M^ } is a sequence of subsets of G

such that for some e > 0

IMkl > e forall k.

Then there is a subsequence kj for which

HMk. * 0.

LEMMA 2.2 Let { fk } be a sequence bounded in Ll(Q). Then for each e > 0, there is a

triple (AE, 5, S), where A^ czQ, with I Ae I < e, 8 > 0, and S is an infinite subset of the

natural numbers, such that

| fk I dx < e

whenever D n A £ = 0 and ID I < 5.

For any v e C°°(Rn), we set

M*v(x) = M(lv(x)l) + M(IVv(x)l)

where

Mf(x) = supr>o n o Jl f<z> I d z
r /

is the maximal funtion of f. It is well known that if v e C"(Rn), then M*v e C(Rn) and
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11 M * v W ) - C ( n ' P } " v "HLPCRH)- l < P - °°- ( 2 J )

and in particular, for any X > 0,

l{M*v > X)\ < C(n,p)X-PllvllHjiP(Rn), 1 < p < oo. (2.2)

LEMMA 2.3 Let v € C~(R") am/ X > 0. Set H* = { M*v < X ) . Then

S C ( n ) U , y € H^. (2.3)

C(n) depends only on n.

We shall also make use of the well known fact that a Lipschitz function defined on a subset

of Rn may be extended to all of Rn without increasing its Lipschitz constant.

PROOF OF THEOREM 1.2 We regard uk and u as extended to functions in H P̂OR") with

norms controlled by their H ^ Q ) norms. Let e > 0.

Step 1. Since the functional of (1.4) is continuous in H*»P(Rn) in the norm topology,

because of the upper bound on cp, we may find z, zk € C^(Rn) with

J lcp(Vu) - (p(Vz)l dx < e (2.4)
Rn

J lcp(Vuk) - (p(Vz + Vzk)l dx < e (2.5)
Rn

and

Thus zk -^ 0 in H P̂CR11) weakly and

llzk|lHl.P(Rn) - M < °

Set
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H* = { M*z < X } and H £ = { M*zk < X } .

According to LEMMA 2.3, we may find £k , r| e H^CR11) such that £k = zk on H £ and r\

z on H^ with

and

and the same for T|. After extraction of a subsequence we may suppose that

£k -> £ in H1'00^11) weak*.

We apply LEMMA 2.2 to the sequence {M*(zk)P}. By (1.2) and (2.1) these functions
are bounded in L 1 ^ ) . So given e1 > 0, there is a triple (A£., 8, S) with

IA .̂1 < e1 and

whenever D n A£. = 0 and k € S.

Now let G = { C * 0 }. Since the zk -» 0 in LP(Rn) in norm, we may assume that

zk -* 0 pointwise a.e. in il. Thus if we set Go = G n { x € il: z^x) -> 0 }, then I Go I

= I G I. We write Go as a union,

By (2.2),

Go = ( G o n H ^ ) u ( G o n ( R n - H ^ ) )

I G o n ( R n - H £ ) l < CJl-PM forallk. (2.7)

This implies that

IGo I = IGI < 2CX-PM. (2.8)
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Otherwise, namely if

IGOI > 2 C V P M , then I G o n H ^ I > C J t P M ,

by (2.7). Applying Lemma 2.1, there would be a subsequence kj such that

Gon( P>H£) * 0,

and for x in this intersection,

C(x) = l i m ^ x ) = l imz^x) = 0 ,

which contradicts the definition of the set G. Hence (2.8) holds.

Step 2 Since cp(Vu) e Ll(Q), we may find a, 0 < a < £, and X large enough that

Jcp(Vu)dx < e, (2.9)

cf. (2.8) above. Let E e Q be measurable and assume a subsequence of the uk chosen (but

not relabled) so that

lim J(p(Vuk)dx = liminf J<p(Vuk)dx.

Put

Ok = Jcp(Vuk)dx .

Since <p > 0, by (2.5)

J (p(Vuk) dx
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> - e + J cp(Vz+Vzk)dx .

But Vz = VTI and Vzk = V£k in H V ^ k so that

a* > - e + J <P(VTI +V£k) dx
EnH^nH^

= - e + J ( V V

= - e + pk - 7k.

Since V(t| + £k) is uniformly bounded and <p is quasiconvex, by the remark (1.5), we have that

for K sufficiently large

J (p(Vr|+V;k)dx - J <p(Vri +V£k) dx

J cp(Vri

We now inspect 7k- Using the bounds on Vr| and V£k, and choosing X large enough,

7k <

+ J CM*(zk)Pdx

< Ce + Co < 2Ce.

Consequently, for k sufficiently large,

Ok > - C e + J cp(VTi+VC)dx . (2.10)

V

Step 3. Again using the positivity of cp, from (2.10)

Ok > - C e + J <p(Vri+VOdx
V
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Since £ = 0 in £2 - G, we have that V£ = 0 in Q - G , so, since t| = z in H \ we deduce

that

otk > - C e + J cp(Vr|) dx

> -Ce + J (p(Vz)dx .
EnHV»(n-A<j)n(n-G)

By (2.4) and (2.9),

Ok > - ( 1 + C)e + J <p(Vu) dx

V

> -(1 + C)e + J cp(Vu)dx - J <p(Vu) dx

> - (2 + C)£ + J (p(Vu)dx .

Since e > 0 is arbitrary, the theorem is proved.

3 Proofs of the other results

PROOF OF THEOREM 1.1 This follows from the Dunford-Pettis criterion. Assume that the

sequence (<p(Vuk)) is not o(LlJL°°) relatively compact. Then for some e > 0 and every 8 >

0, there is an A ^ c Q and an integer k$ such that I A5 I < 5 and

Jcp(Vuk8)dx > e .
A

Since <p(Vu) E L^Q), there is a 60 > 0 such that if IEI < 5o, then
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Jq>(Vu)dx < e. (3.1)

Let us choose in particular 8j = 2~i 5o . Then there is a sequence Aj, I Aj I < 5j, and kj

such that

J <p(Vukj) dx > e for all j .

Let E = u A j , so IE I < 50 and (3.1) holds. Thus

e < fcp(Vukj)dx < fcp(Vukj)dx - f(p(Vukj)dx .
E n n-E

Letting kj -» «>, we have by THEOREM 1.2 and the hypothesis (1.3) that

e < Jcp(Vu)dx) - Jcp(Vu)dx
n O-E

dx < e ,

a contradiction.

PROOF OF THEOREM 1.3: This also follows by the Dunford-Pettis criterion, using THEOREM 1.1.

4 Constraint management in a limit case

Certain variational principles in elasticity constrain the admissible variations v e
R11), where £2 c Rn, to satisfy
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det Vv > 0 in Q a.e.

In the limit case p = n, de tVve Ll(Q) for v e H^QiR1 1) but it is not necessarily integrable

to any higher power. Thus it is not automatic that if uk -* u in H^fijR1 1) weakly, that det Vuk

—> det Vu in Ll(Cl) weakly. In fact, without additional requirements, this condition does not

hold. One may refer to the counterexamples in Ball and Murat [7]. However, much is known

about this situation, as we summarize below.

First of all, the determinant is a null lagrangian, namely, if u,v € H^QjR1 1) and u I
I

JdetVudx = [detVudx = [ d e t V v d x . (4.1)

Assume that uk,u e H^QiR1 1) and

uk -> u in H ^ Q i R " ) weakly. (4.2)

Then for a subsequence of the ( u k ) , not relabeled, cf. eg. [2 ] ,

detVuk -> detVu in D'(O). (4.3)

Very recently, S. Muller [44] has shown that if (4.2) holds and det Vuk > 0, then

det Vuk -» det Vu in l\jfr) weakly. (4.4)

We give a slight generalization of Muller's result. With it, alternate proofs of some results in

elasticity may be given, for example, some of those in Zhang [51].

THEOREM 4.1 Let uk,u e H^QjR 1 1) satisfy

uk -» u in H^QiR 1 1 ) weakly, (4.5)

detVuk > 0 in Q a.e., and (4.6)

n=u°|d"' ( 4 7 )

where u^e H1»n(ti;Rn) is fixed. Then
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det Vuk -> det Vu in V(Q) weakly. (4.8)

PROOF First of all, u = Uo on dQ. From Miiller's result (4.4), we deduce that det Vu

> 0 in Q a.e. By (4.1),

fde tVudx = fde tVu k dx = J d e t V u o d x , for all k. (4.9)

Now let

<p(A) = max { det A, 0 }, A € M,

which is continuous, quasiconvex, and satisfies

0 < <p(A) < C(l + I A l)n. A G M.

Then ^(Vu1^ = det Vuk and <p(Vu) = det Vu , so, trivially, by (4.9),

fcp(Vu)dx = limk->oo Jcp(Vuk)dx .

Consequently, by THEOREM 1.1, possibly for a subsequence which we do not relable,

det Vuk -> det Vu in Ll(Q) weakly. QED

We wish to remark that we used Mullens result to conclude that det Vu > 0 in £i a.e.

We could also have used the biting convergence theorem of Zhang [51] for this purpose. The idea

of THEOREM 4.1 is that the sequence ( u k ) may arise as a minimizing sequence for some

variational principle subject to (4.6). Additional information then follows from the theorem.

5 Application to functionals with surface energies

We consider a simple situation where cooperative bulk and surface energies are minimized.
Let Q a Rn have smooth boundary T and set

£(v) = fw(Vv)dx + Jx(Vv,v)dS, veCH^R™), (5.1)
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where v denotes the exterior normal to P. The infimum of E over CHQjR111) is not necessarily

the sum of the infima of its two summands, so we envision an application of our results when

(1.3) will hold for each of the two terms but where these quantities will not be the unrestricted

infima of their portions of the functional.

Assume that W is continuous and satisfies, for some p > 1 and C > c > 0,

max {cl A I P - 1 , 0 } < W(A) < C(1 + IAIP), A E E (5.2)

About x we assume that it is continuous and, for some s > 1,

0 < x(A,v) and

A e M , (5.3)
c(IAtanlS-l) < X(A,V) < C(l A I s+1),

where Atan = A ( l - v ® v ) is the tangential part of A.

For a fixed v e S11"1, let D* c {x • v =0} be a domain and let dx1 denote the (n -1) -

Lebesgue measure on D!. By D1 x(-rj) , r > 0 , we abbreviate the name of the set

{ X E Rn: x' = (l - v ® v ) x e D' and | x v |<r }.

Let [E] denote the n - 1 dimensional Lebesgue measure of E. We define

x#(F,v) = infc jkr, fx(F + VC,v)dx\ (F,V)E

C = Cj(Df x (-
(5.4)

We always suppose that [3D1] = 0. Clearly T* > 0 and is independent of r. The relaxation of

the functional E is given by

fw#(Vv)dx + Jx#(Vv,v)dS, veC^QjR"1), (5.5)

where W*(A) is the ordinary quasiconvexification of W and x* is defined by (5.4). A special
property of x* is that
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x#(A,v) = t^AtgniV), A e M ,

which implies that

cOAunP-1) < x#(A,v) < C(IAI* + 1), A E M , (5.6)

and that x# is well defined on H^KHR111). An easy generalization of [39] tells us that

inf c i ( 5 ) B[v) = inf y£*(v) , V = H*.P(a;R«)xHi.*(r;R"O. (5.7)

Let ( u k ) c V b e a minimizing sequence for E. Then (u k ) is a minimizing sequence for £#,

which is bounded in V. Suppose that u e V and uk —> u in V weakly. By lower

semicontinuity,

£*(u) = limk_>oo£#(v) = inf c i ( S ) By) = infy£#(v) and

f\V#(Vu)dx = limk_>oo Jw # (Vu k )dx

(5.8)

Jx^VtanUAOdS = limk_^oo Jx#(Vuk ,v) dS .

We may apply THEOREM 1.3, or a slight generalization of it in the case of (x#(Vuk,v)), to

deduce that

W#(Vuk) -4 W#(Vu) in L\Q) weakly and

x#(Vuk,v) -» x#(Vtanu,v) in Ll(T) weakly.

If H = (Rx )x € Q. denotes a Young measure generated by (Vuk), we have the limit energy

representations

W(x) = W*(Vu(x)) = J\V(A)dMA), XG Q,
M

and

J W(x)dx + J t(x)dS = inf c l ( § ) By)-
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Measure valued solutions of an evolution problem

Some of our methods may be employed to study measure valued solutions of evolution

problems. A more extensive treatment is given by Slemrod [47]; here we wish to explain merely

how such solutions may come about. For further developments we refer to Demoulini [17]. To

fix the ideas, we consider a scalar case. Suppose that cpe (^(R11) satisfies

max (da I2 - 1 , 0 ) < <p(a) < C(lal2+1) n
a e R , (6.1)

IVcp(a)l < C la l

where 0 < c < C. Let q(a) = V(p(a). Our interest is in solutions, possibly Young measures,

which in some sense satisfy

-div q + ^ = 0 in Qx R+, (6.2)

R+ = (0,«>), subject to appropriate boundary conditions.

To render this more precise, let us agree that v = (vx,t )(M) e ft x R
+ ls a Y o u n g measure

solution of (6.2) provided that

v is a family of probability measures and

u e L~(R+;H*(Q)) with ^ € L2(Q x R+) which satisfy

-div q + ^ = 0 in H*(ftxR+), (6.3)

' where (6A)

q(x,t) = J q(a)dvx,t(a) and
Rn

T7 < A f A in Q x R+ a.e. (6.5)
Vu(x,t) = J a dvXft(a)

Rn

Above, UQG HQ(f2) is given. Moreover, we shall impose the condition that
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v is generated by a sequence ( V u h ) , h > 0, where uh e L°°( R+; H^Q)). (6.6)

The equation (6.5) means that

J 1 ( q-V£ + ^ Odxdt = 0 for £e H*(Q x R+). (6.7)

We shall give an outline of the proof of

THEOREM 6.1 Assume (6.1) about cp. Then there exists a Young measure solution v =

(vM)(x,t)efixR+ °f

-div q + ^ = 0 / / iQxR + ,

satisfying (6.3) - (6.6). In addition

supp vx , t <= { a e Rn: cp(a) = (p**(a) }, i/i Q x R + a.e., (6.8)

where cp** is the convexification of cp .

Recall that if cp 6 C1^11), then cp** e C1^11), whence

q(a) = q**(a) in { a e Rn: qKa) = <p**(a) },

where q**(a) = Vcp**(a). Note also that cp** satisfies (6.1). Hence the

COROLLARY 6.2 Assume (6.1) about cp and let v = (v^t ) ( M ) € Q X R
+ be a Young

measure solution satisfying (6.8). Then v is a solution of the relaxed problem

-d iv q** + ^ = 0 m Q x R+. (6.9)

The constructed solution has some additional properties which we shall describe in the sequel.

Stepl An equilibrium problem. Let w e H (Q) and h > 0 and consider
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<D(v) = Oh(v) = f ( c p ( V v ) + ^ l v - w l 2 ) d x , v e HQ(Q), and (6.10)

<j>**(v) = I (cp**(Vv) + — Iv — wl2) dx, VG H (£2), (6.11)

d
where <p** is the convexification of <p. By a known relaxation theorem, cf. [16],

>**(v). (6.12)

Now let ( v k ) be a minimizing sequence for 3>(v). We may assume there is a u € H (Q) such

that

vk —> u in HQ(ii) weakly as k —»<*>.

By lower semicontinuity,

and by the Rellich Theorem,

11 vk - w I2 dx —> J I u - w I2 dx as k -> oo.
d "

Hence

f9**(Vu)dx = limk_>oo fcp**(Vvk)dx = lim k _ > « f cp(Vvk) dx

Hence by THEOREM 1.1,

<p**(Vvk) -» <p**(Vu) in L^Q) weakly and

<p(Vvk) -^ cp**(Vu) in Ll(Q) weakly.

Denoting by v = (vx )x € Q the Young measure generated by ( Vvk ),
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suppv c ( a e R n : <p(a) = (p**(a) } ,

cp**(Vu) = 9 = 9** and q = q** in Q a.e., (6.13)

where

\j/(x) = JV(a)dvx(a) in Q a.e.
Rn

In fact, the Young measure representation holds for any y e E , where

E = { V € C(M): sup M , ^ l

We may now apply the technique developed in [10] to discuss stable Young measure
minimizers of variational principles, cf. §5. As a consequence of this, we may write an
equilibrium equation

i ( q • V; + ^(u - w) 0 dx = 0 for £e HJ(Q). (6.14)

Finally, the Young measure representation provides us with an elementary estimate for q.

Indeed, using the estimates of (6.1) and (6.13),

q(a) P dvx(a)dxJ | q |2 dx < J Q

J lal2dvx
Rn "M**

JRn((p(a) + l)dvx(a)dx

= C J((p**(Vu)+ l)dx (6.15)i
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Step 2 Approximate solution Let Uo e HQ(£2) be given and h > 0. We define a sequence of

Young measure solutions v^J and underlying functions u ^ by setting

and v^i*1 the solution of (6.12) with w = u^J and

are in possession of the energy densities

its underlying function. We then

(6.16)

and the flux densities

= <vh0,q> = <vh0,q**>.

Let Iho = [hj, h(j and

0
>Mt) = \ i,_,

1

t < hj
hj < t < h(j + 1)

h(j + 1) < t

Set

and

uh(x,t) = S j

vjt = Zj E.

Now from (6.18),

-u^J) and qh = <vh,q> =

comprise a solution of

-div qh + -^ - = 0 in H'^O), for each t,

(6.17)

(6.18)

(6.19)

(6.20)

from which it is elementary to check that
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0 - n - - - ™ Odxdt = 0 for CeHi(QxR+). (6.21)

Step 3 Estimates Uniform estimates are available for uh e L°°(R+;Ho(£i)) and -gr- e

. To begin, û J is admissible in the variational principle for u*M+l, so

J ((p**(Vuh'i+1) + ̂  I uho+l - uho I 2 ) dx < f cp**(Vuh0) dx .

Hence

Jcp**(Vuh>i)dx < Jcp**(Vuo)dx = M* (6.22)

and

^ L j | u ^ l - u ^ j | 2 < fcp**(Vuo)dx = M2. (6.23)

Since <p** satisfies (6.1), the inequality (6.22) tells us that

II Vu^i II L 2 ( Q ) < M. (6.24)

By convexity of the L2 norm and (6.24) we have that

* M - ( 6 - 2 5 )

Rearranging a little in (6.23) and noting (6.20),

< M2. (6.26)
o a

Introduce the function

2 j ( 6 . 2 7 )
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Then (6.24) implies that

• w h » L~(R+;H>>)) * M . (6.28)

Finally, we wish to estimate q*1 using (6.15), which provides the estimate

II qhHL-(R+;L2(n)) * C f(<p"(Vuh.J)+l)dx < C(M2+1) . (6.29)

Step 4 Passage to the limit We let h -» 0. From the estimates (6.25), (6.26), (6.28), and

(6.29), we may extract a subsequence of h as h -> 0 and

V = (Vx,t) (Xit )e n x R
+ e E1 with suppv c { <p(a) = <p"(a) }

and v is a Young measure,

w € L~(R+;H^(Q)) with Vw = <v,a >,

q € L~(R+;L2(Q)) with q = <v,q > = <v,q** >, and

*(ft)) with y

which satisfy

u € L-(R+;H*(ft)) with y e L*(Q x R+)

I J ( q • V£ + ^ O dxdt = 0 for C € H^(Q x R+). (6.30)

In fact, (6.30) above holds for £ e L°°(R+;Ho(Q)). We remark that v is a Young measure but it

is not generated by the sequence ( V u h ) of (6.18), but rather by a diagonal subsequence of the

functions which generate the ( v h ) of (6.19).

It remains to show that the Young measure v and the limit function u are connected. We

claim that u = w. In fact, we shall show that Vu = Vw by means of an easy lemma.

LEMMA 6.3 Let (ffrJ ) c bounded set of L2(fi) for h > 0 and j = U , 3 and set

( ) x ( ) and

,t) = Xj {(1 -
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where %hJ is the characteristic function of [hj,h(j+l)) and

{ 0 t < hj

J - j hj < t < h(j + 1)

1 h(j + 1) < tSuppose that

f*1 -> f and gh -» g in Lj*0C(Q x R+)

f = g.

PROOF It suffices to show that

J J f̂ dxdt = J J g^dxdton on

for £ e C"(Q) of the form £(x,t) = w(x)z(t). Let zhJ = z(hj) and

Ch(x,t) = w(x) S j zh

^h(x,t) = w(x) Xj {(1 -

It is elementary to check that £h -> ^ and 2;h —> ^ uniformly since z is smooth. Since

J ° ° j fn^h d x d t , J ° ° J g h ^ h d x d t >

on on

the lemma follows. QED
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