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ABSTRACT

Mctastable systems pose significant problems in both analysis and simulation. We discuss here the
evolution of microstructure in a shape-memory alloy where energetic contributions from disparate
scales play determining roles. This is a challenge for modelling since the finest length scales
cannot be 'seen* at macroscopic level. We then provide a mechanism for kinetics that gives a
different notion metastability.

INTRODUCTION

We address here modelling the evolution of microstructure in a mosaic of twinned and
compound twinned lamellar structures in shape memory CuAINi, Abeyartne, Chu and James [1J.
In this system there is an alternation between two martensitic variants under loading in which the
material selects a succession of fine phase intermediate configurations. At each value of the load,
the system is in equilibrium save for small regions near mosaic interface, and, during the process,
one variant grows at the expense of the other. Although the entire system has the appearance of a
succession of equilibria, there is hysteresis in the macroscopic volume fractions of the variants.
Thus the system traverses a succession of metastable states. The origin of this behavior is the
small amount of energy stored in the mosaic interfaces. These are, however, spatially localized.
So this system exhibits metastable behavior across disparate length scales and is an excellent
candidate for methods of multiscale analysis. This is a report on joint work with Richard Jordan
and Felix Otto, [2],[3],[4J,[5].

A typical problem of multiscaJe analysis proceeds by the introduction of a parameter in a
continuum or phenomenological description of the system under discussion and subsequent
passage to the limit as this parameter tends to zero or to infinity. Or, as a sort of inverse to this
approach, the behavior of the system at a small scale may be assumed and a limit process
analogous to an infinite parallel circuit attempted to obtain an effective macroscopic description,
[6]. These methods are very useful when the physics of the system is in the realm of continuum
mechanics at all the scales and, importantly, when a clear idea of the energy of the system is
available for its complete operating range. For example the effective stress tensor of a
polycrystalline material may be obtained by such considerations, but these methods begin to fail
when properties involving the grain boundaries are sought. A chemical system involving huge
numbers of particles behaving in some random fashion, according to a Langevin Equation, may be
understood at macroscopic level by means of its distribution function, the solution of a Fokker-
Planck Equation. In this case, the nature of the physics itself has changed, since concern is now
directed to evolution of the distribution function. Even here, however, there is little hint about the
appropriate dynamics of the system at the macroscopic scale, since knowledge of the state of the
system at each time does not of itself provide a way to identify nearby states.

Here we wish to consider a somewhat different approach, involving several coarse graining
mechanisms, and seek to shed some insight on ( l j . The principal device we employ is a
representation of local spatial averages of a configuration in terms of a distribution, a measure

called the Young Measure [7],[8]. Although a configuration of a nonlinear material may appear
macroscopically as nearly homogeneous, it may consist on interrogation to have complex
microstructure, for example of arrangements of fine phase laminates or defect structures. The
Young Measure is especially useful in this situation, cf. [8] and [7],[6] for particular applications.
Our interpretation of the kinetics of the system will be in terms of how this measure changes and
leads to a new interpretation of its metastability.

I. CONSTRAINED THEORY AND COARSE GRAINING

The macroscopic energy of a configuration of the material subjected to a dead load is given by

E = / (W(Vy) - S V y ) dx , ( 1 1 )

where y: Q -» Rn (n = 2 or 3) is the deformation, W is the Helmholtz free energy, and S is
the load. The key feature of this energy W is that the symmetries of the lattice imply it has
potential wells: W is minimized on a set of copies of SO(3), e.g., £ = SO(3)U, u ...

uSO(3)UN , where the Uk are explicit matrices that emerge from theory, [7],[9],[IO].
Equilibrium configurations are sought as minimizers of (1.1). Neglected at this scale, for example,
are surface energies, higher gradients, or energies of internal boundaries. The energy is lumpy and
rough owing to the complex crystallography of the material. When equilibria are sought,
minimizing sequences tend to populate several wells leading to highly oscillatory sequences that
converge only weakly.

We turn our attention to the distribution of this population of values, which gives rise to the
Young measure. In this context, our measure is a family v = ( v, )„ , Q of probability measures
generated by a sequence of deformations

* Vy in L~, such that for any continuous f,

L", f (x) = J f(A)dv,(A) in fl a.c, (1.2)
M

where M denotes matrices. We may interpret yk as a snapshot of the deformation at scale
proportional to 1/k. The energy and deformation gradient of a configuration subjected to a
constant dead load S now has the expression

E = f J (W(A) - S-A)dvl(A) and Vy(x) = J Adv,(A). (1.3)
"V M M

The constrained theory consists in identifying a set of admissible measures for the system,
typically a subset of v with supp v c L. In CuAINi there are six potential wells comprising
this set, they are described in [1],[7],[9]. In our model problem, a further constraint arises by
optimizing E over lamellar structures which populate two wells, say SO(3)U, and SO(3)U2

subject to a biaxial load S with Se3 = 0. The wells U, and U, have e3 as a common axis
perpendicular to the plane of the sample, so from this point on, we think of our system as being
two dimensional. The result of this process is that we may restrict our attention to a one parameter
family and homogeneous deformation gradient

SO(3)Ut, (14 )



Fft) = (1 - 5)M,ft) + £M2ft), M2ft) - M.ft) = aft) <8> n, I n I = I, (1.5)

and subject to the fine phase coherence property (rank-one condition) with respect to the second
laminate system where it encounters U2,

Fft) = Ua (1 + bf t ) ® mft ) ) , I mf t ) 1 = 1 .

The energy per unit area at £ is given by a function

E h * * = Vn»cro(^S) = - J S-AdvB(A) = - F f t ) S , 0

(1.6)

(1.7)

which is nearly linear, or even concave, [1]. This is the macroscopic contribution, but note that
owing to the optimization process, which involves varying over rotations, it is a function of the
Young measure through the volume fraction £.

The second and third contributions to the energy cannot be seen by the average bulk deformation
Fft) because they are regulated by finer scales. However, we can express them in terms of the
Young Measure. Here we summarize our results. In the mesoscale regime, there is some stress
near the interface between the fine phase laminate given by Fft) and U2, say x • mft) = 0 ,
because it is fine phase coherent in the sense that (1.6) holds, but it is not exactly coherent in the
sense that M,ft) - U2 * rank 1 and M2ft) - U2 * rank 1. This term may be written, after
some calculation for an appropriate f in (1.2),

(1.8)

The contributions (1.7) and (1.8) are derived in [1].

Fine scale oscillations are implicated in the dynamical behavior of the sample and this will

account for the "wiggles" in the analysis of [I J. We suggest that their origin arises from small

distortions of the lattice near the interface x • mft) = 0. By idealizing this situation as a regular

lattice to one side of a line, cut at a prescribed slope a, we may obtain a crude notion of the nature

of this contribution. (1.6) implies that a is proportional to ^. In general, the format of

embedded atom potentials may be applied, [11],[12]. We obtain here, where 8 and h are lattice

parameters, 1/K is a scale factor, and ( ) denotes a periodic function of period 1,

Z
For a special choice of *F and f.

(1.9)

) . c - 1/K, (1.10)

which is the ansatz of [1 J. We thus arrive at an idealized effective energy per unit interface length
of the form

£

2. EVOLUTION OF HIE MICROSTRUCTURE AND FOKKER-PLANCK DYNAMICS

(1.11)

The sample is subjected to a loading program S = S(t). The most straight forward assumption
about its motion is the driving force equation

_ z = _n —XL t > 0. (2.1)
dt ^

(We take \i = 1 for convenience in the sequel.) To solve this equation iteratively, e.g., by

backward-Euler, given £(k~l\ determine £(k> the solution of

which is the same as asking for the ^ such that

- f t -
2x

2 + V((£) = m i n ( 2 2 )

The above is an expression of competition between the distance of the nearby states £(k~'\ ^(k) and

the energy yrft (k)). This suggests a second coarse graining in terms of the distributions of the

volume fractions. Given a distribution p ( k l ) of^ ( k l ) we should seek a distribution p(k) of^(k) in

such a way that

+ a J R p log p d£ = min (2.3),— J J (£ - Tl)2 ^ R

where p is a joint distribution of p ( k l ) and p and the last term represents a configurational
entropy. The first term above is related to the Wasserstein metric and defines a weak toplogy on
the distributions f(£) d£. The second and third terms represent the free energy of the system.
This determines the kinetics and from it we understand metastability as a competition between
distance and energy. We may calculate and Euler Equation for this process and it turns out that as
T —> 0, the sequence of solutions (p (k)) converges to the solution of the Fokker-Planck Equation

? = ° I T + Jr<v.'P). —<*<-.»>«. (2-4)
at dCy oC,

We may resolve the path of the motion by computing the solution of (2.4), either analytically or by
a numerical technique of our choice.

3. SAMPLE SIMULATION: A CREEP TEST

Consider a creep test. Here the material is held in a position, loaded, and then released. Set

and ¥.(*>= j « - ^ > (3.1)



In the creep test, we solve (2.4) for y and \j/f with p 0 concentrated near J; = 0. We used an
explicit finite difference scheme to calculate the solution. The averages

>, = .Upland <U = (3.2)

Fig. I. The results of a creep test, showing the mean values ( £ >„ upper curve,
and < ̂  )„ lower curve. < f, >, has reached its stationary state by t = 0.45.

Fig. 2. Final distributions p , , on the left, and p, on the right at t = I
of (2.4).

should display the quite different behavior ( £ ), should saturate near its stationary value -

quickly while ( ^ ), should advance slowly. This is indeed the case in the example shown in

Figure 1, (which was computed, however, with a scale for £ whose saturation value is 6). The

densities p and p t at the end of the simulation are shown in Figure 2. p in fact is essentially the
Gibbs distribution. Hence, we believe that Fokker-Planck dynamics can describe metastable
systems governed by competition in weak topologies. There are, of course, other dynamical
mechanisms that describe other situations.

CONCLUSIONS

We have reviewed a metastable system characterized by a reversible transforming microstnicture
with

(a) a hcirarchy of scales analysis of energetics based on a coarse graining that employs statistics
of the deformation (the Young Measure or other device) and

(b) the interpretation of metastable evolution in terms of a competition between energy and
nearness of successive distributions in terms of a second coarse graining, resulting in a Fokker-
Planck type equation.
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