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ABSTRACT

The study of a ciystal shrinking or growing in a melt gives rise to equations relating

the normal velocity of the motion to the curvature of the crystal boundary. Often these

equations are anisotropic, indicating the prefered directions of the crystal structure. In the

isotropic case this equation is called the mean curvature flow or the curve shortening

equation, and has been studied by differential geometric tools. In particular, it is known

that there are no classical solutions to these equations. In this paper we develop a weak

theory for the "generalized mean curvature'1 equation using the newly developed theory of

viscosity solutions. Our approach is closely related to that of Osher & Sethian, Chen, Giga

& Goto, and Evans & Spruck, who view the boundary of the crystal as the level set of a

solution to a nonlinear parabolic equation. Altough we use their results in an essential way,

we do not require that the boundary is a level set Our main results are the existence of a

solution, large time asymptotics of this solution, and its connection to the level set solution

of Osher & Sethian, Chen, Giga & Goto, and Evans & Spruck. In general there is no

uniqueness, even for classical solutions, but we prove a uniqueness result under restrictive

assumptions. We also construct a class of explicit solutions which are dialations of Wullf

crystals.

Key words: Viscosity solutions, mean curvature flow, phase transitions, Wullf crystal

AIMS Subject Classification: 35A05, 53A10



 



TABLE OF CONTENTS

1. Introduction 2

2. Preliminaries 6

3. Semi-continuous envelopes 7

4. Sub & Super differentials; definition 11

5. Viscosity solutions 13

6. Existence by Perron's method 21

7. Comparison 33

8. Non-uniqueness; examples 36
9. Uniqueness for nonpositive v 39

10. Existence; initial value problem 42

11. Connection between (E) & (1.2) 47

12. A class of explicit solutions 49

13. Large time asymptotics 57

14. Appendix: A. Properties of sub&super differentials 61

B. An equivalent definition 70

C Stability 70

15. References 71



 



1. INTRODUCTION

In this note we consider a collection of subsets {C(t)}te [QtT] of Rd evolving

according to the equation

( E ) # 0 ) V + trace (G(0) R) - v = 0,

where G,V,R are the outward unit normal vector, the normal velocity, the curvature tensor

of the hypersurfarce dC{t), respectively, and /? > 0, G > 0, v are given quantities. The

isotropic case, jS=l, t>=0, G = identity/(<2 - 1), is the mean curvature flow or cuve

shortening equation;

(MCE) V = -KT,

where K is the mean curvature. This particular equation is studied extensively by

differential geometric tools. In a series of papers Gage[G 1983] [G 1984], Gage &

Hamilton [GH 1986], Grayson[Gr 1987] analysed the flow of an embedded plane curve

under the equation (MCE). They showed that a smooth embedded plane curve first

becomes convex and then shrinks to a point in finite time. Also the limiting shape is a

circle. Huisken [H 1984] generalized this result showing that any convex set, in any space

dimension, shrinks to a point smoothly. The flow of a smooth curve embedded in a

smooth Riemannian surface is pursued by Grayson [Gr 1989a]. Recently, Angenent

generalized some of the two dimensional results [A 1989a,b,c] to the nonlinear case.

The behavior of non-embedded curves is the subject of Abresch & Langer [AL

1986] and Epstein & Weinstein [EW 1987]. In particular, they show that non-embedded

curves develop singularities before they shrink to a point. In higher dimensions even the

smooth embedded hypersurfaces develop singularities. Grayson [Gr 1989b] gives the

example of a "dumbbell" shape in R3. This is a region obtained by connecting two spheres

by a thin long pipe. Grayson argues that under the mean curvature flow the boundary of

this region will pinch off, leaving two bubbles. Also numerical studies of Sethian [S 1989]

supports this observation. So a weaker formulation of this equation is necessary for to

obtain a general theory. To our knowledge Brakke[Br 1978] was first to reformulate the

above evolution problem using geometric measure theory. Then he constructed generalized

solutions, global in time, for a large class of initial conditions. Recently an alternative

weak formulation of (E), which provides uniqueness in addition to existence is given by

Osher & Sethian [OS 1988]( also see Sethian [S 1985]), Evans & Spruck [ES 1989a,b]



and Chen, Giga & Goto[CGG 1989] (Chen, Giga & Goto considers a more general class

of equations than (E), which they call geometric. A discussion of this class of equations is

given by Giga & Goto[GG 1990].). Also Barles [B 1985] studied a similar problem

related to a flame propagation model. Their approach is to consider dC(t) as the level curve

of a continuous function <P, i.e.,

(1.1) dC(t) = {*€/?<* : <P(jc,r) = O }

with

{xeRd : Gtpcj) > 0

Then, & formally satisfies the parabolic equation

|V<P(jc,r)| \V&(x,t)\ |V<P(f)| |V<P(0l

, V f > 0, <P (jc,r) = 0 .

The above equation is nonlinear, degenerate and undefined when V<P(x,r) = 0. Evans &

Spruck and Chen et al circumvent these rather subtle technical problems using the newly

developed theory of viscosity solutions of nonlinear partial differential equations as in

Crandall & Iions[CL 1983], Crandall, Evans & Lions[CEL 1984], Jensen[J 1988], Jensen

Lions & SouganidisfJLS 1988], LionsfL 1983 a,b], and Ishiifl 1989].

In this paper, we define a notion of viscosity solutions of (E) which is closely

related to the one given in [CGG 1989] and [ES 1989a]. We observe that the "signed"

distance function

J distance (x,dC(t)) if xeC(t)
1- distance (x,dC(t)) if xe C(t)

of C(-) satisfies

(1.4) fcrVdC(x,t)) ^dC(x,t) = trace[G(-Wc(*,0) V2dC(x,t)] + v V xe BC(t),

as long as dC(t) is smooth. Using the viscosity formulations of first and second

derivatives of semi-continuous functions, we give a "direct" definition of viscosity



solutions by requiring that (1.4) should hold in the viscosity sense (see Definitions 5.1 and

Section 4 for the precise definition ). Using the results and the techniques of [CGG 1989]

and [ES 1989a], we obtain an existence result and prove that any supersolution {C(t)}t>o

of (E) includes any subsolution {I\t)}t>Q of (E) provided that closure of I\0) is a compact

subset of C(0). In general there are more than one solutions of the initial value problem.

In fact this is the case whenever the level set of the solution of Evans & Spruck and Chen et

al develops a non-empty interior (see Section 8 ). However, the comparison result enables

us to define two solutions one of which contains all the subsolutions and the second is

included by all the supersolutions. These solutions are given by

{xeRd : O(x9t)>0 },
and

L(t) = {xeRd : &(x9t)>0 }

where & is a solution of (1.2) which satisfies the initial condition ( see Section 10). We

also prove uniqueness of solutions to the initial value problem if t> < 0 and initialy the

solution has the property which we call strictly sharshaped (see Section 11).

Equation (E) arises in the study of nonequilibrium thermomechanics of two-phase

continua; see Gurtin[Gu 1988a,b], Angenent & Gurtin[AG 1989], and the references

therein for a systematic development of the subject. Under several simplifying

assumptions the evolution of the interface is described by (E). In this context v is the

energy difference between two phases which is assumed to be constant, p(0) measures the

drag opposing the motion in the ©direction, and the coefficient G{6) is a linear function of

the interfacial energy ( or surface tension ) and its second derivatives. The anisotropy of

the equation is essential in this theory and is related to the geometry of the underlying

crystal structure. However, the isotropic case was derived as a simple model of the motion

of the interphase by Mullins [M 1960] and by Allen & Cahn [AC 1979]. For a more

detailed discussion, we refer the reader to Sekerka [Se 1973].

The stationary version of (E) is formally related to a variational problem and its
celebrated solution is known as the Wullf crystal of the interfacial energy; see for example
[W1901], [D 1944], [J 1974], [J 1975], [F 1990] for the properties and the definition of it
and see Section 6.1 of Angenent & Gurtin [AG 1989] for the connection between the
equation (E) and the Wulff crystal. It is also known that any solution of (E) shrinks to an
empty set in finite time if v < 0 or if initially the solution is small ( see [AG 1989], [ES
1990a], and [CGG 1990]). But if v > 0 and initially the solution is large enough, then the



solution grows for all time ( see [AG 1989]). In Sections 12 and 13 we construct a class

of explicit solutions which are dialations of the Wullf crystal of (1//3) and then use them to

obtain asymptotic results. In addition we show that asymptotically the solution looks like

the Wullf crystal of (l/j3) if it is growing. This result was conjectured by Angenent &

Gurtin[AG 1989].

Acknowledgment. I greatly acknowledge valuable discussions with M. E. Gurtin.

In particular, he showed me the correct form of the equation, explained the physical model

and gave me the example discussed in Section 8. This work was supported by the National

Science Foundation, and by the NSF-ARO Grant for Nonlinear analysis and continuum

mechanics in the science of materials.



2. PRELIMINARIES

In this section we make several definitions which will be used throughout the

paper. We will use the notation cL4, intA, andAc to denote the closure of A, interior i4 and

the complement of A , respectively. Let S*'1 be the set of all unit vector in Rd. We assume

(A) p and G are continuous on Sdml, and # 0 ) > 0, G(6) £ 0, 0(6)7)6 = 0, V t]96.

Definition 2.1

(a) A subset of Rd is called proper if the interior of itself and its complement are

non-empty.

(b) Let {C(t)}te[0,T] be a collection of proper subsets of Rd. The signed

distance function of {C(t)}te [o,r] is

r,9C(0) ifx«C(O '

where dist(*,A) denotes the distance between the point x and the set A.

Finally we define the notion of a classical solution of (E). Basically we require that

the signed distance function is smooth and satisfies (1.4). Also an additional "causality"

condition is needed ( see example 5.5), but we do not require the global continuity of the

distance function.

Definition 2.2 We say that an open collection of smooth subsets{C(r)}/>o of Rdis a

classical solution of (E) if;

(a) There is 0 < T < oo such that
C(t) = 0 V r>7 ,

or
C(t) = Rd V r ^ I ,

and for r<7, C(t) is proper, dc is smooth in a (space-time) neighbourhood of every
boundary point xe 9C(r), and dc satisfies (1.4).

(b) For every t<T and

(2.1) limsup [dc(z9s)A0] = limsup [dc(zys)A0]y

(z,*)->(x,r) (*,5)T(x.r)

(2.2) liminf [dcM^O] = liminf [dc(z,s)vO].



3. SEMI-CONTINUOUS ENVELOPES

In this section we define the upper and lower semi-continuous envelopes of a

collection of subsets of Rd. We also prove several elementary properties of them which

will be used in later sections.
For a given collection of proper subsets {C(t)}t€ [0,7} ofRd

9 define

(3.1) C\t) = n u C{s),
e>0 \t - s\<e

(3.2) Cm{t) = u n
£>0 \t - S\<£

Lemma 3.1 Let {C(t)}te[Qti)be a collection of proper subsets

(a) Rd \C*(t) = (i^\C(-))*(0, V/€[0,7^,

(b) Rd \C*(t) = (tfrf\C(-))*(0, Vr6[0,7),

(c) / / (jcn,rn) -> (x,r) an*/*,, €clC*(rn), then JC €dC*(r),

(d) / / (xn,tn) -^ (x,r) andxn * intC*^), then x e intC*(r),

(e) The map (x,t) —> dc*(x,t) is upper semi continuous,

(f) 77i£ ma/7 (x,t) —> J^- (jc,r) w lower-semi continuous.(

Proof :

(a) (b) follows from the De Morgan's rule.

(c) Since xn e clC*(rn) and (xn,tn) -> (x,r), there is a sequence (yn j n ) - * (*,*) as n tends
to infinity, and satisfying yn € C(sn) for all n, m. Set £; = 1 and

Observe that

yn € C(sn) <= u C(J) , if n ^ k.
\t -
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Hence,

X € Cl { U C(S)}, V
\t-S\<Ek.

(d) follows from (a) and (c).

(e) Set dc*(x,t) = p. Suppose that (5 £ 0. Then, there is a sequence yn € C*(t) such that

Also, the definition of C*(t) yields that there are en > 0 satisfying

yn e u C(5).

Hence j n € C*(̂ ) for all 5 € ((r - en) v 0, t + en) and consequently

dc*(z,s) £\z-yn\ , V z e R*t s e ((f - en ) v 0, r + £„).

Therefore,

lim sup { dc*(z,s) : \z - x\ + \t - s\ <e } ^ lim |z - yB| =
E—»0 n—»«o 2—»x

Now suppose that /J < 0. We claim that

a = lim dc*(x,t) < 0.

Indeed if it is not the case, there exists a subsequence (fi^,rn) —> (*>0 such that CD>,€ C*(r,,).

Then, part (c) implies that xe c\C*(t) which contradicts the assumption /? < 0 .

Choose (zn,tn) -»(x,t) such that

a = lim dc*(zn,tn).

Choose another sequence yn 6 clC*(fn) satisfying

a =lim - \zn - yn\.



Since ]x- yn\< \zn - yn\ + \zn - x\, \yn\ is uniformly bounded in n. Hence we may assume

that yn is convergent. Let y = lim yn. Then, a = - \x - y\, and part (c) yields that

yeclC*(r). So

a =-\x -y\<dc*(x,t) = p.

(f) follows from (b) and (e). o

We will use (aAb) and (avb) to denote min{a,fc} and max{a,b}, respectively.

Lemma 3.2 Let {C(t)}t€[0T] be a collection of proper subsets of Rd. Then,

[dc*(x,t)AO]and [d^ (x,t)vO]are upper and lower semi-continuous envelopes of the

functions [dc(x,t)AO]and [dc(x,t)vO], respectively, i.e., for (x,t)eRdx[0,T),

(3.3) dc*(x,t)A0 = limsup [dc(z,s)A0] ,

(3.4) dc^(x,t)v0 = liminf

Proof: Since C(r) is included in C*(r), dtfx.t) < dc*(x,t) for all t £ 0, and x. Then, the
upper semi-continuity of dc*{x,t) yields

dc*(x,t)A0> limsup [dcizj)A0].
(z.sWx.t)

Suppose that xe clC*(r). Then there are (zn,tn) -^ (x,t) such that zne C(tn). Hence,

0 = dc*{x,t) AO

= lim [dc(Wn)A0]

^ limsup

Suppose J:« clC*(f). Then, there is ye dC*(t) such that

dc*(x,t) = - \x - y\.
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Since ye dC*(t), there is a sequence (Q)n,tn) —> (y,r) such that fifo€ C(tn). Then,

and consequently

-\x-y\ = [dc*(x,t)

^ limsup

^ lim dc{x,tn)

> lim - \x - CDnl

= -\x-y\.

This completes the proof of (3.3), and (3.4) is proved after observing that

(3.5) dcjix,i) = - d(Rd \ C(-))*(x,t)

= - limsup [ d(Rd \ c(-))(z,s)]

liminf [dc(z,s)\ •
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4. SUB & SUPER DIFFERENTIALS

We first recall the definition of sub and superdifferentials of semi-continuous

functions as in [CL 1983] and [CEL 1984]. We then define the sub and superdifferentials

of a set-valued map.

Let S(d) be the collection of all dxd symmetric matrices.

Definition 4.1 Let T > 0, G> be a function on Rd x [0,7), <P* and <P* be the upper semi-

continuous and lower semi-continuous envelope of <3>> respectively (see (3.3) and (3.4)).

(a) The set of superdifferentials of 0 at (x9t)eRdx(Q,T) is,

T ^ + ^ x r , x i>d z> ,- <£>*(* + y,t + h) - <P*(x,t) -ph - n-y
D+<T>(jc,r) = { (nj>) e RdxR : hmsup 1 7 ^ ^ 0 >•

(y,h)-*0

(b) The set of second superdifferentials of <P at (x,t)eRdx(0,T) is,

D +x l 1 ^ ^ ) = { (M,P) eRdx S(d)xR :

<*>*(* -f y,t + /i) -
hmsup

(y.h)->0

(c) The set of subdifferentials ofd> at (x,t)eRdx(0,T) is,

^ * (^ + y>* + *) - <P*(j:,r) -/?A - n-y
V'&{x,t) = { (n9p) € RdxR : Uminf j^^j > 0 }

(d) The set of second subdifferentials of <S> at (j:,r)€/?^x(0,r) is,

^ ) € Rd x S(d)xR :

* + y,^ + A) - O*(jc,r) -p/z - n-y -(l/2)i4yy
liminf T-^—— > 0 }.

W2 +1*1

See Appendix A for several well-known properties of these sets. We continue with
the definition of sub and superdifferentials of a set valed map.
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Definition 4.2 For a given collection of subsets {C(0}/50 ofRd,

D+ C(t) = Vf<7(CO) ,

D"C(r) = n Vr<r(C(0),

where 7(C(-)) is called the extinction time and is given by

in f{ r2 iO : clC*(r) = Rd or i

if C(t) is a proper subset of Rd forall t > 0.

Remark 4.3

(a) Forx«C*(f) dc*(x,0 = -inf { \x-y\ : yedC*(t) }. Hence,

(4.1)

(b) Similarly

(4.2)

D+C(r)= u
X€ClC*(0

D'x
2 -j[dc,v 0] (x,r

Other properties of the above sets are gathered in Appendix A. Also see Example
5.5 for a discusion of the particular definition.
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5 VISCOSITY SOLUTIONS; DEFINITION

We start with rewritting the equation (1.2) as

(1.2) \V<P(xt)\F

where V and D 2 denote the gradient and the Hessian matrix with respect to the x variable

alone and for (M,p) € [/?A {0}]xS(d)xR9

n d
(5.1) F(nAj>) = ftr±)p-iuj: [Gy(- ^) A,y] - V \n\.

Let F* and F* be the upper and lower semi-continuous envelopes of F. Note that F* and

F^ are both defined on RdxS(d)xR and are given by

F*(n,A,/>) = limsup F(mJB,q) ,

m

= liminf

Since p > 0, and G £ 0, the function F and its upper and lower semi-continuous

envelopes satisfy,

F(nAj>) < F(nA - B9p + q) Vq > 0, B > 0.

Hence the equation (1.4) is degenerate parabolic. Also G(0)6 = 0 implies that,

(5.2) F(MnAj>)) = AF(*,(I - TS)AJ>) V |*| * 0,A > 0.

Definition 5.1 A collection {C(r)}/>o of subsets of Rdis

(a) a viscosity subsolution of (E) if

<0 , V (M^)e D+C(r),r€
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(b) a viscosity supersolution of (E) if

F*(nAj>) > 0 , V (M,p) e D'C(r), r € [0J(C(-))) ,

(c) a viscosity solution of (E) if it is both viscosity subsolution and viscosity
supersolution of (E).

See Appendix B for an equivalent definition. Also a stability theorem is stated in
Appendix C.

Remark 5.2

(a) Since [dc**O](x,t) is the upper semi-continuous envelope of [dcA0](x,t), {C(r)}f>o is
a subsolution of (E) if and only if [dc*0](x,t) is a viscosity subsolution of (1.2) on
Rdx[0J(C(-))). The viscosity solutions of equations like (1.2) defined in [CGG 1989]
and [ES 1989a]. Similarly {C(t)}t>Q is a supersolution of (E) if and only if [dc^D](x9t) is
a viscosity supersolution of (1.2) on Rdx[0,T(C(-))).

(b) {C(r)}r>o is a supersolution of (E) if and only if it is a subsolution of

j3(- 0) V = - traceG(- 0) R - v.

(c) Suppose that {C(t)}t>o is a viscosity subsolution of (E). For 7* < T(C(-)), define

f C(r) if r < T

1 0 if r > T.

Then, 7(r(0) = T and {iTOl^O is also a subsolution.

We make the following definition to distinguish between a "maximal" sub or
supersolution and others constructed like {I\t)}(>Q.
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Definition 5.3

We say that a collection of subsets {C(r)}/>o of Rd is maximal if whenever T(C(-))

is finite either
intC*(r) = 0 V r>

or

We continue by showing that any classical solution {C(t)}t>o of (E) is a maximal

viscosity solution. For simplicity we make a simplifying assumption which rules out

several pathological cases. We assume that there is / = {tj^.^t^j} such that

(5.3) dc is continuous on Rd x ([0,T(C(-))) \ /).

Lemma 5.4 Any classical subsolution (or supersolution) of (E) satisfying (5.3) is a

maximal viscosity subsolution (or viscosity supersolution) of(E).

Proof: The maximality of classical sub or supersolutions follow from Definition 2.2. Let
{C(t)}t>o be a classical subsolution (E), and (n,A,p) e D+C(r) with t < T(C(-)). Then
there is x such that

First assume that [dc**0](x,t)= [d&\O](x,t). Using (4.1) we may assume that xe clC(r). If

jce intC(r) the smoothness of {C(r)},>o yields that (x,r) € int { (y9s)eRdx[0,oo): ye C(s) }.

Hence,

and

F*(0,0f0) = 0.

So suppose that * € dC(i). Set 7j = V^c(jc,r). Then, -7] is the outward unit normal vector

at xe dC(t). Let £e Rd be such that £r] > 0. Then, the smoothness of dC(t) yields that

(jc-r£)e C(r) V sufficiently smallr > 0.
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Using the definition of the subdifferential and Corollary 14.3, we obtain

[JCA0](*Tg,r)- [dCA0](x,t)

,. dC(x-t%,t) - dc(x,t) + fgn
lini 1

Hence,

(5.4) n-£ < 7]-^ V ^7] > 0 .

Also,

(X+TT; )e C(0 V sufficiently smallr > 0,

and a similar argument based on [dc^0](x+rri ,t) = 0 yields

(5.5) n-T] £ 0 .

Inequalities (5.4) and (5.5) imply that

(5.6) n =

for some pe [0,1]. Set

Then, for every e > 0,

x + T(1 - £)VT7« C(r - T) V sufficiently smallr > 0

Since (nj>)<=D+[dc A0](x,t),
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[dCAO)(x + T(l - E)VT),t - T) - [dCAO](x,t) - T(l - £)VT?-n +pr

<*C(x + T(l £)VT?,f - T) - dc(x,t) - T(l - e)YT]-n +pz
= lim

= V(l - £) - V - (1 - £)VTj-n +p

Hence,

p<pV.

A similar argument based on

x -1(1 + £)V7}e C(t+f) V sufficiently smallT > 0 ,

yields that/? £pV and therefore

(5.7) p =pV.

Let £<zRd be a unit vector orthogonal to 77. Since the boundary of C(t) is smooth, there is a
sequence zme 9C(r) converging to x and

Set Tm= |zm - x\ and wm = (zm - x)/Tm. Then, wOT converges to £ and

0 = dc(zm,t)

l

- <*C(*,O + J V d c ( * + TTmwm,O-TOTwOT dt
0

1 1

= j[VdC(x,t)+ JD2dC(x + rTTmwm,t)TTmwm dr]-Tmwm dt
0 0
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Divide both sides of the above equation by (i^)2 and then let m go to «> to obtain

Also,

n ^ t . [^CAO3(2m,O - [̂ CA0](JCyr) - Tmwm-n -(Tm)2(l/2)
0 > hm

m—»«

,. dc(2m,t) rfcCM) - Tmwm-n -(Tm)2(l/2)
= hm

m—•

= lim [ - p — - (1/2) Awm-wm]
m—><

Hence,

[A -p&dc(x,t)]£Z > 0 V C-Tj = 0,

or equivalently

(5.8) a - T7®T7 M > p a - Vdc(x,t)®VdC(x,t)) TfidC{x,t)

= p D2dc(x,t).

Suppose that p > 0. Then, (5.6), (5.7) and (5.8) imply that

F*{n,A,p) = F(nA,p)

= F(p(nA,p))

< F C?dc(x,t), TPdM
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If p = 0, then (n,p) = (0,0). Also, (I - Tj®77 )A > 0. Hence

) < 0.

Recall that we assumed [dc*0](x,t) = [dc**0](x,t). If [dc*0](x,t) * [dc**0](x,t), then

using (2.1) we can construct a sequence xm,tm,nmAmf>m such that, [dc*0](xm,tm) =

[dc**0](xm,tm),

and

for some Km ^ 0. Such a sequence is constructed by considering the local maxima of the

map [dc*0](y,s) - W(y,s) - [m(t- s)]*1 on the region Rd\(0,t), where \Fis a smooth

function as in Theorem 14.1(b) with 0 = [dc^O]. Using the previous argument we

conclude that

F*(nmAm,Pm) ^ F*(nm^Am,pm + Km) < 0.

Passing to the limit as m tends to infinity yields that {C(t)}t>o is a viscosity subsolution of

of (E). The assertion about the supersolutions is proved by using the proved result and

Remark 5.2(b). D

We give a simple example to clarify the definition.

Example 5.5

Define

C{t) =

{ (x,y) e R2 : 2(1 - f) < |*|2 + \y\2 < 4 - 2t } if t < 1

{ (x,y) € R2 : |jt|2 + \y\2 < 4 - 2r } if 1 < t <2

0 if 11 2.



Then, C(«) is a classical solution of (MCE) with d = 2. In fact it is the unique viscosity

solution of (MCE) with initial condition

(5.9)

Also define

= {(x,y)eR2 : 2 < < 4 }.

C(t) if t < (1/2)

{ (x.y) e R2 : |x|2 + \y\2 < 4 - 2 O if (1/2) < t < 2

0 if r > 2 .

Then for any xe dr*(t),

F(nAj>)<0 V (

Observe that {JT0}/>0 does not satisfy (2.1) and thus is not a classical solution. Also this

example indicates why we need a subdifferential which is larger than the set

20

xeBC*(t)
ix,t)

However if {C(r)}*>0 is "continuous" in the time variable, there may be an equivalent
definition which only uses the above set.



21

6 EXISTENCE by PERRON'S METHOD

In this section we obtain an existence result by assuming the existence of a viscosity

subsolution and a viscosity supersolution of (E). Existence for the initial value problem is

discussed in Section 10. We follow the approach of Ishii who was first to use the Perron's

method to obtain existence of viscosity solutionsfl 1987]. Our proof is very closely related

to the proof of Proposition 2.3 in [CGG 1989].

Lemma 6.1

(a) Let C be a collection of subsolutions of(E). Define

C(t) = u { HO : n-)e C and t <T(I\-))} u 0.

Then {C(0}r>0 & a subsolution of(E).

(b) Let A be a collection of supersolutions of(E). Define

C(0 = n { HO : JT(-)eA and t <T{I\))) nR<*.

Then {C(0}r>0 *"•* fl supersolution of(E).

Proof:(a) Remark 5.2 (a) and Proposition 2.2 of [CGG 1990] implies the result provided
that for all te [0J(C(-))) and x,

(6.1) [<*CAO](JC,O = sup {[dFA0](x,t): I\-)e C and t <T(T\'))}.

Indeed if xe C(t) with t < T(C(-)), then xe T\t) for some I\-) e C which is proper at time t9

and (6.1) follows easily. Suppose xe C(t) with t < r(C(-)). Then, there are yn s C(t) such

that

dcixfy = lim - |x - yn\.

The definition of C(t) implies that for each n, yne rn(t) for some Fne C which is proper at

time t. Hence,

-\*-yn\£drn{x,t) Vn,

and
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[dc*O](x,t) < sup {[drAO](x,t): I\-)e C and t < T(I\-))} .

To prove the reverse inequality, observe that for every t <T(C(-)) and positive integer n
there is rn(-)e C which is proper at time t and

[dpnAO](x,t) > sup {[dp\O](x,t): I\-)eC and t < T(T\-))} - (1/n).

Also choose zne Fn(t) satisfying

-\x-zn\>[drnAO](x,t)-(l/n).

Then by the definition of C(t), zne C(i) and

[dCA0](x,t)>-\x-zn\.

Combining above inequalities yield (6.1).

(b) Follows from part (a) and Remark 5.2(b). •

We need the following technical lemma in our main existence result

Lemma 6.2 Suppose that there are S > 0, XQSR^9 r0 > 0 and smooth functions f and g

satisfying

(6.2) F*(V/(xo,ro),D2/(xo,fo). |/(*o>'o))) < 0,

(6.3) /(*o>ro) = £(*o>'o)>

and

(6.4) M 0 > 0 => ^(x,r)^0, V \x-xo\ + \t-to\<8.

Then,

(6.5) F*(V^(xo,ro),D2^(j:o,r0), | ^(xo,fo))) < 0 .
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Proof: Once again we analyse three cases seperately;

(1) (YAxo,ro f

Set

r\ =

Then, for any veRd+l satisfying lyv > 0, there is p{v) > 0 such that

fi(xo,to) + pv)>0 V p e (0,p(v)].

Assumption (6.4) yields

g((.XQ,t0) + pv)>0 V p e [0,p( v)], ve Rd+* and 7]-u > 0,

and therefore there is a > 0 such that

(6.6) (Vg(xo,tQ),^-t g(xo,to))= a T)

Let £eR<* +* be a unit vector orthogonal to 77. By the implicit function
theorem, there is a sequence (zm,tm) converging to (xQ,t0) such that

fcmSm) = 0 and

Set Tm= |(zm -x,tm- i)\ and wm = (zm - x jtm- t)lxm. Then, wm converges to

and

0 =f(zm,tm)

l

v dx

0

1 1

= J \y\ + I Dx
2/^xO^o)+ rttmwm) TXmwm dr]-xmwm dx,

0 <r
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where I) 2f is the Hessian matrix of/with respect to all of its variables. Divide both sides

of the above equation by (i^)2 and then let m go to °° to obtain

lim I - 5 2 ^ ] = - d/2) D 2f(x0,

Also, an approximation argument based on (6.4) and (V/(xo,fo), ^f(xo,to)) * 0

yields 0 < g(zm,tm). Hence,

0 < g(zm,tm)

1

,tQ)+ \ (Vg((xQ,t0)+TTmWm),jtg((x0,tQ)+ TTmWm))-TmWm dX

J Dx
2
tg((x0,t0)+ rtXmWjn) ttmwm dr]-Tmwm dx.

0

Divide both sides of the above equation by (rm)2 and then let m go to«»to obtain

= - a (1/2) Dx

Hence,

V C-T? = 0.
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(2)

Combinning (6.2), (6.6), and the above inequality yield (6.5).

Using the negation of (6.5), proceed exactly as in the previous case to obtain

(6.7) [Dx
2f(x0,tQ) - aD ^(xo,ro)]CC^0 V C-(Vg(xo,ro),|g(xo,ro)) = 0,

(6.8) C?f(xo,to),jtf{xo,to)) = a (Vg(xo,to),jt g(xo,to)),

for some a > 0. If a > 0, then (6.5) follows from (6.2) (6.7) and (6.8). Now

suppose that a = 0. Then, (6.2), (6.7), and the definition F* imply that

0 > F*(Vf(.xo,t0),Vlf(x0,t0),jtf(xo,t0))

KmsupF(pVg(xo,to),T>2f(xo,to),O).
plo

However, (6.7) with a = 0 yields

F(p^g(.xo,to)^f[xOfto),O) > 0

for every p > 0.

(3) (V/(xo,ro),^/(*o,ro)) = (Vg(xo,to),^g(xo,t0)) = 0

Set
A

B = D2£(xo,ro).

Then, (6.4) and the fact that (V/(xo,ro),|y(x0,r0)) = (Vg(xo,to),jtg(xo,to)) = 0

yield
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(6.9) Ae-e >0 => Bee >0 V eeRd.

Let e,fe Rd be given. We claim that

Aee + A/ /> 0 =* £ e * + J5//2: 0.

Indeed if Aee and Aff are both strictly positive, then (6.9) yields the result If
they are both negative, then there is nothing to prove. So we may assume that

Aee > 0 £ A/ / , and Bee > 0 >

Define two second order polynomials by

Plir) = A(f+ re)-(f + re), and F2W = £(f+ re)-(f+ re).

Let A;, A2 be the roots of Pj and fij, 112 be the roots of P2. Observe that

XjX2 =Aff/Ae-e, ^2 =Bff/Bee.

Hence to prove the claim it suffices to show that

X1X2 + 1 > 0 =>

Using (6.9) we conclude that whenever Pj{r) > 0, then P2W ^ 0- We also know
that Aee > 0 > A/ / , and Bee > 0 > Bff. Hence

Xj <M <0<//2 ^h>

and consequently XjX2 ̂  MM •

The hypothesis (6.2) and the assumption (A) yield that trace G(e*)A > 0 for

some 6*eSd"]. Using this inequality and the non-negativity of G(0*) we may

represent G(0*) as

2M
G(0*) = X efrei

i=l

for some vectors e/ in /?^ satisfying

Ae2k-re2k-l + Ae2^2ib > 0
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Then we have

Be2k-ye2k-l + Be2fe2k ^ 0.

Sum this inequality over k to obtain that trace G(9*)B £ 0, and (6.5) follows.

Theorem 6.3 Suppose that {L(0)te0» {£/(0}feO &re viscosity subsolution and viscosity

supersolution of(E), satisfying

(6.10) Lit) c U(t), V t < T(L(-))AT(U(-)).

Then there exist a viscosity solution {C(r)}f>o of (E) satisfying

(6.11) L(t) c C{t) c £/(r) V t < 7-(L(-))A7W(-)).

Proof: Set To= r(L(-))AT([/(0), S0 = T(C/(-)) and

,- J r r / u (nOlftO is a subsolution of (E)\

{ HO c 1/(0 V r<50Ar(r(-)) J

Then Lemma 6.1 (a) yields that

u { r(t) : T(-)e C and r <T(r(-))} u 0 if f < 5 0

0 if / > 5o

is a subsolution of (E). Also (6.10) implies that {L(t)}t>oe C. Hence To ̂  T(C(-)) < So.

Suppose that {C(r)}j>o is not a supersolution of (E). Using Lemma 14.6 we conclude that

there exists a smooth function 3> and (xo,to)e Rdx(0,T(C('))) such that

0 = [dc^v0](x0,t0) - &(xo,to)

= min{ [dc^0](x,t) - $Oc,t) : (x,t)eRdx[0,oo) }

and

V3 ^ ^ | $ . ' o ) ) < 0 .
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In view of (4.2) we may assume that

(6.12)

Set

Then,

(6.13)

CKx,t) = \t -

(a) [dc vO](jc,r) - <P(x,r) ^ [ \x-

(b) <P(xo,to)=

- ro|2]2 V (x,t)

^(c) F*(V0(xQ,to),&0(xo,to),ft<P(xo,to)) < 0.

Since C(t) c U(t) for all t < So and {U(t)}t^o is a supersolution of (E), (6.13) (c) implies

that

Therefore there is S\ such that

(6.14) BSl(x0,t0) = : \x - *0|2 + \t -

c u [U(t)x{t}].
t>0

Also due to the smoothness of <J>and the upper semi-continuity of F* there is &i satisfying

(6.15)

For t < 7(C(0), let

t <P(x,t)) < 0 V (x,t)e

,t) = max {<P{x,t) + (<5b)4/2 , [dcv0](x,t)}

where

So = min {81,82}.
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Suppose (x,f)gB^j(jco,ro), then (6.13) (a) yields that

O(x,i) + (6Q)A/2 < <P(x,t) + [lx - xo\
2 + \t - f0 l2]2

< [dcv0](x,t).

Hence, for t < T(C(-)),

(6.16) *F(x,t) = [dcv0](x,t), V (

Finally define

S(t) = { Oc,0€^x[0,~): «F(x,r)>0} if

and 5(r) is defined to be the empty set for 11 T(C(-)). The definition of S(t) and (6.16)

imply that

c u[C(r)x{r}]uB5o(xo,ro).

Since C(t) is included in £/(r) for all t< SQ and5} ̂  5i, (6.14) and (6.16) yield that

(6.17) S(r)cC/(r) Vre[0 ,S 0 ) .

Using the smoothness of *Fand the inequality

we conclude that

(6.18) B£xo,to) c

for some 5 > 0. Suppose that
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(6.19) B5(jco,ro) c u[C(r)x{r}]

for some S > 0. Then, *0€ intC*(r0). Recall that x0 is chosen from the complement of

intC*(r0) (see (6.12)). Hence, (6.19) does not hold for any positive S and (6.18) yields

(6.20) u [C(t)x{t}] * u [5(r) x{r}] .

Since {C(r)}r>0 is the largest subsolution of (E) included in {£/(f)}/>0> (6.17), (6.20) and

the fact that C(t) is included in S(t) imply that {S(r)}/>o is not a subsolution of (E). Hence

to complete the proof of this theorem it suffices to prove that {S(r)}/>o is a subsolution of

(E).

First note that T(5(-)) = T(C(-)). Suppose that a smooth function 7

and(y0,50)€/?^x(0,T(5(-))) satisfy

0 = [ds*A0](y0,s0) - Y(y0J0) > [ds**O](y9s) - y(y,^) V (yj) * (y09s0).

We need to show that

(6.21) ^(VXyo^o) J^Xyo^o). I Xyô o))) ^ °-

Since [dc* A0] < [ ^ * A 0 ] , if

(6.21) follows from the the fact that {C(t)}t>o is a subsolution of (E). So we may assume

that

(6.22) [dc**O](yo,so) < [dS*A0](y0,s0).

We analyse three cases seperately;

(1) <^o^o) + (*)4 /2 > 0.

Then,[<is*A0] is equal to zero on a neighborhood of (yo^o)- Hence,

^o) = 0, ^)<yo^o) = 0, E^Xyo^o) ^ 0 and (6.21) follows easily.
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(2) 0(yo,so) + (<5b)4/2 = [ds**O](yo,so) = 0

We have

4 = 0.

Suppose that &(yj) + (5o)4/2 > 0 for some (yj). Since f £ <P + (5o)4/2, we

have [rfs*AO](y^) = 0- W e ^so know that, y ^ [ ^ * A 0 ] . Hence,

> 0 whenever <P(y )̂ + ($))4/2 > 0.

Now use the previous lemma with/= O + (6Q)4/2, g = y and (JCo»ro)

(3) [ds**O](yo,so) < 0.

Hence yoe CLS*(J0). Choose zoe dS*(s0) such that

Define,

£(y,s) = y(y + yo- zo^) + bo - zol-

Then,

[ds*A0](z0j0) - £(z0vy0) = [ds*A0](yQ,s0) - y(yo,so)

Z [ds*A0](yj) - y(y,s) V y,s,

^ -\z - y\ + [ds*A0](zj) - y(y,s) V y,s,z.

Let y = 2 + yo -zo»

( £ ^ " tV0 -zol + [^5*AO](Z^) - 7 (z + yo -20,̂ )

= ids*A0](zj) - £ (z,s) V y,s.
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Since zoedS*(so), ^(zo,sQ) £ 0. Also (6.22) yields that ZQic\C*(s0). Hence

*F(zo,sQ) = &(zo,so) + (8o)4/2. Using the previous two cases at the point zo,so we

obtain,

| 0.

Now (6.21) follows after observing that

)

(4) <l>(yo,5o) + (5o)4/2 < 0,

Using (6.22) we conclude that *P= <P + (5o)4/2 in a neighbourhood of

This contradicts with [ds*AO]CyOyso) = 0.
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7.C0MPARIS0N

Theorem 7.1 Suppose that {L(r)}«>0 <"*& {^(0}/>0 are viscosity subsolution and

viscosity supersolution of(E), respectively. Assume that for each T>0, there is a positive

constant R(T) satisfying

(7.1) L{i), 1/(0 c BR<T) V /<7\

Also, assume that there is a>0, such that

(7.2)

Then,

(7.3)

[dL*AO](x,0) < [dv

L\t) c t/*(0

VO](JC,O) - a

V 0 < r <7

VxeRd.

•(L(0) A T(t/(-))

Proof : Set TQ = T(L(-)) A T(U(-)), for (x,0e Rdx[OJo) define

and

Remark 5.2(a) yields that u and v are viscosity subsolution and viscosity supersolution of

(1.2) on Rdx[O,To), respectively. Clearly, (7.2) yields that

u(x,0) < v(x,0) V x

Also, using (7.1) we obtain that for any t < TA7O and \x\ = R(T) + a,

u(x,t) =dL*(x,t)

^ - distance(x,9Bj?(r))
--a

Hence, Theorem 4.1 of [CGG 1989] implies that

(7.4) u(x,t) < v(x,t) V t < TATQ and |x| < R(T) + a.
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Suppose xeL*(t) for some t < 7A7O, then \x\ < R(T) and

u(x,t) = 0 < v(jc,r) < [djj vO](x,r) - a.

Therefore djj (x,t) >a, in particular xe U*(t). c

For 8 > 0, define

Ls(t) = { (x,t)eRdx[0,oo) : di*(xft) > - 5 },

),~) : dv (x,t) > 8 }.

Remark 7.2 Condition (7.2) is equivalent to

(7.5) L*(0) c (f/s,)a (0).

The following is a weak regularity result in the time variable and it will be used in

Sections 9 and 10.

Lemma 7.3 Suppose that {C(r)}^o an<^ {^(0}/>0 are viscosity subsolution and
viscosity supersolution of(E), respectively. Then,

(a) limsup [dC*AOK*,*) = [^C*AO](JC,O V (pc9t)e/?^x(0,T(C(-))),
sit

(b) liminftftf v 0 ] ( ^ ) = [dv vO](x,r) V
sit

Proof: (a) We analyse two cases seperately;

(l)jt€clC*(r).

Suppose to the contrary. Then

- a = limsup [^C*AO](Z^) < 0.
sit

and consequently there is 8 > 0 such that
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< - (a/2), V \x - y\ < 8, se [t - S,t).

Hence, for any positive/?

[</C*AO]O>,S) - [dC**0](x,t) - (s - t)p

< - {all) -0-(s-t)p

<0 V\x-y\<8,se[t-((a/2)pA8),oo).

Therefore, (0,0,p) e D+C(r). Since fi > 0 (see assumption A ),

F*(0,0j>) Z min { p(-n/\n\) p : neRd } > 0 V p > 0.

The above inequality contradicts the subsolution property of {C(t)}(>Q.

(2)x€dC*(t).

Choose ze 9C*(r) such that

dc<x,t) = - \x - z\.

Then, the upper semi-continuity and the sublinearity of [dc* AO] imply that

dc*(x,t) £ limsup [dc**0](x,s)

limsup [^C*AO](Z,S) - k - A

limsup [dc**0](z,s) + <*£*

Since zedC*(t), we apply case (1) to obtain

limsup [dc**0](zj) = 0.
sit

(b) Follows from part(a) and Remark 5.2(b).
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8.N0N-UNIQUENESS, EXAMPLES

We give two planar isotropic examples to show that there is no general uniqueness

result. Non-uniqueness of solutions is related to the development of an interior of the level

sets of viscosity solutions to (1.2). Similar examples are also discussed in Section 8.2 of

[ES 1989a].

Example 8.1

Let h(z,t) be the solution of

| h(z9t) = J ^ h(z,t) [1 + (j^(z,r))2]-l V r>0, z>0,

§-z A(O,r) = O Vr>0,

lim j j *(&*)=! Vr>0,

*(z,0) = z Vz>0.

The existence of such a solution can be proved by an approximation argument Define

D(t) = { (xyy) € *2 : |x| > h(\y\,t) },

and

C(r) = { (x,y) € /?2 :|yl

A straightforward calculation shows that both {C(t)}t>o and {D(t)}t>o are classical solution

of (MCE) with initial condition,

Example 8.2

Let (h(z,t)A(*)) and T be a solution of

(8.2)(a) | *(z,r) = ̂  Kzfy [1 + (^*(z,r))2]-l V re [0,7),



(8.2)(b) j j *(0,0 = h(A(t),t) = 0 V i€ [0,7),

(8.2)(c) lim j j *(£0 = -~ V re [0,7),

(8.2)(d) ft(z,0) = z Vl - z2 V z€ (0,1),

(8.2)(c)

Forr<7define

D{t) =

Let (p(z,r),KO^(O) and T be a solution of

(8.3)(a) ^p(z,t) = ̂ P(z,t) [1 + ( j ^ O ) 2 ] " 1 V r€ [0,7), ze

(8.3)(b) p(fc(0,0 = /»(5(0,0 = 0 V re [0,7),

(8.4)(c) lim 2-p&t) = - lim §- p($,t) = « V re [0,7),

(8.3)(d) p(z,0) = z Vl - z 2 V ze (0,1),

(8.3)(e) fc(0) = 0, J5(0) = 1.
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For t < T define

C(t) = { (*,)>) e [[- B(t)r b(t)] u [b{t)ft(t)]]xR : \y\ <p(\x\,t)

If there are solutions to (8.2) and (8.3), it is easy to show that both {C(r)}/>o and {r>(0}*>0
are classical solution of (E) with initial condition,

C(0) = D(0) = T= { (xoO e [0,l]x[0,l] : \y\ < |x|Vl -
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-B

-A

Figure 1 Two solutions with initial data C(0).
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9.UNIQUENESS FOR NONPOSITIVE v

In this section we prove a uniqueness result for t; < 0 and a class of initial

conditions. These initial conditions along with other properties do not have self-

intersections. We start with the description of the condition we impose on the initial

conditions.
F o r p e (0,1), Fez Rd andxeRd define

i\x,p)
:ye F}.

Definition 9.1 We say that a bounded open subset Fof Rdis strictly starshaped

around a point xeRd if there is po € (0,1) such that

min { distCz,/^) : z ecU\xyp) } > 0, V p € [po,l).

The compactness of Fimplies the following.

Lemma 9.2 A bounded open set Fis strictly starshaped around x if and only if there is

po such that

(9.1) sup{- dist(z,n*,p)) - dist(z,P0 : z € Rd } = - a(p) < 0 Vp e [po,l).

Theorem 9.3 Suppose that {L(t)}t>o and {U(t)}t>Q are viscosity subsolution and

viscosity supersolution of (E), respectively. Assume that v < 0 and there is a bounded

open set F satisfying

(9.2) dL*(0) ccLT c cl£/*(0)

Further assume that Fis strictly starshaped around a point x and for each T > 0, there is

R(T) such that

L(t),U(t) <zBR{T) Vt<T.

Then,

L*(t) c

Proof: Since the equation (E) is invariant under translation without loss of generality we
may assume that Fis strictly starshaped around the origin. Fix p < 1, and define



We claim that {C(0}<>0 is a subsolution of (E). Indeed suppose

at some (*,0e^x[0,:T(L(-))). Since C*(t) = pL*&) and

dc*(x,t) = pdL*<^, jp), V (x,r),

the definition of the set of second superdifferentials yields

r [dc*A0](x + y,t + h) - [dc*A0](x,t) -n-y - ph - (l/2)Ayy

y)/p ,(? + /t)/^) - p[dL*AO](x/p,t/pi)

-n-y - pft - (M2)Ayy

1 [di*A0]((x/p) + z,(r/p2): — ilimsup r~j—

•H'Z - pps - (1/2) pAz-z
\s\ + |z|2

Hence,

(n,pA,pp) € D ;

Since {L(r)}/>o is a subsolution of (E),

40
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0 £ F*(n,pA,pp)

- V |n|(l - p)

Combine (9.1) and (9.2) to obtain

[JC*A0](X,0) < [du*v0](x,0) - a(p).

Hence the hypothessis of Theorem 7.1 are satisfyied by {C(r)}t>0 ^nd {l/(0}r>0- Thus

(9.4) p L*(j£) = C*(0 c f/*(0, V /€ [0,r(L(-))Ar(I/(-)))

and p sufficiently close to 1. Suppose x e L*(t) with t < T(L(-))A7(1/(-)), using Lemma

7.3 (a) we obtain a sequence (xn ,tn) -»(x,r) satisfying

/„ < r and *„ e L*(tn) V « .

Set pn = -Jti7n . Then

(9.5) pnxn e pnL*(tn) = C*(t).

Since pn < 1 and pn -> 1, (9.4) and (9.5) yield that for sufficiently large n

pnxn e U*(t).

Now let n tend to infinity to conclude that x e cl£/*(r). a
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10. EXISTENCE; INITIAL VALUE PROBLEM

In this Section we construct a maximal viscosity solution to (E) with a given initial

data. Our construction is closely related to Section 6 of [CGG 1989]. In view of Section

6, to obtain an existence result it suffices to construct a viscosity subsolution and a

viscosity supersolution satisfying the given initial data

intC*(0) = r ,

clC*(0) = clT.

For r ^ 0, define w(r) by

, x rR - ln(rR + 1)

where

K = max { traceG(n) / fi(n) : neRd and |n| = 1 }vl ,

R = (max { \v\/f%n) : neRd and \n\ = 1 }/K)vl.

For a given xoeRd and p>0, define

L(x09p)(t) = {xeRd : p-t-w{\x -JCO |)>O },

and

tf(*0,p)(0 = {*€** : -p + t + w(\x -XQ\)>0 }.

Then,

L(xo,p)(t) =

and

where Bp(x) denotes the d-dimensional sphere with radius p and center x and p(t) is the

unique solution of
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p = t + w(p(t)).

Since the curvature tensor and the normal velocity of Bp(r)(jc0) is

a straightforward calculation shows that {L(xo>P)(O}teO is a classical subsolution of (E).
Similarly the curvature tensor and the normal velocity of Rd \ Bp(r)(x0) is

(-identity/p(r),-^

and{t/(jco,p)(r)}f>o is a classical supersolution of (E). Finally, define

(10.2) L(t) = u {L(xo,p)(O: L(jto,p)(O) c T } ,

and

(10.3) U(t) = n { £/(*0,p)(r): T c t/(jco,p)(r) }.

Then, Lemma 6.1 implies that {L(t)}t>o and {U(t)}t>o are viscosity subsolution and

viscosity supersolution of (E), respectively. Also, {L(t)}t>o satisfies (10.1) (a) and

{U(t)}t>Q satisfies (10.1) (b). Moreover,

L(t)czU(t) V t<T(L())AT(U()).

Theorem 10.1 For any given proper subset F ofRd there is a viscosity solution

{C(t)}t>oof(E) satisfying (10.1). Moreover, the extinction time T(C(-)) is strictly

positive.

Proof: The existence of {C(r)}/>o follows from the preceeding calculations and Theorem
6.3. Since F i s a proper subset of Rd

9 there are R\>0, R2>0 and xoeRd and yoeRdsuch

that

£(*<)>*l)(0) c F c U(y0Jt2X0).
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Then, the definitions of L(x09Ri)(t) and U(y0Jt2)(t) imply that

0*L(xQ9Ri)(t) c L(t) c C(r) V t<Rh

and

C(r) c U(t) c tf(yo*2)W * ^ V t < R2.

Therefore,

Remark 10.2 Let {V(r)}r>o be a viscosity supersolution of (E) satisfying (10.1) (b).

Then,

is again a viscosity supersolution of (E) with initial condition (10.1). Hence, by using

{y(0h>0 instead of {£/(0}/>0> in the proof of the above theorem we obtain a viscosity

solution included by the given viscosity supersolution

We need a technical lemma to prove that the viscosity solution constructed in the proofs of

Theorem 6.3 and Theorem 10.1 is indeed a maximal one. Suppose that {C(t)}t>Q and

2ft viscosity subsolutions of (E) satisfying,

(10.4) [dr*A0](x,0) < [dC**0](x,t0), Vx,

at some point tQ. Set

C(r) if t < t0

- t0) if t > tQ.

Lemma 10.3. {S(t)}t>o is a viscosity subsolution of(E).
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Proof: Let (n,Aj>)e D*2 JVS*AO](JCO,JO). We need to show that

(10.5) F*(nAyp)<0.

If sQ* r0, then (10.5) follows easily from the subsolution properties of {C(t)}t>o and

. So assume that s0 = r0. Using (10.4) and Lemma 7.3 (a) we obtain

l[<*r*A0](jc,r-r0) if r > to.

Let *F be as in Theorem 14.1 (b) with <P = [ds*/\0] and (x,r) = (jco,ro). For e > 0, define

r) + [be - ̂ 0l4 + k - 'ol2] + c T ^ •

Choose (x£,te) such that te < r0, and

[dc*A0](xe,te) - ^x £ , r £ ) > [rfC*A0]( ,̂r) - Yfat) V xe/?^, re [O,ro).

It is easy to show that (x£,t£) —> (xo,ro) as e tends to zero. Also the subsolution property

of {C(t)}t>o implies that

^ ( £ , £ ) ) 0.

Since F* is non-decreasing in thep-variable and

liminf ^ ^^xe9te) > ̂  !P(jc0>r0),

we obtain (10.5) by letting e go to zero.

Theorem 10.4 For any given non-empty bounded open subset F ofRd there is a

maximal viscosity solution {C(r)}r>o of(E) satisfying (10.1).
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11. CONNECTION BETWEEN (E) & (1.2)

Let u be the unique viscosity solution of

(1.2) F(Vu(x,t) X>Mx,t),jt u(x,t)) = 0, VxeRd,t>0,

with initial condition

, _N f dist(jc,9r)Al i f x € T
i-[dist(x,ar)Ai] i f x ^ r

where F is a given bounded open subset of Rd. The existence, the uniqueness, and the

continuity of u are proved in Theorem 6.8 of [CGG 1989]. Set

(11.1) L(t) = {xeRd ; u(x,t) > 0 },

(11.2) U(t) = { xeRd ; u(x,t) > 0 }.

Theorem 11.1 For any bounded non-empty open subset FofRd, {L(t)}t>Q and

{U(t)}t>o are maximal viscosity solutions of(E) satisfying (10.1). Moreover

(11.3) L\t) c C{t) c

/or a// r € [0,T(L(-))AT(t/(-))), fl^ any or/ier maximal viscosity solution {C(r)}/>o o/(E)

with initial condition (10.1).

Proof: Let A be the collection of all viscosity solutions of (E) with initial conditions
which are compact in F. Set

J(t) = u { C(r) : {C(t)}<>oeA , r < T(C(-)) } u 0.

Since Fis bounded, if {C(t)}f>oeA then there is a > 0 such that

(11.4) [dc*A0](JC,0) < M(JC,O) - a.

Also {C(f)}/>o is included in the viscosity supersolution defined by (10.3). In particular

{C(r)}/>o is bounded. Therefore (11.4) and Theorem 4.1 of [CGG 1989] yield that
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11. CONNECTION BETWEEN (E) & (1.2)

Let u be the unique viscosity solution of

(1.2) F(Vu(x,t)£>Mx,t),jt u(x,t)) = 0, VxeRd,t>0,

with initial condition

, _. J dist(jr,ar)Ai ifxer

where F is a given bounded open subset of Rd. The existence, the uniqueness, and the

continuity of u are proved in Theorem 6.8 of [CGG 1989]. Set

(11.1) L(t) = {xeRd ; «(x,r) > 0 },

(11.2)

Theorem 11.1 For any bounded non-empty open subset F of Rd, {L(t)}t>o and

{U(t)}t>o are maximal viscosity solutions of(E) satisfying (10.1). Moreover

(11.3) L\t) a C{f) c cl£/*(r),

for all t e [0,T(L(*))AT(U(-)) ), and any other maximal viscosity solution {C(r)}/>o of(E)

with initial condition (10.1).

Proof: Let A be the collection of all viscosity solutions of (E) with initial conditions
which are compact in F Set

J(t) = u { C(t) : {C(r)}^)€ A , t < T(C(0) } u 0.

Since Fis bounded, if {C(t)}t>oe A then there is a > 0 such that

(11.4) [<*C*A0](JC,0) < u(xJ0) - a.

Also {C(t)}t>o is included in the viscosity supersolution defined by (10.3). In particular

{C(t)}f>o is bounded. Therefore (11.4) and Theorem 4.1 of [CGG 1989] yield that
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[dc*AO](x,t) <: u(x,t) - a.

Suppose that x& C(t) with t < T(C(0). Then, u(x,t) £ a > 0. Hence, J(t) is included in

L(r) forall r>0.

Suppose that xoe L(t0) with to< 7\L(«)), then u(xo,to)> y for some y > 0. By

Theorem 10.4 there is a maximal viscosity solution{C(f)}j>oeA such that

(11.4) [dC*v0](x,0) = u(x,0) - y.

Then, theorem 4.1 of [CGG 1989] implies that [<*c*vO](;c,O £ u(x,t)- / f o r all

(x,t)<=Rdx[0,T(C('))]. Since {C(f)}^o is maximal and Tis bounded

C*(T(C(-))) = 0.

Therefore the continuity of u and (11.4) yield that

7\C(-)) > mf { t > 0 : there is jcsuch that u(x,f) > 7} .

Hence XQS C(t0), to< T(C(-)) and consequently L{t) = /(f) forall t ^ 0.

Now let B be the collection of all viscosity solutions of (E) with initial data which
compactly includes F. A similar argument yields

* < T(C(0)

Let {C(r)}jsO be a viscosity solution of (E) and (10.1). Theorem 7.1 implies that

K*(t) c C(0 c V*(0,

forall {AT(r)}feoe A , {V(f)}&()€», and r 6 [0,T(L(-))Ar(C7(0)).

Corollary 11.2 The level set

r\t)={xeRd ; «(x,r) = 0 }

non-empty interior if and only if there are more than one viscosity solutions to (E).

When there is a unique solution {C(f)}f>0 to
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12. A CLASS OF EXPLICIT SOLUTIONS

In this Section we construct a class of explicit solutions of (E) which are related to
Wullf crystals [W 1901]( also see Dinghas[D 1944], TaylorfT 1974], [T 1975],and
Fonseca[F 1990]). We will use these solutions in the asymptotic analysis of (E). Let

B(6) = — | 0 |

and we assume

(121) z .z
J=l 1=1

For xe Rd and x * 0, set x = x/\x\. Then define

(12.2) R(x) = min { ^ ^ : 6eRdand &x > 0 } V x ^ O ,

and

(12.3) 0(x) = { ©GS^ 1 : &x > 0 and ^ ^ = /?(*) } V x ^ O ,

where S^1 = { ©E/?J : |0| = 1 }. We gather several elementary properties of the above
functions into a Lemma.

Lemma 12.1
(a) There is a continuously differentiate function &(x) such that

©(*) = {£(*)} V JC*O.

In particular,

(12.4) VB{e(x))[6(x)-x\ - B(9(x)) x = 0.

(b) Fora// JC*O,

B(6(x)) = /?(x)[^)-Jc] = max { R(y)

In particular,
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(12.5) VR(x)[6(xy£] + R(x) - ^ - R(x)Wx)4] - ^ = 0.

Proof:

(a) For/ = l,..,d set

(12.6) Hitfjc) = [6x] ^-B(6) - B{8) xt.
90,

Then,

(12.7) H(ds) = {Hl(eyx),...Md(e^c)) = 0

We calculate directly that

Let § be a vector orthogonal to 0. Using (12.1) we conclude that

^ k | ^ & S, > o,

V 0-^ = 0, 0-Jc > 0.

Hence for every JC, there is a unique solution 6(x)eSd'1 of the equation (12.7). Using the

implicit function theorem we conclude that 6(x) is continuously differentiable.

(b) Follows from straightforward calculations. •

Let h be a real-valued, continuously differentiable, strictly decreasing function on
[0,oo). For x * 0, define

ii(r) = K\x\/R(x)).

Using the previous lemma, we calculate directly that
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•*• I Y * I

VK(X) =h\

= h'(\x\/R(x))

(12.8)

Since h is decreasing and 6(x)eSdml,

(12.9) V

Set

Lemma 12.2 For a«y non-zero x eR^,

(12.11) t race[g(^))a - B(x)

Proof: Recall that Hi(6(x)j:) = 0, where //,• is as in (12.6). Differentiate this equation

with respect to xj and then use the same equation to obtain

(12.12)
6{x)x

Since B(ff) is homogenous of degree one, T&(B(6))6 = 0 for every 6. Hence,

(d-i)g(e(x))a-e(x)®e(x)) =
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Using (12.12) we obtain,

- i)(e(x)-x)

We prove (12.11) after observing that trace (I jt®0(;t)) = (d -1).
0(X)JC

For any X define

C(r) = {x€M{0} : K\x\/R(x)) > e* } u {0}.

Recall that for GeS^ # 0 ) = (B^))'1. Identities (12.8) and (12.11) imply that at

xedC(t),

normal velocity = V =

h\\x\/R(x))

outward unit normal = 6 = 6{x)

^ 7 ^ )
|VM(X)|

Hence, {C(r)}f>o is a classical solution of (E) with
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provided that

(12.13) ^CfiL.C+t, V p=\x\/R(x).
h\p) p

Example 12.3 Suppose D > 0. Then a solution to (12.13) with A = -1 is

*(p) = exp[- — -^ln(p-£) ] V p > ^ .

Hence, for any a > 0,

Ci(r) = {xe/?A{0} : K\x\/R(x))>ae-<}v{0}

is a classical solution of

# 6 ) V = - teaceC*(9) R + v .

The solution {Ci(r)}^>o is increasing in time with extinction time infinity.

Examplel2.4 Suppose v > 0. Then a solution to (12.13) with A = 1 is

p p
1 V V

Hence, for any a > 0,

C2(0 ={*€/?A{0} : h{\x\IR{x))>aet}Kj{0}

is a classical solution of

# 6 ) V = - traceCs(e) R + t; .

In this case the solution is decreasing in time with extinction time

V1 V
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Example 12.5 Let v = 0. Then with X = 1,

P2go= exp (- g

is a solution of (12.13). Hence, for any a > 0,

C3(r) = {xeM{0} : fc([x|/J?(x)) > a e<} u {0}

[-f - l n a ] } u {0}

is a classical solution of

0(6) V = - traceCg(G) R.

In this case the solution is decreasing in time with extinction time

7(C3(-))=-lna.

Definition 12.6 The open set

W(\lp) = { xeR<*\{0} : \x\< R(x) } u {0}

is called the Wulff crystal of the surface energy {lip).

All the solutions constructed in the above examples arc dialations of the Wullf crystal
W(l/f5). We collect the previous examples into the following lemma.

Lemma 12.7 For i = 1,2,3,

Q(t) = <Xi(t) W(\lp),

where h((Xi(t)) = ae^. In particular, <Xg(t) is the unique solution of

(12.14) | am = [- -^- + t> ] V t > 0,
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with initial condition

(12.15) a,(0) = h-Ha).

Remark 12.8 If p satisfies (12.1), then the Wulff crystal vW(Vp) is a solution of the

stationary problem,

0 = - trace£(0) R + v.

This fact was proved by Angenet & Gurtin in two dimensions (see Section 6.1 [AG
1989]).
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13- LARGE TIME ASYMPTOTICS

In this section we show that any solution of (E), with bounded initial condition, has

finite extinction time if v < 0 or if it is initially small. We also show that if v > 0, then

solutions of (E) with large enough but bounded initial condition has infinite extintion time.

These results already proved by Angenent & Gurtin [AG 1989] for classical solutions in

two dimensions. Also Chen, Giga & Goto [CGG 1989] proved the finite extinction when

D = 0. We use the comparison result Theorem 7.1 together with the explicit solutions

constructed in the previous section. Our techniques also show that when the solution is

growing, asymptotically it has the shape of the Wullf region W(l/f5).

We employ the notation A c c B if A is a compact subset of B. When B is

bounded, A and B satisfies (7.5),i.e., AczBa for a suitable a.

Lemma 13.1 Suppose that {C(t)}t>Q is a viscosity subsolution of(E) and there is K such

that

C*(0) aczBK(0).

Further assume that

^ ^ ^ g 0 > 0 , V A

Then,

Proof: Let

where a is the solution of (12.14) with C -go and initial condition a(0) = K. Then,

Lemma 12.5 yields that {I\t)}f>o is a classical solution of

Since the mean curvature of Bl\t) is always negative, {I\t)}t>o is a supersolution of (E).

Moreover, T\0) = BK(Q). Hence Theorem 7.1 yields that
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C*(t) c T\t)

K2

We complete the proof after observing that T(I\-)) = jjT • °

Let g(0) be as in the previous section.

Lemma 13.2 Suppose that {C(r)}/>o is a viscosity subsolution of(E) and there is K\

such that

C*(0)

Further assume that

v>0, G{6) > g{6)g\> 0, V 0 , and Ki < &1-
v

Then, 7(C(-)) is finite.

Proof: Let

= ai(r)

where a i is the solution of (12.14) with C = £i and initial condition a(0) = ATi. Then,

Lemma 12.5 yields that {J"i(0}/>0 is a classical solution of

Since the curvature tensor of dFi(r) is always negative definite and

0 is a supersolution of (E). Therefore Theorem 7.1 yields

C*(t) c ri(r) V r <

Using the assumption ATi < gi/i>, we obtain

R(x) ^ and h(\x\/R(x)) > h(K\)

where
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exp[ £ + ^ l n ( . p + £ 1 ) ] V p € [ 0 , ^ ] .

Recall that the above function is the one computed in Example 12.4 with C = g\.

Hence,T(ri(-)) is finite and so is T(C(-)). D

Lemma 13.3 Suppose that {C(r)}/>o is a maximal viscosity supersolution of(E) and

there is K2 such that

and C*(0) is bounded. Further assume that

v > 0, 0 < G(0) < g(6)g2, V0 ,and K2

Then, T{C(-)) is infinite.

Proof: Let

where a2 is the solution of (12.14) with C = ̂ 2 and initial condition a(0) = K2. Then,

Lemma 12.5 yields that {r2(t)}t>Q is a classical solution of

= - traceg(0)g2 R + ^.

Since the curvature tensor of dF^t) is always negative definite, {/"2W}r>0 is a subsolution

of (E). Therefore Theoerem 7.1 yields

r2w c C.W v r < r(C(-))AT(r2(-)).

Using the assumption K2 > g2/v, we proceed as in Example 12.3 to obtain

a } u

{ xeRd : \x\ > R(x) & and h(\x\/R(x)) > h(K2) e-* }
v

where
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£-^ln(p-S2)] Vp >81

V V1 V V

We complete the proof after observing that T(r2/i')) is infinite, {C(r)}^o is maximal and

C(t) is bounded for each t. o

Proposition 13.4 Suppose that {C(r)}r>o is a maximal viscosity solution of(E) and

there are K\ and K2 such that

and

C^OJcc K2W(Vp).

Further assume that

v>0, 0 < g(0)gi < G{6) < g(B)g2, V 6 ,

and

V V

Then,

(13.1) ai(r) W(\lp) c C(r) c a2(t) W(l/p) V r > 0,

ai(-) and a2(') are solutions of (12.14) with C = ̂ / and initial conditions a;(0)

Ki for i = 1,2 .

Proof: Lemma 12.5 implies that a\(t)W(\lf$) is a solution of

#0)V = - trace^i^(0) K + v, for i = 1,2.

The negativity of the curvature of W{llp) and the comparison principle yield the result
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Remark 13.5 Since for i =1,2 afc) tends to infinity, from (12.14) we obtain that

hm —— = v.

Hence, in some sense

lim j

The above asymptotic result is conjectured by Angenent & Gurtin (see page 354 [AG

1989] ).
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14. APPENDIX

A. Properties of Sub & Superdifferentials.

In this Section we gather some properties of the set of sub and superdifferentials.

The proof of the following Lemma is similar to the proof of Proposition 1.1 [CEL 1984]

and Lemma L4 [CL 1984] (Also see Lemma 2.15 in [J 1989]).

For an open set O, C2>l{Q) denotes the set of functions which are twice

continuously differentiable in x and once continuously differentiable in t.

Lemma 14.1

(a) (n,p) e D+0(x,r) if and only if there is a continuously differentiable function
Wsuch that

0*(x,t) - «F(x,r) >0*(z,s) - *F{z,s), V (z,s) *(x,t).

(b) (nA,p) e D*2 *2<P(x,0 if and only if there is f e C^Ji^xR) such that

(14.2)(b) ^~nx,t) = Aij ij = \,..,d,

<P*(x,t) - Y(x,t) ><P*(z,$) - Yfrs), V (z,s) *(x,f).

(c) (njj) e D~&(x,t) if and only if there is a continuously differentiable function
such that
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V (z,s)

"2 "/(d) (n^,p) e D"x
2 "/<P(x,r) if and only if there is We C2J(RdxR) such that

'V =

Proof:(a)(c) Proved in Proposition 1.1[CEL 1984].

(b) Without loss of generality we may assume that A = 0, n = 0, p = 0, and (x,t) = 0. For
p > 0, let

Then h is continuous on [0,°°), with h(0) = 0. Let

where

Straightforward calculations show that f satisfies (14.2).

(d) Similar to part (b).
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Remark 14.2 In the above lemma, •Pcan not be smoother than C2*1 in parts (b), (d) and
C1 in parts (a) and (c). However by a simple approximation argument we obtain an
equivalent definition of viscosity solutions which uses only smooth functions ( see
Appendix B ). Also the global smoothness of these tests functions is not necessary.

Corollary 14.3

(a)// (M,p) € D;2 +l<P(x,t\ then (nj>) e V+GKxj).

(b)// (M,P) € D;2 "/ GKx9t), then (nj?) e D'0(x,t).

Lemma 14.4 Suppose \n\ > 0, and An = 0. Then, the following are equivalent

(a) (nA,p) € D+C(r0),

(b) there are xoedC*(to) and a collection of open sets {S(t)}t>o satisfying (see figure 1

below)

(14.5)(a) ds is C2'J(N) on a neighborhood N of (xo,to),

h) = ̂ . 'V = I,.A

[ dC*(s) n (S(S))C]X{J}] = {(xo,to)}.

(c) |i| (nAj>) 6 D;2 ; J dc*(x0,t0)for somexQe dC*(t0).
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Figure 2

Proof :

(a) => (b) The definition of D+C(r0) implies that

at some xoeRd. Since |n| * 0, xoe intC*(r0). We analyse the remaining two cases

seperately;

Let *Fbe as in Lemma 14.1 (b). Set

5(r) = { (z,t)eRd x[0,oo):

Then, (14.5) (a)-(d) is satisfied by
positivity of |n|. Since ^(XQ^Q) = 0,

Suppose that

0 } .

due to the smoothness of *Fand the

[clC*(ro)n(5(ro))cl.
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(c) =* (a) The fact that

implies that D*2 +1 dc* (x,t) is included in D*2 +1 [dc*AO](x,t) at every t 2 0, and

xedC*(t). Therefore

Also, (0,0,0)e D* 2 1 1 [rfc*AO](xo,ro). Hence the convexity of D*2 +
t
l [dc**0](x0,t0)

yields (a). a

Observe that

D'C(f)= u D ' 2 ' / ( -

; 2 ; ! (d ( R d \ C ( 0 ) * v 0)

Hence we have the following analogue of the previous Lemma for the superdifferentials.

Lemma 14.5 Suppose \n\ > 0, and An = 0. Then, the following are equivalent

(a) (nAj>) e D*C(r0),

(b) there are xoe dC*(t0) and a collection of open sets {S(r)}f>o satisfying {see figure 2

below)

(14.9)(a) ds is C2>*(N) on a neighborhood N of (xo,to),
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(c)

- l l

Figure 3
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B. An equivalent definition

Following the proof of Theorem 1.1 of [CEL 1984], we obtain an equivalent

definition (also see Lemma 2.5 in [J 1989]).

Lemma 14.6

(a) {C(r)}j>o is a viscosity subsolution of(E) if and only if for all smooth %

F*(Vf(;c,r), JpY(pc,t)91 W{xyt)) < 0,

whenever [dc**0] - V attains its maximum at (x,r).

(b) {C(r)}r>o is a viscosity supersolution of(E) if and only if for all smooth *F9

F*(VY(x,t)9 D2f(*,r), | ^ , 0 ) ^ 0,

whenever [dc**0] - *Fattains its minimum at (x,r).

C. Stability

The following is an analogue of the stability theorem of Barles & Perthame [BP

1988] for the first order Hamilton-Jacobi equations. We will state it only for subsolutions,

an analogue result holds for supersolutions. Let {Cn(0}/>0 be a sequence of viscosity

subsolutions of (E). Set Cn(t) = 0 for t £ T(Cn(')) and then define

C(t) = limsup Cn(s)

n u
= m=l 2.. n«m

£> 0 |r -

Lemma 14.7 {C(f)}*>0 w ^ viscosity subsolution of(E).
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