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Abstract

The integral representation for the relaxation of a class of energy functionals where the
admissible fields are constrained to remain on a C' m-dimensional manifold M C R? is
obtained. If f : R¥*Y — [0, 00) is a continuous function satisfving 0 < f(£) < C(1 + [¢]P),
for C >0, p>1, and for all £ € R**¥ | then

F(u,) : = {inf} {liminf/ f(Vun)dz : un = uin WP up(z) E Mae z€Qne N}
un n—oo fq
= [ Qrftu vz,
0

where @ C RY is open, bounded, and Qr f(yo,§) is the tangential quasiconvexification of f
at yo € M, € = (€},...,€7), " belong to the tangent space to M at yo, i =1, ..., N.

1991 Mathematics subject classification (Amer. Math. Soc.): 49J45,49Q20, 49N60, 73T05, 73V30
Keywords : Quasiconvexification, Radon measures, Radon-Nikodym derivative, partition of unity

1 Introduction

Several interesting questions in materials science require a good understanding of constrained
variational problems. Here our motivation to address nonconvex manifold constrained energy
relaxation is originated mainly by questions of equilibria for liquid crystals and magnetostrictive
materials, a common characteristic being the study of problems of the type

Eé%l(u)’ I(u) ::/s;f(Vu)dz,

where the class of admissible fields is constrained to remain with values on the C*° (d — 1)-
dimensional manifold S9! := {u € R? : |u| = 1}. Here Q C RV is an open, bounded domain,
which represents the reference configuration of a certain material body, and the bulk energy
density f : M®*~N — [0, +0c0) is a continuous function satisfying

0< f(&) <C+IeP),

for some C > 0,p > 1, and all £ € M®*¥N | where M4*" denotes the set of all d x N matrices.
Often lack of convexity prevents f to meet the requirements ensuring weak lower semicontinuity
of I(-) (see (1], [2], [14], [15]), and so we introduce the relaxed energy

F(u) := {inf} {lirginf/ f(Vun)dz : up = uinWHP(Q; R?), u,(z) € Mae.z € Q} (1.1)
Un n—ooo Jo

where M is a C! m-dimensional manifold in R9.



One of the main objectives of relaxation theory is to find the new relaxed (effective) bulk
energy density or, equivalently, to give an integral representation for F(-). In the non-constrained
case, i.e., when M = R?, it has been shown by Dacorogna [4] that

Flu) = ]Q Qf (Vu) dr,

where the quasiconvex envelope Qf of f is defined by
@1(©) = int { [ 1le+Vom)az s e i@k}, (12)

and Q := (0,1). We recall that F(-) is now a W1 P-sequentially weakly lower semicontinuous
functional, and (see [4])

in /Q #(Vu) dz = min /Q Qf(Vu)dz,

whenever C is a WP(Q; RY) weakly compact class of admissible fields.

In this paper we identify the relaxed energy F(-) in (1.1) when u € C are constrained to remain
with values on a C! m-dimensional manifold M C RY. Precisely, we show that the relaxed energy
in (1.1) can be represented as

Flu) = /Q Qrf(u, Vu) dz, (1.3)

where the tangential quasiconvexification Qrf is defined in Section 2 (see Definition 2.1). We
derive the formula (see Proposition 2.2)

Qrf(y,6) = Qf(y,€)

with

Fy,€) = f(Py), (1.4)
where P, is the orthogonal projection of R? onto the tangent space to M at y, T, (M), P, :=
(Py€Y, ..., Py€N), and € stands for the i*P column of the matrix ¢ € R¥*V. In particular, this

concludes (1.3) for globally parametrized constraint manifolds. When M is the unit sphere,
M = 891 then (1.4) reduces to

F(,8) := f((laxa— y ® ¥)E)

fory € S, € = (€1, ... ,€&N), with the column vectors ¢' being tangent to the unit sphere at the
point y, i = 1,..., N (see Example 2.4). This example is relevant in the study of equilibria for
liquid crystals, in ferromagnetism, and for magnetostrictive materials (see [6], [16]). For a wide
literature concerning existence and regularity of (local) minima of energy functionals where the
admissible fields are constrained to have values on the sphere, see [3], [11], [12], [5], [13], and the
references therein.

In Proposition 2.5 we prove W1P(§); M)-sequentially weakly lower semicontinuity of

uo-—)/QTf(u,Vu)d:c.
Q

The statement and proof of the relaxation result are presented in Section 3. The main challenge
of the analysis is to ensure the locality of the relaxed energy with respect to the domain of
integration, and this, in turn, allows us to use the blow-up technique to identify the effective
energy density. We will not prove directly the locality property (although it will be an obvious
consequence of the representation (1.3)), instead we will introduce an auxilliary functional F
where the approximating sequences to a macroscopic field u are required to converge uniformly
to u on a compact subset of the manifold, outside which they must coincide with u. Locality for
F is proven in Proposition 3.4, and then we go on to showing that, in fact, 7 and F, agree.



2 The Tangential Quasiconvexification

To motivate the introduction of the notion of tangential quasiconvexification, first we derive (1.3)
in the simple case where M may be globally parametrized. Suppose that there exists a single C*
chart ¥ : M* — R¢, where M* C R™ is and open set, such that

M = T(M").

Further, for simplicity, assume that M* is the entire space R™. Let u € W1?(; M). With
u* := ¥~ ou we have
u=%You*, Vu=V¥@u")Vu*,

and so
/ F(Vu)dz = / FVO(u)Vu*) do
Q Q
= / f(u*, Vu*) dz,
Q
where f: R™ x M™*N [0, +00) is given by

fy" €)== F(VEEE).

Well known relaxation theorems (see [1], [4]) yield that

F(u) := inf liminf/ flur, Vui)dz : ul, = u* in WHP(Q; R™)
{uz} L = Jg

2.1)
- / Qf(w*, Vu*) dz,
0

where (see (1.2)) Qf(y*, &) := Qf(y*,-)(€*). If M* is not the entire space then some additional
technical difficulties occur, and if M is not parametrizable by a single chart then previously known
results fail to apply. Nevertheless, formula (2.1) indicates how the tangential quasiconvexification
Q1 could be constructed from local charts.

In what follows, let f : M®*¥ — [0,+00) be a Borel measurable function, and let M C R¢
be a C! m-dimensional manifold, 1 < m < d. The tangent space to M at y, where y € M, is
denoted T, (M).

Definition 2.1. Let y € M and € € [T,(M)]N. The tangential quasiconvexification of f at £
relative to y is defined by

Qrf(y,€) = inf { /Q F(E+ V(@) :pe WJ’”(Q;Ty(M))} .

In order to provide alternative characterizations of the tangential quasiconvexification of f, we
remark that to each point y € M there corresponds a C* projection I, of a neighborhood U (y)
of y in R? onto M. This projection has the property that for each z € U(y), II,(2) is the unique
point 2z’ in M NU(z) with

Py(z'-2)=0 (in particular, 2’ = z if z € M),

where, as in (1.4), P, is the orthogonal projection of R? onto the tangent space Ty(M). The
projection II, is constructed via the Implicit Function Theorem. Consider a local chart ¥ :
M* = R? such that M* C R™ is an open set and ¥(M*) = M N U(y), where U(y) is an open
neighborhood of y in R¢. Set y* := ¥~!(y), and denote by V¥[y*] the derivative of ¥ at y*
considered as a linear map V¥[y*] : R™ — T,(M). Since V¥[y*] is an isomorphism of R™ onto



the tangent space T, (M), there is an inverse mapping A, : Ty(M) — R™ such that A, o V¥[y*]
is the identity on R™. Applying the Inplicit Function Theorem to the function

G:M* xU(y) = R™, (2%,2) = Ay(Py(2(2") - 2)),

we may find a neighborhood U (y) of y, with U(y) C U(y), and a unique (C!) function T : U(y) —
M* such that
G(Y(2),z2) =0 forallze U(y).

We set
I, (2) := ¥(T(2)). (2.2)

We observe that
P,(II,(z) —2) =0 and VII,(y) = P,.

Using the above notation, we provide alternative characterizations for Q1 f.

Proposition 2.2. For any y € M and ¢ € [T,(M)]" we have
@)
Qrf(,8) = Qf "€, (2.3)

where
& =AY
and A
fy*,n") = F(VE(y )n")
for all n* € M™xN;
(i)
QTf(y’é) = Qf(y,g)a (24)

where _
f(y,8) == f(R§),
with P, := (P,E',... ,P,EN) and & stands for the i*" column of the matriz £ € RPN,

Proof. (i) We have
Qfty,¢") = nt { [ fw e + Vot g e Wi=(:Rm)
—int { [ (997)e" + VEYITOE) e 10 € Wic@E) @)
—imt | [ e+ VuIvo e o € WE(@ R

Therefore, if ¢ € W3'™(Q; R™) then
p:=VE[y*lod € Wy (Q; Ty(M))

and we obtain

Qrf(.6) < Qf (", &)
Conversely, if ¢ € Wy (Q; Ty(M)) then

¢ := A, 0p € Wa™(Q;R™)
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and we conclude that

Qf(",€) < Qrf(y,8)
(ii) If ¢ € Wy'=(Q; T, (M)) then ¢ € Wy °(Q; R?) and P,p = ¢, so that

f,&+¢) = f(y, €+ ),

and thus

Qf(y,6) < QTf(y,8).
Conversely, if @ € Wy (Q; R?), then ¢ := P, o ¢ € W, '®(Q; T, (M)) and

fW, €+ Vo) = fy, €+ Vo)

hence ~
Qrf(y,6) < Qf(y,9)-
O
Remark 2.3 (A formula exploiting the normal field). Let M be a (N—1)-dimensional C*!

manifold and y € M. If v(y) is a normal vector to M at y, then the expression y — v(y) ® v(y)
does not depend on the orientation of M and clearly

P,z = (laxa—v(y) @ v(y)) z forall z € R? and y € M.

Hence in the notation of Proposition 2.2 (ii),

F,8) = f((Taxa—v(y) ® v(y)) §).

Example 2.4 (The Unit Sphere). Let M = S9! := {z € R? : |z| = 1}, so here d = N,
m =d— 1. We claim that if y € S¢~! and ¢ € [T,,(S%!)]" then

QTf(y3 E) = Qf(ya E))

where

f(,€) == f((laxda — y ® y)§).

This may be seen directly from Remark 2.3. Alternatively, we use Proposition 2.2 to derive this
formula in terms of parametrization charts for M. Let R be a rotation such that Rey = y, where
{e1,€2,... ,eq} stands for the canonical basis of R?, and consider the chart

Y(ry,...,Ta-1) = R(Il,--- ,Id—l,\/l - (z2 +---+I§_1)), (z1,...,Ta-1) € B4-1(0,1).

By (2.5) we have that

Qrf(y,€) = inf { /Q F(6+ VU(0)Vo(z)) de : 6 € W (Q R )} , (2.6)
where
T1oveons 0
V¥(0) = RH, with H := ......
Qcvvne- 1
Qcvvvee 0/ g

Given ¢ € Wy'™(Q; R¥!), define ¢ € Wy (Q; R?) by

é(z) = RH ¢(z).



Then
£+ VI0)Ve(z) = (I-y@y)(£+ V()
because £ € [T,(S4 1))V, so (y®y)€ =0, and

(I-y®y)Vé¢=R(I-es®es)RTVS
= RHHTRTV¢$
= RHV¢
=V¥(0)Ve.

2.7)

Conversely, given ¢ € Wy ®(Q; R?) we set
¢=HTR$

so that ¢ € W, ®(Q;R4~1), and it can be seen easily that (2.7) still holds. This, together with
(2.6), implies that

Qrf(y,€) inf{ [ 5a-veuE+ vée)d:de W’&’“(Q;R")}
_ Q
Qf(y,8).

Proposition 2.5 (Lower Semicontinuity). Let f : M**N — [0, +00) be a continuous function
such that

0<f()<CA+[EF), p2>1,
for some C > 0 and all £ € M@*V | Let

J(u) :=/{;QTf(u,Vu)dz, u € WHP(Q; M).

Then J(-) is WHP(Q; M)- sequentially weakly lower semicontinuous.

Proof. For all y € M let I, : U(y) —» U(y) N M be the C* projection onto M introduced in
(2.2). Let {n},ec be a partition of unity subordinate to {U(y) : y € M} (see [17]), so that

(i) >0, 7neCEERY,[0,1));

(ii) for every n € G there exists y € M such that suppn C U(y);
(iii) if E C M is compact then suppn N E # @ for only finitely many n € G;
(V) Tpegn(y) =1ify € M.

Consider u,u, € WHP(Q; M) such that u, = u € W and fix ¢ > 0. By Lebesgue’s Monotone
Convergence Theorem, we may find a compact set E C M such that

/ Qrf(u, V) dz < / Qrf(u,Vu)dz +e. 2.8)
Q QNE

By (iii) and (iv) above, we may choose k € N such that

k
xe() =Y _m)xe(y), wheren; €,

=1

and so, using (ii), with
suppn: C U(y:), ILi:=Tly,,



we obtain

k
/Q NCEOADEIEIDY /Q  mw)Qr S (u, Vu) de

k
= Y QH;(u, Vu) dz,
—; JonE
where, according to Definition 2.1 and Remark 2.2 (iii),

Hi(y,§) := n:i(y) f(VIL(y)§).

Well known lower semicontinuity results for Carathéodory integrands yield (see [1], [4])

Qrf(u,Vu)dz < lim inf QH;(un,Vuy)dr
QNE ot Jane
< liminf QH;(un,Vuy,)dzx
n——»+oo QNE

= hmmfz / 1e(un) @ (un, Vi) dz

< Iiminf/QTf(un,Vun)d:c,

n—-+0o o)

which, together with (2.8), concludes the proof. O

3 Relaxation

The main result of this section is the integral representation of the relaxed energy, precisely

Theorem 3.1. If f : M*N — [0, +00) is a continuous function satisfying
0< f(§) SC+(EP)

for some p>1,C >0, and all £ € MV | and if M is a C! m-dimensional manifold then

Fu) = / Qrf(u,Vu) dz,
Q
where
F(u) := {inf} {limJirnf/ f(Vup)dz : up = u in W”’(Q;M)} .
Un n—+oo fo
Proposition 2.5 entails

F(u) 2 J(u), (3.1)
and a typical procedure to obtain the converse inequality would involve a “localization” of F(u),
i.e., the introduction of the functional

F(u; A) := inf {liminf/ f(Vun)dz s up, = uin WhP(Q; R?), u,(z) € Mae.z € Q} ,
{u.,.} n—oo A

where A € A(Q) and A(2) denotes the class of all open subsets of 2. We would then go on to
showing that F(u;-) is the trace on A(Q?) of a finite Radon measure, absolutely continuous with
respect to the N-dimensional Lebesgue measure £V in RV . Finally, establishing the converse of



(3.1) would be equivalent to proving that the Radon Nikodym derivative of F(u,-) with respect
to LV is bounded above by the tangential quasiconvexification, i.e.,
a7 (u;-)
dcnN

Now, showing that F(u;-) is the trace on .A(Q) of a finite Radon measure is equivalent to estab-
lishing

(z0) < Qrf(u(zo), Vu(zo)) for LN a.e.zo € Q.

(i) (the subadditivity property )
Fu; V) < F(w; V') + F(u; V\ V) (3.2)
where V, V', V" € A(Q), V" cc V' ccV;
(ii) there exists a finite Radon measure v in 2 such that

F(u, A) < v(A) for all A € A(Q).

Using the growth condition imposed on f, (ii) follows immediately by setting
vi=C(1+|Vul)LV|Q.

Here we use the notation p| A to denote the restriction of a Borel measure p to a Borel set A, i.e.,
plA(E) == p(ENA).

The main difficulty lies on part (i), which requires the ability to connect admissible sequences
for V\ V" and for V' across a suitable transition layer on V’\ V" and without increasing the total
limiting energy. Rather than proving this property directly on F(u,-), we introduce the auxiliary
functional

Fo : WHP(Q; M) x A(R) = [0, 4+00)

defined by

Fol(u; A) := inf < liminf [ f(Vugp)dr :u, = vin W'P(Q; M), u,, = wuniformly,
{un} n—+o00 f 4

Un

there exists a compact subset E C M such thatun(z) = u(z) ifz ¢ E }

Our aim is to show that
F(u) = Fo(u; Q) = / Q7 f(u,Vu)dz,
Q

where the last equality for K, (u;) will be obtained following the scheme outlined above for
F(u; Q). The lemma below will be instrumental in the proof of (3.2) for %o (u;-).

Lemma 3.2. Let E C M be a compact subset. There ezist § > 0,C > 0, and a uniformly
continuously differentiable mapping

Q:D5X[0,1]—-)M,

where
Ds = {(y0,71) € M x M : dist(yo, E) < 6, dist(y1,E) <4, |yo—wm| <6},
such that
q)(y()vylao) = Yo, @(y07y171) =W
and

o®
5{(3/0,1/1,13) < Cly1 = yol -



Proof. Cover E with a finite collection of convex open sets U(y;) C R?, where y; € ENU(y;), i=
1,...,k, and consider the C! projections onto M introduced in (2.2) (if necessary, the original
neighborhoods U(y;) are reduced so as to be rendered convex)

Hi : U(y,) — U(y;) nM.
Define
5,‘ (Ui N M) x (U; ﬂM) X [0,1] -U;n M, (yo,¥1,t) — H,‘((l - t)yo + tyl).

It is clear that ii(yo,yl,O) = Yo, and EI'>i(yo, ¥1,1) = y1. Since E is a compact set, we may shrink
slightly the open sets U; so as to keep a covering of E, i.e., we choose §; > 0 such that

ECUL Vi, V= {yeU:dist(y,dU;) > 6},
and, similarly, fix 0 < 8, < 26, verifying

Ecub,wi, W;:={yeV,:dist(y,0V;) > b} .

Let
C) := max {1, IMLillyyse gy 6= 1, ,k}
where 5
ij,‘ = {y e U; :dist(y,BU,-) > —2—} .
Set
— 92
= icE

We claim that if yo,y1 € M are such that dist(yo, E) < 4, dist(y1, E) < 4, and |yo — 1| < 6,
then there exists i € {1,...,k} such that

(yo.%1) € Ui x Us (3.3)
and
:(y0,41,t) — Yo| < Cilyo — w1l- (3.4)
Indeed, if dist(yo, E) < é then we may find
e€ EcC UL, w;

such that |yo —e] < § < d2, |y1 — €] < 28 < §;. Let ¢ € {1,...,k} be such that e € W;. Since
dist(e, 8V;) > &2, we have that yo,y1 € V;, and since dist(yo, 8U;), dist(y;,8U;) > 6; > %2, we
conclude that yo,y: € U;. This proves claim (3.3). Also,

3i(y0,¥1,t) —wo| = |L((1 - t)yo + ty1) — Mi(yo)|
< Cily1 = ol,

and we obtain (3.4).
For i = 1,...,k, let 5, € C$°(U;;[0,1)]) be a cut-off function such that 7; = 1 in U; and
n:(y) = 0 if dist(y, 8U;) < §2/4. Clearly

m(y)=0=>y¢U;, ni(y)>0= B(y,d/4) CU.

Set
i (yo, y1) = M (o) mi(v1),



and define o
&, : (Da N (T x Ul)) x[0,1] 52U NM, & =3,

lS)u]o(pos;e that (yo0,41) € (U1 x U1) N (M x M), |yo — v1] < 8, and 72(yo,y1) > 0. If ¢ € [0,1] then
y (3.4

[®1(yo,y1,t) — yo| < C16 < %2-,
and, since 72(yo) > 0, B (yo,02/4) C U,. We deduce that
®1(y0,y1,t) € Ua.
‘We may then define

3, (DJ N [T x Ty) u (T, x (72)]) x [0,1) = M,

®1(y0,91,1) if 2(yo,v1) =0
(b?(y()vyl)t) =

I, (ﬁx(yo,y1)¢1(yo)yx,t)+ﬁ2(yo,y1)52(yo,y1‘t))

11 (yo.v1)+2(vo.¥1) if  712(y0,91) > 0.

Note that @(yo,y1,0) = yo, ®2(y0,%1,1) = 1, and if
2(yg,yT) = 0% as y§ = yo, yT' = y1, with 71 (yo, 1) > 0,

then
@, (Yo, y7>t) = M2 (P1(v0,41,1)) = 1(%0, 91, 1),

and it follows easily that @, is smooth. In addition
1®2(y0,y1,t) — yo| < C}é
and so, if n3(yo) > 0 then
®2(yo,y1,t) € B (yo,C}6) C B (yo,62/4) C Us;

hence _
I3(0®, + (1 — 6)®3) is well defined

for all 6 € [0,1]. In this manner, recursively we define

P, : (Dén U(ﬁj X U’j)) x [0,1] > M

J<i
by
Qi—l(y(hylat) if T—’i(yO)yl) = Oa
Qi(yo:yht) = _ _ -
I (Btefialtan®) i aiu) >0
In light of (3.3), ® := & fulfills the desired requirements. ]

Remark 3.3. It follows from the construction of ® in the above lemma that

|®(y0,¥1,t) — %ol < Clyo — w1l
for some C > 0, and for all (yo,y1,t) € Ds x [0,1].

Proposition 3.4. If u € WHP(Q; M) then Foo(u;-) is the trace in A(Q) of a finite Radon mea-
sure, absolutely continuous with respect to the N-dimensional Lebesgue measure LN,

10



Proof. The last part of the statement is trivial, since due to the growth condition on f, we have
that

Fo(u; 4) < c/ 1+ |VulP)dz = C(1+ |VulP) LN [Q(A). (3.5)
A

We claim that the subadditivity property holds (see (3.2)), i.e.,
Fou; V) £ Fo(u; V') + Foo(w; VA V) (3.6)

whenever V, V' V" € A(Q), V" cC V' cc V. We may assume that V' has a smooth boundary.
Fix € > 0 and let u, € W1?(Q; M) be such that u,, — u uniformly, u, — u in WP, u, = u if
u(z) ¢ E;, E; C M compact, and

Fo(w; VAV +€> lim f(Vuy,)dz.
n—+4oc V\W

Similarly, let v, € W?(Q; M) be such that v, — u uniformly and weakly in WP v, = u if
u(z) ¢ Eo, E; C M compact, with

Fo(u; V') +€ > nErfm /v f(Vvn)dz.
Without loss of generality, we may assume that (up to a subsequence)
(IVunl® + [Voa )LV (VI \VT) 2 v,
where v is a finite, Radon measure, and we choose 6y, 0 < 6o < dist(V”,8V"), such that
v(S)=0, S:={zeV'\V":dist(z,0V')=do}.
Given j € N we consider a smooth cut-off function n; € Cg°(V";[0,1]) with ||Vn;|| , < Cj and

1 if dist(z,8V") > §g + 1/7,
T 0 i dist(z,8V) < 6o — 1/

Setting E := E,UE; C M, E is compact and we consider § > 0 and a function & : Ds x[0,1] - M
satisfying the properties of Lemma 3.2. Choose n large enough so that

llun - U”Lm(v\W)’ llvn - ulle(V,), llun — Un”Loo(v'\W) <4
If u(z) € E then dist(un(z), E), dist(vy(z), E) < 4, and we set

Wn, 5 (z) = q)(un(z)a Uﬂ(z)7 75 (I))

If u(z) ¢ E, then define
wp, j(z) = u(z).

By Remark 3.3 it follows that
lignli'rln llwn,; = ullpee(yy =0,
and
limsup lim sup/ |Vwn ;| dz
) n Q

< C + limsup limsup/ C(1 + 3P|un — val® + |Vug|? + |[Vua|P) dz < +o0,
. L

J n

11



where
L= {:c EV\T7: 60 — } < dist(z, V") < 8o + l_}.
J

Therefore,

Foolu; V)

IA

liminfliminf/ f(Vw, ;) dz
v

j—=+o0 n—ooo

IA

Foolw; VAV 4+ Foo (u; V') + 26
limsuplimsup/ C(1+ jPlun — val® + |Vunl? + |Vu,|P) dz
L;

j—+oc n—+oo

+

IA

Fool; VAVT) + Foo(u; V') + 2¢ + lim sup v(I;)

j—+oo

Foolt; VAVT) 4+ Foo(u; V') + 2¢

because
lim v(L;)=v(S)=0.
—+o0

J

This proves (3.6).
Now we conclude the proof of Proposition 3.4. Up to the extraction of a subsequence, we
assume that

Feoli0) = lim_ /Q F(Vun) dz,

where
up € WHP(QM),  |lun - u“Loo(Q) =0, un(z) =u(z) if u(z) ¢ E,

and E C M is a compact set. Moreover,
F(Vua) LN 10 2 p,

where 4 is a finite, Radon measure in RV . By (3.5), forall V € A(), e > 0, wemay find C cC V
such that .
Foolu; VAVY) < e.

First we show that
Foolu; V) < (V) for all V e A(Q). (3.7)
In fact, if V' € A(€Q) then

Foo(u; V')

IA

no+oo

p(V),

thus, using (3.5) and given ¢ > 0 choose V" C¢C V' CC V such that
Foo(u; VA V") <,

lim inf / f(Vuy)dz
VI

IA

so that by (3.6) we have

Feolu; V) €+ Foolu; V')
e+ u(V')

€+ u(V)

IN A IA

and (3.7) follows by letting e — 0%.
Conversely, fixing V € A(2), € > 0, choose V; CC V open such that

(v \Ve) <e.

12



Then

e+pu(Ve)

€+ p() —u(Q\Ve)

€+ Foo(u; ) — Foo(u; 2\ Ve)
€+ Foolu; V),

(V)

A

IN IA

where we have used (3.7) and (3.6). O

Proof of Theorem 3.1. By Proposition 2.5 we have
F(u) > / Qrf(u,Vu) dz,
Q
and since, clearly, Foo(u; Q) > F(u), it remains to show that

Foolu; ) < / Qrf(u, Vu) dz,
Q

or, equivalently, and in view of Proposition 3.4,
dFeo (u; )

dcnN
Let z¢ € Q be a Lebesgue point for u, Vu, and such that

%(u; ) (zo) exists and is finite.

(z0) < Q7 f(u(zo), Vu(zo)) for LY ae. zo € Q.

Fix € > 0 and let ¢ € Wy (Q; Ty, (M)) be extended periodically to RY, where yq := u(zo) and
(see Definiton 2.1)

Qrf(u(zo), Vu(zo)) + € > /Q f(Vu(zo) + Vep(z)) d. (3.8)

Let IT : U(yo) — U(yo)NM be a C? projection of an open neighborhood U () of yo onto U (yo)NM
(see (2.2)). Since f is locally uniformly continuous, given £ > 0 we may find B(yo, ) CC U(yo)
and 0 < p < 1 such that
6], 1621 < Coy & =&l <p=>|f(&) - f(&)| <¢, (3.9)
where
Co := (Il (myo.sey + 1) (2+ 21Vul@o)] + 190l 1= (q)) - (3.10)
Choose dg > 6 > 0 such that
¥,y' € B(yo,0) "M = |VII(y) ~ VII(y')| < 6, (3.11)
where 0 < § < 1 has been selected so that
26 (1w (B0 809 + 1) 1+ 1Vu(zo))) (14 1V0ll ) < 5. (3.12)
Let n € C*(R%;[0,1]) be a cut-off function such that

1 in B(0,6/4),
T=1 0 outside B(0,5/2),

13



with ||Vn]| < %. We define
u(z) if |u(z) -yl > 3,
un(z) := ) p
M(wn) if |u(z) —yol < 5,

where 1
wn (@) := u(z) +n(u(2) - yo) > ¢(n2).

Note that u, is well defined for
9 llellz=(q)

n> 5 s

because if |u(z) — yo| < % then
[n(z) — 30l < 3 + 2llellzmie) < 6
n Yo 2" n PlL=(Q) s
and so wy(z) € U(yo). Notice that

llun —ullpw@)y = llun = llpeu-yoi<sy)

IA

1
”H”Wl,w(s,,,(yo,ao));”‘P”oo
- 0

as n — +oc. Therefore,
llun — U”Lw(n) -0 as n— +oo.

In addition, if

N S

lu(z) = yo| <

then
Vun(z) = VII(wn) [VU(JJ) + n(u(z) — yo)V(nz) + %v(m‘) ® Vn(u(z) - yo)VU(x)] :

so that

[Vun(z)] < “VH“Lm(B,,,(yD,ao))
x [IVu(a:o)] + |Vau(z) — Vu(zo)|

1 (3.13)
+IVelLe@ + - I¢llLm () IV7llL= [Vu(2)]]
< VT o0 .50y [2190(2) = TuaCzo)| + 2 (Vo) + [96ll e
provided that
> max {2 lA= gl e g 9l |
We conclude that
|[Vun(z)] < C(1 + |Vu(z) — Vu(zo)| a.e.z €1, (3.14)

and, as a consequence,
{IIVuall o)} is bounded.

Settin
8 1
zpn := Vu(zo)z + E(,o(nx),
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then
[Vzn(z)| < |Vu(zo)| + [|VellL=(q)-

It follows from (3.10) and (3.13) that if |Vu(z) — Vu(zo)| < 1 then

IVun(z)], [Vwn(z)| < Co.

yi=min {1, (V@) +1)~ 5},

and assume that

fu(z) w0l < . [Vu(z) - Vulzo)] < 7.
Then n(u(z) —yo) =1 and

|Vun(z) = Vzu(z)| < |VIH{w,)Vu(z) — Vu(zo)|
+ |VII(wn) Ve(nz) — Ve(nz)|
< |VI(wn) = VI(yo)| [Vu(z)]
+|VI(yo)| [Vu(z) — Vu(zo)|
+ |VI(w,) = VII(yo)| [IVellL=(q)
=5 + 1+ Is.

By (3.11)
I <6(1 + [Vu(zo)l),
while, by definition of 7,

I <

k)

L1

and once again by (3.11) we get
I3 < 6||VellL=(q)-

In view of (3.12) we deduce that
[Vun(z) — Vzu(z)| < p.

We have

dF T -'Foo(u;B(xOJ'))
d[:_N(u’ ~)(1'0) - rl_lf(I)L LN(B(-'EO,r))

1
< liminfliminf ————
S U B oy (T

1
< liminf liminf ———— f(Vu,)dr
r—0+ n—+o00 |B(-TO,7')I B(zo,r)ﬁ{|u(:)-yo]2%} 71)

+ lim sup lim sup

r=0t notoo [B(Z0,T) JB(zo,r)n{ju(z)-vol<§ }A{IVu(2) = Vu(zo) <}

. . 1
+ lim sup lim sup

r—0+ n—o+oo ‘B(ioﬂ‘)l B(zo,r)n{[u(z)—yo|<%}ﬁ{IVu(z)—Vu(Io)IZ'Y}

= J1 +J2+J3-
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(3.15)

(3.16)

(3.17)

f(Vuy,)dz

f(Vu,)dz



By virtue of (3.15), (3.16) and (3.9), we obtain

J2 < lim sup lim sup

_ Vz,)dz + ¢
ro0+ no+oo |B(zo,7)| B(IOs’)f( g

= lim sup lim sup ———— Vu(zy) + Vo(nz)) dz +
P R B Jp(a T M0 ¥ Vo)) dr e (3.18)

= /Qf(Vu(zo) +Vp(y))dy +¢

.<_ QTf(u(xO)’ VU(Io)) + 25’
where we have used (3.8). By (3.14) we have

J1 < limsup 1

C(1+ |Vu(z) -V P\ d
r—0+ |B(Z0:7)| JB(zo,r)n{lu(z)-vo2 £} 1+ [Vu(z) = Vu(zo)[") dz

< limsup ———— Vu(z) — Vu(zo)|” dz 3.19
r—0+ IB(IO’T)I B(::o,r)I ( ) ( O)I ( )
4C 1
+limsup — ———— u(z) — dz =0,
r—0+t o |B(Z’0,T)l B(:co,v-)l ( ) yOl
and, finally,
J; < limsup ————— C(1 + |Vu(z) = Vu(zo)|P) dz
r—0t lB(IO’T)I B(zo,r)N{|Vu(z)—Vu(zo)|>~} ( ' ( ) ( 0)| )
< limsup ——— Vu(zr) — Vu(zo)|? dz 3.20
r—0+ lB(IO’T)I B(.‘zc,,r)I ( ) ( O)I ( )
+ lim sup c_1 |Vu(z) — Vu(ze)| dz =0
r—0+ 7Y ]B(IOJ‘)| B(zo,r) 0 o
The conclusion follows from (3.17), (3.18), (3.19), and (3.20). 0O
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