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Abstract

The phenomenon of surface diffusion is of interest in a variety of physical situations [8].
Surface diffusion is modelled by a fourth-order quasilinear parabolic partial differential equation
associated with the negative of the surface Laplacian of curvature operator. We address the
well-posedness of the corresponding initial value problem in the case in which the interface is
a smooth closed curve T contained in a tubular neighborhood of a fixed simple closed curve
To in the plane. We prove existence and uniqueness, as well as analytic dependence on the
initial data of classical solutions of this problem locally in time, in the spaces Eh of functions /
whose Fourier transform (fk)kez decays faster than |fc|~/l, for h > 5. Our results are based on
the machinery developed in [1], [2], [3], which allows the application of the method of maximal
regularity [11], [14], [4] in the spaces Eh.

1 Introduction

The free-boundary problem of evolution of a closed surface by minus the surface Laplacian of the
mean curvature arises in various contexts of great physical interest [8]. Some examples include
sharp interface limits of the Cahn-Hilliard equation with concentration-dependent mobility [7], and
the study of smectic A liquid crystal configurations [13]. The negative surface Laplacian operator
models surface diffusion, that is, diffusion taking place within the evolving surface itself. The
evolution may be thought of as being due to surface diffusion of the mass of a body enclosed by
the surface [9].

The problem we are concerned with is defined as follows. A simple closed curve To in the plane
is given, and one seeks a family (^(t))te[o,T] °f closed curves evolving according to the following
prescription:

Vn = -Ar{t)K(T(t)) for te(0,T) (1)

r(o) = r0

Here, Vn is the normal velocity of the family T(t) at time £, Ap(t) is the Laplace operator relative
to the arclength metric on F(t), and n(T(t)) is the curvature of T(t).

In recent work [9], [10], Coleman and his collaborators have numerically uncovered some inter-
esting behavior of the solutions to this problem, including loss of convexity. The latter phenomenon
points to a significant analytical obstacle to the study of well-posedness for motion by surface diffu-
sion, namely, the lack of a maximum principle. The issues of existence, uniqueness, and dependence
of solutions on the initial data have to our knowledge not previously been addressed for this problem.
Assuming small initial data, Baras, Duchon, and Robert obtained in [6] existence and uniqueness
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of solutions globally in time for the analogous problem in the case of an infinite curve. However,
their hypotheses require that the initial curvature either be a measure with finite total variation
([6], Theorem 2.1) or else belong to some Lp space with 1 < p < 2 ([6], Theorem 2.2) and so their
results do not apply in the periodic case with which we are concerned here.

In the present paper we exploit the framework developed in earlier work of Alvarez and Pego [1]
to provide not only local existence and uniqueness of classical solutions for small initial data, but
also analytic dependence of solutions on the initial data in spaces of periodic functions with algebraic
Fourier decay. We will assume that the interface T(t) is parametrized by a function d{t) 6 Eh,
where the spaces Eh are defined below in 1.1. This definition of the spaces Eh originally appeared
in [1].

Definition 1.1. For h > 0, let Eh denote the space of distributions / : S1 —• R whose Fourier
transform / : Z —• R satisfies fk = o(\k\~h) as |A:| —• oc, equipped with the Banach norm

(
kez

The index h gives roughly the degree of smoothness of the functions that belong to the space
Eh. For example ([1], [2]), Eh embeds compactly into the Sobolev space Wh~~2~e for any e > 0, as
well as into the space Ch~1~t of Holder-continuous functions of exponent h — 1 — e.

The main result of the present paper is the following.

Theorem 1.1. Let h > 5. Assume that the curve parametrized by d = 0 is of smoothness class
C°°. Then there exist R > 0 and T > 0 such that if do is an element of Eh having Eh norm less
than R, then there is a map d £ C([0,T],£' / l) solving the initial-value problem given above in Eq. 1,
with T(t) = T(d(t)) and To = F(do)» Furthermore, the mapping do »—• d is analytic from the space
Eh to the space C([0,T],Eh).

Our approach is based on showing that the method of maximal regularity [11], [4], [14] applies in
the phase space pair (Eh~4,Eh). This involves proving that the nonlinear minus surface Laplacian
of curvature operator maps Eh into Eh~4 continuously with analytic dependence on the interface
parametrization d, that the linearization L of this operator around the reference curve d = 0
generates an analytic forward-time flow in Eh~4, and that L satisfies the following condition for
the variation of constants integral associated with the forced dynamics for L relative to the pair of
spaces (Eh"4,Eh).

Definition 1.2. Let X and Y be Banach spaces with Y densely embedded in X. A linear operator
L : Y —• X is said to satisfy the maximal regularity property relative to the phase pair (X, Y) iff
the linear operator T defined by

f { ) d s (2)
o

maps the space C([0,T],X) continuously into the space C([0,T],y) for some T > 0.

Roughly, the idea behind the maximal regularity property is that the solution of the nonlinear
initial value problem

i(t) = G(x{t))
x(0) = 0 ( 3 )



where G : Y —• X is a vector field of class C* whose differential at 0 equals £, may be found in terms
of the solutions of the corresponding forced linearized problem by writing the nonlinear dynamics
as the linear dynamics plus a forcing term containing the higher-order terms of the nonlinear vector
field:

x(t) = Lx(t) + N(x(t)) (4)

The solution of Eq. 4 with x(0) = 0 satisfies the variation-of-constants formula:

x(t)= [' e^-s)LN(x(s))ds (5)
J
[

If the maximal regularity property holds for Z, then a fixed-point argument using the inverse
function theorem yields existence and uniqueness locally in time for the initial value problem
associated with the nonlinear evolution equation of Eq. 4, as well as Ck dependence on the initial
data. The index k can be any natural number k > 1, or k = oo, or even k = u (analytic).

Theorem 1.2. ([4], Theorem 2.7) / / the Frechet derivative dG(x) satisfies the maximal regularity
property relative to (X,Y) for every x in some X-neighborhood O of 0, then the nonlinear initial
value problem of Eq. 3 has a unique solution on some small enough interval [0,T].

Theorem 1.3. ([4], Corollary 2.9) If G € Ck{O,X) and dG(x) satisfies the maximal regularity
property for each x € O, then the local semiflow on O generated by the initial value problem of
Eq. 3 is of class Ck.

We will show that the minus surface Laplacian of curvature vector field depends analytically on
the interface parametrization d in the context of the Eh spaces, and thus by Theorems 1.2 and 1.3
we will obtain local existence, uniqueness, and analytic data dependence for this evolution problem.
Since the set of operators having the maximal regularity property relative to a phase pair (X, Y)
is open in the space L(Y, X) of bounded linear operators from Y to X ([4], Lemma 2.1), it will be
sufficient to show that the maximal regularity property holds for the single operator L = </G(0),
where G is the negative Laplacian of curvature field.

The reader may wonder why we work in the spaces Eh rather than in, say, Lp Sobolev spaces.
The reason is that the maximal regularity property of Definition 1.2 fails in the latter spaces.
In fact, a theorem by Baillon [5] (also see [12]) states that any space X on which there exists
some densely defined linear operator L satisfying the maximal regularity property, must contain an
embedded copy of the space Co of sequences vanishing at infinity. In particular, no suitable phase
space can be reflexive.

We now give two key properties of the spaces Eh which are used in our analysis of motion by
minus the surface Laplacian of curvature. These results were obtained in [1], [2], [3].

Theorem 1.4. Multiplication, (f,g) *-• fg, is an analytic mapping Ea x Eb -> f ^ K 6 ) fOT all
pairs (a, 6) satisfying a, 6 > 0, max(a,6) > 1.

Theorem 1.5. Let $ : S —• R be analytic on some open set S in R. Then composition with 3>,
/ i—• $ o / , is an analytic mapping from the open subset of Eh consisting of functions f whose
image is contained in S, to Eh itself, for any h > 2.



The proof of Theorem 1.4 is based on directly estimating the decay rate as \k\ —> oc of the
convolution of two sequences which decay faster than |&|~a, respectively \k\~b. Theorem 1.5 is
proved by making use of embedding results relating the Eh spaces with the Holder spaces CM, plus
an analyticity result for multiplication in Holder spaces which relies on Cauchy estimates for the
analytic function 3>. Complete proofs may be found in [1], [2], [3].

The above results allow us to control nonlinear terms arising in the evolution equation, and in
particular to show, in the next section of the paper, that the nonlinear vector field is well-defined
and analytic as a map from Eh to Eh~4. After proving analyticity of the nonlinear vector field, we
will focus our attention on showing that the linearized field generates an analytic semiflow on Eh~4

and satisfies the maximal regularity property in Definition 1.2 relative to the phase pair (Eh~4, Eh).
As the reader will see, the latter property is particularly easy to prove in the spaces Eh.

2 Analyticity of the nonlinear vector field

In this section we compute the evolution equation in tubular coordinates around a reference curve
Fo , and show that the associated vector field is analytic on the phase pair (Eh~4, Eh) if h > 5. We
describe the reference curve by its arclength parametrization XQ{6), which after scaling To may be
assumed to be defined for 6 on the unit circle 5 1 , and which satisfies

l*o'(*)| = 1 (6)

Let no(0) denote the outward pointing unit normal vector to To at the point XQ(6). Each smooth
function d : S1 —• R then corresponds to the curve T(d) parametrized as

x{9) = xo(6) + d{9)no{0) (7)

We will find an evolution equation for d representing the problem of motion by minus the surface
Laplacian of curvature for curves T(d) lying inside a tubular neighborhood of the reference curve
IV We will prove the following result.

Theorem 2.1. Let h > 5. There exists R > 0 such that the surface Laplacian of curvature operator
d »—• Ar(d)«(r(d)) maps the ball of radius R in Eh analytically to Eh~4.

Proof. We restrict the values d{6) to be sufficiently small so that the map x associated with d as
in Eq. 7 is a diffeomorphism from the unit circle S1 onto F(d). We now proceed to compute the
surface Laplacian of curvature operator which defines the evolution of F. At each point x(9) of F
we consider the positively oriented orthonormal basis (no(0),TO(6)), where TO(0) = xf

o(0) *S t^ ie UII^t

tangent vector to Fo in the clockwise direction, and no(6) is the unit normal vector as before. In
terms of the curvature KQ(6) of Fo we have the basic relations

To'(0) = -KO(0)no(e)

no'(e) = ( 0 ) ( 9 ) l

Using these relations one finds the s-derivatives of x{6)\

x\6) = (1 + d(6)Ko(0)) TO{9) + d'(e)no(e) (9)



and

x"{6) = (2d'(0)KO(0) + d(*K(0)) M6) + (d"(9) - (1 + d(0)KO(6)) KQ(6)) no(0) (10)

From Eq. 9 one obtains the orthonormal basis (n(0), r(6)) consisting of the unit normal and tangent
vectors to the curve T(d) parametrized by x(d) in Eq. 7:

+ d'(0)no(0)
T(e) =

((l + ^ ) K o W ) 2 + (rf'W)2)1/2

This yields the normal velocity of the interface:

v = i + d(e)K0{9) dd
n ((i + d(e)(e)¥ + (d>(e)yf2 dt

Using Eqs. 9 and 10 together, one obtains the curvature K{6) of the interface T(d):

= KQ(6) - d"{6) + 2K2{6)d{0) + {2d'(0)2 - d(0)d"(0)KO(0))KO(0) + d(0)d'(6)^(6

((i

In order to compute the Laplacian with respect to arclength s within the interface, we use the
formula

By applying the differential operator in Eq. 14 twice to Eq. 13, we obtain the surface Laplacian of
the curvature function of the interface T. The result may be written in the form

((i + d(0)«o(0))2 + (d'(9)ff2 ((1
P2(d)

where each P,-, i = 2,3,4, is a differential polynomial of i-th order (in the ^-derivatives of d):

P4(d) = dd'K% + 2dl24 + 8K'oKOd' + 2dd"^ + 4K'0
2d + 4^KOd

+ Zd'd"K'o + 2d"K2 + 6d2n'o
2KO + < - d"" + (4d'"d' + Ad"2

- d"2K0 - 2d'd'"Ko - 2d'd"K'o - dd""K0 - 2dd'"K'o - dd"4)KQ

+ 2a6K'o + dd'"Kr
0 + 2d"d4 + Zd2Kry0 + Q3K£ + 2d'2^ + 12d'dK'0K

2
0

P3(d) ~ -3(ACQ - d!" + 4K'0K0d + 2nld' + a6K0 + ^ 0 + d'2K'o + a5 + dd'k^
3 /O/J/, n ,, , J „ . .

— -a4(2(a KQ + 2a K0 4- dK0)(l ^
z

+ 2a2 + 2d'V + 2d"2) - ia2(«o " d '" + 4«o«o^ + 2K2d'

P2(d) = t



with the a, defined as follows:

" 4

<*€>

_ OA'2 A A"

= KQ — d" + 2n^d -

= dd" K'O

= 4d"d' - d'd"KO - dd'"K0 -

(17)

We obtain the desired equation of evolution by equating the expressions in Eqs. 12 and 15:

dd _ ((1 + d{0)K»{9)? + {d'{B)f)ll\{ P4(d)

+ W)

It follows immediately from Theorems 1.4 and 1.5 that the nonlinear vector field in d on the right-
hand side of this equation maps Eh to Eh~4 analytically if h > 5. In other words, the nonlinear
vector field defining the problem of motion by minus the surface Laplacian of curvature is analytic
with respect to the phase pair (Eh~4,Eh). This completes the proof of Theorem 2.1.

3 Linearization and maximal regularity

As explained in the introduction, we must now show that the linearized vector field generates an
analytic forward-time flow and that it satisfies the maximal regularity property given above in
Definition 1.2. This is the content of the following result.

Theorem 3.1. Let h > 5. The linearization of minus the surface Laplacian of curvature operator
generates an analytic semiflow on Eh~4 and satisfies the maximal regularity property relative to the
phase pair (Eh~4,Eh).

Proof The statement that a continuous linear operator L generates an analytic semiflow is
equivalent ([15], section 2.5, Theorem 5.2) to the sectoriality condition that the spectrum of L is
contained in some convex wedge in the complex plane with vertex on the real line and opening
angle strictly less than ir toward the left half-plane, and that there is a constant M G R+ such that
for all complex numbers A lying inside the wedge C the resolvent i2(A,i) satisfies:

| | (18)

We will verify that this condition holds when L is the linearized minus surface Laplacian of curvature
operator.

From Eqs. 16 and 17 we find the linearization of minus the surface Laplacian of curvature
operator around the reference curve d = 0. Indeed, we observe that for the purpose of linearizing



around d = 0, the expressions a t of Eq. 17 are equivalent to:

o>i = d Ko + dtxQ

Q.2 = 2Q;I

04 = Ko — d" + 2/cod

a5 = 0

and the Pi of Eq. 16 are equivalent to:

4^u^ — OrvQ/voCi T" ̂ ^ 0 ' Tt'^o 0 • ^w *^o ' 0 —

P2(d) = 0

Finally, we use the fact that for all z £ R we have:

((1 + d(0)KO{e))2 + (df(6))2y/2 = 1 + zd{6)K(e) + o{d) as d — 0 (21)

We obtain for the linearized field which appears on the right-hand side of Eq. 18:

((dG)(0))d = -d / ; / / - Kgd" " SKQKOC?' - (4KO«O + 3 K Q 2 ) ^ (22)

(The term of order 0, which equals — KQ, has been omitted here.)
Consider first the term of highest order, — d//7/, in Eq. 22. In order to compute its spectrum, we

apply the Fourier transform to the equation

- / " " - A/ = £, (23)

obtaining the following family of equations indexed by the dual variable k £ Z:

- k4fk - Xfk = cjk, (24)

We see that if A:4 + A remains bounded away from 0 as k ranges over all integers, then we may solve
for / in terms of g in Eq. 24 and thus also in Eq. 23. Indeed, we will have:

and the resulting function g will belong to the space Eh if g belongs to Eh~4. It follows that the
spectrum of the operator -D4 is contained in the closure of the set of values -k4 for k £ Z, i.e. in
the nonpositive real line. Furthermore, the operator — D4 satisfies:

IjLl/l f

\\R(X,D4)\\= sup ^PTY~

- s u p s u p

^ S U P u , 1,4 1

<



Thus, the resolvent bound of Eq. 18 holds for -D4, so this operator is sectorial, and therefore
generates an analytic semiflow on the space Eh~A.

We now show that the remaining terms in Eq. 22 do not affect the sectoriality of the spectrum.
In order to do this, we make use of the following result.

Lemma 3.2. ([15], section 3.2, Theorem 2.1). Let A be the infinitesimal generator of an analytic
semigroup. Let B be a closed linear operator satisfying D(B) D D(A) and

\\Bx\\ < a\\Ax\\ + 6||:r|| Vx e D(A) (27)

There exists a positive number 6 such that ifO<a<6 then A + B is the infinitesimal generator
of an analytic semigroup.

We can easily show that if j is any non-negative integer less than 4, then Eq. 27 holds for
A = D4, B = D^, with a > 0 arbitrarily small. To see this, let e > 0 and choose k0 6 Z+ such that
krf~4 < £• We then have the following inequalities in the Eh~4 norm for any x <E Eh:

sup
\k\>k0

+ \k\h-4)\k\f\xk\ + sup

sup (\ + \k\h-4)\k\4\xk\ + k0
4 sup

(28)

By Lemma 3.2, it follows that the lower order terms in Eq. 22 do not affect the analyticity of the
generated semigroup in Eh~4, and so the linearized minus surface Laplacian of curvature operator
generates an analytic semiflow on Eh~4.

The verification of the maximal regularity property uses a perturbation argument also. First
we show that the negative of the fourth-derivative operator has the maximal regularity property
(Definition 1.2). Given / € C([0, X], Eh~4), the Fourier transform of the value at / of the associated
variation of constants integral operator R satisfies:

Jo
fk(s) ds (29)

r
Notice that the right-hand side of Eq. 29 is independent of tf, and that the simplicity of the above
derivation of this uniform estimate relies heavily on the definition of the spaces Eh. We now invoke
the following fact:

Lemma 3.3. (see the proof of Theorem 3.2.1 in [1].) The space C([0, T], E°°) is dense in the space
C{%T],Eh).



The proof of Lemma 3.3 involves truncating the Fourier transform of a given g e C([0, T],Eh)
to a bounded interval \k\ < ko(t) to obtain an E°° approximation of g(t) for each t and then using
compactness of [0, T] and continuity in t of g(t) in the £ h norm to obtain a uniform bound on the
numbers ko(t) for t in [0,T].

In view of Lemma 3.3, Eq. 29 implies that Rf(t) belongs to Eh for each t € [0,T], i.e. that the
Fourier transform of Rf(t) decays strictly faster than \k\~h. The continuous dependence of Rf(t)
on t in the Eh norm also follows from the density property of Lemma 3.3 (for details see the proof of
Theorem 3.2.1 in [1]). Moreover, Eq. 29 proves continuity of R as a mapping from C([Q,T],Eh~4)
to C([0,T],Eh). We see, therefore, that the variation-of-constants operator R maps the space
C([0,T],Eh~4) continuously into the space C([0,T],£/l) as required by the maximal regularity
property relative to the phase pair (Eh~4,Eh).

The lower-order terms of the linearized surface Laplacian of curvature can now be included by
a perturbation argument as was done above in the proof that the generated semiflow is analytic.
The relevant perturbation result is the following version of Lemma 2.5 in [4] (the statement in [4]
is slightly different, but the present version follows from the proof given there).

Lemma 3.4. Let A have the maximal regularity property relative to the phase pair (X, Y), and let
B :Y -+ X be such that

\\Bx\\x < a\\x\\Y + b\\x\\x Vx € D(A) (30)

There exists a positive number 6 such that if0<a<6 then A + B also has the maximal regularity
property relative to (X,Y).

The fact that Eq. 30 holds for A = -D4, B = DJ for any j < 4 relative to the phase pair
(Eh~4,Eh), is proved exactly as was done above for Eq. 28. We conclude by Lemma 3.4 that
the lower order terms of the linearized vector field in Eq. 22 do not affect the maximal regularity
property. This completes the proof of Theorem 3.1, and therefore also of Theorem 1.1.

Acknowledgement

We thank David Kinderlehrer for his helpful comments.

References

[1] S.A. Alvarez, Interface motion driven by curvature and diffusion: analytic dependence on the initial
data for the Mullins-Sekerka equation, Ph.D. Thesis, Interdisciplinary Applied Mathematics Program,
University of Maryland at College Park, 1996

[2] S.A. Alvarez, R.L. Pego, The Dirichlet-to-Neumann map of a planar domain in spaces of functions
with algebraic Fourier decay, in preparation

[3] S.A. Alvarez, R.L. Pego, Analytic dependence on the initial data for interface motion driven by cur-
vature and diffusion, in preparation

[4] S.B. Angenent, Nonlinear Analytic Semiflows, Proceedings of the Royal Society of Edinburgh, 115A
(1990), 91-107

[5] J.B. Baillon, Caractere borne de certains generateurs de semigroupes lineaires dans les espaces de
Banach, Comptes Rendus Acad. Sciences Paris, 290 (1980), 757-760

9



3 6462 D145fl

[6] P. Baras, J. Duchon, R. Robert, Evolution d'une interface par diffusion de surface, Communications
in PDE, vol 9 (1984), 313-335

[7] J. Cahn, C M . Elliott, A. Novick-Cohen, The Cahn-Hilliard Equation with a concentration-dependent
mobility: motion by minus the Laplacian of the mean curvature, European Journal of Applied Math-
ematics, 7 (1996), 287-301

[8] J. Cahn, J. Taylor, Overview 113: Surface motion by surface diffusion, Acta Metallurgicaet Materialia,
42 (1994), 1045-1063

[9] B.D. Coleman, R.S. Falk, M. Moakher, Stability of cylindrical bodies in the theory of surf ace diffusion,
Physica D, 89 (1995), 123-135

[10] B.D. Coleman, R.S. Falk, M. Moakher, Space-time finite element methods for surface diffusion with
applications to the theory of the stability of cylinders, SIAM J. Sci. Comp. 17 (1996), 1434-1448

[11] G. DaPrato, P. Grisvard, Equations devolution abstraites nonlineaires de type parabolique, Ann. Mat.
Pura Appl. 120 (1979), 329-396

[12] B. Eberhardt, G. Greiner, Baillon's Theorem on Maximal Regularity, Acta Applicandae Mathematicae,
27 (1992), 47-54

[13] D. Kinderlehrer, C. Liu, Revisiting the focal conic structures in Smectic A, Proc. Symp. Elasticity,
special issue in honor of Professor J. L. Ericksen, 1996 ASME Mechanics and Materials Conference

[14] A. Lunardi, "Analytic Semigroups and Optimal Regularity in Parabolic Problems", Progress in Non-
linear Differential Equations and their Applications 16, Birkhauser, 1995

[15] A. Pazy, "Semigroups of Linear Operators and Applications to Partial Differential Equations", Applied
Mathematical Sciences 44, Springer, 1983

10


