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1. Introduction.

Mullins, in a series of papers concerned with thermal grooving
[M2,M3], thermal etching [M5], and general surface morphologies [M6]
developed a surface dynamics for phase interfaces whose evolution is
controlled by mass diffusion within the interface.! It is our
purpose here to embed Mullins's theory within a general framework of
the type proposed in [G1].2

The theory we propose—appropriate to an interface between bulk
phases —is based on balance laws for mass and capillary forces in
conjunction with a version of the second law, appropriate to a purely
mechanical theory, which 3sserts that the rate at which the free
energy increases cannot be greater than the energy inflow plus the
power supplied. The balance laws have local forms

1mmms 28lso includes evaporation-condensdtion and, tn [M4,M5], bulk diffusion. Here,
for the most part, we 1imit our discussion to interfacial diffusion. For other studies
concerning interfacia)l diffusion see Nichols and HMullins [NM] and the references cited
therein, and Burton, Cabrera, and Frank [BCF).

2The chief purpose of this study (and [G1]) 1s the logical development of the theory; we

find it gratifying that the general laws we propose lead—via appropriate constitutive
assumptions — 1o evolution equations deduced earlier by Mullins.
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6° + (p-8&k)v = -divh, (1.1)

OK + dive + = 0,

where o 1{is the surface tension, ¢ s the surface shear, m 1is 3
normal force which represents the interaction between the interface
and the bulk material, &6 {s the finterfacial mass, h s the
interfacial mass flux, p is the jump in bulk density across the
interface, k is the total curvature (twice the mean curvature), v is
the normal velocity, the symbol *®°" i{ndicates differentiation with
respect to time following the interface, and div is the surface
divergence. To this list of variables we add the interfacial free-
energy 1, the jump W in bulk free-energy, and the chemical
potential ju, and we define bulk and interfacial Gibbs-functions

G=VWV -pup, g=y - pub (1.2)
As constitutive equations we allow g, 6§ o, ¢, 7, and h to

depend on j, its surface gradient WV, and the unit normal n to
the interface,

g = g(n,Vun), 6= 86, Vun),
=0, Vun), c=c(p,Vu,n), (1.3)
h=h(p,Vun), = (L, Vpun),

and to these we adjoin the standard bulk relations
Vo= W(p), p = p(p) = <G'(W). (1.4)

We show, as a consequence of the second law: that g, ¢, §, O,
and c¢ are independent of Vp; that

o =g(un), &=-3,g(un). € =-dpg(Ln); (1.5)3

3a,,f(ci,l::,c,...) denotes the partial dertvative of f(abc....) with respect to a.



that w i{s independent of Vp and n, with

m = -G(p); (1.6)
and that h satisfies the inequality

h(,Vun):Vu < 0. (1.7)

The evolution equations for the interface consist of the balance
laws (1.1) supplemented by the thermodynamically-restricted
constititutive relations. These equations are complicated, and for that
reason we develop 38 formal approximation based on the assumption
that the mass and energy of the interface are small. For an isotropic
interface this leads to the evolution equation?

v = -CAK, (1.8)

where A is the surface laplacian, while C>0 1is a constant.
Further, within this approximation the chemical potential is close to
the transition potential p, where G(u,)=0, and the potential
¢ifference u=p-p, and the mass flux (rendered dimensionless) have
approximate forms:S

u = -Ck, h = CVk. (1.9)

A consequence of (1.8) is that, for the interface the boundary of a
region Q(t), the area of the interface decreases, the enclosed volume
remains constant:

4This equation was first proposed by Mullins [M2].

5(1.9) wvere first proposed by Herring [He]; an independent derivation of (1.9), was given
by Mullins [M2].



d/dt{area(oQ)} < O, d/dt{vol(Q)} = 0. (1.10)
For an anisotropic interface (1.8) is replaced bg5

v = =div{B(n)VIg (n)k +8,0n9,(n) L1}, (1.12)

with g (n)=g(u,n), and the counterparts of (1.9) are’

u=-g,(n)x - 0pdng,(n)eL,
h = D(n)V[go(n)x + anango(n).L]' (1.13)

so that diffusion is controlled by the entire curvature tensor L. The
evolution equation (1.12) implies a result of the form (1.10) with
area(0Q) replaced by the free-energy of 9Q at p,.

we show the form the theory takes when the interface evolves as
a curve in R? rather than as a surface in R® and within this
framework establish the existence of a steadily-evolving interface.b

We also discuss the form the evolution equations take when mass
transport by evaporation-condensation accompanies surface diffusion.
For an isotropic interface the analogs of (1.8) and (1.9) are®

v = -CAk + Ak + F,
u = -CKk, h = CVKk, r=AK + F,

(1.14)

where A 1is 8 constant associated with the evaporation-condensation

6(1.12) 1s tmplicit in the work of Mullins [M6], who derives the corresponding approximate
equation appropriate to an aimost-fiat interface.
7These equations were proposed by Herring [He).
Grunins [M1] developed a steady solution for the curve-shortening equation vsk, 8

solution rediscovered by differential geometers and referred to by them as the "grim
reaper”.

Sc1. Multins [M2).



process, while F measures the extent of supersaturation.

As our final topic, we discuss interfacial heat conduction. We
show that this mode of transport can be discussed in a manner
completely parallel to our treatment of interfacial mass diffusion; in
fact, for small interfacial entropy and energy the resulting
approximate evolution equations have the form (1.8) or (1.12) (granted
an appropriate interpretation of the underlying constitutive quantities).



2. Basic equations.
2.1. Basic concepts.

We consider two phases separated by an interface &(t) which
evolves smoothly' with time t. We assume that one of the phases
has bulk density strictly larger than the other, and we orient &f(t) by
2 smooth unit normal field n(x,t) directed outward from the denser
phase. We write V and div for the surface gradient and surface
divergence on &(t) (t fixed), v(x,t) for the normal velocity of
&(t) in the direction n(x,t), L(x,t) for the curvature tensor on

&(t), and «xs=tracelL for the total curvature (twice the mean
curvature). Then

L=-Vn, n° = -Vv, (2.1)
where th superscript "°" denotes the normal time-derivative, the
time derivative following the interface.
The physics of the interface is described by eight functions of
Xea(t) nd t
(1) p(x,t), the chemical potential;
(2) W(x,t) and p(x,t), the jumps in bulk free energy and bulk
density across the interface (dense phase minus the other phase);
(3) y(x,t) and &(x,t), the interfacial free-energy and density
(per unit area);
(4) h(x,t), a tangential vector field, the diffusive mass-flux
within the interface (per unit length);
(5) C(x,t), a linear transformation that maps vectors v
tangent to &(t) at x to vectors C(xt)v in R> the
stress within the interface (per unit length);
- (6) w(x,t), a vector in R®, the net rorce exerted on the interface
(per unit area) by the bulk material.
The basic laws for the interface consist of balance of forces,

'oPreciselg, we assume that &(t) 1s a smoothly propagating surface in R> in the sense of
the Appendix of [G1], where the notation and many of the results used here may be found.



balance of mass, and a version of the second law, appropriate to a
mechanical theory, which asserts that the rate at which the free
energy increases cannot be greater than the energy inflow plus the
power supplied. When writing these laws it is useful to visualize
smoothly propagating subsurfaces <(t) of &(t) &8s infinitesimally
thin regions consisting of points of the interface together with points
of the solid and the environment immediately adjacent to the interface.
when this interpretation is meant we will refer to «<(t) as an
evolving control volume. Let <c(t) be an evolving control volume,
with v(x,t), a vector field tangential to &(t), the outward unit
normal to 0c(t). Then <(t) evolves normally if, given any local
time-dependent parametrization r()\t) of the boundary curve dc(t),
vir(\t,t)«(0/0)r(3\t)=0.
Let <(t) be an evolving control volume. By the surface

divergence theorem,'

fhevds = [divhda, f[Cvds = [divCda, (2.2)

oc c Oc c
while a standard transport theorem'2 implies that, for <(t) normally
evolving and for f(x,t) defined and smooth for all xea(t) and all t,

(d/dt){frda} = f(1° - fkv)da. (2.3)
C C

2.2. Balance of forces.'3
We assume that C(x,t) consists of a surface tension'? within
the interface and a surface shear normal to the interface; more

Vice. (A15) and (A16) of [G1).

12¢t. (6SW] and (B3), of [G1).

Bcr. sect. 3.1 of [61).

1“Replacing the surface tension © by o linear transformation & from tangent vectors to
tangent vectors would not change the final results: the skew part of & would then be

frrelevant, and the dissipation fnequality would reduce the symmetric part to & surface tension
(cf. Remark 3.3 and (4.5), of [G1]).



precisely, we assume there are a scalar o(x,t) and a tangent vector
c(x,t) such that

Cx.tv = o(x,t)v + [c(x,t)vIn(x,t) (2.4)
for every vector v tangent to &(t) at X. The scalar o(xt) is the
surface tension; the vector c¢(x,t) represents the surfrace shear.

We will refer to

M=mqsn (2.5)
as the normal interaction; we leave as indeterminate'd the
tangential component of the force .

Balance of forces for an evolving control volume <(t) is the
assertion that!d

fCvds + [nda = 0; (2.6)

oc c
since this relation is to hold for all such <(t), we may use (2.2) to
conclude that

dive + = 0. (2.7)

For an interfacial tensor field € of the form (2.4),17
n.divC = ok + dive, (2.8)

and the normal component of (2.7) becomes

oK + dive + 1 = 0. (2.9)

15¢1. Remark 3.3 of [G1).
e neglect tnertia. Cf. [GPG], where inertial effects are included.
V¢, (a14) of 61,



(wWe need not consider the tangential component of (2.7), since the
tangential component of ® 1is indeterminate.)

2.3. Balance of mass.'® Decrease of free energy.
Let <(t) be a normally evolving control volume.'® Then

(d/dt){[6da}, (d/dt){[yda} (2.10)
C [
represent the rate at which the interfacial mass and interfacial energy
of c(t) are increasing;

[pvda, [wvda (2.11)

C c
represent the rate at which <(t) looses bulk mass and bulk energy due
to its motion;

-[he.vads, -fphevds (2.12)
Oc Oc
represent mass and energy flow into <(t) across 0c(t) by diffusion
within the interface;

[(Ev)«(vn)ds = [vCcevds (2.13)

oc oc
represents power expended on <(t) by the interfacial stress.?0 A
basic assumption of our theory is that there be no mass flux to the
interface from the bulk material.

The laws of balance of mass and decrease of free energy
for <(t) have the form

16¢1. [63).

8¢t [G1,6S). where the control volumes are not assumed to evolve normally; in fact, the
structure used in [GS], when applied to our theory, gives C=g &s & consequence of the basic
lavs, without sppeal to constitutive assumptions. .

20ct, section 3.1 of [G1].



(d/dt){[6da} + [pvda = -[h.vds,

c c oc (2.14)
(d/dt){Jyda} + J¥vda < -[uhevds + [vCe.vds,
c c oc Oc

and, appealing to (2.2), (2.3), and the requirement that c(t) be
arbitrary, we arrive at the local forms of these laws:

§° + (p-8k)v = -divh,

{2.15)
p° + (W-yk)v ¢ -div(ph) + div(ve).
The function
7 = -div(ph) + div(ve) = y° - (W-yx}v 2 O (2.16)

represen’. the interfacial energy dissipation, per unit area, sinte
(d/dt){[yda} + [Wvda + [puhsvds - [vcevads =-yda ¢ 0. (2.17)
c c oc Oc c

We define bulk and interfacial Gibbs-functions G(X,t) and
g(x,t) through

G=W¥ -pup, g=y - us; {2.18)

then (2.1), (2.9), and (2.15) may be combined to give the Jocal
dissipation-inequality

g° + 6u° + c=n°+ (0-g)kv «+ (G+M)v ¢+ hep=-7 <0, (2.19)
with p the potential gradient
p= V. (2.20)

2.4. Global growth relations for & =0Q.
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It is possible to derive global growth relations for the special
case in which the denser phase occupies a region Q(t) with the
interface &(t) the complete boundary 0Q(t). In this case 0&=g,
and taking c=¢=00Q in (2.14) and (2.19), we conclude that:

(d/dt){[6da} + [pvda = O,

0Q 0Q (2.21)
(d/dt){[ypda} + [Wvda = -[yda < O,
0Q 0Q 0Q

so that the total mass is constant but the free energy decreases. For
the special case in which p and W are constant, we may use the
standard identity

d/dt{vol(Q)} = [vda (2.22)
0Q
with

vol(Q(t)) = volumeQ(t) (2.23)

to conclude that

(d/dt){[5da + pvol(Q)} = O,
20 (2.24)
(d/dt){[yda + Wvol(Q)} = -[7da < O.

0Q 2Q
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3. Constitutive theory.
3.1. Bulk constitutive relations.
we consider bulk constitutive relations of the form

LR (TH) p=p(p) = -G'(W); (&R))
these follow from corresponding relations for the individual phases in
conjunction with the tacit assumption that the interfacial chemical
potential p represent the limit of the bulk chemical potential from
either phase. We assume there is a8 unique chemical potential

po(>0), called the transition potential, at which the jump in the bulk
Gibbs function vanishes:

G(y,) = 0. (3.2)
Then, letting

Po = PR, o= Wi, (3.3)
(2.18),, (3.1), and (3.2) yield

Po = Wo/Hy = =G'(ly). (3.4)

We are interested in behavior near the transition potential and
therefore introduce the potential difference

Usp-p; (3.5)
for u small,

B(u) = -pou + O(U®), W) = puop, + D), p(R) = p, + O(u). (3.6)

3.2. Interfacial constitutive relations.



12

we allow the density 6, the free energy 1y, the surface tension
o, the surface shear ¢, the normal interaction =, and the mass
flux h to depend on the chemical potential p and its gradient p,
and—to have a theory of sufficient generality to model crystals —also
on the orientation n:

&= 8(p,p.n), y= y(u,p,n),
o= o(u,p,n), c = c(p,p.n), 3.7)
h = h(p,p,n), = 7n(yp,n).

By (2.18), these constitutive equations induce an auxiliary relation for
the interfacial Gibbs-function:

g = g(p.p,n). (3.8)

3.3. Consequences of the dissipation {nequality.

The local dissipation-inequality (2.18) severely limits the
constitutive equations (3.7). If we substitute (3.7) into (2.19), we find
that

(apg + 8)“’ + (apg)'p° + (ang + C)'I’I° + (39)
(o-gkv + (M+G)v + hep = -7 < O,

and, arguing as in the proof of the compatibility theorem of [G1], we
see that (3.9)— adjoined by (2.18), (3.1), and (3.7) —holds for all
smoothly propagating surfaces &(t) and 21l choices of the chemical
potential field p(x,t) 1if and only if the constitutive equations are
consistent with the following restrictions:

(T1) g, v, 6§ o, and c are independent of p, and

o =g(n), y=g(n) - pud,g(n),
6= -a“g(p,n), C= -ang(p‘n); (3.10)
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(T2) the normal interaction 7 depends only on p and is given by
m = -G(p); (3.11)

(T3) the energy dissipation 7 1{s determined by h through the
inequality

h(p,pn)ep = -7 < O, (3.12)

We shall henceforth assume that the constitutive equations are
consistent with the restrictions (T1)-(T3), and that

Po Ho Go(N), 6,(n) > 0O, (3.13)

where here and in what follows a subscript zero designates evaluation
at the transition potential p.; i.e, for F=F(p), f=f(u,n),

Fo = F(i,) 1,(n) = (. .n). (3.14)

3.4. Asymptotic relations for the mass flux.
By (3.12), the dissipation

7 = 7(0p.n) (3.15)

has a minimum at p=0 for any choice of p and n. Thus the first
derivative of <7(u,p,n) with respect to p vanishes at p=0, while
the second derivative is positive semi-definite:

h(p,0,n) = O, a-[3ph(p,0n)la < 0 (3.16)

for all vectors a.
For a stationary, flat interface at equilibrium (uniform chemical
potential), (3.16),, imply that h=0, while the constitutive relations

imply that all of the relevant fields are constant. Thus balance of
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mass (2.15), is satisfied automatically, but, in view of (3.9), the force
balance (2.9) is satisfied only if the bulk Gibbs function G(u)
vanishes, so that, by the assumption containing (3.2), p=p,. Thus 2
stationary, flat interface &t equilibrium necessarily has chemical
potential equal to the transition potential.

By (3.16),, the diffusivity tensor

B(n) = -3ph(,,0.n) (3.17)

is a positive semi-definite linear transformation from tangent vectors
to tangent vectors; we shall strengthen this slightly by assuming

D(n) is positive definite. (3.18)

Consider now situations with chemical potential close to the
transition potential in the sense that

U= lul + IVul (3.19)

is small, where u 1{s the potential difference (3.5). Then, appealing
to (3.16), and (3.17), we have the asymptotic relation

h =-B(MVu + OUY), (3.20)
so that, by (3.12),

7 = Vu:D(n)Vu + O(U%). (3.21)
The relations (3.16), and (3.17) also lead to the formal identity

divh = -div{D(n)Vu} + 0(U%), (3.22)

with U here given by
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U= lul + IVuUl + IVVul. (3.23)
3.5. lsotropy.
For an isotropic interface the orientation n 1{is not present in
the constitutive equations; thus, by (3.10),
o=g(), &=-g'(n), c=0 hs=h(pVy), (3.24)
and (3.18) reduces to
B(n) = D,I(n), (3.25)
with 1(n) the identity on the plane perpendicular to n. The scalar
constant D,>0 is called the diffusivity; by (3.20) and (3.21) reduce

to

h=-D,Vu + O(U®), 7 =Dy 1Vul®+ 0. (3.26)
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4. Isotropic interfaces with small mass and energy.
4.1. Approximate equations.

The system of equations describing the evolution of an isotropic
interface consists of

gk = G, 6° + [p-6klv = -divh, 4.1)
p==G'(), &=-g'(p), h=h(EVy.
These equations are complicated. We now discuss 3 formal
approximation based on the assumption of small interfacial mass and

energy. Precisely, letting & denote the length scale of interest, we
assume that the dimensionless parameter

€=05,/pyt (4.2)
is small, and that g,/p,u,t 1s O(e) (cf. (3.14)). Wwe let ¢ denote 2
time scale—to be specified —relative to which diffusion is important,
and write x%"=x/t, t*=t/t, so that the normal velocity and

curvature have the dimensionless forms

v = vt/L, k* = kL. (4.3)

Then, in terms of the dimensionless quantities

u* = u/l‘lo = (}1'}‘0)/}10: 8. = 6/60' g. = g/aopov
(@u8)* = (3,8)p,/8, p* = p/p, (4.4)
G* = G/poH, h* = hz/p L,

the balance laws have the form
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eg*k™ = G¥,

e(apa)'(u')" + [p® - €5%k™*Iv™® = -divh*, (4.5)

wvhere the divergence and normal time-derivative are relative to the
new time and length scales. We will use the expansions (3.6), (3.21)
(with (3.25)), and (3.26), which we now write in the dimensionless form

h* = -D *Vu®™ + D(U*?),  divh®™ = -D_*Au* + D(U™?),

G* = -u™ + D(U*Y), U* = [u™l « IVU™ + IV V%I, (4.6)

wvhere V 1is with respect to x%*, A=divV is the surrace laplacian,
and

D™ = Dou,t/p,L’. (4.7)

we want the time scale to be one for which diffusive effects are
important; therefore, guided by (4.7), we take

t=p,°/DH,. D™ = 1. (4.8)
Consider the formal expansions

u* =u, + Eu, + 0(ed), v¥ = Vo + EV, + 0(e%),
K* = Kk, + €, + O(e?).

Because of (4.5) and (4.6), a "zeroth-order solution® is furnished by
Uy = Vo= 0,

and corresponds to a stationary state with chemical potential equal to
the transition potential. Continuing in this manner, we see that, since

Po” =1,
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*
8, K, = -U,, v, = Au,.

Further, to within terms of O(e?) the mass flux is given by eh, with
h =-Vu,.
The remainder of this section will be devoted to these equations, which
we henceforth write without subscripts on u, v, k, and h.
Writing
C=g," =g,/6,1,>0, (4.9)
we are led to the evolution equation?!
v = -CAK. (4.10)
This equation is to be supplemented by a purely kinematical relation
between v and k which may be derived as a consequence of (2.1). 'In
conjunction with (4.10), we have the relations
u = -Ck, h = CVk (4.11)
giving the chemical potential as a linear function of the curvature, the

mass flux as 3 linear function of the curvature gradient. In writing
(4.11) it is to be understood that

B+ €U+ 0(e®). &'k + OCe), e(potZ/Dopo)V + 0(e?), (4.12)
€(D 1, /t)h + O(e?),

respectively, represent the original non-dimensionalized chemical
potential, curvature, normal velocity, and mass flux.

21(4.10) should be compared to the curve-shortening equation vs=k; evolution according to
(4.10) might be termed motion by laplacian of curvature.
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In situations for which &(p) depends strongly on H in the
sense that (apﬁ)o'-k/e with A=0(1), (4.10) is replaced by

AU® + v = -CAKk,
but (4.11) remain unchanged.

4.2. Global growth relations.

The evolution equation (4.10) was derived as an approximation of
the general isotropic relations (4.1), but, interestingly, (4.10) also
follows a8s an exact equation based on constitutive relations which,
before being rendered dimensionless, have the form

p=constant =p,, We=pp, G =-pyu,
C=y=g=constant=y,, &6=0  C€=0, (4.13)
h=-D,Vu, Dj20.

This observation is nontrivial: the constitutive relations (4.13) are
consistent with the thermodynamic relations (3.1) and (3.10)-(3.12) with

T = DI Vul®, (4.14)

and hence the global growth relations (2.24) are valid within this
simplified framework. Thus, when the solid phase occupies a region
Q(t) with &(t)=0Q(%),

d/dt{area(dQ)} = -y ~'[D,IVul*da < O,
0Q (4.15)
d/dt{vol(Q)} = O,

so that the area of the interface decreases, the enclosed volume
remains constant.
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4.3. Almost flat interfaces.

To discuss small deviations from a flat interface, we represent
the interface as the graph of a function x,=2(x.X,t). Then, writing
V oand A for the gradient and laplacian in R? we have, to within
higher-order terms in 1Vzl, the approximations

ve=2, K= Az, P° =9, (4.16)

(the subscript t denotes 9/0t), and (4.10) reduces to the classical
fourth-order parabolic equation

z, = -CA%z. (4.17)
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S. Anisotropic interfaces with small mass and energy.
S.1. Evolution equations.

The system of equations describing the evolution of an
anisotropic interface consists of

gk + divc = G, 8° + (p-6k)v = -divh,
p=-G'(p), &= =0,0(1n),  © = -0pg(ln), (5.1)
h = h(,Vu,n).
We now deduce an approximate system appropriate to situations
in which the interfacial mass and energy are small in the sense
described in Section 4.1. The analysis parallels that of the isotropic

theory. Wwe let L denote the length scale of interest and consider the
time scale

t=pL°/D H,. (5.2)

where D, >0 1is some measure of the diffusivity tensor (for example,
the average of D(n) over the surface of the unit ball). Then, in
terms of the dimensionless variables x®=x/L, t*=t/¢, the normal
velocity and curvature have the forms

v¥ = vt/L, L* = L¢, k* = k¢.

We define dimensionless quantities u*, &%, g% p* G* and
h* through (4.4), and, in addition, let

D*(n) = B(n)/Dy,  (,8)%* = (3,6)1,/8,. (3p8)* = (36)/6,,.
(3pc)*® = (3,€)/8p,.  (3pC)™ = (37C)/LpyH,.

Then (2.1) and (5.1) yield the equations



e[g*k™ + (3€)*«Vp - (0pc)*-L*] = G*,
e[(3,8)*(u*)® - (3p8)" = VVv*] + [p% - €8%k*Iv™ = -divh*,

(5.3)

where the divergence and normal time-derivative are relative to the
new time and length scales. Arguing as in the isotropic theory, we
consider the formal expansions

u® = u, + eu, + O(e®), v* = v, + v, + O(%),
L* =L, + €L, + O(e?).

A “zeroth-order solution” is then furnished by u,=v, =0, while to the
next order in €,
g, (n)x, + dpdpng,*(n)el, = -u,, v, = div[B*(n)Vu,] (5.4)

(cf. (3.22)). Further, to within an error of 0(e®), the mass flux is
given by eh, with

h, = -D*(n)Vu,. (5.5)
We shall henceforth write these equations without the asterisks and
without the subscripts on u, v, x, 8nd h.
Defining 2 linear transformation @(n) (from tangent vectors to
tangent vectors) by
é(n)sL = g, (n)k + 3p0pg,(n).L, (5.6)
we are led to the evolution equation

v = -div[B(n)V(®(n).L)], (5.7)

supplemented by
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u=-€(n)sL, h =-B(n)Vu, (5.8)

so0 that here the chemical potential is a linear function of the
curvature tensor.

S5.2. Global growth relations for uniform interfaces.

The equation (5.7) was derived as an approximation, but, as in the
isotropic theory, (5.7) follows as an exact equation based on the
constitutive relations

p = constant = p, Ve=pop, G(W) = -p,u,
y=g(n), &§=0 c=c(n=-04y(n), (5.9)
h =-D(n)Vu.

These constitutive relations are consistent with the thermodynamic
relations (3.1) and (3.10)-(3.12) with

7 = VueB(n)Vy, (5.10)

and hence the global growth relations (2.24) are valid within this
simplified framework. Thus, when the solid phase occupies a region
Q(t) with &(t)=0Q(t),

(d/dt){[y(n)da} = -[Vu+D(n)Vuda < 0,
0Q 0Q (5.11)

d/dt{vol(Q)} = O,

so that the Interfacial free-energy decreases, the enclosed volume
remains constant.
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6. Two-dimensional theory.
6.1. Geometric considerations.

We now consider a two-dimensional theory in which the interface
is a curve &f(t). We continue to suppose that n s directed outward
from the dense phase, but now define the unit tangent &(x.,t), the
direction of increasing arc length s, and the angle B(x,t) so that
{¢(x.1).,n(x,1)} s a positively oriented basis of R* and
n=(cosB,sinB), &=(sinB,-cosB). We then have the identities??

K = B, B° = v,

kS = v+ KV, (8°), = (8,)° - kv, . 6.1)

For connected sections of the interface on which k does not vanish
(convex sections) we may use (8,t) as independent variables: writing
k=k(8,t) and v=v(8,1), we have the identity?3

Ky = Kz(VBB + V). (62)

6.2. Physical considerations.
The surface stress may now be considered a vector

C=0l + &n,
wvith o(x,t) the surface tension and E(Xx,t) the (scalar) surface
shear, and the interfacial mass-flux can be identified with a scalar

h, where

h=nht.

22c1. (2.5), (2.17), ond (2.18) of [AG]. Here and in what follows the subscripts & end @
indicate partial differentiation with respect to arc length & @and angle 6. We will use
prime to denote differentfation when 8 1 the only independent variable.

23c1. (223), of [AG).
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The equations (2.9) and (2.15), expressing force and mass balance
now have the forms

£, + OK + 1 =0,
§° + (p-6k)v = -h, (6.3)

while the local dissipation-inequality (2.19) becomes

g° + §p° - 88° + (0-g)kv + (M+GB)v + hu, =-7 < O.

As is natural, we replace n in the constitutive equations (3.7) by 8;
the counterparts of the restrictions (3.10)-(3.12) are then

o=g(ps6), ¢ s=g(uo)- papg(u,e).
6 =-0,0(18), §=20gg(up), (6.4)
m=-G(y), h(hp,B)p, = -7 €0,

while the asymptotic relations (3.20) and (3.21) here have the form

h = -D(B)u, + O(U),
7 = D(B)y;’ + D). (6.5)
with U the obvious analog of (3.19).

The approximate equation (4.10) for an isotropic interface with
small mass and energy here has the form

v = -CK,,. (6.6)
This equation relates the normal velocity v to the curvature k; a

second such equation is given by the kinematical equation (6.1),. We
can use (6.1),, to write (6.6) as a partial differential equation for 6:
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B° = =CB,q,,- (6.7)

On convex sections we can consider x and v &s functions of
(8,1); then, by (6.1),, we can express (6.6) in the form

v = -Clk’kgg+ kKg?l; (6.8)
a second equation relating v and k f{s furnished by (6.2).

Similarly, the approximate equation (5.5) for an anisotropic
interface here becomes

u = -9(8)k, v = [D(B)u ], (6.9)
with

$(8) = g,(8) + g,"(B), (6.10)
and these combine to give

v = -{D(B)[®(B)K] ). (6.11)
or equivalently, by (6.1),

8° = {D(B)[$(8)8, ) }. (6.12)

6.3. Stationary interfaces.
We now discuss stationary solutions of the general equations
(6.3), (6.4), assuming only that the constitutive functions obey

h(ppe8)pg <O for p wO,
g(p,8) + g"(u,8) >0. - (6.13)
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We let Q denote the (fixed) region in R? occupied by the solid
phase, and therefore seek a solution in which (6.3) and (6.4) represent
the boundary curve 0Q. Since v and the normal time derivatives in
these equations must vanish, (6.3), uields hg = 0, so that h is a

constant. Thus, by (6.13),, M, vanishes identically or never vanishes.
But p, cannot be of one sign, since 9Q (s a closed curve; thus g

is constant. We may therefore conclude from (3.9), (6.3),, and (6.4)
that

[g(p.8) + g"(1,8)Ik = G(W),

and, granted (6.13), and G(p)»= O, this equation defines a closed,
convex curve with position vector24

r(8) = G(u) '[g'(1.8)2(8) - g(11.8)n(8)].

For G(p)<O0, Q is the bounded region interior to the curve; for
G(u)>0, Q 1is the unbounded region exterior to the curve (cf. Figure 1).

We therefore have a stationary solution for every (constant) value
of the chemical potential pwp,.

6.4. Steady interfacial motions.

We seek solutions in which the interface appears stationary to an
observer moving with uniform translational velocity. Precisely, we
assume that g, the (scalar) translational velocity, acts in the
direction defined by 6=0, so that the normal velocity of the
interface is given by

v = qcosB. (6.14)

We consider an fsotropic 1Interface ®s characterized by the
approximate equation (6.6), and seek solutions in which the interface is
unbounded and convex. Then, by (6.1), and (6.14), we can write (6.6)

287his 1s essentially wWulff's solution (cf. [AG], Sect. 6.1).
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as an ordinary differential equation for k=k(8):

k*k" + x(x')* + (q/C)cos8 = O. (6.15)
We assume that

C»>o0, q>0;

the second of these involves no loss in generality.

Since the interface is to be unbounded, the curvature must tend
to zero as the arc length tends to too; thus we seek a solution k(6)
on a finite angle-interval [6,8,] such that «(8,)=k(8,)=0; as is
clear from (6.15), this is possible only if the interval is [-m/2,1/2].

The desired solutions have v(8)x(8) nonzero on (-n/2,m/2) and
therefore represent?d “steadily evolving bumps®, which, because of
our convention regarding the choice of normal and the definition of
curvature, are advancing or receding according as k(B)<O for all 8
or k(8)>0 for all 8.

Next, seiting—a—for—tho=gigh—0f==x, the substitution

y(8) = (c/29)¥k%(®) (6.16)
yields the reduced equation .
(sgn x)
-y"'(8) -,sy(e)'*cose. (6.17)

By (6.16) and (6.17), y>0 on (-m/2,m/2), while y" cannot change
sign; thus, since Yy vanishes at the endpoints, y''<0 and we may
conclude from (6.17) that k>0 on (-n/2,m/2). Thus the only
possible steadily evolving bumps are receding.

We are therefore led to the boundary-value problem:

25/n the sense of [AG] Sect. 2.2.
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-y"(8) = Q(B)'*cose on (-n/2,1n/2), y(-m/2)=y(n/2)=0. (6.18)
The remainder of the section will be devoted to establishing2®
existence and uniqueness for this problem and hence for steadily

evolving receding bumps.
We first prove uniqueness. Let

8 =[-n/2,1/2]
Let y,=y, be two solutions, let z=y,-y, @and assume, without loss
in generality, that 2z>0 somewhere on (-m/2,m/2). Then there is an
interval (8,8,)CO such that

z2>0 on (8,8,),  2(8,)=2(8,)=0. (6.19)
On the other hand, since y, and y, satisfy (6.18), 2">0 on (8,8,).
which contradicts (6.19). Thus (6.18) has at most one solution.

Consider, for the moment, the general problem

-y'(8) = f(y(8),8) on (a,b), y(a) = y(b) = 0. (6.20)

A continuous function uy,, on [ab] that satisfies

“Yeup (B) € flys,,(8).8) on (a,b), Usup(d) = Ygp(B) = O

is called a subsolution of (6.20), and a supersolution Y., is
defined analogously with "¢ replaced by ®2°. By definition, Y-Ueu
and Y, -Y each have second derivative <O on (ab), and each
vanish at a and b, so that

Ueun(8) € U(B) < y,,,(8) on [abl.

Let C,(©) denote the subspace of C(®) consisting of those

25The main 1deas were furnished by Giorgio Vergara-Caffarelli (private communication).
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functions in C(©) that vanish at the endpoints of ©, and let
G:C,(8)»C,(®) denote the operator defined by

n/2

(GyX(B) = [G(G,cp)g(cp)'*coswd(p for all Be€H, (6.21)

-1/2 '
where G:6x0-R 1is the Green's function for -d?/d8’ end the
boundary conditions in (6.18). Finding a solution y of (6.18) then
reduces to finding 8 yeC,(8) such that

Gy =y

With this in mind, we will find a convex subset ¥ of C,(©) such
that  G(X) 1is a compact subset of C,(0) and G(X)CX. Once this
is done, Schauder's fixed-point theorem will guarantee the existence of
a yeX such that GQy=yu.

Let Ygup Ysup €Co(E) be defined by

Ysup(B) = AcosB, Usup(B) = wcoste. (6.22)

A calculation then shows that y,, and y,, are a subsolution and
supersolution of (6.18) provided

A<, w2 (3/2)43, (6.23)

Let & denote the convex set

¥ = {geco(e)] AcosB < y(B) ¢ weosle, B8eO). (6.24)

The Green's function G i{s continuous and piecewise C' on ©x8; we
may therefore conclude from (6.21) and (6.24) that 1(d/d8)(Gy)(8)! s
bounded uniformly in 8€® and yeK; thus, by the Ascoli-Arzela'
theorem, G(K) is a compact subset of C,(6).

Next, it is clear from (6.24) that
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w icos 18 ¢ g(B)’* < aicosig
for ye¥, so that
Glu~cost ()] < Gy < GIrteost(-)).

Let 2z(8) and 1Z(B), respectively, denote the extreme left and right
sides of this inequality. Then

-2"(8) = wicosts on (-n/2,1/2), 2(-n/2) = z(11/2)- =0,

-2"(8) = 2 ¥costs on (-n/2,1/2), 2(-n/2) = Z(n/2) = O, (6.25)
and a calculation shows that if
wirx <1, oty o9/2 (6.26)

then y.,p(8) is 2 subsolution of (6.25),, while 1y, (8) s 2
supersolution of (6.25),. Thus, granted (6.23) and (6.26), G(XK)CX.
Thus to complete the proof of existence, we have only to show that the
inequalities (6.23) and (6.26) have a solution. One such solution is

furnished by A=(2/9)%3, w=(9/2)%/3.
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7. Mass transport by evaporation-condensation.
7.1. Extension of the general theory.

Thus far the only form of mass transport considered is
interfacial diffusion. For an interface that separates a solid phase
from an associated vapor phase, mass transport by evaporation-
condensation may also be important. We now modify the theory to
ifnclude this mode of transport.

we let u(x,t), p(x,t), and W(x,t) represent the chemical
potential, the bulk density, and the free energy of the solid at the
interface, and we assume that u(x,t) also represents the chemical
potential of the interface. The vapor at the interface is assumed to
have constant chemical potential p,, 1in general different from j.

The flow of mass, per unit area, to the interface from the vapor is
characterized by the evaporative supply r(x,t), and this mass fiow
induces a corresponding flow of energy of amount p, r(xt).

Balance of forces fs unchanged, but the laws expressing balance
of mass and decrease of free energy have the forms

(d/dt){6da} + [pvda = -[Jhevds + [rda,

c c oc c (7.1)
(d/dt){[yda} + [Wvda < -[phevds + [u, rda + [vcevds
c c Oc c Oc

for all evolving control volumes <(t), and are equivalent to

6° + (p-6k)v = =divh + T, (7.2)

7 = -div(ph) + pr + div(ve) - y° - (W-yx)v 2 0,

where 7, the interfacial energy-dissipation, has integral over <
equal to the right side of (7.1), minus the left. When the interface is
the complete boundary of the region Q(t) occupied by the solid, (7.1)
with c¢=0Q and the fact that p, 1s constant yield the global growth
relation
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(d/dO){[(yp-p,8)da} + [(W-p p)vda = -[7da < O.
0Q 0Q 0Q (7.3)

We define the Gibbs functions G(X,t) and g(x,t) through (2.18),
but G now represents the bulk Gibbs function for the solid phase, the
corrresponding quantity for the vapor being irrelevant. The relations
(7.2) then yield the Jlocal dissipation-inequality

g° + §p° ¢+ cen®°+ (0-gkv + (G+M)v ¢+ hep + r(-p ) ==-7 <0,
(7.4)
with p the potential gradient (2.20) and n the unit normal to the
interface directed outward from the solid phase.
We again consider constitutive equations of the form27 (3.1) (for
the solid phase) and (3.7), which we supplement with a relation for the
evaporative supply r:

r = r(pp.n).
The thermodynamic restrictions (T1) and (T2) then remain unchanged,
but (T3) is replaced by
(T3') the energy dissipation 7 1is determined by h and r through
the inequality
h(p.p,n)ep + r(ppn)(p-p ) =-7 < 0. (7.5)
Let

Usp=-H, W=l =} (7.6)

v, the supersaturation potential, measures the extent to which the
vapor is supersaturated. When

27The constant vapor potential u,, 16 sssumed prescribed and hence not 8 constitutive
varisble, but we could, with only minor changes, 8llow ., to be Bn arbitrary function of (x,t)
and to enter the constitutive equations.



U=lul + IVul + Iwl (2.7)

is small, so that both pu and p, are close to the transition
potential p,, (7.5) leads to the asymptotic relations

h =-D(n)Vu - d(n)(u-w) + O(U?), (7.8)
r =-a(n):Vu - a(n)u-w) + 0.

Thus diffusion due to a potential difference and evaporation due to a
potential gradient are not ruled out, even for small departures from
the “transition state®. Here D(n) and a(n) are the derivatives of
h(p,p.n) and r(pp.,n) with respect to p 8t (p,0.n), d(n) and
x(n) are the derivatives of h(y,p,n) and r(p,p,n) with respect to p
at (p,0,n), and the linear transformation defined in the natural
manner by D(n), d(n), a(n), and o(n) is positive semi-definite.

When the interface {is isotropic the relations (7.8) have the
simple form

h = -D,Vu + O(U%), (7.9)

re=-o,(u-w) + o(u?),

so that to first order surface diffusion is driven by potential
gradients, evaporation-condensation by potential differences between
solid and vapor. We will refer to o, 8s the evaporation modulus.

7.2. Isotropic interfaces with small mass and energy.
The basic equations for an isotropic interface are

gk = G, 6° « [p-6klv = =divh + T,
p==G'(p), §=-g'(n), h=h(pVy), r=r(pvy).

(7.10)

We now discuss these equations assuming that
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Po: Ko 8o 8o, Do, 0 > O,

and that the mass and energy are small in the sense of Section 4.1.
Let & denote the length scale of interest, and let ¢ and € be given
by (4.2) and (4.8). We assume that the supersaturation is small, in
fact that w/p =0(e), end we adjoin to the list of dimensionless
quantities specified in (4.4) the dimensionless evaporation modulus
oco* and the dimensionless supersaturation potential w* defined by
et = opt/p . W =w/ep (7.11)

Then the argument given in Section 4.1 yields, as an approximate
evolution equation,

v =-CAK + AK + F, (7.12)
supplemented by

u = -Ck, h = CVk, r=Ax + F, (7.13)
where

C=g,"=g,/6,t A=o0x,"C =g, /D5,

F = aoivﬁ = uo"z("lv - Po)/Dopo- (714)

(These relations should be interpreted 8s in the sentence containing
(4.12) with analogous expressions added for r and w.) The relations
(7.12) and (7.13) are counterparts of (4.10) and (4.11); (7.13) give the
chemical potential as a linear function of the curvature, the diffusive
mass flux as a linear function of the curvature gradient, and the
evaporative supply as a constant proportional to the supersaturation
plus a linear function of the curvature. Our convention for curvature
endows a spherical solid with negative mean curvature. For F=0 the
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relation (7.13); implies that negative mean curvature induces
evaporation, positive mean curvature induces condensation.

The evolution equation (7.12) also follows as an exact eguation
based on constitutive relations which have the (dimensional) form

p=constant=p,, We=pp, G =-pyu,
O=y=g=constant=y,, &=0, Cc=0, (7.15)
h=-D,Vu, re-a,(p-p), Dy 20.

These relations are consistent with the thermodynamic restrictions
(T1), (T2), and (T3') with

T =D,1Vul® + ap(u-p, ) (7.16)
and therefore (7.4) yields the global growth relation
d/dt{y,area(dQ) + p (pu -p,)vol(Q)} =

-[{D,1Vul® + & (u-p,)}da < 0. (7.17)
00
A tacit assumption underlying the derivation of (7.12) and (7.13)
is that the coefficients «, @and D, are O(1). For situations in
which the evaporation is small in the sense that uotz/Do-D(e). the
analysis yields (4.10) and (4.11) rather than (7.12) and (7.13).
For small diffusion the choice of time scale should be based on
evaporation. Precisely, for D /x8’=0(e) we let

t=pl/o H,, (7.18)

so that o %=1, Do’-Do/uotz. The corresponding asymptotic analysis
then yields, in place of (7.12) and (7.13),

v =CK + F, (7.19)
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supplemented by

u = -Ck, r=Ck + F, (7.20)
with

C=g,"=g,/6.L. Few®=(u, -pn)/p, (7.21)

Thus in the absence of supersaturation (F=0) the motion of the
interface has velocity proportional to curvature.2®

208The evolution equation ve=Ck, apparently due to Mullins [Mi].has a large lterature (cf.
e.g.. Brakke [Br), Allen and Cahn [AC], Sethien [Se], 6age and Hamilton [GH], Grayson [Gr],
Dsher and Sethien [0S], Angenent and Gurtin [AGl, Evans and Spruck [ES], Chen, Giga, and Goto
[CGBY).
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8. Interfacial heat conduction.

B8.1. Basic concepts.

The theory developed thus far applies almost without change when
the basic transport mechanism is interfacial heat conduction. We
consider two phases, one labeled as reference, separated by an
interface &(t), with unit normal n(x,t) directed outward from the
reference phase. The basic physical quantities are:

(1) T(x.t), the absolute temperature;

(2) E(x,t) and S(x,t), the jumps in bulk internal-energy and bulk
entropy across the interface (reference phase minus the other
phase);

(3) e(x,t) and =u(x.t), the interfacial internal-energy and entropy
(per unit area);

(4) q(x,t), a tangential vector field, the diffusive mass-flux within
the interface (per unit length);

(5) C(x.t), the interfacial stress (defined as before);

(6) m(x,t), the net force (defined as before).

The basic physical laws are balance of forces (as described in
Section 2.2), and balance of energy and growth of entropy, which,
for 2 normally evolving control volume c(t), are given by2®

(d/dt){feda} + [Evda = -[q.vds + [vCcsvds,

c c oc Oc (8.1)
(d/dt){fnda} + [Svda 2 -[(q/T)svds,
c c Oc

or equivalently,

€° + (E-ex)v = =divg + div(ve),
7=17° + (S-nK)v + div(q/T) 2 O,

(8.2)

wvhere 7, the interfacial entropy-production, has integral over «c

29These lavs were proposed (within @ more general context) in Remark 3.4 of [G1] and in
{63). ’
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equal to the right side of (8.1), minus the left.
We define the bulk and interfacial free-energies W(x,t) and
y(X,t) through

Ys=E-TS, y=¢-Tq; (8.3)

then (2.1), (2.9), and (B8.2) may be combined to give the Jocal
dissipation-inequality

Yo + NT° + Con®+ (O-ylkv + (We+mv + T 'qeg =-T7 ¢ O,

(8.4)
with g the temperature gradient
g=VT.
B8.2. Constitutive theory.
We consider bulk constitutive relations of the form
E = E(T), S = S(T) = -W'(T). (8.5)

We assume there is & unique transition temperature To at which the
jump in bulk free energy vanishes:30

¥(T,) = 0. (8.6)
The jump
E, = E(Ty) (8.7)

in energy between phases at the transition temperature is the Jatent
heat, which we assume to be nonzero. By (6.3) and (8.6),

S, = S(T,) = E,/T,; (8.8)

30¢r., e.g. [62], Sect. 2.1.
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thus, for
us=sT -To (8.9)
small,

W(T) = -S,u + O(u®), E(T)=S,T,+ O(), S(T)=S,+ O(). (B.10)

We consider interfacial constitutive-equations of the form:

e = €(T,g.n), n= n(T.g.n),
o= o(T.g.n), c= c(T.g.n), (8.11)
q= q(T.g.n), n= n(T,g.n),
so that
y = y(T,g,n). (8.12)

The local dissipation-inequality (B8.4) then yields the following
restrictions:

(R1) ¢, €, o, and c are independent ot g, and

o = y(T,n), €= y(T,n) - ToTy(Tn),
1= -37y(T.n), € =-3py(T.n); (8.13)

(R2) the normal interaction depends only on T and is given by
T =-Y(T), (6.14)

(R3) the entropy production 7 s determined by q through the
inequality
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q(T.g.n)=g = -T’7 < O. (8.15)
The steps leading to (3.16)-(3.21) here yield
q(T,0n) =0 (8.16)
and the asymptotic relations

g = -K(n)Vu + oY),
T27 = VusK(n)Vu + 0(UY), 1)

with u given by (8.8) and U by (3.19), and with

K(n) = -30(T,.0.n), (6.16)

the conductivity tensor, a positive semi-definite linear
transformation from tangent vectors to tangent vectors.
Next, by (8.2) and (3.7),

n° + (S-nK)v = -T 'divq. (8.19)
This relation expresses balance of entropy,; granted the constitutive
restrictions (R1) and the force balance (2.9), (B.19) is equivalent to the
energy balance (8.2),. Further, a simple calculation based on (8.16)
leads to the following asymptotic form for the right side of (B.19):

-T"'divg = div{T,'K(n)Vu} + o(U?), (8.20)

with U given by (3.23).
For an isotropic interface

o = W(T), n=-¢(T), ¢c=0 q=q(T,VT), (8.21)

and the asymptotic relations (8.17) reduce to
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g=-K,Vu+ O(U), 7=KIVul*+ 0, (8.22)
with K, the conductivity.

B8.3. Basic equations. Similarity of mass diffusion and thermal
diffusion.
Summarizing, the basic equations are
YKk + dive =W, 17° + (S-mK)v = -T 'divg,
s = 'w'(}l). 11 = -aT w(T;n), c = -an w(T;n)o (6.23)
q=q(T,VT,n).

If we compare these equations to the equations (5.1) describing
interfacial mass-diffusion we see that the identifications:

mass diffusion thermal diffusion
M T
Y €
g Yy
6 n
G ¥
p )
L} E
o o
c c
h T, 'q
D T, 'K

render the two theories almost identical, the only difference being the
term divh in (5.1), as compared with T 'divq (rather than

To”divq) in (8.23),. However, 8 comparison of the asymptotic
relations (3.22) and (8.20) shows that this difference does not effect
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the approximate theory which corresponds to small mass and energy in
the original theory and to small interfacial entropy and internal energy
in the present theory. in particular, the approximate evolution
equations and global growth relations3! derived in Sections 4-6 are
valid without change in the present theory provided the underlying
quantities are properly identified.
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Abstract.

Mullins, in @ series of papers, developed a surface dynamics for
phase interfaces whose evolution is controlled by mass diffusion
within the interface. It is our purpose here to embed Mullins's theory
within a general framework based on balance laws for mass and
capillary forces in conjunction with a version of the second law,
appropriate to a purely mechanical theory, which asserts that the rate
at which the free energy increases cannot be greater than the energy
inflow plus the power supplied. We develop an appropriate constitutive
theory, and deduce general and approximate equations for the evolution
of the interface.

Abstract (Italian).

Mullins, in una serie di articoli inerenti 1a morfologia delle
superfici di interfaccia tra fasi, ha sviluppato una dinamica delle
superfici la cui evoluzione e' governata dal fenomeno di diffusione di
massa all'interno dell'interfaccia. Scopo di questo articolo e' inserire
la teoria di Mullins in uno schema piu' generale basato su leggi di
bilancio della massa e delle azioni capillari nonche' su una-
formulazione puramente meccanica del secondo principio della
termodinamica, asserente che Yincremento di energia libera non possa
essere superiore al flusso di energia ed alla potenza fornite
all'interfaccia. Viene successivamente sviluppata una appropriata
teoria costitutiva, e vengono dedotte le equazioni di evoluzione sia in

forma generale che approssimata.
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