
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.



ON THE MOTION OF A PHASE INTERFACE
BY SURFACE DIFFUSION

by

Fabrizio Davi
Dipartimento di Ingegneria Civile Edile

Universita di Roma 2
Roma, Italy, 00173

and

Morton E. Gurtin
Department of Mathematics
Carnegie Mellon University

Pittsburgh, PA 15213

Research Report No. 90-81-NAMS-1

April 1990



University Libraries
Carnegie Mellon University
Pittsburgh, PA 15213-3890



On the motion of a phase Interface by surface diffusion

Fabrizio Davi1

Dipartimento di Ingegneria Civile Edile
Universita di Roma 2
Roma, Italy, 00173

Morton E. Gurtin
Department of Mathematics
Carnegie-Mellon University
Pittsburgh, PA, U.S.A. 15213

1. Introduction.
Mullins, in a series of papers concerned vi th thermal grooving

[M2.M3], thermal etching [M5], and general surface morphologies [M6]
developed a surface dynamics for phase interfaces whose evolution is
controlled by mass diffusion within the Interface.1 It is our
purpose here to embed Mullins's theory vithin a general framework of
the type proposed in [G1].2

The theory we propose —appropriate to an interface between bulk
phases —is based on balance laws for mass and capillary forces in
conjunction with a version of the second law, appropriate to a purely
mechanical theory, which asserts that the rate at which the free
energy increases cannot be greater than the energy inflow plus the
power supplied. The balance laws have local forms

'tiuilins also Includes evaporation-condensation and. In [fi4,M5], bulk diffusion. Here,

for the most part, ve limit our discussion to Interfadel diffusion. For other studies

concerning mterfaciai diffusion see Nichols and tiuiiins [NM] and the references cited

therein, and Burton, Cabrera, and Frank [BCF].
2The chief purpose of this study (and [G1]) Is the logical development of the theory; ve

find 1t gratifying that the general lavs ve propose lead —via appropriate constitutive

assumptions —to evolution aquations deduced earlier by ttulHns.
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6° + (p-6<)v - -divh, ( 1 1 }

OK + dive + IT • 0,

where c is the surface tension, c Is the surface shear, IT is a
normal force which represents the Interaction between the Interface
and the bulk material, 6 Is the Interfacial mass, h is the
Interfacial mass flux, p is the jump in bulk density across the
Interface, K is the total curvature (twice the mean curvature), v is
the normal velocity, the symbol " ° " indicates differentiation with
respect to time following the interface, and div is the surface
divergence. To this list of variables we add the interfacial free-
energy \JJ, the jump ty in bulk free-energy, and the chemical
potential u., and we define bulk and interfacial Gibbs-functions

6 « * - u.p, g • y> - u.6. (1.2)

As constitutive equations we allow g, 6, or, c, IT. end h to
depend on u., its surface gradient Vu., and the unit normal n to
the interface,

g - g(u.,Vu.,n), 6 - 6(u.Vu.,n),
o*«cr(u.,Vu.,n), c « c(u.,Vu.,n), (1.3)
h « h(jj,Vu,n), ir« ir(u.,Vu.,n).

and to these we adjoin the standard bulk relations

(1.4)

We show, as a consequence of the second law: that g, tji, 6, c,
and c are independent of Vu.; that

or « gCji.n), 6 - -d^gtu-.n). c • -3ng(u.,n); (1.5)3

f(a,b.c ) denotes the partial derivative of f(e.b.c ) vith respect to a.



that T Is Independent of Vu. and n, with

v - -6(ji); (1-6)

and that h satisfies the inequality

h(>i.Vu.,n)"VM i o. (1.7)

The evolution equations for the interface consist of the balance
lavs (1.1) supplemented by the thermodynamically-restricted
constitutive relations. These equations are complicated, and for that
reason ve develop a formal approximation based on the assumption
that the mass and energy of the interface are small. For an isotropic
interface this leads to the evolution equation4

v - - C A K , (1.8)

where A is the surface laplacian, while C>0 Is a constant.
Further, within this approximation the chemical potential is close to
the transition potential \i0, where 6(>io)»O, and the potential
difference U«JJL-U.O and the mass flux (rendered dimensionless) have
approximate forms:5

u - - C K , h - C V K . (1.9)

A consequence of (1.8) is that, for the Interface the boundary of a
region Q(t), the area of the interface decreases, the enclosed volume
remains constant:

4Th1s equation vas first proposed by Mirtlins [M2].
5(1.9) were first proposed by Herring [He]; an Independent derivation of (1.9), ves given
by fluilins [ri2].



d/dt{area(dQ)} i 0. d/dt{vol(Q)} « 0. (1.10)

For an anisotropic interface (1.8) is replaced by6

v - - d i v { B ( n ) V [ g o ( n ) K * d n d n g o ( n ) . l ] } , (1.12)

with go(n)« g(u.0,n), and the counterparts of (1.9) are7

u - -go(n)K - d n 3 n g o (n) .L .

h «

so that diffusion is controlled by the entire curvature tensor I The
evolution equation (1.12) Implies a result of the form (1.10) vith
area(dQ) replaced by the free-energy of dQ at ji0 .

We show the form the theory takes vhen the interface evolves as
a curve in R2, rather than as a surface in R3, and vithin this
framework establish the existence of a steadily-evolving interface.8

We also discuss the form the evolution equations take vhen mass
transport by evaporation-condensation accompanies surface diffusion.
For an isotropic interface the analogs of (1.6) and (1.9) are9

v « - C A K + AK + F. ^ 1 4 j

u « -CK, h • C V K , r « AK • F,

vhere A is a constant associated vith the evaporation-condensation
6(1.12) Is Implicit In the work of tiulUns [M6], vho derives the corresponding approximate

equation appropriate to an almost-flat Interface.
7These equations vere proposed by Herring [He].
8Mullins [Ml] developed a steady solution for the curve-shortening equation V » K . a

solution rediscovered by differential geometers and referred to by them as the "grim

reaper".
9Cf. hullins IM21



process, vhile F measures the extent of supersaturation.
As our final topic, we discuss interfacial heat conduction. We

show that this mode of transport can be discussed in a manner
completely parallel to our treatment of Interfacial mass diffusion; in
fact, for small Interfacial entropy and energy the resulting
approximate evolution equations have the form (1.6) or (1.12) (granted
an appropriate interpretation of the underlying constitutive quantities).



2. Basic equations.
2.1. Basic concepts.

We consider two phases separated by an interface 4,(t) which
evolves smoothly10 with time t. We assume that one of the phases
has bulk density strictly larger than the other, and we orient $,(t) by
a smooth unit normal field n(x,t) directed outward from the denser
phase. We write V and div for the surface gradient and surface
divergence on «,(t) (t fixed), v(x,t) for the normal velocity of

In the direction n(x,t), L(x.t) for the curvature tensor on

and K«traceL for the total curvature (twice the mean
curvature). Then

L - -Vn, n° « -Vv. (2.1)

where th superscript " • " denotes the normal time-derivative, the
time derivative following the Interface.

The physics of the interface Is described by eight functions of
X€^(t) ;nd t:
(1) . u(x,t), the chemical potential;
(2) ty(x.t) and p(x,t), the jumps In bulk free energy and bulk

density across the interface (dense phase minus the other phase);
(3) ^j(x.t) and 6(x,t), the interfaciol free-energy and density

(per unit area);
(4) h(x,t), a tangential vector field, the diffusive mass-flux

within the interface (per unit length);
(5) C(x,t), a linear transformation that maps vectors v

tangent to a,(t) at x to vectors C(x,t)v In R3. the
stress within the Interface (per unit length);

(6) ir(x.t), a vector In R3. the net force exerted on the Interface
(per unit area) by the bulk material.

The basic laws for the interface consist of balance of forces,
10Prec1seiy, ve assume that «,(t) Is a smoothly propagating surface In R* In the sense of

the Appendix of [61], vhere the notation and many of the results used here may be found.



balance of mass, end a version of the second lav, appropriate to a
mechanical theory, vhich asserts that the rate at which the free
energy Increases cannot be greater than the energy Inflow plus the
power supplied. When writing these laws It is useful to visualize
smoothly propagating subsurfaces c(t) of $,(t) as infinitesimdlly
thin regions consisting of points of the Interface together with points
of the solid and the environment Immediately adjacent to the interface.
When this interpretation is meant we will refer to c(t) as an
evolving control volume. Let c(t) be an evolving control volume,
with v(x,t), a vector field tangential to 4,(0, the outward unit
normal to dc(t). Then c(t) evolves normdlly if. given any local
time-dependent parametrization r(X,t) of the boundary curve dc(t),
v(r(X,t) ,t) .(d/dt)r(X,t)-O.

Let c(t) be an evolving control volume. By the surface
divergence theorem,11

{h.vds - fdivhda. fCvds - JdivCda, (2.2)
be c dc c

while a standard transport theorem12 implies that, for c(t) normally

evolving and for f(x,t) defined and smooth for all xe<aXt) end all t,

(d/dt){Jfda} « J(f° - fKv)da. (2.3)
c c

2.2. Balance of forces. 1 3

We assume that C(x,t) consists of a surface tension14 within

the interface and a surface shear normal to the interface; more

nCf. (A15) end (A16) of [611
12Cf. [6SW] and (B3)2 of [613.
13Cf. Sect. 3.1 of [611

'^Replacing the surface tension o* by a linear transformation Z from tangent vectors to

tangent vectors would not change the final results: the skev part of Z vouid then be

Irrelevant, and the dissipation inequality vouid reduce the symmetric part to a surface tension

(cf. Remark 3.3 end (4.5), of [G1]).



precisely, ve assume there are a scalar cr(x,t) and a tangent vector
c(x,t) such that

C(x,t)v - cr(x,t)v • [c(x.t)-v]n(x.t) (2.4)

for every vector v tangent to $,(0 at x. The scalar crte/t) is the
surface tension; the vector c(x,t) represents the surface shear.

We vill refer to

n « IT-n (2.5)

as the normal interaction; ve leave as indeterminate^5 the
tangential component of the force n.

Balance of forces for an evolving control volume c(t) is the
assertion that16

jCvds + fuda - 0; (2.6)
dc c

since this relation is to hold for all such c(t), ve may use (2.2) to
conclude that

divC • IT - 0. (2.7)

For an interfacial tensor field C of the form (2.4).17

n»divC « eric • dive, (2.6)

and the normal component of (2.7) becomes

CTK • dive • n - 0. (2.9)

15Cf. Remark 3.3 of [G13.
16We neglect Inertia. CT. £GPG], where Inertiai effects are Included.
17Cf. (A14) of [611
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(We need not consider the tangential component of (2.7), since the
tangential component of ir is indeterminate.)

2.3. Balance of mass.18 Decrease of free energy.
Let c(t) be a normally evolving control volume.19 Then

(d/dt){j6da}. (d/dt){Jyda) (2.10)
c c

represent the rate at which the Interfacial mass and interfacial energy
of c(t) are increasing;

jpvda, JVvda (2.11)
c c

represent the rate at which c(t) looses bulk mass and bulk energy due
to Its

-Jh-vds, -Jnh-vds (2.12)
dc dc

represent mass and energy flow Into c(t) across dc(t) by diffusion
within the interface;

J(Cv)-(vn)ds - Jvc-vds (2.13)
dc dc

represents power expended on c(t) by the interfacial stress.20 A
basic assumption of our theory is that there be no moss flux to the
interfdce from the bulk material

The laws of balance of mass and decrease of free energy
for c(t) have the form

16Cf. [G3].
19Cf. [G1.6S], where the control volumes are not assumed to evolve normally; In fact, the

structure used in [6S], vhen applied to our theory, gives cr-g as a consequence of the basic

lavs, vithout appeal to constitutive assumptions. •
20Cf. Section 3.1 of [613.



Cd/dt){J6da} • [pvda - -Jh-vds,
c c dc (2.14)

(d/dt){J\j>da} • J^vda i -Ju.h-vds • fvc -vds ,
c c dc dc

and, appealing to (2.2), (2.3), end the requirement that c(t) be
arbitrary, ve arrive at the local forms of these lavs:

6° • ( P - 6 K ) V - -divh, j

< -div(jih) • div(vc).

The function

7 « -div(jih) + div(vc) - \j>° - ( * - H . « ) V 1 0 (2.16)

represen'. the interfocidi energy dissipation, per unit urea, since

} + (Wvda + [ j ih.vds - | v c - v d s * - J r t l a i 0. (2.17)
c c dc dc c

We define bulk and interfacial Gibbs-functions 6(x,t) and
g(x,t) through

G « * - \ip, g - \j> - JJL6; (2.18)

then (2.1), (2.9), and (2.15) may be combined to give the locdl
dissipdtion-inequdlity

g° + 6u.° • c • n° + (o* - g)*v • (6 + TI)V « h • p - - 7 $ 0, (2.19)

with p the potential gradient

p « V>i. (2.20)

2.4. Global growth relations for 4,*dQ.
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It Is possible to derive global growth relations for the special
case in which the denser phase occupies a region D(t) with the
interface 6,(t) the complete boundary dQ(t). In this case 8 4 , - 0 ,
and taking c«$,»dQ in (2.14) and (2.19). we conclude that:

(d/dt ){ |6da) • |pvda « 0,
dQ dQ (2.21)

(d/dt){Jyda} • fVvda - - f r d a i 0,
dQ dQ dQ

so that the total mass Is constant but the free energy decreases. For
the special case in which p and W are constant, we may use the
standard identity

d/dt{vol (Q)} - Jvda (2.22)
dQ

with

vol(Q(t)) - volumeQ(t) (2.23)

to conclude that

(d/dt){j6da • pvol(Q)} « 0,

dQ (2.24)
( d / d t ) { f y d a + WvoKQ)} « - | 7 d a i 0.

dQ
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3. Constitutive theory.
3.1. Bulk constitutive relations.

We consider bulk constitutive relations of the form

* « V(H). P • p(M) • -G'(M); (3-D

these follow from corresponding relations for the individual phases in
conjunction with the tacit assumption that the interfacial chemical
potential u. represent the limit of the bulk chemical potential from
either phase. We assume there is a unique chemical potential
u.0(>0), called the transition potential, at which the jump in the bulk
Gibbs function vanishes:

G(u0) - 0. (3.2)

Then, letting

Po - P<M0>. *o • *(M0>. 0-3)

(2.16),. (3.1), and (3.2) yield

We are interested in behavior near the transition potential and
therefore introduce the potential difference

u « \i -u.o ; (3.5)

for u small,

G()i) « -pou • 0(u2), *(>i) - MoPo * D ( u ) '

3.2. Interfacial constitutive relations.



12

We allow the density 6, the free energy y, the surface tension
o*, the surface shear c, the normal interaction IT, and the mass
flux h to depend on the chemical potential p. and its gradient p,
and —to have a theory of sufficient generality to model crystals —also
on the orientation n:

6 - 6(u.,p,n). y -
c - cr(u..p,n), c - c(u.,p,n), (3.7)
h « h(u.,p,n). I T - •n(u..p,n).

By (2.18), these constitutive equations induce an auxiliary relation for
the interfacial Gibbs-function:

g - g(ji,p,n). (3.8)

3.3. Consequences of the dissipation Inequality.
The local dissipation-inequality (2.19) severely l imits the

constitutive equations (3.7). If we substitute (3.7) Into (2.19), we find
that

+ 6)u.° + (dpg)-p° • (dng • c)-n° +

(cr -gkv + (n + 6)v • h»p • - y i 0,

and, arguing as In the proof of the compatibility theorem of [G1], we
see that (3.9)-adjoined by (2.18), (3.1), end (3.7) —holds for all
smoothly propagating surfaces 4,(0 and all choices of the chemical
potential field u.(x,t) if and only If the constitutive equations are
consistent with the following restrictions:
(T1) g, \p, 6, cr, and c are Independent of p, and

• g(u.,n), v •

6 « -aMg(M,n). c - -dng(u..n);
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(T2) the normal interaction IT depends only on \i end is given by

IT - -G(ji); (3.11)

(T3) the energy dissipation 7 is determined by h through the
inequality

h(n.p.n)-p « - 7 i 0. (3.12)

We shdil henceforth assume thdt the constitutive equations are
consistent with the restrictions (T1)-(T3), dnd that

Po« Mo. 90<
n>. V n ) > °- (313)

vhere here and in what follows a subscript zero designates evaluation
at the transition potential \i0; i.e., for F-F(JJL), f-ft j i .n),

Fo - F()i0) fo(n) - f(u.0,n). (3.14)

3.4. Asymptotic relations for the moss flux.
By (3.12), the dissipation

7 - T(M.P.n) (3.15)

has a minimum at p»0 for any choice of \i and n. Thus the first
derivative of 7(u..p,n) with respect to p vanishes at p«0 , while
the second derivative is positive semi-definite:

h(u.,O.n) - 0, 8-[dph(*i,0.n)]a i 0 (3.16)

for all vectors a.
For a stationary, flat interface at equilibrium (uniform chemical

potential). (3.16)12 Imply that h«0,. while the constitutive relations

imply that all of the relevant fields are constant. Thus balance of
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mass (2.15), Is satisfied automatically, but, In view of (3.9), the force
balance (2.9) Is satisfied only If the bulk Gibbs function G(\i)
vanishes, so that, by the assumption containing (3.2), M*M0- Thus a
stationary, flat interface at equilibrium necessarily has chemical
potential equal to the transition potential.

By (3.16)2. the diffusivity tensor

D(n) - -dph(Mo,O.n) (3.17)

Is a positive semi-definite linear transformation from tangent vectors
to tangent vectors; ve shall strengthen this slightly by assuming

D(n) is positive definite. (3.18)

Consider now situations v1th chemical potential close to the
transition potential in the sense that

U - lul + iVul (3.19)

is small, where u 1s the potential difference (3.5). Then, appealing
to (3.16)1 and (3.17), ve have the asymptotic relation

h - -D(n)Vu + O(U2), (3.20)

so that, by (3.12),

7 • Vu-B(n)Vu + 0(U3). (3.21)

The relations (3.16)1 and (3.17) also lead to the formal identity

divh « -div{D(n)Vu} • 0(U2). (3.22)

vith U here given by
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U - lul • I V U I • iVVul . (3.23)

3.5. Isotropy.
For an isotropic Interface the orientation n 1s not present in

the constitutive equations; thus, by (3.10),

cr - g(u.), 6 - -g'Cji). c - 0. h - h(>i.V|i). (3.24)

and (3.16) reduces to

D(n) • Dol(n), (3.25)

vith l(n) the identity on the plane perpendicular to n. The scalar
constant D0>0 is called the diffusivity; by (3.20) and (3.21) reduce
to

h - -D0Vu + 0(U2), r • DolVul2 • 0(U3). (3.26)
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4. Isotropic Interfaces v i th small mass end energy.
4.1. Approximate equations.

The system of equations describing the evolution of an Isotropic
Interface consists of

g< « G, 6° • [p-6ic]v « -divh, ( 4 ^

p - -

These equations are complicated. We nov discuss a formal
approximation based on the assumption of small Interfacial mass and
energy. Precisely, letting I denote the length scale of interest, we
assume that the dimensionless parameter

1 ( 4 2 )

is small, and that g0 /po*io l Is O(e) (cf. (3.14)). We let t denote a
time scale —to be specified —relative to which diffusion is important,
and vrite x * « x / l . t * « t / t . so that the normal velocity and
curvature have the dimensionless forms

v* « wt/l, K* - Kt. (4.3)

Then, in terms of the dimensionless quantities

u* - u/>i0 • (M-Mo)/Mo. fi# " */*<>• 9* oo
» /60 . p* • p/p0, (4.4)

h» . ht/pot2 .

the balance lavs have the form
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eg*K* - G*.

[p»-e6*K*]v* « -divh*. ( 4 5 )

where the divergence and normal time-derivative are relative to the
new time and length scales. We will use the expansions (3.6),, (3.21)
(vith (3.25)), and (3.26), which we now write in the dimensionless form

h* - -D0*Vu* + O(U*2), divh# - -D0*Au» * O(U»2),

6 # - -u* • O(U#2), U* - lu*l «• lVu# l • lVVu»l. ( 4 < 6 )

where V Is with respect to x*. A»divV is the surface ldpidcidn,
and

Do* • D 0^t/p 0 l 3 . (4.7)

We want the time scale to be one for which diffusive effects are
important; therefore, guided by (4.7), we take

t . pot3/Do^o, Do* - 1. (4.6)

Consider the formal expansions

u* « u0 • eu, • O(e2), v* • v 0 • EV, • O(e2),
K* « Ko • 6K, • O(e2).

Because of (4.5) and (4.6), a "zeroth-order solution" Is furnished by

and corresponds to a stationary state with chemical potential equal to
the transition potential. Continuing in this manner, we see that, since

P o * - ' .
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g0»K0 • - u v v, - A u r

Further, to within terms of O(e2) the mass flux is given by eh1 with

The remainder of this section will be devoted to these equations, which
we henceforth write without subscripts on u, v, K, ond h.

Writing

C - 90* - go/5o^o > °' ( 4 9 )

we ore led to the evolution equation21

v - - C A K . (4.10)

This equation is to be supplemented by a purely kinemdticdl relation
between v and K which may be derived as a consequence of (2.1). In
conjunction with (4.10), we have the relations

u - -CK, h • C V K (4.11)

giving the chemical potential as a linear function of the curvature, the
mass flux as a linear function of the curvature gradient. In writing
(4.11) it is to be understood that

u • 0(e2). l ' \ • 0(e). e(pot7Dono)v * 0(e2), (ono )
o u a / t )h • 0(e2)e(Doua/t)h • 0(e2).

respectively, represent the original non-dimensionalized chemical
potential, curvature, normal velocity, and mass flux.
21(4.1O) should be compared to the curve-shortening equation V - K ; evolution according to

(4.10) might be termed motion by Idploclon of curvature.
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In situations for which 6(u.) depends strongly on p. in the
sense that (dM6)0*«X/e with X«O(1), (4.10) is replaced by

Xu° + v « - C A K ,

but (4.11) remain unchanged.

4.2. Global growth relations.
The evolution equation (4.10) was derived as an approximation of

the general isotropic relations (4.1), but, interestingly, (4.10) also
follows as an exact equation based on constitutive relations which,
before being rendered dimensionless, have the form

p - constant - p0, W « uopo, G(p.) « -pou,

o* • ^ « g « constant « y>0, 6 • 0. c « 0, (4.13)

h « - D 0 V u , D o *0 .

This observation is nontrivial: the constitutive relations (4.13) are
consistent with the thermodynamic relations (3.1) and (3.1O)-(3.12) with

7 « DolVul2. (4.14)

and hence the global growth relations (2.24) are valid within this
simplified framework. Thus, when the solid phase occupies a region
Q(t) with

d/dt{area(dQ)} • - ^ " ' j D ^ V u i ' d a * 0.
dQ (4.15)

d/dt{vol(Q)} - 0.

so that the area of the interface decreases, the enclosed volume
remains constant.
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4.3. Almost f lat Interfaces.
To discuss small deviations from a flat Interface, ve represent

the interface as the graph of a function x ,«z (x v x r t ) . Then, writing
V and A for the gradient and laplacian in R2, ve have, to vithin
higher-order terms 1n iVz l . the approximations

v • z t , K • Az, $>° • <px (4.16)

(the subscript t denotes d/dt), and (4.10) reduces to the classical
fourth-order parabolic equation

z t - -CA'z . (4.17)



21

5. Anisotropic Interfaces vith small mass end energy.
5.1. Evolution equations.

The system of equations describing the evolution of an
anisotropic Interface consists of

g< • dive « 6, 6° *• (p-6<)v • -divh,

p « -G'(u.), 6 « -d^gtu-.n), c « -dng(u.,n), (5.1)

h » h(u.,Vu.,n).

We now deduce an approximate system appropriate to situations
In which the interfecial mass and energy are small in the sense
described in Section 4.1. The analysis parallels that of the isotropic
theory. We let i denote the length scale of Interest and consider the
time scale

t * pot3/Douo, (5.2)

where D0>0 is some measure of the diffusivity tensor (for example,
the average of D(n) over the surface of the unit ball). Then, in
terms of the dimensionless variables x * « x / l . t * « t / i , the normal
velocity and curvature have the forms

V# « V t / t , L* - Li, K* - Kl.

We define dimensionless quantities u*. 6*. g*. p*. G*. and
h* through (4.4), and, In addition, let

D*(n) - D(n)/D0, (3^6)* - ( d ^ o / o
(dMc)» . (dMc)/tp0, (dnc)» - O

Then (2.1) and (5.1) yield the equations
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- (d n c)* . l»] « G*.

M n6) # -Vv»] • [p# - tS*K*]v* « -divh*.

where the divergence and normal time-derivative are relative to the
new time and length scales. Arguing as In the Isotropic theory, ve
consider the formal expansions

u* - u0 + eu, • O(e2). v* • v0 • ev, • O(e2),
I* - Lo * ely * O(e2).

A "zeroth-order solution" is then furnished by uo»vo«O, while to the
next order in e,

go*(n)<o • dnang0*(n).L0 - -uv v, - div[D*(n)VUi] (5.4)

(cf. (3.22)). Further, to within an error of O(e2), the mass flux is
given by eh, with

h, « -B*(n)Vur (5.5)

We shall henceforth write these equations without the asterisks and
without the subscripts on u, v, K, and h.

Defining a linear transformation #(n) (from tangent vectors to
tangent vectors) by

l « go(n)K • dn3ngo (n) .L. (5.6)

we are led to the evolution equation

v - -div[D(n)V(#(n)-L)l (5.7)

supplemented by
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l , h - -D(n)Vu. (5.8)

so that here the chemical potential is a linear function of the
curvature tensor.

5.2. Global growth relations for uniform Interfaces.
The equation (5.7) was derived as an approximation, but, as in the

isotropic theory, (5.7) follows as an exact equation based on the
constitutive relations

p - constant * p0, * - uopo, G(u) - -pou,

*j> « g(n), 6 - 0 , c « c(n) «-dn4i(n), (5.9)

h «

These constitutive relations are consistent with the thermodynamic
relations (3.1) and (3.1O)-(3.12) with

7 - Vu-D(n)Vu, (5.10)

and hence the global growth relations (2.24) are valid within this
simplified framework. Thus, when the solid phase occupies a region
Q(t) with <at)»dQ(t),

(d/dt){J\ji(n)da} « -JVu-B(n)Vuda < 0,
dQ dQ (5.11)

d/dt{vol(Q)} - 0.

so that the Interfddol free-energy decreases, the enclosed volume
remains constant.
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6. Two-dimensional theory.
6.1. Geometric considerations.

We now consider a two-dimensional theory In which the interface
Is a curve 4,(0. We continue to suppose that n Is directed outward
from the dense phase, but now define the unit tangent -t(x.t), the
direction of Increasing arc length s. ond the angle B(x.t) so that
<4 (x , t ) .n (x . t ) } Is a positively oriented basis of R2 and
n«(cosB,sinB), I «(stnB,-cos8). We then have the identities22

6S, 8* « v6.

s s + K V . ( $ ) 6 « (4>8 ) - KV<J>S

For connected sections of the interface on which K does not vanish
(convex sections) we may use (8,t) as independent variables: writing
tc-K(8,t) and v«v(6,t), we have the Identity23

•ct • K2(veB • v). (6.2)

6.2. Physical considerations.
The surface stress may now be considered a vector

C - trl * | n ,

with C(x,t) the surface tension and |(x,t) the (scalar) surface
shear, and the interfacial mass-flux can be Identified with a scalar
h. where

h - hi.

22Cf. (2.5). (2.17). and (2.16) of [AC]. Here and In vhet follows the subscripts s end 6

Indicate partial differentiation vith respect to arc length e and angle 6. We vi l l use a

prime to denote differentiation vhen 6 1s the only Independent variable.
23Cf. (223), of [AC].
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The equations (2.9) and (2.15)t expressing force and mass balance
now have the forms

| s • a< * n « o,

6° • (p-6K)v « - h $ , (6.3)

while the local dissipation-Inequality (2.19) becomes

g° + 6u.° - |8° • ( f f -gkv • (IT + 6)v + hu.s « - 7 < 0.

As is natural, we replace n in the constitutive equations (3.7) by 8;
the counterparts of the restrictions (3.1O)-(3.12) are then

o* • g(u.,e), y « g(u.,e) -

fi • -^g(u-,8), | - dggCu-.e), (6.4)

IT « -G()i), h(u.,u.s,e)u.6 - - 7 i 0.

while the asymptotic relations (3.20) and (3.21) here have the form

h - -D(B)u8 • 0(U2),

7 « D(6)us
2 • 0(U3). ( 6 5 )

with U the obvious analog of (3.19).
The approximate equation (4.10) for an Isotropic Interfdce with

smdll mdss dnd energy here has the form

v « - C K S 8 . (6.6)

This equation relates the normal velocity v to the curvature ic; a
second such equation is given by the kinematical equation (6.1)3. We
can use (6.1)12 to write (6.6) as a partial differential equation for 8:
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(6.7)

On convex sections ve can consider K and v as functions of
(8,t); then, by (6.1)v ve can express (6.6) in the form

]; (6.8)

a second equation relating v and K is furnished by (6.2).
Similarly, the approximate equation (5.5) for an onisotropic

interfdce here becomes

u - - * ( 6 ) K , v - [D(6)u,]t;
 ( 6 9 )

with

•(8) - go(8) • go"(6), (6.10)

and these combine to give

or equivalently, by (6.1).

8* «{D(8)[4>(8)ee]s}
$$

6.3. Stationary Interfaces.
We now discuss stationary solutions of the general equations

(6.3). (6.4). assuming only that the constitutive functions obey

< ° for Ms * °'
.e) • g"(M.e) > o. ( 6 1 3 )
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We let Q denote the (fixed) region in R2 occupied by the solid
phase, and therefore seek a solution In vhich (6.3) and (6.4) represent
the boundary curve dQ. Since v and the normal time derivatives in
these equations must vanish, (6.3)2 yields hs * 0, so that h is a
constant. Thus, by (6.13)r j is vanishes Identically or never vanishes.
But ns cannot be of one sign, since dQ Is a closed curve; thus p.
is constant. We may therefore conclude from (3.9), (6.3)v and (6.4)
that

[g(p..8) • g"(M.B)]K • G(ji).

and, granted (6.13)2 and G(JA) * 0, this equation defines a closed,
convex curve with position vector24

r(8)

For G(u.)<0, Q Is the bounded region interior to the curve; for
G(u.)>0, Q is the unbounded region exterior to the curve (cf. Figure 1).

We therefore have a stationary solution for every (constant) value
of the chemical potential p. * >i0.

6.4. Steady Interfacial motions.
We seek solutions In vhich the interface appears stationary to an

observer moving vith uniform translational velocity. Precisely, ve
assume that q, the (scalar) translational velocity, acts in the
direction defined by 8 « 0 , so that the normal velocity of the
interface is given by

v • qcosB. (6.14)

We consider an isotropic Interfdce as characterized by the
approximate equation (6.6), and seek solutions in vhich the interface is
unbounded and convex. Then, by (6.1)1 and (6.14), ve can vrite (6.6)
24Th1s is essentially Wulff's solution (cf. [AG], Sect. 6.1).
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as an ordinary differential equation for K - K ( 8 ) :

K V ' «• K(K' ) 2 «• (q/C)cos8 - 0. (6.15)

We assume that

C > 0, q > 0;

the second of these Involves no loss 1n generality.
Since the interface Is to be unbounded, the curvature must tend

to zero as the arc length tends to ±oo; thus ve seek a solution K(6)
on a finite angle-interval C81,82] such that K ( 6 1 ) - K ( 8 2 ) « 0 ; as is
clear from (6.15), this is possible only if the interval is [ - I T / 2 , I T / 2 ] .

The desired solutions have V (6 )K (8 ) nonzero on ( -TT/2,TT/2) and
therefore represent25 'steadily evolving bumps'; which, because of
our convention regarding the choice of normal and the definition of
curvature, are advancing or receding according as K ( 8 ) < 0 for all 8
or K ( 8 ) > 0 for all 8.

Next, vriting *t fnr ihir iripn nf rL the substitution

y(8) - (C/2q)*K2(8) (6.16) .

yields the reduced equation
(sgn ?O

-y"(8) «sy(e)-*cos8. (6.17)

By (6.16) and (6.17), y>0 on ( - I T / 2 , I T / 2 ) . while y" cannot change
sign; thus, since y vanishes at the endpoints, y"<0 and we may
conclude from (6.17) that K > 0 on (-11/2,11/2). Thus the only
possible steadily evolving bumps ere receding.

We are therefore led to the boundary-value problem:

2 5 ln the sense of [AGl Sect. 2.2.
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-y"(8) - y(8)"*cosB on (-11/2,11/2), y(-ir/2) - y(ti/2) • 0. (6.18)

The remainder of the section will be devoted to establishing26

existence end uniqueness for this problem and hence for steadily
evolving receding bumps.

We first prove uniqueness. Let

6 . [-TI/2.1T/2].

Let y1 * y2 be two solutions, let z - y ^ y j , and assume, without loss
In generality, that z>0 somewhere on (-11/2,11/2). Then there is an
interval (8V82)C0 such that

z>o on (8ve2). zce^-zcep-o. (6.19)

On the other hand, since y, and y2 satisfy (6.18), z">0 on (811B2),
which contradicts (6.19). Thus (6.18) has at most one solution.

Consider, for the moment, the general problem

-y"(8) - f(y(B),8) on (a.b). y(a) - y(b) • 0. (6.20)

A continuous function y8Ub on [a,b] that satisfies

) on (e,b), ysub(a) - ysub(b) - 0

is called a subsolution of (6.20), and a supersolution y6up is

defined analogously with V replaced by "£". By definition, y-ysut )

and y s u p -y each have second derivative iO on (a,b). and each

vanish at a and b. so that

on

Let Co(0) denote the subspace of C(0) consisting of those
26The main Ideas vere furnished by Giorgio Vergere-CaffareW (private communication).
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functions In C(0) that vanish at the endpoints of 0. and let
<5:CO(0)-»CO(0) denote the operator defined by

n/2
«5y)(8) • fG(B,(p)y(<pr*cos<pd<p for all 8€0. (6.21)

- u / 2
where G:9*0-»R is the Green's function for -d2 /d92 end the
boundary conditions In (6.18). Finding a solution y of (6.18) then
reduces to finding a yeCo(0) such that

<5y • y-

With this in mind, we will find a convex subset iC of Co(0) such
that <5(iC) is a compact subset of Co(0) end Q(fC)ci:. Once this
is done, Schauder's fixed-point theorem will guarantee the existence of
a yeii such that <Jy*y.

Let ysub,y6up€Co(0) be defined by

xcose, ysup(e) - wcos$e. (6.22)

A calculation then shows that ysub end ysup are a subsolution and

supersolution of (6.18) provided

X i 1. u i (3 /2) 4 / 3 . (6.23)

Let £ denote the convex set

it - <y€Co(0)| Xcose i y(8) i wcos*8. Be©}. (6.24)

The Green's function G Is continuous and piecewise C1 on 0x8, we
may therefore conclude from (6.21) and (6.24) that l(d/de)($y)(e)l 1s
bounded uniformly 1n 8€0 and y€*C; thus, by the Ascoli-Arzela'
theorem. $(•£) is a compact subset of Co(0).

Next, it is clear from (6.24) that
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of

for y€tC. so that

g[oT*cos*(-)] i gy i Q[X'*co8*(-)].

Let z(6) and Z(6), respectively, denote the extreme left and right
sides of this Inequality. Then

-z"(6) « uf *cos$8 on (-TT/2.1T/2), z(-n/2) • Z(TT/2) « 0.

on (-TT/2.1T/2), Z(-n/2) - Z(TT/2) « 0,

and a calculation shows that if

< 1, wX* I 9/2, (6.26)

ysub(B) is a subsolution of (6.25)v while ysup(B) is a
supersolution of (6.25)2. Thus, granted (6.23) and (6.26), Q(*C)C*:.
Thus to complete the proof of existence, we have only to show that the
Inequalities (6.23) and (6.26) have a solution. One such solution is
furnished by X - ( 2 /9 ) 2 / 3 . w ( 9 / 2 ) 4 / 3 .
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7. Mass transport by evaporation-condensation.
7.1. Extension of the general theory.

Thus far the only form of mass transport considered Is
interfacial diffusion. For an Interface that separates a solid phase
from an associated vapor phase, mass transport by evaporation-
condensation may also be Important. We nov modify the theory to
Include this mode of transport.

We let ji(x.t), p(x,t), and ip(x.t) represent the chemical
potential, the bulk density, and the free energy of the solid at the
interface, and ve assume that ji(x.t) also represents the chemical
potential of the interface. The vapor at the interface Is assumed to
have constant chemical potential j i v , In general different from \i.
The flov of mass, per unit area, to the Interface from the vapor is
characterized by the evaporative supply r(x,t), and this mass flov
induces a corresponding flov of energy of amount ^ivr(x,t).

Balance of forces is unchanged, but the lavs expressing balance
of mass and decrease of free energy have the forms

(d/dt){J6da} + Jpvda « -Jh-vds + Jrda,
c c dc c (7.1)

(d/dt){f4ida} + ftyvda s -Jjih«vds • jMv
r c J a + Jvc-vds

c c dc c dc
for all evolving control volumes c(t), and are equivalent to

6° • (p-6»Ov - -divh • r. ( 7 2 )

7 « -div(jih) • >ivr • div(vc) - ^ - ( * - ^ K ) V I 0,

where 7, the interfacial energy-dissipation, has Integral over c
equal to the right side of (7.1)2 minus the left. When the Interface is
the complete boundary of the region D(t) occupied by the solid. (7.1)
with c-dQ and the fact that JIV Is constant yield the global growth
relation
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(d/dt){J(\j,-u.v6)da} • ((W-jivp)vda - -frda $ 0.
dQ dQ dQ (7.3)

We define the Gibbs functions G(x,t) end g(x,t) through (2.18),
but G now represents the bulk Gibbs function for the solid phase, the
corrresponding quantity for the vapor being Irrelevant. The relations
(7.2) then yield the local dissipdtion-inequdlity

g ° • 6JJL° • c « n ° + ( o * - g ) < v • (G • TT)V • h - p + r ( j i - u . v ) • - 7 < 0 ,

( 7 . 4 )
vith p the potential gradient (2.20) and n the unit normal to the
interface directed outvard from the solid phase.

We again consider constitutive equations of the form27 (3.1) (for
the solid phase) and (3.7), vhich ve supplement vith a relation for the
evaporative supply r:

r « r(u..p,n).

The thermodynamic restrictions (T1) and (T2) then remain unchanged,
but (T3) is replaced by
(T31) the energy dissipation 7 is determined by h and r through

the inequality

h(u.,p,n)-p • r(u..p,n)(u.-*iv) « -7 i 0. (7.5)

Let

u « ]i - \i0, v • >iv - »i0; (7.6)

v, the supersdturotion potential, measures the extent to vhich the
vapor Is supersaturated. When
27The constant vapor potential j i v Is assumed prescribed and hence not a constitutive

variable, but ve could, vith only minor changes, allow u.v to be en arbitrary function of (x.t)

and to enter the constitutive equations.
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U « lul + iVul + Ivl (7.7)

is small, so that both ji and j iv are close to the transition
potential \i0, (7.5) leads to the asymptotic relations

h «-D(n)Vu - d(n)(u-v) • O(U2), ( 7 e )

r • -a(n). Vu - <x(n)(u-v) • O(U2).

Thus diffusion due to a potential difference and evaporation due to a
potential gradient are not ruled out, even for small departures from
the "transition state". Here D(n) and a(n) are the derivatives of
h(u.,p,n) and r(ji,p,n) vith respect to p at (>io,O,n), d(n) and
a(n) are the derivatives of h(ji.p,n) and r(u..p,n) vith respect to ji
at (jio,O,n), and the linear transformation defined in the natural
manner by B(n), d(n). e(n), and a(n) is positive semi-definite.

When the interface Is isotropic the relations (7.8) have the
simple form

h « -D0Vu • O(U2). ( 7 g )

r «-txo(u-v) • O(U2),

so that to first order surface diffusion is driven by potential
gradients, evaporation-condensation by potential differences between
solid and vapor. We vill refer to a 0 as the evaporation modulus.

7.2. Isotropic Interfaces vith small mass and energy.
The basic equations for an Isotropic Interface are

- G, 6° • IP-6K]V m -d1vh <• r.

p « -G'(M). 6 • -g'(MX h - h(n.V>0, r «

We now discuss these equations assuming that
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Po« Mo- 9o» 6o» Do« * o > ° -

and that the mass and energy ere small in the sense of Section 4.1.
Let 1 denote the length scale of interest, and let t and e be given
by (4.2) and (4.6). We assume that the supersoturdtion is small, In
fact that w/u.o«O(e), end ve adjoin to the list of dimensionless
quantities specified in (4.4) the dimensionless evaporation modulus
ot0* and the dimensionless supersaturation potential v * defined by

* o * " a-o^/Po1- v * « v / e j i 0 . (7.11)

Then the argument given In Section 4.1 yields, as an approximate
evolution equation,

v « - C A K • AK • F. (7.12)

supplemented by

u - -CK, h « C V K , r - AK + F, (7.13)

where

0o* - go/6o
l- A " a o * C

oF . ao*v« - *ol2(uv -

(These relations should be interpreted as In the sentence containing
(4.12) vith analogous expressions added for r and v.) The relations
(7.12) and (7.13) are counterparts of (4.10) and (4.11); (7.13) give the
chemical potential as a linear function of the curvature, the diffusive
mass flux as a linear function of the curvature gradient, and the
evaporative supply as a constant proportional to the supersaturation
plus a linear function of the curvature. Our convention for curvature
endows a spherical solid with negative mean curvature. For F*0 the
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relation (7.13)3 Implies that negative mean curvature induces
evaporation, positive mean curvature Induces condensation.

The evolution equation (7.12) also follows as an exdct equdtion
based on constitutive relations which have the (dimensional) form

p - constant - p0, V - >iopo, G(ji) • -pou,

or m y, * g . constant « ij»0, 6 « 0, c • 0, (7.15)

h - -D0Vu, r « -ao(M-Mv) . Do- a o l °-

These relations are consistent with the thermodynamic restrictions
(TO, (T2), and (T31) with

T - DolVul2 + ao(^JL-Mv)
2. (7.16)

and therefore (7.4) yields the global growth relation

d/dt{4>oarea(dQ) + po(u.o-u.v)vo1(Q)} -

-J{Do lVul2 + ao(M-Mv>2>da * 0. (7.17)
bQ

A tacit assumption underlying the derivation of (7.12) and (7.13)
is that the coefficients a 0 end Do are 0(1). For situations In
which the evdpordtion is small in the sense that oc0l2/D0»0(e), the
analysis yields (4.10) and (4.11) rather than (7.12) and (7.13).

For small diffusion the choice of time scale should be based on
evaporation. Precisely, for Do /ao l2«O(e) we let

t - pol/ttojio. (7.18)

so that a o * « 1 , D o *«D o /a o i 2 . The corresponding asymptotic analysis
then yields, in place of (7.12) and (7.13),

v - CK • F. (7.19)
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supplemented by

u « -CK, r « CK • F. (7.20)

vith

C - 90* • 90/60t, F « v« - (>iv - HO) /HO . (7.21)

Thus in the absence of supersaturation (F«0) the motion of the
interface has velocity proportional to curvature.28

2 6The evolution equation V - C K , apparently due to tiuilins [mihas a large literature (cf..

e.g.. Brakke [Br]. Allen end Cehn [AC], Sethien [Se], Gage and Hamilton [GH], Groyson [Gr],

Osher end Sethien [OS], Angenent and Gurtin [AG].° Evans and Spruck [ESI Chen. Giga. and Goto

[CGG]).
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6. Interfacial heat conduction.
6.1. Basic concepts.

The theory developed thus far applies almost without change when
the basic transport mechanism Is interfacial heat conduction. We
consider two phases, one labeled as reference, separated by an
Interfdce 4.(t). with unit normal n(x,t) directed outward from the
reference phase. The basic physical quantities are:
(1) T(x,t), the absolute temperature;
(2) E(x,t) and S(x,t), the jumps In bulk Internal-energy and bulk

entropy across the Interface (reference phase minus the other
phase);

(3) e(x,t) and n(x,t), the interfacial internal-energy and entropy
(per unit area);

(4) q(x,t), a tangential vector field, the diffusive mass-flux within
the interface (per unit length);

(5) C(x,t), the interfacial stress (defined as before);
(6) n(x,t), the net force (defined as before).

The basic physical laws are balance of forces (as described in
Section 2.2), and balance of energy and growth of entropy, which,
for a normally evolving control volume c(t), are given by29

(d/dt){Jeda} • jEvda « -Jq-vds + Jvc»vds,
c c dc dc (6.1)

(d/dt){Jnda} «• fSvda i -J (q /T) .vds,
c c dc

or equivalently,

e* + ( E - B K ) V • -divq • div(vc), ,o-s

7 • V • (S-tuOv • div(q/T) l 0,

where 7. the interfacial entropy-production, has Integral over c
2 9 T

tG3]..

29These lavs vere proposed (vithin a more general context) In Remark 3.4 of [61] end 1n
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equal to the right side of (6.1)2 minus the left.
We define the bulk and interfacial free-energies UKx.t) end

y(x,t) through

W « E - TS, y « e - Ti\; (6.3)

then (2.1). (2.9), and (8.2) may be combined to give the local
dissipation-inequality

^ ° • nT° + c • n° • (o*- \J»)KV • (W + IT)V • T"1q • g • -Ty i 0,

(6.4)
vi th g the temperature gradient

g « VT.

6.2. Constitutive theory.
We consider bulk constitutive relations of the form

E - E(T), S • S(T) - - r ( T ) . (8.5)

We assume there is a unique transition temperature To at which the
jump in bulk free energy vanishes:30

V(T0) - 0. (8.6)

The jump

Eo - E(T0) (6.7)

in energy between phases at the transition temperature Is the latent
heat which we assume to be nonzero. By (6.3) and (8.6).

. S(TJ - EA/Tft; (8.6)
30Cf.. e. g., [G21 Sect. 2.1.
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thus, for

u - T - T 0 (6.9)

small,

-Sou • O(u2), E(T) « S0T0 «• O(u), S(T) - So • O(u). (6.10)

We consider interfdciol constitutive-equdtitms of the form:

e • eCT.g.n), n - ii(T.g,n),
cr« tr(T,g,n), c « c(T.g.n). (6.11)
q - q(T,g,n), IT « ir(T,g.n),

so that

,n). (8.12)

The local dissipation-Inequality (6.4) then yields the following
restrictions:
(R1) 4>, e, tr, and c are Independent oi g, end

a - ^(T.n). e • ^(T.n) - TdT^(T.n),

), c - -dn^a.n); ( 8 1 3 )

(R2) the normal interaction depends only on, T and is given by

IT « - * ( T ) ; (6.14)

(R3) the entropy production 7 is determined by q through the
Inequdlity
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q(T,g,n).g - -T 2 r i 0. (8.15)

The steps leading to (3.16)-(3.21) here yield

q(T.O.n) - 0 (8.16)

end the asymptotic relations

q - -K(n)Vu + 0(U2),

T0
2r - Vu-K(n)Vu + 0(U3). ( 8 1 7 )

with u given by (8.9) and U by (3.19), and with

K(n) « -dgq(To.O,n), (6.16)

the conductivity tensor, a positive semi-def ini te linear
transformation from tangent vectors to tangent vectors.

Next, by (8.2) and (3.7),

H° • ( S - H K ) V « -T"1divq. (6.19)

This relation expresses bsJdnce of entropy; granted the constitutive
restrictions (R1) and the force balance (2.9), (6.19) Is equivalent to the
energy balance (6.2)v Further, a simple calculation based on (6.16)
leads to the following asymptotic form for the right side of (6.19):

-T"1d1vq - d1v{T0"1K(n)Vu) • 0(U2). (8.20)

with U given by (3.23).

For an isotropic interface

ff - M*(T). TL - -V (T ) , c - 0. q • q(T.VT), (8.21)

and the asymptotic relations (6.17) reduce to
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q « -K0Vu + 0(U2), T • KolVul2 + 0(U3). (8.22)

vith Ko the conductivity.

6.3. Basic equations. Similarity of mass diffusion and thermal
diffusion.
Summarizing, the basic equations are

+ dive « W. n° • ( S - I I K ) V « -T"1divq,

S - -V(>i ) . il - -3T^(T,n) , c « -dnv>(T,n), (6.23)

q « q(T,VT,n).

if ve compare these equations to the equations (5.1) describing
interfacial mass-diffusion ve see that the Identifications:

mass diffusion thermal diffusion
K T
V> e
g Vi

6 n
G *
P S
* E
cr o*
c c
h T 0 " 1 q
D V1K

render the tvo theories almost Identical, the only difference being the
term divh In (5.1)2 as compared vith T"1divq (rather than
T0"1divq) 1n (6.23)2. Hovever. a comparison of the asymptotic
relations (3.22) and (6.20) shovs that this difference does not effect



43

the approximate theory which corresponds to small mass and energy in
the original theory and to small interfacial entropy and internal energy
in the present theory. In particular, the approximate evolution
equations and global growth relations31 derived in Sections 4-6 are
valid without change in the present theory provided the underlying
quantities are properly identified.
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Abstract.
Mullins, In a series of papers, developed a surface dynamics for

phase interfaces whose evolution 1s controlled by mass diffusion
within the interface. It Is our purpose here to embed Mullins's theory
within a general framework based on balance laws for mass and
capillary forces In conjunction with a version of the second lav,
appropriate to a purely mechanical theory, which asserts that the rate
at which the free energy Increases cannot be greater than the energy
Inflow plus the power supplied. We develop an appropriate constitutive
theory, and deduce general and approximate equations for the evolution
of the interface.

Abstract (Italian).
Mullins, in una serie di artfcoli Inerenti la morfologia deiie

superfici di interfaced tra fas1, ha sviluppato una dinamica delle
superfici la cui evoluzione e' governata dai fenomeno di diffusione di
massa all'interno dell'interfaccia. Scopo di questo articolo e' Inserire
la teoria di Mullins In uno schema piu' generale basato su leggi di
bilancio della massa e delle azioni capillari nonche' su una
formuiazione puramente meccanica del secondo principio della
termodinamica, asserente che Vincremento di energia libera non possa
essere superiore al flusso di energia ed alia potenza fornite
all'interfaccia. Viene successivamente sviluppata una appropriata
teoria costitutiva, e vengono dedotte le equazioni di evoluzione sia in
forma generale che approssimata.
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