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1. Introduction
In this note we examine some new models for ferroelectric (FE) and ferromagnetic materials (FM).

These models are analogous to ones used in [l] to describe the dynamics of elastic materials which can
exhibit phase changes.

We begin with Maxwell's equations

^ = - curl E and curl H = J. (1.1)
at

Here, E and H are the electric and magnetic fields and J is the current. We assume that

^ + aE, cr>0 (1.2)
at

<9D
where D is the electric displacement, -7— is the displacement current, and <rE is the conduction current.

at
In usual dielectrics which are homogeneous and isotropic D and E and B and H are assumed to be

related by the constitutive equations

D = eE and B = //H (1.3)

where e and \i are constants. Insertion of (1.2) and (1.3) into (1.1) yields a linear hyperbolic system which
can be solved in a region V subject to initial values for E and H and the specification of the tangential
components of either E or H on dV. Our primary focus will be on the case where (n x E)_ = 0 on dD
but we will describe briefly what obtains when (n x H)_ = 0 on dD.

In the case of ferroelectric materials one replaces (1.3)i by

D = e(E + P)

where P is the electric polarization while in the case of ferromagnetic materials the relation (1.3)2 is
replaced by

B = /x(H + M)

where M is the magnetic polarization. The polarizations are intended to reflect the crystalline structure
of the underlying material. At equilibrium these fields will be spatially distributed in a time independent

1This research was partially supported by the Applied Mathematical Sciences Program, U.S. Department of Energy and
the Mathematics and Computer Science Division, Army Research Office.

2Carnegie Mellon University, Department of Mathematical Sciences, Pittsburgh, PA 15213.



fashion which describes the equilibrium microstructure of the material. The stability of these equilibria
is very much an open question and will not be resolved here. Carr and Pego [2] have demonstrated that
for the Landau-Ginzburg equation, one which gives rise to the same equilibra as our more complicated
system, the equilibrium solutions are metastable with exponentially long lifetimes. Greenberg[l] has also
shown that similar phenomena is true for elasticity equations which exhibit phase transitions.

In what follows we shall treat in detail the case of ferroelectric materials. We start with some geometric
simplifications. We assume the region is a cylinder with generators parallel to the z-axis and a uniform
simply connected cross section fi in the x — y plane. We consider only fields which are independent of z,
assume that the electric field E and electric polarization P are of the form:

E = aee3 and P =

and assume that the magnetic field H is given by

H = 6(/iiei + h2e2)

where a > 0 and b > 0 are constants. Additionally, we assume that

D = c(E + P) and B = /zH (1.4)

and that a > 0 and b > 0 satisfy

- = / . (1.5)

In this situation, Maxwell's equations (1.1) and (1.2) reduce to the following systems for e,p, /ii, and h2:

e-t -\- pt -{• die = c{ri2x — riiy)

hu = —cey > (1.6)

h2t = cex. j

Here <Ji = — > 0 and c = in the speed of light. We close the system by assuming that the polarization,

p) evolves as

S2 (ptt - A2Ap) + aSPt = (3{e- g(p)) (1.7)

where a,/3,A, and 8 are positive constants, A is the two dimensional laplacian, and g(p) = $^ (p ) is the
derivative of a symmetric, double-well potential $ with equally valued minima at p = q=l and a single local
maxima at p = 0. For technical reasons we also assume that

kp, $(2)(p) - /c, and $ ( 3 ) - 0 (1.8)

as \p\ —* oo for some 0 < k < oo.
Equation (1.7) is similar to the better studied Landau-Ginzburg equation

-S2X2Ap + ocbpt = (3(e - g{p)) (1.9)



which may also be used to model the evolution of p. The latter equation propagates information at infinite
speeds whereas (1.7) transmits information at speeds s satisfying \s\ = A < oo; a desirable property.

Typically, initial data are prescribed for (e,p,pt,/ii,/i2) at points (x,y) 6 0. and boundary conditions
are given on dVt for times t > 0. The boundary conditions we impose are that

e {xB,yB,t) = 0 and f ^ B , 2 / V ) = 0. (1.10)

Equation (1.10)i is the implementation of (nxE)_ = 0 for this special geometry. In (1.10)2, n =
is the unit exterior normal to <9H at (xB,yB) and t = rr1 = —n2ei + n ^ in the unit tangent to dti at

( B B )
We cast the system (1.6) and (1.7) in a slightly more symmetric looking fashion. To affect this reduction,

we assume that the initial data

c ° ( x , y ) = l im c ( x , y , t ) , (x,y)eQ (1.11)
t—>o+

and

(h°1,h$)(x,y)=]3m(h1,h2)(x,y,t) , (x,y)eSl (1.12)

satisfy

(ho
1,h°2)-(n1,n2)=0 , (xB,yB)edn, (1.14)

and

p° (TB IIB\ — 0 (TB mB\ f=- r)O (~[ 1 ^̂

Equations (1.6)2 and (1.6)3, when combined with (1.13) and (1.14) imply that

-^ + y 2 - = 0 , (x,y) E n and i > 0 (1.16)

and

= 0 , (xB,yB) Edn&ndt>0 (1.17)

and these latter two identities imply the existence of a potential ip such that

! = -c— and h2 = c - ^ , ( i , y ) e n and t > 0, (1.18)

and

tp {xB, yB, t) = g(t) , (xB,yB) 6 dtt and t > 0. (1.19)

Additionally, (1.6)2 and (1.6)3 imply the existence of a function t —»• i7(t) such that



(1.20)

for all (x,y) E ft and t > 0. Moreover, (1.9), (1.19), and (1.20) imply that ^ = — . If we now let
at dt

<f> = tp-g , (x,y) e ft andt> 0, (1.21)

we find that

_ _ d4> d(f>

and that <fi satisfies

<f>tt + cri<f>t+Pt = c2A0 , (x,y) e n and t > 0, (1.23)

and

(j) (xB,yB,t) = 0 , (xB
:y

B) e 8VL and t > 0. (1.24)

Moreover, <f> is coupled to p through

62ptt + aSpt -P(<fa- g(p)) = S2X2Ap, (x,y) € SI and t > 0, (1.25)

and

^ B ,y B , i ) = 0 , (xB,yB) € 5Q and t > 0. (1.26)

In section 2 we analyze the long time behavior of solutions of (1.23) - (1.26). This is done through a
succession of "energy" type estimates and our basic results are that as t —* oo the function 0 converges to
zero in a suitably strong sense while p converges to a solution of the equilibrium problem

62X2Ap = 0g(p), (x, y) € fi and ^ = 0 , {xB, yB) 6 dSl. (1.27)

These results imply that e, hi, and h2 converge to zero as t —> oo. In section 3 we analyze the equilibrium
problem (1.27). Our principal result is that the nontrivial solutions of (1.27) may be obtained by finding
the critical points of an even function, J, defined on RN. The dimension N is determined by the magnitude

of the parameter | $ ^ ( 0 ) | . In section 4 we discuss the ferromagnetic problem and show that similar

results to the ferroelectric problem obtain.



2. Large Time Behavior of Solutions to (1.23)-(1.26).
In this section we focus on the large time behavior of solutions of the system:

4>tt + <?\4>t +Pt = c2A(f> , (x, y) e fi and t > 0 (2.1)

62ptt + cx6pt - 0 {<f>t - g(p)) = 82\2Ap , (x,y) € fi and t > 0 (2.2)

satisfying the boundary conditions

B,yB,t) = ^(xB,yB,t)=Q , (xB,yB) e dQ and t > 0. (2.3)

Once again the parameters a, /3,6, A, and c are positive, a\ > 0, and e, /ii, and /12 are related to </> by

e = <tH , /ii = - c ^ , and /i2 = c ^ . (2.4)

Information about the large time behavior of the system (2.1) - (2.3) will follow from a series of energy
identities; the most basic of which is obtained by multiplying (2.1) by j3<j>t and (2.2) by pt and adding the
resulting expressions. The identity is

°— - divq = -oMt ~ c*8V
2

t < 0 (2.5)

where

(2-6)

q = /3cVtV^ + <52A2ptVP, (2-7)

q • n = 0 , (xB, yB) € dQ. and t > 0, (2.8)

and

and once again $ is the double-well potential satisfying ^ ^ ( p ) = g(j>) and (1.8). The key point of this
and succeeding estimates is the fact that the term f3pt<fit which comes from the multiplication of (2.1) by
P4>t exactly cancels the term —Ppt(pt which comes from multiplying (2.2) by pt.

To obtain the higher order estimates we differentiate the system (2.1) - (2.3) with respect to time. One
differentiation implies that the pair (<f>t,Pt) satisfies

tt +Pu = c2A<f)t , (x,y)eQ&ndt>0, (2.9)

62pm + aSPtt -P(4>tt- 9{1)(p)Pt) = S2\2APt, Or, y) € fi and t > 0, (2.10)

and the boundary conditions

^ ( > 0 , (2.11)

while two differentiations imply that the pair (<f>tt,Ptt) satisfies



4>tm + Oi4>ttt + Put = c2A(j>tt , (x, y) E n and t > 0 (2.12)

t + aSpta - 0 (4>m - g^{p)ptt - 9{2)(p)p2
t) = S2X2Aptt , (x,y) G Q and t > 0 (2.13)

and the boundary conditions

<t>tt(xB,yB,t) = -£%• (xB,yB,t) = 0 , (xB,yB) e dQ and t > 0. (2.14)

Associated with the identities (2.9) - (2.11) and (2.12) - (2.14) we obtain identities of the form:

dE
— - divq = G , (x, y) € fi and t > 0, (2.15)

and

q-n = 0 , (xB,yB)edSl. (2.16)

Equations (2.15) and (2.16) imply that

— J j E(x,y,t)dxdy= J J G{x,y,t)dxdy (2.17)

and

J jE(x,y,t)dxdy = J jE(x,y,0+)dxdy + f ( jjJ j j j G(x,y,s)dxdy) ds. (2.18)

In the case of (2.9) - (2.11)

§ V 4>t?) + j (£ + A2| VPt\2) , (2.19)

q = 0c?<t>tt \/4>t + S2X2ptt VPt , (2-20)

and

G = -atfifc - a6p2
tt - pgw{j>)ptptt. (2.21)

whereas in the case of (2.12) - (2.14)

E = \ {4>2
m + c2\ V 4>u?) + f [PL + A2| VPttl2) , (2-22)

q = fie2 (4>m V 4>u) + 62X2pm V <kt, (2-23)

and

G = -otftf* ~ *tPm - P (9{1)(p)PuPm + 9i2)(p)p2
tPut) • (2-24)
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Next, we record some immediate consequences of the identities (2.5) and (2.15) when E is given by
(2.6), (2.19), and (2.22).
Lemma 1. The identities (2.5) and (2.6) imply that

(i) (f) is in HQ(£1) uniformly in £,
(ii) p is in H1^) uniformly in £,
(iii) <f)t and pt are in L2(0) uniformly in £,
(iv) a > 0 and 6 > 0 imply that pt is in L2(Q x [0, oc)), and
(v) if (7i > 0, then <f>t is in L2(ft x [0,oo)). •

Lemma 2. The identities (1.8), (2.15) and (2.19) and the result (iv) of Lemma 1 imply that
(i) <f)t is in HQ(Q) uniformly in t,
(ii) pt is in i?1(Q) uniformly in t,
(iii) 4>u and p« a r e *n ^ ( ^ ) uniformly in £,
(iv) a > 0 and (5 > 0 imply that p t t is in L2(f2 x [0, oc)),
(v) if a1 > 0, then cf)u is in L2(Q x [0, oo)). •

Proof. The key step in establishing Lemma 2 is the observation that (1.8) implies that

and this inequality, (2.21), and the fact that Lemma 1 guarantees that pt 6 L2 (fi x [0, oo)) implies the
results claimed. Here, k\ is an upper bound for |<7^(p)|.

The next set of estimates will be a simple consequence of (1.8), (2.15), and (2.22) and the following
inequality which pertains to functions which are Hx(fi) uniformly in t and in L2(Q x [0, oo)), namely

If'(*,V,t)dxdy\ dt < KlX( Q ̂  ^ WfWUi^yj^ ( JJf(x,y,t)dxdy\dt, (2.25)

where K\ is independent of / and depends only on fi.1

Lemma 3. The identities (1.8), (2.15), (2.22) and (2.25) imply that
(i) <t>u is in HQ(Q) uniformly in i,
(ii) ptt is in Hl{Vt) uniformly in i,
(iii) 4>m and pm are in L2(fi) uniformly in t,
(iv) a > 0 and 6 > 0 imply that pm is in L2(fi x [0, oc)),
(v) if CTI > 0, then <f>m is in L2(i7 x [0, oc)). •

Proof. The key step in establishing this result is the observation that (1.8) implies that

and

where A:2 is an upper bound for |$^(p)| . These inequalities guarantee that the source term G defined in
(2.24) satisfies

?fn(t) = JJ /2(x5y,1Ifcre ||/||?fn(t) = JJ /2(x5y,t)^^+ jj {f* +f*){x,y,t)dxdy



and the last inequality along with the results of Lemmas 1 and 2 and the inequality (2.25) imply the results
claimed.

The underlying equations (2.1) - (2.3), (2.9) - (2.11), and (2.12) - (2.14) together with the results of
Lemmas 1-3 also yield

Lemma 4. (i) Ac/) and Ap are in H1^) uniformly in t and (ii) A<f>t and Apt are in L2(H) uniformly in tm
The a-priori estimates of Lemmas 1-4 imply that if the initial data is sufficiently smooth, then for each

T > 0 the functions

( 4 > t , p t ) ( x , y , s ) = ( f r p ) ( x , y , t + s) , ( x , y ) e Q a n d 0 < 5 < T (2.26)

are uniformly bounded in H3(Q x [0,T]) independently of t with bounds that depend on the size of the
data and the number T > 02. Moreover, the fact that Pt,Ptt<> a n d Put &*e in L2(£l x [0, oc)) guarantees that
pt and pu converge to zero strongly in Z ^ ^ ) a s t tends to infinity and additionally that the functions

*>S/I
 s) = (Ps,Pss,Psss) {x,y,t + a) , 0 < s < T (2.27)

converge to zero in Z ^ ^ x [0> ̂ 1) a s * tends to infinity. Our next task is to prove
Theorem 1. For each T > 0 the functions (ft converge strongly to zero in H2{Vt x [0,T]) as t tends to
infinity.3 •

Proof. We assume the theorem is false. Then, we can find an increasing sequence { i n } ^ i with
lim tn = oc and an e > 0 such that ||0tn||2,r ^ e. We note that the sequence {^*n}^?=i is also bounded in

n—>oo

H3(Q x [0,T]) and thus we can find a subsequence {Tk(n)}^Li with lim rfc(n) = oc of the original sequence
n—>oo

and a function 4>°° in H3(fl x [0,T]) such that

l i m | | ^ < » ) - ^ o o | | 2 | r = 0 and 110°°||2;T > e. (2.28)
n—+00

Moreover, we may assume, without loss of generality, that the sequence {pTfc(n) }£Li converges strongly to
p°° in H2(Q x [0,T]), that p°° is in i73(H x [0,T]), and finally that 0°° and p°° satisfy the limit equations

~ + a i 0 ^ = C
2A0°° , (x, y) 6 0 and 0 < 5 < T, (2.29)

= 09(P°°) - S2X2Ap°° , (x, y) € n and 0 < s < T, (2.30)

pf = 0 , (x,y) e n and 0 < 5 < T, (2.31)

and
2Recall that if fc(f) x [0, T]) consists of all functions / on Vt x [0, T] with partial derivatives d^d^d^f of order m + n+p < k

which are in I,2(f2 x [0>^])- For such functions

3The implications of this result for the primary fields of interest; namely e,/ii, and /12 follow directly from (2.4).



<F {xB,yB, s) = %£• {xB, yB)=0 , (xB,yB) € dQ and 0 < s < T. (2.32)

If we now differentiate (2.30) with respect to s and exploit (2.31) we find that 4>f3 = 0 and this in turn
reduces (2.29) to a^f = c2A0°°. If we now differentiate the last relation with respect to s we find that
A 0 f = 0, (x,y) e fi and 0 < 5 < T. Differentiating (2.32)i, also yields <j>f = 0 on <9fi and these two
facts in turn imply that (j)f = 0 for (x,y) G fi and 0 < 5 < T. Finally, equations (2.29) and (2.32) and
the identities 4>f = <#£ = 0 imply that (f)°° = 0 in fi x [0,T] and this in turn yields H ^ l ^ . r = 0 which is
a contradiction. •

We note that we have made no reference in the proof as to whether G\ is positive or zero. Had we
assumed U\ > 0, then our basic a-priori estimates would have guaranteed that ( ^ ^ L ^ L s ) all converged
to zero in L2(ft x [0,T]) as t went to infinity and thus the limit equations (2.29) and (2.30) would have
directly taken the form A0°° = 0 and Pgip00) - 62X2Ap°° = 0. These relations would then have yielded
the desired result.

The preceding proof gives us considerable information about the u-limit set of solutions of (2.1) - (2.3).
In particular we know that if ((f)00^00) is in the o;-limit set, then 0°° = 0 and p°° is a solution of the
equilibrium problem

) = 0 , (x,y)en (2.33)

and

^ = 0 , {xB,yB)edQ. (2.34)

We further note that if {tn}^=1 is an increasing sequence of times satisfying

lim tn = oo and lim | \ptn - p°° \ \2,T = 0, (2.35)
n—>oo n—>oo

then the energy identity (2.5) implies that the averaged energy

. . rTf f f /* g2 x \
£(t,T)= / / [tL(4?s + c2\v<t>\2) + -(pl + \2\\7p\2) + 0${p))(x,y,t + s)dxdy ) ds (2.36)

Jo V n V2 2 / )

satisfies

/" /" /<S2A2 . \
(2.37)=T

in fact (2.5) implies that S(t,T) is monotone decreasing in t and thus we obtain the stronger result

t—»-OO
(2.38)

We note that the constants S^, are not arbitrary, rather they must be one of the critical values of the
functional

"r" '<52A2

n
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as p ranges over jff 1(fi). These critical values are the energies associated with nontrivial solutions of (2.33)
and (2.34). In the next section we shall show that finding the critical points of the above functional (and
the associated critical values) is equivalent to finding the critical points (and critical values) of a real valued
function defined on a finite dimensional euclidean space. The dimension of this euclidean space is related

to the size of the parameter |$^2^(0)|. In the general case we have not succeeded in showing that

for a fixed set of parameters and domain Q either problem has only a finite number critical points but we
note that the results of [1] imply that in the one-dimensional case where fi is an interval, say (0,1), there
are only a finite number of critical points of E and thus only a finite number of critical values. We note
there are always multiple solutions to (2.33) and (2.34) giving rise to a given critical value S^ of E\ the
evenness of E implies that if p°° is a nontrivial solution with energy E^ = E (p°°), then so is — p°°. The
above considerations lead us to
Theorem 2. Suppose the number of pairs (p, —p) of solutions to (2.33) and (2.34) are finite and suppose
further that (</>,p) is the solution to (2.1) - (2.3) corresponding to a fixed initial condition

,2/,0+) = ( / , 0 \ p V ) (x,y),(x,y) e SI (2.39)

which is smooth enough so that the estimates of Lemmas 1-4 obtain. Then, there exists a unique limit
(0,p*) so that

Hm (H^lkr+lb* -P'lkr) = 0. (2.40)

Additionally, p* must be one of the solutions of (2.33) and (2.34). •
Proof. The results of Theorem 1 guarantee that (j) has the appropriate limiting behavior. We now

assume that p has no limit and we let 0, (pi, —pi) , (p2, —P2) , (j?M, —PM) be the finite set of equilibrium
solutions to (2.33) and (2.34). The hypothesis that p has no limit guarantees that for each index j =
0 , 1 , . . . , M we can find an €j > 0 and increasing sequence of times tJ

n with lim tJ
n = 00 such that

n—»>oc

b*Tftlkr>e; (2.41)

for j = 0 , 1 . . . , M and n = 1,2,... . But the uniform boundedness of the p^ ' s in H3 (Q x [0, T])
guarantees we can find an increasing subsequence Tk(nj) of the times tJ

n which tends to infinity such that
the function pT*(«.i) converge strongly in H2 (Q x [0,T]) to some solution of (2.33) and (2.34) and this
contradicts (2.41). •

We conclude this section with some remarks about the system (1.6) and (1.7) when the boundary
condition (1.10)i is replaced by

= 0 , (xB,yB) € 00 . (2.42)

This latter condition when combined with (1.6)2 and (1.6)3 implies that e satisfies the Neumann condition

^.(xB,yB,t)=0 , {xB,yB)edn. (2.43)

We again insist that p satisfies (1.10)2- To analyze the long time behavior in this situation we could again
introduce a potential (f) via (1.22) and (j) would again satisfy (1.23) but (1.24) would be replaced by

^ (xB,yB)Edn.

10



Identical energy estimates obtain for this problem but in this situation we loose Z/2(fi) estimates for (p and
thus cannot avail ourselves of standard compactness results to conclude that (j) has the desired limiting
properties as t tends to infinity. Thus, when the magnetic field satisfies (2.42) andp satisfies (1.10)2 we find
it preferable to work directly with the original system (1.6) and (1.7). We now assume that the initial data

for the magnetic field, h°, is divergence free and thus satisfies the compatibility condition / h° • nds = 0.

This hypothesis guarantees that for all t > 0,h satisfies

dh*
+ — = 0 and
+

ox oy
• nds = 0. (2.44)

For the new boundary condition our results depend upon whether a± > 0 or a\ = 0. When G\ > 0,e
and h converge to zero as t tends to infinity and p converges to a solution of (2.33) and (2.34). When
<Ji = 0, e converges to the constant e°° defined by

(e (x, y, 0) + p (x, y, 0) - p°° (x, y)) dxdy

where A(f2) is the area of fi and p converges to p°° which now satisfies

0g (p00) - (2.45)

and the boundary conditions (2.34). In the case where G\ — 0 the magnetic field h also converges to zero
as t tends to infinity.

To establish these results we use identities satisfied by solutions of (1.6), (1.7), (1.10)2, and (2.42).
These are obtained from our previous ones by making use of (2.4). We let

0
2

A2

= <

h\t
2

61

62

(2.46)

(2.47)

= pee (h2, -h^ + 62X2
Pt y p,

Q2 = f3cet(h2t,-hlt) = 0c2et 5 X Pa VPt,

Q3 = ~ hltt) + 82pm y Ptt = l3c2ett S2X2pttt y Ptt,

(2.48)

(2.49)

(2.50)

(2.51)
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- a6p2
t, (2.52)

- aSp2
tt - f3gw(p)ptPtt, (2.53)

and

It is then easily checked that for indices i = 1 - 3 the following identities are satisfied by solutions of (1.6),
(1.7), (1.10)2> and (2.42):

= -f3aie
2

tt - a6p2
m - (3 {g^{p)ptt + g^(p)p2) pm. (2.54)

^ - divQ• = d (z, y) E ft and t > 0 (2.55)

and

Q; • n (xB, yB, t) = 0 , (xB, yB) G <9ft and t > 0. (2.56)

Additionally, the electric field, e, satisfies

de
ett+Ptt = c2Ae , (x,y) € Q and — = 0, (xB

:y
B) e dQ. (2.57)

The implications of these identities are summarized in
Lemma 5.

(i) If the initial data for e, h, and p are sufficiently smooth, then for each t > 0 and T > 0 the functions

et(x,y,s) = e(x,y,t + s) , (x,y) € Q and 0 < 5 < T (2.58)

and

p*(x, y, 5) = p(x, j / , t + s) , (re, y) € ft and 0 < s < T (2.59)

are respectively in H2 (ft x [0, T]) and i73 (ft x [0, T]) with bounds which depend only on the initial
data and T.

(ii) The derivatives pt and ptt converge strongly to zero in I/2(ft) as t —* oo and p also satisfies the decay
estimates (2.27).

(iii) If G\ > 0, then e and et converge strongly to zero in I/2(ft) as t —* oo and the functions

( e t , e t
s , e t

s s ) ( x , y , s ) = ( e , e s , e s s ) ( x , y , t + s) , 0 < s < T (2.60)

converge to zero strongly in Li (Q x [0, T]) as £ —• oo. •

Thus, if we exploit (ii) and (iii) of the preceding lemma we find that if (e,h,p) is a solution of (1.6), (1.7),
(1.10), and (2.42), then

Urn JJ (h2 + h2) (x,y,t)dxdy = 0. (2.61)
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This latter result follows from the fact that h satisfies (2.42), (2.44), and

> 0 (2.62)dh,2
dx dy

where

jju(x,y,t)dxdy = 0 and lim JJ Lj2{x,y,t)dxdy = 0. (2.63)

The fact that solutions of (2.42), (2.44), (2.62), and (2.63) satisfy the a-priori estimate

JJ (h\ + hD (^y^dxdy < i - JJu2(x,y,t)dxdy,
2n 2 n

(2.64)

guarantees that h satisfies (2.61). The constant A2 in (2.64) is the smallest positive eigenvalue of the
laplacian on Q, with eigenfunctions satisfying a zero Neumann condition on dfl which are orthogonal to
constants.

The situation when <Ji = 0 is more subtle. Here we use the arguments employed earlier to show that
(f)°° was zero to conclude that

£ n (llciH^ + \\h\\\lT + \\hl\\lT) = 0. (2.65)

Equations (2.27) and (2.65) then imply that the cj-limit set of solutions of (1.6), (1.7), (1.10)2, and (2.42)
consist of fields (e00^00 ,p°°) where e°° is a constant on Q,h°° = 0, and e°° and p°° are related by

, (x,y)en (2.66)

and

? £ = 0 , (xB,yB)edQ. (2.67)

The constant e°° is related to p°° by

JJ (e(:r> y'0) + p(x'y> 0)" p °° ( : r ' y ) ) dxdy (2>68)

and again A(Cl) is the area of f2. Finally that the averaged energy satisfies

lim/ ( E1(x,y,t + s)dxdy)ds

(2.69)

where Ei is the energy density defined in (2.46). This concludes section 2.
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3. The Equilibrium Problem (2.33) and (2.34).

In this section we examine the equilibrium problem (2.33) and (2.34), namely

- A p + A p 7 (p2) = Ap , (x, y ) e n (3.1)

and

Here

A = lIL (3-3)
where 0 < <5, 0 < A, and 0 < (3 are the parameters introduced in section 1. This problem is equivalent to
(2.33) and (2.34) with

g(p)=p{-y(f)-l). (3.4)

We assume that 7(-) is C2[0, oo) and satisfies

7(0) = 0 and 0 < 7(1)(s) for 0 < s, (3.5)

7(1) = 1, (3.6)

7(s) ~ (k + 1) , 0 < k < oo, as s -»• oo, (3.7)

and

lim sn7 (n)(5) = 0 , n = 1 and 2. (3.8)
5—XX)

These assumptions guarantee the function #(•) defined in (3.4) satisfies the assumptions laid down in (1.8).
For such g's the potential $ is given by

$ = I (* (p2) - p2) and *(5) = f 1(y)dy. (3.9)
^ Jo

$ has the double-well character and as |p| —» oo

$ ~ ^p 2 (3.10)

as desired.
The problem (3.1) and (3.2) has the trivial equilibria p = ±1 and p = 0 and the non constant equilibria

p satisfy the a-priori bounds — 1 < p < 1. These inequalities follow from (3.5) and (3.6) and the maximum
(minimum) principle for the Laplace operator.

Our basic result is that finding the non trivial equilibrium solutions of (3.1) and (3,2) is
equivalent to the finite dimensional problem finding the critical points of an even C2 function,
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J, on RN. The integer N is equal to the number of eigenvalues of - A (with eigenfunctions
which satisfy (3.2)) which are less than A.

The function J has critical values satisfying

1) „
_b %Jcritical _^ U,

2 value

has an isolated local maxima at u = 0 satisfying ,7(0) = 0, and satisfies the asymptotic
estimate

M > 0

as ||u|| tends to infinity. These estimates guarantee that for 8 large enough

C d=f {u e RN | v u J(u) = 0} c {u e RN\ ||u|| < 6} . (3.11)

The critical points may be obtained by examining the limit points of the gradient flow

^ = -VuJ(u);

specifically, if ŵ e let

(3.12)

and

S(e,oo) = {uoo € /J^luoo € w - limit set of «S(e,O)} , (3.13)

then

C= \Js{e,oo). (3.14)
eel

w^here / is the internal ———— < e < 0. Though not a particularly effective com-
putational algorithm these observations point out that solutions of (3.1) and (3.2) can be
obtained by taking the limits of a finite dimensional system of differential equations rather
than the infinite dimensional system described in sections 1 and 2.

Now, and in what follows, we assume Q has a complete set of eigenfunctions, <&, with eigenvalues, A*,
satisfying

-Acfii = Aifc in 0, and -^ = 0 on dQ.. (3.15)
(Jit

The numbers A, and A are ordered as indicated below

0 = Aa < A2 < . . . < A N < A < A N + 1 < ...< A N + i (3.16)

and the eigenfunctions, fa, satisfy the normalization conditions

4 a n d J J 4>i4>jdxdy = 8itj. (3.17)
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We let

MN = lu e H1^) I u = J^u^i I (3.18)

and

ATN = <v e H 1 ^ ) | v = J T Vi(f>N+i 1 (3.19)

and note that for functions u € MN the Z^ft) and if1 (ft) norms generate equivalent topologies whereas
for functions v € jV}v

MIln d= Jf(Vv-S7v + v*)dxdy = jr/(AN+i + l)v?<(;/'N+1 + 1) \\\v\\\ln (3.20)

where

(3.21)

Moreover, solving the equilibrium problem (3.1) and (3.2) is equivalent to finding u € MN and v E
such that

(A* - A) Ui + A y J (f)i {u + v)^ ((u + vf) dxdy = 0 , 1 < i < N (3.22)J]4>i{u

and

ff 2

(AJV+£ — A) V{ + A / / (f>N+i (u + t>) 7 ((^ + t?) ) dxdy = 0 , 1 < i, (3.23)

and solving (3.22) and (3.23) is equivalent to finding the critical points u € Atjy and v € A/"AT of

T / x def 1 1 1 / , A / o , o x . A ,-r, / / \2\\ j j

J[u v) = — / / ( V ^ ' V ^ "I" V ^ " V ^ "" ^ (w "I" v ) ~^~ ^ ^ vv^ ~^~ v) )) dxay
2 n

(3.24)_ I V / \ _ A u 2 i V f A -A)i;2 + i [[*((u + v)2)dxd
2 Z—/ ̂  ^ x 2 —̂̂  l 2 J ^

t=i t=i ^

that is solutions of

— = 0 , 1 < i < N (3.25)

and

^ T

, 1 < i- (3-26)
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We observe that if u G MN and v 6 fsfN satisfy (3.22) and (3.23), then the following additional identities
must hold

Ai - A) u\ + A J J u{u + v)i ((u + v)2) dxdy = 0 (3.27)

and

- rr
} (Ajv+i - A) v2 + A / / v(u + i))7 ((u + v)2) dxdy = 0. (3.28)
t=i n

These last identities imply that if u 6 A4N and v € NN is a critical point of J, then

Jcriticai^, v) = — / / (\& ((n + v)2) — (u + v)2) 7 ((tx + T;)2) ctedy. (3.29)
value 2 ^ ^

The fact the function p = u + v satisfies (3.1) and (3.2) and the bounds —1 < p < 1 and the fact that
7(«) satisfies (3.5) and (3.6) guarantees that any critical value of J satisfies the bounds

^ ' ($(1) - 1) < Jcritical^,^) < 0. (3.30)
2 value

Moreover, the lower bound is achieved at the critical points (u,v) = (±1,0) = (±A1^2(fi)0i, 0). We are
interested in the other critical points of J.

For fixed u G A^N we first focus on the system (3.23) (equivalently (3.26)). We note that if v G A/jv is
a solution of (3.23), then

t = i

v dxdy < 11HII2 Q

(Aiv+z - A) v2 + A J J 7 ({u + i;)2) (t;2)2 dxdy

= — A / / 7 ((^ + ̂ )2) ̂ ^ dxdy

ff \1/2 f It V / 2

/ / u2dxdy \ j j v2dxdy j
n / \ fi /

(3.31)

n /

where A; + 1 = Iim7(s) is the upper bound for 7(-) on s > 0. The last inequality together with the strong
s—•oo

monotonicity estimate
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1 = 1

(with Ti(u,v) defined by the expression on the left-hand side of (3.23)) guarantees that for each u e MN

there is a unique v = v(u) G MN satisfying (3.23). Moreover, (3.5) - (3.9) imply that this mapping is C2

on MN and has the following additional properties:

v{-u) = -v(u), (3.32)

— A T ( 1 ) ( 0 ) £ 3 / /
Vi(te) = v [ / / 4>N^dxdy , as t -* 0+ , (3.33)

and

v(te)/t = o(l) , as t —»• 00. (3.34)

A ff A
In (3.33) and (3.34), e = J J e ^ and y y e2da% = JJe 2 = 1.

t€l & t=l

We now turn our attention to the system (3.22) where

v = v(u) d= Yj>i(u)<f>N+i (3.35)

TV

and the ̂ (u) 's are the unique solution of (3.23). Once again the solutions u = \\ii(f)i of this system are
i=i

critical points of

1 N 1 °° A f f

J («,«(«)) = i J2 (A< ~ A)u* + ? E (A"+* - A)«?(«) + ? 7 7 * ((« + t>(u))2) d«dy, (3-36)
t=i n

O T

that is the solutions of —— = 0 , i = 1,2,... JV. Moreover, the fact that i> = v(u) satisfies (3.28) implies
du

that J (UjV(u)) reduces to

1 N A
J ( u ) =f J (u, €(u)) = i V (Ai - A) u? + £ / / (* ((u + t)(w))2) - t)(w) (w + v(u)) 7 ((u + t)(u))2)) dxdy

(3.37)

and the inequality (3.30) implies that critical values of ,/(•) also satisfy (3.30).
We now record some facts about &{-). The first is that

U, t^wjj , 1 < 2 < iV. ^o.ooj

This identity follows from the fact that v = v(u) satisfies (3.26). An immediate consequence of (3.37) is
the identity
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(3.39)

+ A I I <fii('y((u + v(u))2)+2(u + v(u))2
7W((u + v(u))2)

The asymptotic estimate (3.33) guarantees that -0(0) = 0 and 77—(0) = 0 and these identities, along with
KjXJbA

(3.5) and (3.22), imply that

d2 7
- 0 and T j - s r (0) = d i a § (Ai - A, A2 - A,. . . , A* - A)

and thus that u = 0 is an isolated local maxima of J. We note that J(0) = 0. The asymptotic estimates
(3.7) and (3.35) guarantee that for e's satisfying

N r r N

e = Y,eifr and j J e2dxdy = J^e* = 1 (3.40)
»=i n t=i

J satisfies

t (V A e2 Afc

and the latter estimate, together with the fact that the critical values of J satisfy (3.30), guarantees that
for 6 large enough all critical points of J satisfy (3.11) - (3.14).

We can also apply the Lyusternik-Schnirelman theory (see e.g. [4], [5]) to the function J(\i) on Ai^
to determine critical levels of this functional and corresponding non-trivial solutions of

V u J(u) = 0. (3.42)

With the exception of the constant solutions, these can be expected to be saddles rather than local
maxima or minima. These critical values can be characterized as follows. Let J^n' ^ = 1? 2 , . . . , iV denote
the collection of compact, balanced (i.e. invariant under the map u —» —u) subsets S C -MAT\{0} of genus
< n. The genus of a compact, balanced subset of A4iv\{0} is the least integer n such that there exists
an odd map f : S —* S71"1 ( the (n — l)-sphere); clearly for S as above the genus is < N and by the
Borsuk-Ulam theorem an n-sphere has genus n + 1; for more details see [4], [5].

Put

Cn = min max J{u), n = l,...AT, (3.43)

then

- 1) = cy < c2 < . . . < cN < 0. (3.44)
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The left-most identity follows from (3.30), the monotonicity of the c^s from the definition (3.43) and the
last inequality from the fact that u = 0 is an isolated local maximum. It can also be shown that C\ < C2-

By a standard application of the Lyusternik-Schirelman theory it follows that the Cn's defined by (3.43)
are critical values of v7(u). If these numbers are distinct, this implies the existence of at least N pairs of
solutions to (3.42). If there is repetition, i.e. if

cj ~

for some j:l<j<N — k + 1 then the set of solutions to (3.42) on the level Cj is a set of genus k.
In particular a set of solutions of genus k will contain k pairs (u^, — U;), i = 1 , . . . ,fc with inner product

This concludes section 3.
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4. Concluding Remarks
We conclude with some remarks about the ferromagnetic case. We assume that

where

that

and that

B = /x (H + M)

H = ahez and M =

e2e2),

= eE.

(4.1)

(4.2)

(4.3)

(4.4)

Again, a > 0, b > 0, - = w—, c = ——, and a\ — — and all fields are functions of x,y, and t. In this
a Y M / ^ 6

case Maxwell's equations reduce to

ht + mt = c (ely - e2ir),

and
(4.5)

and we supplement this system with the following evolution equation for m:

82mtt + a6mt - f3(h- g{m)) = <52A2Am. (4.6)

We assume these equations hold in a simply connected domain Q. On m we impose the natural boundary
condition

dm
dn

{xB,yB)=0 , {xB,yB)edn.

We further assume that

E-n-L=0 , (xB,yB)ed£l

(4.7)

(4.8)

where once again n = niei + TI2&2 is the unit exterior normal to d£l and rr1 = —r^ei + Tii&2 in the unit
tangent to 9Q. The latter boundary condition implies that h also satisfies the zero flux condition

The analysis of the above problem is essentially identical to the analysis ferroelectric equations when
the boundary conditions (1.10) and (2.42) obtain. We assume that the initial data for E is divergence free
and thus we are guaranteed that for all t > 0

e-\x + e2y = 0 and + e2n2) ds = 0. (4.10)

an
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Our results for the ferromagnetic problem are summarized below:
(i) Independently of whether ai > 0 or <Ti = 0 E = e ^ i + e2e2 converges strongly to zero in

as t —> oo.
(ii) h converges to a constant, h°°, and m converges to a stationary distribution m°° and both are

related by

^h°°-g(m°°)) = 0 , (x,y)en, (4.11)Carneoie Mellon UniversitvLibrarjes

3 AH AS 01426 0222

/ /i i 2>l. h = ^y J

and

(h(x, y, 0) + m(x, y, 0) - m°°(x, y)) ctedj/, (4.12)

^ (4.13)

(iii) The energy

E(t) d=f jj ( | (h2 + e2
1 + e2

2) + 09 (m) + y (m2
t + A2| V m|2)) (a:, y, t)dxdy (4.14)

is monotone decreasing in t and for any T > 0 the averaged energy

s)ds (4.15)

satisfies lim-E(t,T) = T£oo where
t—•oo

€. - JJ {0* (m-) + ̂ ! | V m-|') ̂ , + ̂ M (4.16)

and /100 and m°° are defined in (4.11) - (4.13) above. We note that the equilibrium energy defined in (4.16)
is the one used in [3] in the study of steady state ferromagnetism.

This concludes our paper.
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