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Abstract

The integral representation for the relaxation of a class of energy functionals where the
admissible fields are constrained to remain on a C1 m-dimensional manifold M C Rd is
obtained. If / : RdxN -> [0, oo) is a continuous function satisfying 0 < /(£) < C(l + |f|p),
for C > 0, p > 1, and for all £ € RdxN, then

T(u,Q) : = inf jliminf f f(Vun)dx : un-± uin Whp,un{x) 6 M a.e. x € ft,n 6 N>
{un} ^ n->oo y n J

= / QTf(u,Vu)dx,
J

where Q C R^ is open, bounded, and Qrf(yo,0 is the tangential quasiconvexification of /
at yo £ At, f = (f1, ••••>£N)iC belong to the tangent space to M at t/o, i = 1,..., Ar.

Mathematics subject classification (Amer. Math. Soc): 49J45, 49Q20, 49N60, 73T05, 73V30
Keywords : Quasiconvexification, Radon measures, Radon-Nikodym derivative, partition of unity

1 Introduction

Several interesting questions in materials science require a good understanding of constrained
variational problems. Here our motivation to address nonconvex manifold constrained energy
relaxation is originated mainly by questions of equilibria for liquid crystals and magnetostrictive
materials, a common characteristic being the study of problems of the type

min/(w), I(u) := / /(Vu)dx,

where the class of admissible fields is constrained to remain with values on the C°° (d — 1)-
dimensional manifold iS^"1 := {u £ Rd : \u\ = 1}. Here fi C RN is an open, bounded domain,
which represents the reference configuration of a certain material body, and the bulk energy
density / : MdxN —> [0,+oo) is a continuous function satisfying

o < /(«< cu + ie n,
for some C > 0,p > 1, and all f e MdxN, where MdxN denotes the set of all d x N matrices.

Often lack of convexity prevents / to meet the requirements ensuring weak lower semicontinuity
of /(•) (see [1], [2], [14], [15]), and so we introduce the relaxed energy

T{u) := inf (liminf / /(Vwn) dx : un -> uinWl^(Q; Ed),un(x) G M a.e.x G Q \ (1.1)
{un} ^ n->oo y n J

where ,M is a C1 m-dimensional manifold in Rd.



One of the main objectives of relaxation theory is to find the new relaxed (effective) bulk
energy density or, equivalently, to give an integral representation for T{-). In the non-constrained
case, i.e., when Ai = Md, it has been shown by Dacorogna [4] that

T(u)= [ Qf(Vu)dx,
JQ

where the quasiconvex envelope Qf of f is denned by

Qf(O := inf y /(£ + V4>(x))dx : <fi <E W^CQ;^ )} , (1.2)

and Q := (0,l)N . We recall that T(-) is now a W^-sequentially weakly lower semicontinuous
functional, and (see [4])

inf / /(Vu) dx = min / Qf(Vu) dx,
"tc Jn *£C Jn

whenever C is a WliP(il;Rd) weakly compact class of admissible fields.
In this paper we identify the relaxed energy T(-) in (1.1) when u G C are constrained to remain

with values on a C1 m-dimensional manifold M cRd. Precisely, we show that the relaxed energy
in (1.1) can be represented as

(1.3)

where the tangential quasiconvexification Qrf is defined in Section 2 (see Definition 2.1). We
derive the formula (see Proposition 2.2)

with

f(v,t)'.= f(PyO, (1-4)

where Py is the orthogonal projection of Rd onto the tangent space to M at y, Ty(M), Pv£ :=
(Pyf\. . . ,Py£

N), and f* stands for the ith column of the matrix £ G RdxN. In particular, this
concludes (1.3) for globally parametrized constraint manifolds. When M. is the unit sphere,
M = 5 d - 1 , then (1.4) reduces to

for y G *Sd~1, £ = (fx,... , fN), with the column vectors £l being tangent to the unit sphere at the
point y, i = 1, . . . , N (see Example 2.4). This example is relevant in the study of equilibria for
liquid crystals, in ferromagnetism, and for magnetostrictive materials (see [6], [16]). For a wide
literature concerning existence and regularity of (local) minima of energy functional where the
admissible fields are constrained to have values on the sphere, see [3], [11], [12], [5], [13], and the
references therein.

In Proposition 2.5 we prove Wl'p(Q; A1 ̂ sequentially weakly lower semicontinuity of

L
The statement and proof of the relaxation result are presented in Section 3. The main challenge
of the analysis is to ensure the locality of the relaxed energy with respect to the domain of
integration, and this, in turn, allows us to use the blow-up technique to identify the effective
energy density. We will not prove directly the locality property (although it will be an obvious
consequence of the representation (1.3)), instead we will introduce an auxilliary functional "̂oo
where the approximating sequences to a macroscopic field u are required to converge uniformly
to u on a compact subset of the manifold, outside which they must coincide with u. Locality for
Too is proven in Proposition 3.4, and then we go on to showing that, in fact, T and .T^ agree.



2 The Tangential Quasiconvexification
To motivate the introduction of the notion of tangential quasiconvexification, first we derive (1.3)
in the simple case where M may be globally parametrized. Suppose that there exists a single C1

chart $ : M* -> Kd, where M* C Mm is and open set, such that

Further, for simplicity, assume that M* is the entire space Rm. Let u G Wl'p(Sl\M). With
u* := 15r~1 o u we have

and so

/ f(Vu)dx = [
JQ JQ

= [ f{u\Vu*)dx,
JQ

where / : Rm x WnxN -> [0, +oc) is given by

Well known relaxation theorems (see [1], [4]) yield that

T{u) := inf (liminf [ f(u*n,Vu*n) dx : < -* u* in Wrl'p(fi; R m ) l
M I n->°° 7Q J ,2 1)

= I Qf{u\Vu*)dx,
JQ

where (see (1.2)) Qf(y*,C) := QJiy*, *)(£*)• If At* is not the entire space then some additional
technical difficulties occur, and if M is not parametrizable by a single chart then previously known
results fail to apply. Nevertheless, formula (2.1) indicates how the tangential quasiconvexification
QT could be constructed from local charts.

In what follows, let / : MdxN -» [0,+oo) be a Borel measurable function, and let M C Rd

be a C1 m-dimensional manifold, 1 < m < d. The tangent space to M. at t/, where y E A4, is
denoted Ty{M).

Definition 2.1. Let y £ M and f € [Ty(M)]N. The tangential quasiconvexification of / at f
relative to y is defined by

: <p G J .
In order to provide alternative characterizations of the tangential quasiconvexification of / , we

remark that to each point y € M. there corresponds a Cl projection 11̂  of a neighborhood U(y)
of y in Ed onto .M. This projection has the property that for each z G U(y), Uy(z) is the unique
point z' in M C\ U(z) with

Py(z
f — z) = 0 (in particular, z' = z if z G A1),

where, as in (1.4), Py is the orthogonal projection of Rd onto the tangent space Ty{M). The
projection Iiy is constructed via the Implicit Function Theorem. Consider a local chart \P :
M* -* Rd such that M* C Em is an open set and 9(M*) = Mn U(y), where U(y) is an open
neighborhood of y in Rd. Set y* := ^ " ^ y ) , and denote by V#[y*] the derivative of \£ at y*
considered as a linear map V*[y*] : Em -> ry(7W). Since V\£[y*] is an isomorphism of Em onto



the tangent space Ty(M), there is an inverse mapping Ay : Ty(M) -* Em such that Ay o V*[y*]
is the identity on Rm. Applying the Inplicit Function Theorem to the function

G : M* x U(y) -> Rm, (z*,z) H> Ay(Py(¥(z*) - z)),

we may find a neighborhood U(y) of y, with £/(y) C J7(y), and a unique (C1) function T : [7(y) ->
^M* such that

G(T(z),z) = 0 forallzGC/(y).

We set

Hy(z) := *(T(z)). (2.2)

We observe that
Py(ny(z) - 2) = 0 and Vny(y) = Py.

Using the above notation, we provide alternative characterizations for Qrf-

Proposition 2.2. For any y e M and f 6 [Ty(A1)]N we have

(i)

QTf{v,£) = Qf(v\V), (2.3)

r/;/iere

for all rf € Mrx A r;

(ii)

QTf(v,t) = Qf(v,Z), (2-4)

w/iere

y^ := {PyC,... , Py^N) and f stands /or fftc i th column 0/ ifte motrrr $ €

Froo/. (i) We have

Q/V.D = inf {y / V , r + V (̂x))dx : * €

= inf I f /(V*[y']r + Vy[y']V<t>(x))dx : <A G W^iQ;*")} (2.5)

= inf | y / « + V*[y']V0(i))dx : <A €

Therefore, if 0 € W0
llOO(Q; Km) then

and we obtain
QTf(y,O<Qf(y*,n-

Conversely, if <p € ^ ^ ( Q j T ^ M ) ) then



Qf(y',C)<QTf(y,O-

then ip € W^°°(Q;Rd) and Pv<p = <p, so that

and we conclude that

(ii) If <p € Wj '

and thus

Conversely, if <f> e W0
ll00(Q; Ed), then p := Py o 0 € W0

llOO(Q; T y (X)) and

hence

•
Remark 2.3 (A formula exploiting the normal field). Let M be a (TV-l)-dimensional C1

manifold and y G M. If v(y) is a normal vector to M at y, then the expression y »-> v(y) 0 i/(y)
does not depend on the orientation of M. and clearly

Pyz = {Uxd - v{y) ® ̂ (2/)) z for all 2 G Rd and y G A^.

Hence in the notation of Proposition 2.2 (ii),

Example 2.4 (The Unit Sphere). Let M = 5 d - 1 := {x € Rd : |x| = 1}, so here d = N,
m = d-l. We claim that if 2/ € S^"1 and f € [ ^ ( ^ " ^ j ^ then

where

This may be seen directly from Remark 2.3. Alternatively, we use Proposition 2.2 to derive this
formula in terms of paxametrization charts for M. Let R be a rotation such that Red = y, where
{ei, e2,... , e<*} stands for the canonical basis of Kd, and consider the chart

By (2.5) we have that

Qr / (y ,O=inf

where

: <j> € < ' °° (Q;
1)} , (2.6)

V*(0) = RH, with H :=

• 0 \

0 0 ) dx(d-l)

Given 0 € ^ ^"1 ), define 0 € W^°°(Q; Rd) by



Then
f + V*(O)V0(z) = (I - y

because £ € [Ty(<Sd-1)]Ar, so (j/ ® y)f = 0, and

(I - y ® y)V<£ = i?(I - ed ® ed)R
TV4>

= RHHTRTV4>
k ' ;

Conversely, given 0 e W0
1'oo(Q;Rd) we set

4> = HTRT4>

so that 4> € M/
0

1'oc(Q;R<i-1), and it can be seen easily that (2.7) still holds. This, together with
(2.6), implies that

QTf(y,0 = in

Proposition 2.5 (Lower Semicontinuity). Let f : MdxN -»> [0,+00) be a continuous function
such that

for some C> 0 and all f G MdxN. Let

J(u) := / QTf{u,Vu)dx, u G W1>:

Then J(-) is W1>p(n; A1)- sequentially weakly lower semicontinuous.

Proof. For all y £ M let IIy : U(y) -> t/(y) H A1 be the C1 projection onto Â t introduced in
(2.2). Let {r)}r)eg be a partition of unity subordinate to {U{y) : 2/ E M} (see [17]), so that

(i) 77 > 0 , 77 €C0~(Rd ; [0,1]);

(ii) for every rj € Q there exists y € M such that supp 77 C J7(y);

(iii) if E C .M is compact then supp 77 n E ^ 0 for only finitely many r) £ Q\

Consider u ,u n G W l l P (n; -M) such that u n -* u G W l j P , and fix e > 0. By Lebesgue's Monotone
Convergence Theorem, we may find a compact set E C X such that

/ Qrf{u,Vu)dx < / QTf(u,Vu)dx + e. (2.8)

By (iii) and (iv) above, we may choose fcGN such that

k

XE(V) = X^ Vi^XEiy), where T̂  G 5,

and so, using (ii), with



we obtain

f QTf{u,Vu)dx = T [ ViMQTf(u,Vu)dx
JnnE ~[ JnnE

k C= Y, /
~[Jn
Y, / QHx{u,Vu)dx,
~[JnnE

where, according to Definition 2.1 and Remark 2.2 (iii),

Well known lower semicontinuity results for Caratheodory integrands yield (see [1], [4])

r k r
/ QTf(u,Vu)dx < V liminf / QHi{un,Vun)dx

JnnE ~^ n-++oo j Q n E

k r
< liminfV / QHi(un,Vun)dx

n-*+°° f^ JnnE
k .

= limmfV" / r)i(un)QTf(un,\7un)dx
n->+°° ~[ JnnE

< liminf / QTf{un,Vun)dx,
n->+°° Jn

which, together with (2.8), concludes the proof. •

3 Relaxation

The main result of this section is the integral representation of the relaxed energy, precisely

Theorem 3.1 . / / / : MdxJV —>> [0,+oo) is a continuous function satisfying

o < no < c{\ + if i")

for some p > 1, C > 0, and all £ € Mdx7V, and if M is a C1 m-dimensional manifold then

?{u)= f QTf(u,Vu)dx,
Jn

where
T(u) := inf (liminf / f(Vun)dx : un -^ u in W^p(n;M)\ .

{un} {n->+°cjQ J
Proposition 2.5 entails

Hu) > J(u), (3.1)

and a typical procedure to obtain the converse inequality would involve a "localization" of T(u),
i.e., the introduction of the functional

T{u\A):= inf {liminf / /(Vun) dx : un -± uin Wl>p(fl; Ed),un(x) G M a.e.x G Q\ ,
{un} I n-+oo JA )

where A G «4(fi) and A(fl) denotes the class of all open subsets of Q. We would then go on to
showing that T(u\ •) is the trace on A(Q) of a finite Radon measure, absolutely continuous with
respect to the TV-dimensional Lebesgue measure CN in RN. Finally, establishing the converse of



(3.1) would be equivalent to proving that the Radon Nikodym derivative of T(u, •) with respect
to CN is bounded above by the tangential quasiconvexification, i.e.,

< QT/ (U(X 0 ) , Vu(xo)) for CN a.e.x0 G ft.

Now, showing that T(u\ •) is the trace on *4(ft) of a finite Radon measure is equivalent to estab-
lishing

(i) (the subadditivity property)

T(u; V) < T(u\ V) + jr(iz; V \ V77) (3.2)

where V,V',V" <E A{il), V" CC V CC V;

(ii) there exists a finite Radon measure v in ft such that

T{u,A) < v{A) for all A £ A{Q).

Using the growth condition imposed on / , (ii) follows immediately by setting

Here we use the notation fi[A to denote the restriction of a Borel measure /x to a Borel set A, i.e.,

f
The main difficulty lies on part (i), which requires the ability to connect admissible sequences

for V \ V" and for V across a suitable transition layer on V \ V" and without increasing the total
limiting energy. Rather than proving this property directly on T{u, •), we introduce the auxiliary
functional

T^ : Wl>p{fli M) x A(Sl) -> [0, +oo)
defined by

Jbc(u; A) := inf < liminf / /(Vun)dx : un -^ uin VF1)P(ft; M),un -> I/uniformly,
{un} (̂  n->+oojA

there exists a compact subset E C M such that un(x) = u(x) if x ^ E >.

Our aim is to show that

°° ' Jn
where the last equality for ^o(u;ft) will be obtained following the scheme outlined above for
T(u; ft). The lemma below will be instrumental in the proof of (3.2) for ^o(ix; •).

Lemma 3.2. Let E C M be a compact subset. There exist 6 > 0,C > 0, and a uniformly
continuously differentiable mapping

where

Ds = {(yo,yi) eMx M: dist(y0, JE) < 5, dist(yi, JS) < <J, \y0 - yi| < <*} ,

= y0,

,yi,t) < C|yi - y o | .



Proof. Cover E with a finite collection of convex open sets U(yi) C Rd, where 2/i € EDU(yi), i =
1, . . . , k, and consider the C1 projections onto M introduced in (2.2) (if necessary, the original
neighborhoods U(yi) are reduced so as to be rendered convex)

Ui:Ufa)^Ufa)nM.

Define

3>t : (U{ DM) x (Ui DM) x [0,1] -> Ui DM, (j/o,2/i,^) *-* n*((l — *)yo + *yi)-

It is clear that 3>i(2/o,2/i,O) = 2/0, and $1(2/0,2/1,1) = 2/i- Since E is a compact set, we may shrink
slightly the open sets Ui so as to keep a covering of E, i.e., we choose Si > 0 such that

and, similarly, fix 0 < S2 < 2Si verifying

E C U*=1Wt, Wt := {2/ € Vi : dist(2/,5T/
i) > <52} .

Ci := max < 1, l i n i l l ^ i ^^^ : i = 1 , . . . , i

where

Set

We claim that if 2/0,2/1 € JM are such that dist(yo,E) < 8, dist(?/i,£') < 6, and |z/o — 2/1I < ̂ ,
then there exists i e { 1 , . . . , A;} such that

(2/o,2/i) £UtxUi (3.3)

and

$i(2/o,2/i,*) — 2/o| < C1I2/0 -2/i |- (3.4)

Indeed, if dist(2/o, E) < S then we may find

such that I2/0 - e| < S < 62, I2/1 - e| < 25 < 52- Let i € {1, . . . , * } be such that e e W{. Since
dist(e,9Fj) > <52, we have that 2/0,2/1 € V{, and since dist(2/o,<9£/i),dist(2/i,9£/i) > Si > 4f, we
conclude that 2/0,2/1 € C/». This proves claim (3.3). Also,

and we obtain (3.4).
For 1" = 1 , . . . ,fc, let 7/i G Co°(Ui; [0,1]) be a cut-off function such that rfc = 1 in C/» and

»7i(y) = 0 if dist(y, dUi) < S2/4. Clearly

0=>y<t Ui, f)i(y) >0=>B(y,<J2/4) C t/<.

Set



and define

Suppose that (yo,yi) € (C7i x Ui)n(M x X ) , |y0 — 2/i| < <$, and r?2(yo,y 1) > 0. If t € [0,1] then
by (3.4)

l*i(yo,!/i,*)-yol<Ci$< j ,

and, since 772(2/0) > 0, B (3/0, $2/4) C I/2. We deduce that

$1(2/0,2/1,*) € C/2.

We may then define

$2 : (DS n [(LTi x t/x) U (E72 x tf2)]) x [0,1] -> M,

{ $1(2/0,2/1,*) if 772(2/0,2/1) = 0

TTo ( 3i(yo»yi)*i(yo,yi,*)+fo(yo»Pi)*2(yoiyi»O \ -r - / x > Q
112 V *?i(vo,yi)+*h(yo.»i) J i r ^2iyo,!/iJ > U.

Note tha t $2(2/0,2/1,0) = 2/o, $2(2/0,2/1* 1) = ! / i , and if

fh(yo,y?) -> 0 + as 2/0 -> yo, yl1 -» yi, with *Ji(yo,l/i) > 0,

then
ycyi,*)) = $i(yo,yi,t),

and it follows easily that $2 is smooth. In addition

l$2(yo,yi,*)-yo| <C\5

and so, if 773 (y0) > 0 then

$2(yo,yi,*) e B {yo,C$8) cB(y(h62/4) c t/3;

hence
+ (1 - 0)$a) is well defined

for all 6 e [0,1]. In this manner, recursively we define

( H {JiUj x ET,.)) x [0,1] -+ M

by

( $i-i(yo,yi,*) if T7i(yo,yi) = 0,

In light of (3.3), $ := $fc fulfills the desired requirements. •

Remark 3.3. It follows from the construction of $ in the above lemma that

l$(yo,yi,*)-yol < C | y o - y i |

for some C > 0, and for all (yo,yi,*) € As x [0,1].

Proposition 3.4. If u £ Wl*(Vl',M) then Too{u\ •) is the trace in A(tl) of a finite Radon mea-
sure, absolutely continuous with respect to the N-dimensional Lebesgue measure CN.

10



Proof. The last part of the statement is trivial, since due to the growth condition on / , we have
that

Too{u\A)<C ((1 + \Vu\p)dx = C(l + \Vu\p)CN\Sl{A). (3.5)
JA

We claim that the subadditivity property holds (see (3.2)), i.e.,

Too(u; V) < Too{u] V) + Too{u\ V \ V77) (3.6)

whenever V,V',V" G -4(fi), V" CC V CC V. We may assume that V has a smooth boundary.
Fix e > 0 and let itn G W1>p(n;.M) be such that un -»• u uniformly, un —̂  u in T^1>p, un = u if
it(x) £ Ei, Ei C M compact, and

~~ l i m / _f(Vun)dx.

Similarly, let vn e WlfP(Q;M) be such that vn -> u uniformly and weakly in WlyP, vn = u if
u[x) £ E2, E2 C M compact, with

Too(u\V')+e> lim f f(Vvn)dx.
TI-+ + OC Jy,

Without loss of generality, we may assume that (up to a subsequence)

(|Vun|
p + \VvnncN[(V'\W) - v,

where v is a finite, Radon measure, and we choose <5o> 0 < So < dist(T///,9F/), such that

i/(5) = 0, 5 := {x € V \ F7 7 : dist(x,9Vr/) = eJ0} .

Given j G N we consider a smooth cut-off function ^ G (^^(V'7; [0,1]) with HV^H^ < Cj and

_ f 1 if dist(x,5F /)>^o + l / j ,

^ ~ { 0 if dist(x,9F/) < Jo - 1/;.

Setting E := Ei UE2 C M, Eis compact and we consider S > 0 and a function $ : D$ x [0,1] -> .M
satisfying the properties of Lemma 3.2. Choose n large enough so that

| |un - w||Loc(V\v77), ||un - u||Lco (V/ ), \\un - vn\\Loo{v,^y7T) < 6.

If u(x) € JE; then dist(un(z),£), dist(i;n(x), E) < 6, and we set

wnJ(x) := $(wn(x),i;n(x),^(a;)).

If u(x) ̂  £", then define
wnJ(x) := u(x).

By Remark 3.3 it follows that

lim lim ||iunfJ- - u\\Loo{v) = 0,

and

lim sup lim sup / \Vwnj\
p dx

j n JQ

< C + limsup lim sup / C(l + jp\un - vn\
p + |Vun|p -f \Vvn\

p) dx < +oc,
J

11



where

Lj•,:= lx € V \ V77: So - \ < dist(z,<9V) < 60 + i \ .
I 3 3 J

Therefore,

liminfliminf / f{Vwnj)dx
j-H-oo n-xx) Jy '•*

limsuplimsup / C(l + j p | u n - vn|p + |Vun|p + \Vvn\
p)dx

^oo(u; V VF77) + J"oo(u; V) + 2e + lim sup z/(IJ)
j4

because
lim i/(Z") = i/(5) = 0.

j—>+oc

This proves (3.6).
Now we conclude the proof of Proposition 3.4. Up to the extraction of a subsequence, we

assume that
Too(u]Q)= lim / f{Vun)dx,

where

and E C M is a compact set. Moreover,

un e W1*^ M), \\un - u\\Loo{Q) -> 0, un(x) = u(x) if u(x) i E,

where /i is a finite, Radon measure in E^. By (3.5), for all V € A(Sl), e > 0, we may find C C C V
such that

?oo{u;V \W) < e.

First we show that

for all V € ^ (^ ) . (3.7)

In fact, if V € >l(n) then

^oo(w;V) < liminf /" f(Vun)dx
— n-H-oo y v ,

<

thus, using (3.5) and given e > 0 choose V" CC V CC V such that

^oo(u;^\T777)<£,

so that by (3.6) we have

^oo(u;V) < e + Tco(M;V')
< e + F7

and (3.7) follows by letting e -*• 0+.
Conversely, fixing V e >l(n), e > 0, choose V£CCV open such that

12



Then

where we have used (3.7) and (3.6). •

Proof of Theorem 3.1. By Proposition 2.5 we have

F(u)> [ QTf(u,Vu)dx,
Jn

and since, clearly, !Foo(u; ft) > T{u), it remains to show that

^oc(^;ft)< I QTf(u,Vu)dx,
Jn

or, equivalently, and in view of Proposition 3.4,

^ ){X) Qf(u(x)^u(x)) for CN{Xo) - QTf(u(xo)^u(xo)) for CN a.e. x0 € ft.

Let x0 e ft be a Lebesgue point for u, Vu, and such that

(u; ft)(xo) exists and is finite.

Fix e > 0 and let y> € ^7
o
1'°C(Q;^yo('A^)) b e extended periodically to RN, where y0 := u(x0) and

(see Definiton 2.1)

QTf(u(x0), Vu(x0)) + £ > /" /(Vu(xo) + V^(x)) dx. (3.8)

Let IT : U(yo) —> ^7(2/o)nA1 be a C1 projection of an open neighborhood U(y0) ofy0 onto
(see (2.2)). Since / is locally uniformly continuous, given e > 0 we may find B(yo,6o) CC U(yo)
and 0 < p < 1 such that

161,161 < C2, 16 - 61 < P => 1/(6) - /(&)l < £, (3.9)

where

^2 := (l|n| | I» (B(yOi io ) ) + l ) (2 + 2 |Vu(xo)| + I|V^||L»(Q)) . (3.10)

Choose Jo > <5 > 0 such that

y,y' e B(yo,6) D M = • |Vn(y) - Vn(y')l < ^ (3.11)

where 0 < 6 < 1 has been selected so that

20 (||Vn||Loo(B(lW)i,o)) + l ) (1 + |Vu(xo)|) ( l + l|V^||Loo(Q)) < \• (3.12)

Let TJ € C°°(Rd; [0,1]) be a cut-off function such that

_ f 1 in B(0,<S/4),
7 / ~ \ 0 outside B(0,<5/2),

13



with < f. We define

un(x) :=
u(x) if |«(x)-i/0| > f,
U(wn) if \u(x)-yo\ < § ,

where
wn(x) := u(x) + T?(U(X) - yo)-<p(nx).

TX

Note that un is well defined for

n > 2

because if |u(i) — yo| < f then

and so ifn(^) ^ U(yo). Notice that

Wi,oo (Bm ( y o ,*0))- |Mloo- |

as n —>• H-oo. Therefore,

In addition, if

then

un-u||Lco (n)->0 as n -> +oc.

n(x) = VII(iun)

so that

|VuB(a;)| <

provided that

We conclude that

- Vu(io)|

/I

[2 |Vu(x) - V«(a:o)| + 2 |

IVun(x)| < C(l + |Vu(x) - Vu(xo)| a. e. x e Q,

- s/o)Vu(z)j ,

(3.13)

(3.14)

and, as a consequence,

Setting

{l|Vun | |LP(n ) | is bounded.

zn := n

14



then

[Vzn(x)| < r

It follows from (3.10) and (3.13) that if |Vu(x) - Vu(xo)| < 1 then

|Vun(x)|,|Vn;n(x)|<C2. (3.15)

Let

7 := min < 1,

and assume that

\u(x) - t/o| < j , |Vtx(x) - Vu(xo)| < 7-

Then r){u(x) — yo) = l and

|Vun(x) - Vzn(x)| < \Vn(wn)Vu(x) - Vu{xo)\

) - V<p(nx)\

<|Vn(i«n)-Vn(yo)||Vu(x)|

+ |Vn(yo)||Vu(x)-Vu(xo)|

+ |Vn(u;n) - Vn(j/0)|

=:7i +I2+I3-

By (3.11)

wThile, by definition of 7,

and once again by (3.11) we get

h <

In view of (3.12) we deduce that

\Vun{x)-Vzn{x)\ <p. (3.16)

We have

r"o+ C»(B(xo,r))

< lim inf lim inf —— — / / ( V u n ) dx
r_,0+ n-^+oo \&(Xo,r)\ JB(xG,r)B(xo,r)

< lim inf lim inf — - / f(Vun)dx (3.17)
r_,0+ n-̂ +cx) |#(xO , r ) | yB(x0,r)n{|u(x)-y0|>|}

-I- lim sup lim sup •

-f lim sup lim sup -rr—; TT / / (Vu n )dx

r_,0+ n->+oo \B(XOjr)\ yB(xo,r)n{|u(x)-yo|<|}n{|Vu(x)-Vti(xo)|>7}

= : J\ H-1/2 -I- »/3-
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By virtue of (3.15), (3.16) and (3.9), we obtain

J2 < lim sup lim sup — / / (Vz n ) dx + e
r_>0+ n-++oo \n{XQ,r)\ JB(xo,r)

= lim sup lim sup — / /(Vu(ar0) + V<p(nx)) dx + e
r_>0+ n->+oo \t$\Xo,r)\ J B{xQ,r) (3.18)

where we have used (3.8). By (3.14) we have

Ji < lim sup * / C(l + |Vu(x)-Vu(xo)|p)dx
r_>o+ |/Jia:o,r)| yB(a;o,r)n{|ti(x)-vo|>|}

< lim sup ° [ |Vu(x)-Vu(xo)|pdx (3.19)
r_v0+ \B(XQ,r)\ JB{xo,r)

AC 1 f . , ,
-hhmsup — — ; / |u(x)-y o | dx = 0,

,.-^0+ <> |-D(X0,r)| JB(xo,r)

and, finally,

J3 < lim sup } f C(l + |Vu(x)-Vix(xo)|p)dx
r->0+ I-O^O^JI 7B(io,r)n{|Vtx(i)-Vu(xo)!>7}

< lim sup C / |Vu(x)-Vu(xo)|pdx (3.20)

+ lim s u p - * /" |Vu(x)-Vu(xo) |dx = O.

The conclusion follows from (3.17), (3.18), (3.19), and (3.20). •
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