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APPROXIMATION OF LIQUID CRYSTAL FLOWS

CHUN LIU* AND NOEL J. WALKINGTON*

Abstract . The numerical solution of the flow of a liquid crystal governed by a particular
instance of the Ericksen-Leslie equations is considered. Convergence of finite element approximations
is established under appropriate regularity hypotheses, and numerical experiments exhibiting the
interaction of singularities and the coupling of the director and momentum equations are presented.
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1. Introduction. In this paper, we study the numerical simulation of the fol-
lowing system:

iit + (u • V)u - v divD(u) + Vp - A div(Vd ® Vd) = 0

(1.1) V-t i = 0,

</t + ( t i - V ) d - ? ( A d - / ( < * ) ) = 0

with initial and boundary conditions

u\t=o = uo, d\i=o = do, u\an = 0, d|an = d0

where u, d : Q x 3?+ —> 3f2 and Q C ft2. In the above, D(u) = (l/2)(Vu + (Vti)T) is
the stretching tensor,

and /(d) = (l/e2)( |d|2 — l)d is a penalty function used to approximate the constraint
\d\ = 1 and is the gradient of the scalar valued function F(d) = (l/4e2)(|d|2 - I)2 .

The above system wTas motivated by Ericksen-Leslie equations describing the flow of
nematic liquid crystals. A nematic flow behaves like a regular liquid with molecules of
similar size; however, it displays anisotropic properties due to the molecule alignment,
which is usually described by the local director field n.

In many experiments and theoretical works, slow motion of the liquid crystal is as-
sumed and the behavior of the director field n is studied in the absence of the velocity
fields. Under this assumption, there are many interesting results on the distribution
and motion of defects [8, 9, 12, 17, 19]. The main idea is to minimize the Oseen-Frank
energy associated with the director field:

E(n) = Ki\divn\2 + K2{n • curln)2 + K3(n x curln)2.
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Note that when the constants are equal, this energy becomes the Dirichlet energy
if|Vn|2 plus a constant term which can be determined by the "strong anchoring con-
dition" (Dirichlet boundary conditions) of n on the boundary. From the mathematical
point of view, this is closely related to the theory of the calculus of variations and
especially work on harmonic maps [5, 12].

In many situations the flow velocity does disturb the alignment of the molecule. More
importantly the converse is also true; that is, a change in the alignment will induce
velocity. This implies that, if the initial fluid velocity is zero, the evolution of the
director field will induce a velocity, and this velocity will in turn affect the evolution
of the director field. In this process, we can not assume that the velocity field will
remain small.

The Ericksen-Leslie system was derived from the macroscopic point of view and in-
volves many coupling terms between the two vector fields [6, 7, 16, 15]. In [19], Lin
introduced the simplified system (1.1) consisting of a Navier-Stokes type of equation
coupled with a gradient flow equation similar to that of of harmonic maps. This sys-
tem retains some important properties of the original Ericksen-Leslie equations and
at the same time is amenable to rigorous analysis.

The first equation in system (1.1) is the equation for the conservation of linear momen-
tum. It contains the usual Navier-Stokes equation describing the flow of an isotropic
fluid and the term Xdiv(Vd ® W) which is anisotropic. The second equation rep-
resents the property of incompressibility of the liquid, and the third equation is as-
sociated with conservation of the angular momentum. The term f(d) is simply the
Ginzburg-Landau approximation of the constraint \n\ = 1 for small c.

This system exhibits many interesting properties. For instance, the director field
satisfies the maximum principle; that is, its magnitude will not achieve a maximum
at any interior point of the space-time domain. Substituting a stationary solution
(u,d) = (O,do) into the system, shows that do not only has to satisfy the equation
Ad — f(d) = 0, but also an extra constraint (Vd)TAd = V<£, where <j> is a scalar
function. This implies certain regularity of do- Moreover, system (1.1) admits the
following energy law:

— = - (H|-D(t/)||£2(n) + A7l|Ac? - f(d)\\l3{Cl)J

where

E =

Using energy estimates, Lin and Liu [21] were able to prove local existence of classical
solutions and global existence of the weak solutions to the system (1.1) with

tiGL2[0,T, ffHnflnl^O.r, L2(fl)], <f€L2[0,T, #2(Q)]nLTO[0,T, H^Q)].

For any fixed e, they also proved that the one dimensional space-time Hausdorff
measure of the singular set of "suitable" weak solutions is zero. Some of their results
extended to the general Ericksen-Leslie equations [22].

Recently much work has appeared on the related Ginzburg-Landau equation



where u : Q x 5R+ —• 3f2 with boundary condition

u\an = p, deg(g]dQ) = d.

This is the gradient flow of the Ginzburg-Landau functional:

2 + (l/4e2)(|ti|2 - I)2
/

Jn
Bethuel, Brezis and Helein [1] show that as e —» 0 the singular set of the solution
contains only isolated singular points {a,} with degree one; moreover,

where Wg is the "renormalized" energy, and 7 > 0 is a universal constant.

Lin [18, 20], Jerrard and Soner [13] and others study the dynamic motion of the
defects. They proved that the motion of the singularities of the solution follows the
gradient flowT associated with the renormalized energy:

IT ~~ !a
In our numerical examples, we illustrate several interesting properties of the motion of
the defects of (1.1). For instance, when two defects of opposite degree move towards
each other their relative velocity increases, indicating the Ginzburg-Landau like effect
of the second equation. However, the examples clearly show the significant effect of
the velocity on the motion of defects.

In this paper, we use prove that the numerical approximations using a finite element
approximation of the spatial domain and implicit Euler time stepping will converge
to the solution of (1.1). Examples of approximations computed using this scheme are
given in Section 4 wThich illustrate the interesting behavior exhibited wThen defects
in the director field are present. In the next section we recall the energy estimates
discovered by Lin and Liu [21] and variants that are applicable to the numerical
schemes analyzed in Section 3.

2. Estimates and Weak Forms of the Liquid Crystal Equations.

2.1. Energy Estimates. A key discovery of Lin and Liu [21] wras the existence
of energy estimates (Liaponov functions) for the coupled liquid crystal equations. One
essential step was to write the Navier Stokes equations (1.1) in non-divergence form:

tit + (u • V)u - v divD(u) + Vp + A [(1/2)V(Vd • Vd) + (Vd)TAd) = 0

Notice that the term (A/2)(W• W) can be absorbed into the definition of the pressure.

Proceeding formally we can multiply this equation by it (and recall that we're assum-
ing Dirichlet boundary data) to get

+ / (u - V)u • u + A / AdT(Vd)u = 0.
Jn Jn

Similarly we may take the inner product of the director equation with —(Ac? — f(d))
to obtain

J n
(AdT(Vd)u - (u • V)d • f(d)) + y\\Ad - f(d)\\lHn) = 0.



The identities

/ (ti • V)ti - ti = (1/2) / u • V|u|2 = 0

and

/(u-V)d-f(d)= I u
JQ Jn

give the fundamental estimate

Tl| / ( ) | | | ( n ) = 0.

Defining the energy E(t) = E(u(t),d(t)) by

then £* non-increasing as a function of time. Note that this provides a uniform bound
on the penalty term F(d). This estimate on the solution was used by Lin and Liu [21]
to establish existence, uniqueness, and regularity of solutions to the coupled liquid
crystal problem.

To obtain the fundamental energy estimate it was necessary to multiply the director
equation by the function — (Ad — f(d)). When Galerkin methods are used to approx-
imate the solution of the pde's, such functions will not be in the Galerkin sub-spaces
due to the nonlinearity of / , and, in general, the energy estimate fails to hold. We
can still obtain estimates by multiplying the director equation by —Ad, and these do
carry over to Galerkin approximations; however, these estimates now depend upon
the penalty parameter c. This procedure gives

W\\hm + A||<C.(n)) + v\\D(u)\\hm + A7||Ad|||a(n) = A7 jf /(</) • Ad.

Recalling the penalty term is of the form f(d) = DF(d) the term on the right simplifies
to,

/ /(d) • Ad= / -tr [{Vd)TD2F{d){Vdj\ + / f(dQ)T(Vd)n
n Jci Jan

where tr is the trace of a matrix. Since the penalty term is used to enforce the
constraint \d\ = 1, typically /(do) = 0 and F is convex on the set \d\ > 1. The term
on the right can then be bounded by

/ f(d) • Ad < (max \1

For example, when F(d) = (l/4e2)(|d|2 - I)2 one has

€2 / f(d) • Ad = -(l/2)| |V|d|2 | |2
3(n) - / (|<f|2 - l)|Vd|2 < ||V<f||22(fi).

Jn Jn



In this situation Gronwall's inequality gives bounds on the solution of the form

(2.1) + / i/||D(ti(*))||ia(n) + A7 | |Ad(s)|||,(n) ds

where the constant C depends upon the initial data and is independent of e.

Notice that the maximum principle could have been used in place of the convexity
argument. Multiplying the director equation by d and rearranging the derivatives
shows that |rf| satisfies

||<f|2 + (u • V)|<f|2 - 7A|cf|2 = -27(|V<f|2 + f(d) • d)

At a maximum it is clear that the left hand side is non-negative. If f(d) • d > 0 for
|rf| > 1 then it is clear that any maximum of \d\2 must satisfy |rf| < 1. Thus if the
initial data satisfies |d| < 1 then this inequality continue to hold at later times.

2.2. Bounds on Pressure. The estimates above bound the velocity and direc-
tor fields but not the pressure. The sharpest bounds on the pressure are obtained by
taking the divergence of the momentum equation to get

-Ap = (V 0 V) • (u 0 u + (Vcf)T(V(f))

where

(V 0 v) -A = 2 ^ o Aij fdxidxj.

If Q was the whole of space Calderon Zigmund theory [3, 10] would immediately give
estimates on the pressure. On a bounded domain the following holds [22, 24].

THEOREM 2.1. Let Q C ft3 be smooth and

t /€l 2 [0,T, Hl(n)]nL°°[0,T, L2(Q)] deL2[0,T, H2(n)]nL°°[0,T, H

and p satisfy the above equation, then p e I5/3[0, T; L5/3(Q)] and Vp 6 I5/3[0, T\
Other regularity results for the Navier Stokes equations may be found in [23, 25, 26].

When constructing Galerkin approximations, stability of the pressure is obtained
using the following lemma due to Ladyzenskya [11].

LEMMA 2.2. // fi C Sn is a bounded Lipschitz domain and p e L2(Q) then there
exists c > 0 such thai

sup / p(V • v) > c||p||L2(n)/*

Rearranging the momentum equation shows that if v E i/o(Q) then

(-p, V • t;) = (tit + (ti • V)ti, v) + J/(2?(ti), D(v)) + A((Vd)T(V<f), (Vt;))

thus if u e I2[0,T, Hl(Q)]DHl[0,T, H'l(Q)] and d e L7[0,T, H2(Q)] then the
lemmashows p G L2[0, T, L2(Q)/3?]. The construction of discrete subspaces satisfying
Ladyzinskia's lemma is well studied [2, 11]. and we will consider such subspaces below.



2.3. Weak Problem. The energy estimates derived in this section indicate
that the following weak form of the coupled liquid crystal problem will be well
posed. Find u € H^T, H'^Q)] n L2[0,T, H^Q)), p € L7[0,T, L2(fi)/ft] and
d£Hl[0,T, Hl(Q)]r\L2[0,T, H2(Q)nHl(Q)] such that

[ (utv + (1/2) [(u • V)u • v - (u • V)v • u)l - vD(u) • D(v)
n

-p(V • v) + AdT(Vd)v) = 0

(2.2)

(Vrf, • Ve - AeT(V<f)u + y(Ad - f(d)) • Ae) = 0Ln

forall(r?9,e)<EL2[(h:F, ^(12)] x L2[0,T, I2(fi)/sR] x L2[O,T, ^ 2 (n ) O H^(Q)]. No-
tice that when extending the definition of (u • V)u to functions that may not satisfy
V • u = 0 we chose to preserve the skew symmetry, ((u • V)u,u) = 0.

Solutions of this weak problem are approximated using implicit finite differences for
time derivative and the finite element method for approximating the spatial terms.
Let

^ 2 \ n l

and let Tih = Uh *Vk x W/» CWbea finite dimensional subspace of W given by a finite
element discretization of Q. If r > 0 represents a time step and (un,pn,dn) £ Tih is an
approximation of u(tn) = u(nr) etc. then the approximation at time tn + 1 = (n + l)r
is is computed as the solution of (uh,Ph,dh) € W/i>

- un) • v + (1/2) [(tih • V)tifc • t; - (uh • V)v • uh)] - vD(uh) • D(t')

-Ph(V.v)+ Adl(Vdh)v)=0

(2-3) /(

f ( l Ve - AcT(Vdfc)^ + 7(Ad» - /(dfc)) • Ac) = 0

for sl\(v,q,e) £Hh.

3. Error Estimate of the Discrete Scheme. In this section we show that
solutions of the approximate weak problem (2.3) converge to those of the continuous
problem (2.2). We chose to concentrate on the convergence of the finite element
approximations and, in particular, do not reproduce discrte versions of the existance
results in [21] for (2.3).
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3.1. Notation. Since much of the analysis is independent of the specifics of the
problem at hand we introduce notation that facilitates some abstraction.

NOTATION 3 .1 . Ifu= (u,d), and\ = (v,e) define Au to be the linear monotone part
of the spatial operator occurring in the weak form of coupled liquid crystal problem.

(3.1) ,4(u, v) = / PD{U) - D(v) + XyAd • Ae
Jn

The remaining portion of the spatial operator is written as a linear term B(.,.) and a
nonlinear part Gu with

(3.2)

(Gu, v) = / (1/2) [(u • V)u • v + (u • V)f • u]+\AdT(Vd)v-\(uV)dAe+\~ff(d)Ae

(3.3)
Since B(p,v) = B(p,(v,d)) is independent of d we will occasionally write B(p,v) for
this term.

The inner product (.,.) on H = L2(Q) x H%(Q) is defined by

(3.4) (u ,v)= / tir + AVd-Vc
Jn

and we denote the associated norm by |.|.

Notice that A is strictly monotone and

(3.5) A(u - v, u - v) = ||u - v||2 = v\\D(u - r ) | | | 2 ( n ) + A7||A(d - O i

The norm \\.\\ is equivalent to the usual norm on V = H%(Q) x (H2(Q) nH%(Q)), and
we will denote the dual norm on V by ||.||«. We identify V as a subset ofV by pivoting
through H,V<-H^V, and in this situation ||(u, d)||; = ||u||^.1(n) + ||d||£a(n)

Using this notation we may write the weak problem for the liquid crystal problem as

) = (Gu !v) ! B(q,u) = 0,

for all v £ V and q G L2(Q)/3?. The approximate scheme becomes

for all v 6 Uh x Wh and £(g,un + 1) = 0 for all q £ Vh-
The arguments used to derive the bounds (2.1) for the continuous solution carry over
directly to the Euler scheme giving

(3.6) |u"|2 + £ r | | u 1 2 < C|uo|2exp(«r/e2)
m=l

where e is small parameter appearing in the penalty term / .
7



3.2. Discrete Spaces. It is well known that when approximating the Navier
Stokes equations it is necessary that the discrete velocity and pressure spaces, Uh and
Vh, satisfy the discrete Babuska-Brezzi condition, [2].

sup B(phiuh) > c\\ph\\Vh
IKIK=i

for all ph G Vh where c > 0 is independent of h. This condition guarantees that
the discrete divergence free space Uh = {uh G Uh | B(qh,Uh) = O V ^ G Vh} well
approximates its continuous counterpart U = {u G U \ B(q,u) = OVg G V} as
indicated in the following lemma.

LEMMA 3.2. Let the discrete Babuska-Brezzi condition hold, then there is a constant
C > 0 (independent of h) such that ifuEU then

inf \\u-uh\\u<C inf | | u - t i * | | w .

A proof of this lemma may be found in [2, 11].

When analyzing the discrete schemes the best projections of elements inU x\V onto
Uh x VV'h with respect to both of the norms |.| and ||.|| will arise.

DEFINITION 3.3. IfUh = Uh n {u \ B(q, u) = OV? G Vh) and u€H%(Q), d G H2(Q)
the projections u, u EUh and d, d G W/j are defined by

and

(D(u), D(v)) = (JD(ti), D(t')) (Ad, Ae) = (Ad, Ae)

/or all v eUh and e eWh-

Notice that u = (u, d) is the best projection of u = (u, d) onto the subspace Uh x VV̂
in the norm |.| and u = (w,d) is the best projection with norm ||.||. We will need to
estimate the difference ||u — u||. The following lemma is prototypical for the spaces
used for finite element approximations.

LEMMA 3.4. LetUh CUh,U CU,Uh CW, andWh C W. Suppose that\.\ andj\.\\ are
two Hilbert norms onU x WT. Let u 6 W x W and let u be the projection onto Uh x W^
under norm |.| and u 6e Me projection with norm \\.\\ and suppose additionally

• 27ie discrete spaces satisfy an inverse inequality of the form \\uh\\ < (C/h)\uh\
for uh£Uhx Wh

• The elliptic projection u satisfies an inequality of the form

- u |

whenever u

then



Proof. Using the inverse estimate we obtain

II* ~ "II < (C/h)\u - u| < (C/h)(\u - u| + |u - u|) < (2C/h)\u - uh |

An application of the second hypothesis establishes the lemma. D

The inverse inequality holds for all the usual finite element spaces; and the second
estimate will hold if the pair of spaces (Uh,Vh) satisfy the Babuska-Brezzi condition
and the domain is smooth enough for the Aubin-Nitsche technique to be used [4].

3.3. Error Estimate. Following [11] it is convenient to introduce the (temporal)
consistency error £n+1 E V

(u(*n+1) - u(*n), v) + rj4(u(*n+1), v) - 7\B(p(fn+1), v)

1 0 . if 7 1 L r l l l l / 5 * / i '\E 5 * /

Subtracting this equation from the one satisfied by the approximation gives

( u ( f n + 1 ) - u n + \ v ) + r ^ ( u ( r + 1 ) - u n + 1 , v ) - T B ( p ( r + 1 ) - p n + 1 , v )
= (u(tn) - un , v) + r(Gu(f+ 1) - Gun + 1 ,v) + r(en+\ v)

for all v E Uh x W/,.

Writing en + 1 = (w(/n + 1) - un^\d(tn^) - dn+1) and putting v = e n + 1 into the
equation for the errors gives the basic estimate

(l/2) |en + 1 |2 + (r/2)||en+1 | |2 < (l/2)|en |2 +
(3.8) r(Gu(fn+1) - Gun + 1 ,en + 1) -f

where qn E Vh is arbitrary.

The following lemma bounds each of the error terms on the right hand side of this
equation.

LEMMA 3.5. Let G be the operator defined in (3.3) and en+1 be the consistency error
defined in (3.7), and assume that the penalty function F has been truncated to have
quadratic growth outside the ball \d\ < 1. If the solution u = (t/,cf) of the liquid crystal
problem satisfies

u E C[0,r, Hl
o{Q)] ut E I2[O,T, L2(Q)] . utt E L2[O,T, H-\Q)]

and

de C[0,T, H2(Q)) dt E X2[0,T, Hl(Q)) dtt E I2[0,T, L2(Q)]

then there is a constant C > 0, depending upon these norms and the bounds in (3.6)
established for the approximate solution such that

l|£n+1H.2<r/ (n+1)T |K||2

Jnr

and

I - Gu n +\e n + 1 ) < C (||u(*n+1) - u(*n+1)||2 + |en+1 |2)



The product norms |.| and \\.\\ and dual norm ||.||* are defined in Notation 3.1.

Proof. To bound the consistency error, note that the regularity hypotheses guarantee
the each term in the weak form of the the coupled liquid crystal equations (2.2) is
continuous. Evaluating (2.2) at t = tn + 1 and subtracting this from (3.7) gives

Jn
(nr-t)(utf,v)

Jnr
It follows that

r(n+1)r

To avoid a plethora of superscripts, let us write the nonlinear term as (Gu — Gu/,,e)
where e = (eu, ed) = u — Uh- We first break this term into two pieces

(Gu - Guh, e) = (Gu - u, e) + (Gu - Guh, e).

If the above terms are expanded out the expansion contains many trilinear terms and
the nonlinear term involving the penalty function / .

The treatment of differences in trilinear forms is standard: one adds and subtracts
various cross terms and groups them so that each piece is quadratic in the error.
Judicious application of the Holder inequality and the Sobelov embedding theorem
can be used to make the coefficient of ||e||2 sufficiently small (e.g. less than 1/8). We
illustrate this procedure for two typical terms.

L

In the above we used Korn's inequality and the Sobelov embedding theorem, and note
that the constant C depends upon various norms of u and u which are bounded by
hypothesis. The terms coupling the Navier Stokes and director equation are:

/ ((eu • V)d • Ad - (eu • V)dh • Adh - (fi • V)d • Ad + (uh • V)dh • Adh)

= I (eu • V)ed • Ad -h {u • V)ed • Aed

The Sobelov embedding theorem (in dimension 3) bounds ||.||i,«(n) by ||
so application of the (scalar) Holder inequality use of regularity estimates to bound
the term ||Z)2(i||^2(n) gives a suitable bound.
Since the penalty function F is assumed to have quadratic growth outside the ball
\d\ < 1, it's derivative / will be globally Lipschitz. In this situation we can compute

/ (f(d) - f(d)) • Aed < \f\Lip\\d - d\\L2(n)\\Aed\\L2{n)
n

10



and a similar inequality holds for (f(d) — f(dh)) • Ae<*. D

These estimates enable us to state the main theorem of this section concerning con-
vergence of the discrete scheme.

THEOREM 3.6. Let {(t /n ,pn ,dn)}^= 0 be the solution of the discrete scheme (2.3),
with subspaces

Hh=UhxVhxWhC Hl(Q) x L2(Q)/% x (H2(^) D

and assume that the penalty function F has been truncated to have quadratic growth
outside the ball \d\ < 1. Let Uh be the approximate divergence free subspace defined
in 3.3. Suppose that the solution of the liquid crystal problem (2.2) satisfies

u e c[o,r , Hl
0(Q)] ut e L2[o,r, L2(Q)] utt G L2[O,T,

and

d e c[o,r, H2(Q)] dt e I2[O,T, H1{Q)] dtt e I2[O,T,

and the L2(Q) x Hl(Q) projection (u,d) of an element (u,d) G U x W onto Uh x Wh

satisfies (see Section 3.2)

\\d - ^ll^2(n) < ^ mf ^ ||ti - vh\\Hi(n) + Jn f^ ||cf - eh\\H2{n)

then

m=0

C | | u ( 0 ) - u ° |

/or 0 < n < Ar.

Proof Substituting the estimates of Lemma 3.5 into equation (3.8) shows that

e"|2 + Cr j/Cr)|e"|2 + Cr2 j \\utt\\

where, as before, e n + 1 = (u(tn+l) - t i n + 1 ,d ( t n + 1 ) - rfn+1), and qn G Vh is arbitrary.
The discrete Gronwall inequality shows that

|e«|2 + J2 r||em||2 < Cexp(Cnr) (|e°|2 + r2

m=0 \

m=0 /

The proof now follows from an application of the triangle inequality and the approx-
imation hypothesis assumed in the theorem. D

Remark : A similar estimate can be obtained for the pressure by using the discrete
Babuska-Brezzi condtion and the ideas illustrated in Section 2.2.
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4. Numerical Examples. The examples below were computed on the domain
Q = (0,1)2 with uniform square meshes. The velocity was approximated using piece-
wise biquadratic functions and the pressure using piecewise bilinear approximations.
It is well known that these velocity-pressure spaces satisfy the Babuska-Brezzi condi-
tion stated in Section 3.2. The director field was approximated using bicubic Hermite
polynomials. This choice of spaces will give a first order rate of convergence with
respect to the mesh size h in the norm ||.|| whenever the solution has the appropriate
regularity.

All of the examples shown below were computed on a 16 x 16 mesh having a total
of 4779 variables, and approximately 160 steps were used per unit of time. Newton's
method was used to solve the nonlinear system of equations at each time step. Typi-
cally three to four Newton iterations were required per step to solve the system, and
this method of solution took approximately 6 hours on a Sun Ultra Sparc to evolve
the solution through one unit of time.

Our intention is to illustrate the interesting behavior exhibited by liquid crystal flows
when singularities are present. Singularities are approximated in the initial data
using functions of the form do(x) = x/yj\x\2 -f T)2, and in this situation the analysis
of the previous section is not strictly applicable, since singular solutions can not
be well approximated by the finite element interpolants. However, the solution is
smooth outside of a small set, and in this situation we expect the solution to be
well approximated away from this exceptional set. Except when noted, the physical
constants v, X and 7 were all set to unity. The small parameter appearing in the
penalty term, / , was set to e = 0.05 as was the small constant 77 used to regularize
the singularities. If 77 is set to be much smaller the Hermite interpolant of the initial
director field would develop oscillations on the 16 x 16 mesh.

4.1. Simple Annihilation of Singularities. To illustrate the annihilation of
singularities a zero initial velocity field was specified and an initial director field do =

2 -f T}2 where

and a = 1/2. This director field has singularities at (s, y) = (±a, 0) with unit degrees
of opposite signs. The evolution of this solution is shown in Figure 1 where the initial
and final director fields are shown and also shown is the director and velocity fields
close to the annihilation time t = 0.25.

4.2. Annihilation of Singularities in a Rotation Flow. This next example
has the same initial director field as the previous example; however, this time the
initial (and boundary) velocity field was chosen to be a rotating flow of the form
u = (—wy,ux) with u> = 20 (approximately three revolutions per unit time). Figure 2
shows the director field at four different times; the initial field, the solution at t = 0.1
which clearly shows how the singularities are swirled around with the flow, and the
solution just prior to annihilation at t = 0.2 and the steady state solution. In the
absence of boundary conditions the director field would tend to a parallel state.

4.3. Degree Two Data with Four Singularities. As a final example we
specified a zero initial velocity field and selected the initial director field to have three
degree one singularities equally spaced about a circle of radius 1/4 and a singularity
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having degree - 1 at the center of the circle located at (x,y) = (1/2,1/2). The
degree one singularities were chosen so that the solution was symmetric about the
line y = 1/2 as shown in Figure 3.

The solution of this problem retains this symmetry; however, the two singularities
above and below the axis of symmetry move towards the singularity at the center of
the circle and it in turn moves along the x-axis towards them, and eventually they
all meet and join to form a single singularity of degree one. This new singularity is
then "repelled" by the remaining degree one singularity so they move apart along the
x-axis to an equilibrium position determined by the boundary data. This evolution
occurs even in the absence of a velocity field; that is, if we set A = 0 so that the
director and velocity fields decouple, and this is shown in Figure 3. However, when
A = 1 the resulting velocity field enhances the motion of the singularities and the
time of annihilation decreases from t = 1.35 with A = 0 to t = 0.9 when A = 1. The
director and velocity fields just before and slightly after annihilation for A = 1 are
shown in Figure 4. At this latter time the velocity field exhibits a pair of vortices
enhancing the repulsion of the two remaining singularities with like sign.
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Figure 4. Four Defects with Total Degree Two
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