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1. Introduction.

Several problems in phase transitions, fracture mechanics, plasticity and image
segmentation, may be studied within a framework where the underlying energy is
given by a functional of the type

F:BV(Q:RY) x AQ) — [0, +00)],

where A(Q) stands for the family of open subsets A of a fixed bounded domain
of R", with Lipschitz boundary A, and F satisfies the following properties :

i) F(u;-) is the restriction to .A(Q?) of a Radon measure ;

ii) F(-; A) is L*(A; R%)-lower semicontinuous ;

iii) there exists C > 0 such that, for some p > 1,

0 < F(u; A) 5C{/(l+|Vu|”)d:r+|Dsu](A)}‘
A

The case where p > 1 will be studied in a forthcoming paper. Here we treat the
case where p = 1.




An important example of such functionals is given by the relaxed energy
corresponding to a discontinuous bulk energy density, precisely

n—-+0o

F(u; A) :=inf{ lim mf/ fo(z,un, Vu,) dz | up — uin LY(Q;RY),
U € W“l(Q;Rd)}.

We may also consider the case where both bulk and surface energies are present
in the underlying functional, namely

F(u; A) =inf hmmf/ fo(z, u,,,Vun)dr+/ go(z, n,un,uun)dHN'1|
ANS(un

n—+40o )

up — uwin L(%RY) , u, € SBV(Q-,Rd)},

where S(up) denotes the jump set of u,. Another example of a functional F to
which our theory may be applied is provided by a sequence of functionals F; (for
instance, in the context of homogenization theory), where the energy F(u, A) that
we want to identify reduces to the limit of (F;) in the sense of I' — convergence.

A natural question at the core of the Calculus of Variations concerns the search
for an integral representation of F(u; A). In this paper we propose a new method
suitable to the study of all situations mentioned before; the main idea of this
method consists in showing that F(u; A) can be reconstructed in terms of the set
function m(u,-) defined on A(f2) by

m(u; A) := inf {f(v;A)I v|ga = ulpa,v € BV(Q;Rd)}.

The reduction of the relaxed problem to a local Dirichlet type of question
has already been used in the context of homogenization or quasiconvexification
theories. The main point proved in Section 3 (see Lemma 3.3) is that m(u; A)
behaves as F(u; A) when A is a cube of small size. Then the bulk and the jump
local densities of the energy can be recovered from m(u,.) by using Besicovitch
Differentiation Theorem (see Theorem 3.4). An explicit identification of these
densities comes easily by means of a blow-up argument and using the Lipschitz
behaviour of m(u, A) with respect to the norm in L!(8A) of the trace of u (see
Lemma 3.1).
In Theorem 3.4 we obtain a representation formula of the form

F(u; A) =/ f(z,u, Vu) dz+/ g(z,ut,u”, 1) dHN? (1.1)
A S(u)nNA

for every u in the space SBV (€;R9) of all functions with bounded variation whose
distributional derivative may be written as
Du = Vu LV 4 [(ut — u™) ® v,]) HVN!|S(u) (see [Am2]). Here, and in what

2



follows, £V denotes the N-dimensional Lebesgue measure, and H™~?! stands for
the N —1-dimensional Hausdorff measure (see Section 2). For general BV functions
we have also to take into account an extra term in the decomposition of Du,
Du = Vu LN + [(ut —u”) ® v,) HVN 1| S(u) + C(u), where C(u) denotes the
Cantor part of Du. The characterization of the density of F with respect to C(u)
seems to be very difficult to obtain in general (see [BDM] in the scalar case).
Under an additional assumption of continuity of F with respect to vertical and
horizontal translations (see condition (2.4)), we obtain in Theorem 3.10 the full
integral representation for u € BV (©; R9),

F(u; A) =/ f(z,u,Vu) d:r+/ g(z,ut,u, 1) dHN?

+ /A oo (:c,u, j—g%l) dC) .

In Section 4 we apply the latter characterizations to some specific situations.
In Subsection 4.1 we provide a new integral representation of the relaxed energy
for a discontinuous integrand with linear growth conditions and in the vectorial
case, recovering the results of [FM1] and [FM2] in the case of non degenerate
coercivity assumptions. The corresponding scalar case, previously treated by
Bouchitté and Dal Maso [BDM], and by Braides and Coscia [BC], follows as a
corollary. In Subsection 4.2 we extend the results of Barroso, Bouchitté, Buttazzo
and Fonseca [BBBF| concerning the relaxation in SBV of an energy involving bulk
and interfacial contributions. In Subsection 4.3 we obtain the characterization of
the homogenized energy associated with a sequence of free discontinuity problems
with a linear growth condition. This problem was treated by Braides, Defranceschi
and Vitali [BDV] in the case p > 1.

2. Preliminaries.

Let Q represent an open bounded subset of RV. In the sequel we use the
standard notations for bounded variation, Sobolev and Lebesgue spaces, denoted,
respectively, by BV (€; R?), W1P(Q;R¢) and LP(Q; R?). A(R) stands for the family
of all open subsets A of Q with Lipschitz boundary 6A, and B() is the collection of
all Borel subsets of §2. The Lebesgue measure and the Hausdorff (N-1)-dimensional
measure in RV are designated by £V and HN-1, respectively. C will denote a
generic constant which may vary from line to line.

To each v € S¥~! := {z € R" | |z|| = 1} we associate a rotation R, such
that R,(en) = v, where (e;)i=1... v stands for the canonical basis in RY. We
may choose v — R, so that R, is the identity and v — R,(e;) is continuous
in SN\ {en}, for all i = 1,---,N — 1. We define Q, := R,(Q), where
Q:={ze€R" ||z-&|<1/2, i=1,---,N} and we set Q,(z,¢) := = + €Q,,, for
€ > 0. We will omit the subscript v whenever v coincides with ey .

In what concerns general BV space theory we follow Evans and Gariepy [EG],
Federer [F], Giusti [G], and Ziemer [Z]. We represent by Vu the density of the
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absolutely continuous part of Du with respect to the Lebesgue measure (or Radon
Nikodym derivative), and S(u), the jump set, is the complement of the set of
Lebesgue points, i.e. the set of points z where the approximate upper limit u; (z)
is different from the approximate lower limit wu; (z), for some i € {1,...,d},
namely

d
S(u) = U {:c €Q|uj(z) < u;"(m)}.
i=1

Choosing a normal vy(z) to S(u) at z (defined uniquely, up to sign, for HVN-1!
a.e. ), we set [u](z) := u*(z) — u™(z) the difference between the traces of u at
z € S(u), oriented by v, (). Representing by C(u) the Cantor part of the measure
Du, the following decomposition holds :

Du=Vu LN + ([u] ® v,) KN S(u) + C(u).

We represent by SBV(Q; R?) the space of special functions of bounded variation
introduced by De Giorgi and Ambrosio (see [ADG]), i.e. the space of all functions
in BV (£: R?) such that C(u) = 0.

In what follows we consider a functional

F:BV(%RY) x A(Q) — [0, +9)
satisfying
F(u;-) is the restriction to A(f2) of a Radon measure, (2.1)
F(; A) is L}(A; R?) — lower semicontinuous, (2.2)
there exist C' > 0 such that

0< Flu; A) < C([:N(A) + }Dul(A)) : (2.3)

In order to characterize the density energy corresponding to the Cantor part of
the measure F(u;-), we will need to assume further that the functional 7 depends
continuously both on horizontal and vertical translations in the following sense :

There exists a modulus of continuity ®(t) satisfying
|F(u(- = 2) + bz + A) — Flu; A)| < (6] + |2]) (CV(A) + [Dul(4)),  (2.4)

for all (u, A.b, 2) € BV(Q;RY) x A() xR? xR¥ | such that z+ A C Q.

Remark 2.1. Condition (2.2) implies that F is local, i.e.,
if u=v LNae z €A, then F(u; A) = F(v;A) forall A€ A(Q). (2.2))
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Remark 2.2. Without loss of generality we may assume that coercivity holds,
and so we replace (2.3) by the condition

é |Dul(A) < F(w; A) < C (cN(A) + |Du](A)) for some C > 0. (2.3

Indeed, if we are able to identify the integral representation under (2.1), (2.2)
and (2.3'), given F satisfying (2.1), (2.2) and (2.3), it suffices to define
Fi(u; A) := F(u; A) + |Dul(4) .

By virtue of the lower semicontinuity property of the total variation, it is clear that
F1 is under conditions (2.1), (2.2) and (2.3’), and so we are able to find densities
f1,91, b1 such that

Filu; 4) =/ filz,u, Vu) d1+/ gz, ut,u” ) dHN T
A s

(u)NA

+ [ (I,u, dﬁggz;) dic(w)] -

We deduce that for every u € BV (Q: R?) we have

F(u: A) =/A [fl(a:,u.Vu) - |Vu|] dr

+/ [gl(r-,u+,u‘,vu) - Jut - u‘l] dHN1
S(u)nA

+/; [hl <x.u,:|—ggz—;l> —1] d|C(u)],

which provides the representation formula (1.2).

We now state some technical results that will be used in the sequel. Given
(u; A) € BV(Q:RY) x A(Q), we represent by tr u or u|s4 the trace of u restricted
to A. The proof of the first two lemmas may be found in [G].

Lemma 2.3. Let A € A(Q) and let u,.u € BV(A;RY) be such that u, — u in
LY(A4;R%) and |Du,|(A) — |Du|(A). Then

/ tr up — tr u]dHN"! = 0.
8A

Lemma 2.4. Let A € A(Q) and let § € L}(0A). For every € > 0 there exists
we, € WI1(A) and a constant C, depending only on §A, such that

welaA=e,/1w5|d15e/ |9|dH”-‘,/wa5|dzsc:/ 0] aH 1,
A 0A A 8A

Next we prove a density result in BV under Dirichlet boundary conditions.
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Lemma 2.5. Let A € A(R). Givenu € BV (4;R?) we may find v, € W11(4;RY)
such that

Unloa = ulsa, |lvn — ull g1 arey) = 0, |Dun|(A4) — |Du|(A).

Proof. Let 6, € C*(4;R?) satisfy 6, — u in L'(A;RY) and [, |V6,|dz —
|Du|(A). By Lemma 2.3 we have

/ ltr 6, — tr u| dHY "1 = 0. (2.5)
oA
Using Lemma 2.4, for each n consider w,, € W11(4;R?) such that

Wnloa = (bn — u)|sa, / |wg| dz < / |tr 6 — tr u| dHN L,
A 8A

(2.6)
/ |Vwg| dz < C/ [tr 6, — tr u| dHN L.
A A
Let v, := 6, — wy,. Then v,|54 = u|s4 and
llvn — U”LI(A;Rd) < “911 - u”Ll(A;Rd) + “wn”Ll(A;Rd). (2.7)

From (2.5) and (2.6) we conclude that
wp, — 0 inWhH(4;RY),
and so, by (2.7) we have
tn —u inL'(A:;RY), lim [ |Ve,ldr= lim / |V6,| dz = |Du|(A).
n—+oc [ 4 n—+oo /4

O

The following result is a version of the Slicing Lemma of E. De Giorgi.

Lemma 2.6. Let F : BV(Q:R%) x A(Q) — [0,400] be a functional satisfying
conditions (2.1), (2.2') and (2.3). Let u € BV(Q;R?) and let (v,,) be a sequence
in BV(Q;R9) such that v, — u in L*(Q;R9). Then, for every A € A(Q) we can
find a sequence w, € BV (Q;RY) such that

lwn — ullLr(@re) = 0, wo=u on 8A, limsup F(wn; 4) < l,%g‘i’gF(U";A) .

n—+o0o

Proof. Let v, — u in LY(;R%). Up to a subsequence, we may assume that
lim_’i_nf F(un; A) = lirf F(vn; A). For each k € N define
n— <400 n—<+00

A := {z € A| dist(z,04) > 1/k}
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and consider the layer Ly := Ax_1 \ Ax. For each n € Nset M,, := n + |Dv,|(A).

Representing by [a] the integer part of a € R, we split each Ly into [M,]?
layers Ly, i = 1,---, [Mn)?, of thickness [k(k — 1)[M.}2] ™", L = U, L., and
where the layers Li ; are labeled so that Ly ; is closer to the boundary of A than
Lijifi >34, 4,5 €{l,---, [M.]?}.

To each layer Lx ; we assign a cut-off function ¢k ; with 0 < @i ; <1, ¢ =0
in @\ [U,<i(Le UAb)] and ¢is = 1in U, o (Le,s U Ar). We have [Vik,lloc =
O(K*[M,]?).

Defining

Wn ki ‘= Pk,i¥n + (1 - Sok.i)u» (28)

and using (2.1) we will have

F(wn ks A) < Fuon; A) + F(u; A\ Ak) + F(wn k.5 L)
< F(vai 4) + C (LN +|Dul) (A\ 4) + C (LY + |Dwn ksl ) (L)

where we have used (2.3). On the other hand, for fixed k,

_[[Mln]P Z |Dwn kil (Lk.1) S[MLnBQ (lenl(A) + |Du|(A)>

1
M ITAL

(2.9)
O(kQHMnV)”Un = ullr(aRe)-

Since the right hand side of (2.9) goes to zero as n — +oc, we can construct a
sequence ny — +oc such that

1 .
llwn, ki — ullLicare) < llvn, = ullpage) < % forall i€ {1, --,[Mn]°}.
! 1
m zl: lDwnk,k.zl(Lk‘,‘) < 7‘:’
and then choose i such that

'Dwnk,k.lk '(Lk.‘ik) <

Col M

Defining wk := wn, k.1, We obtain wy — u in L}(Q;RY),
F(uwg; A) < F(vn,; A) + O(1/k)
and, consequently,

lim sup F(wg; A) < limsup F(vy, ; A) = liminf F(v,; A),
k—+o00 k—+00 n—+oc



which completes the proof. O

Remark 2.7. Having in mind the applications treated in Section 4, we mention
some extensions of Lemma 2.6.

1) If the sequence (vy,) is in W11 (Q; R9) (respectively in SBV (€2; R?)), then the
sequence (w,) can be constructed in W1 (Q; R?) (respectively in SBV (Q;R9)).

Indeed, using Lemma 2.5 we can replace u in (2.8) by a sequence (uy) in
W1L1(Q; RY) satisfying

up — u in LY RY), u,=u on dA, and |Duy|(A) — |Dul(A).
Then, by the lower semicontinuity of the total variation in open sets we obtain

limsup |Dun|(A\ Ax) = lim |Du,|(A) - liminf |Dup|(Ak)
n—+o0o n—+oc

n—+oo

< |Dul(A) - [Dul(Ax) = |Du|(A\ Ax) = O(1/k).

2) We can also extend the results stated in Lemma 2.6 and in the previous
remark to a sequence of functionals (Fy,) satisfying conditions (2.1), (2.2’) and
(2.3) uniformly in n. In this case, if u € BV(Q;R?) and A € A(Q), for each
sequence v, — u in L'(Q;R?) we can find a sequence of indexes (nx) and a
sequence wy € BV (€;RY) such that

lwk — ullp1(qrey = 0, wk =u on 04, l}icmiup EF, (wi; A) < lnlgirgg Fo(vn; A) .
—+o0

Finally we state the following truncation lemma (see Lemma 3.7 in [BBBF]) :

Lemma 2.8. Let F : BV(Q;R?) x A(Q) — [0,+00] be a functional satisfying
conditions (2.1), (2.2') and (2.3). If up € BV(;R?) N L=®(KR?) and ife > 0
then, for every R > 0 there exists M = M (&, R,C,|luol|L=(qre)) such that
for every u € BV(Q;RY) (resp. u € SBV(Q;R?) or u € WH(Q;RY)) with
lullvre) < R and u = ug on OF, there exists U € BV(;R%) N L>(Q;RY)
(resp. @ € SBV(Q:RY) 0 L=(Q; RY) or & € Wh1(Q; R¢) N L°%(Q; RY)) such that

1) 18|l L= re) < M; 1) @ = ug on 99

#ii) |Da|(Q) < |Dul(Q);  iv) F(#9Q) < F(u; Q) +¢.

3. The General Method.

In this section we identify the bulk and jump densities of a functional F satisfying
conditions (2.1), (2.2) and (2.3') (Theorem 3.4). In case condition (2.4) holds, we
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can also characterize the Cantor part and conclude with the full representation of
F (see Theorem 3.10).

Given (u; A) € BV(Q; R9) x A(Q) we introduce
m(u; A) := inf {f(v;A)I vloa = uloa,v € BV(Q;R")}. (3.1)
The basic idea of our method consists in comparing, for fixed o € 2, the
asymptotic behaviors of m(u; Q(zo,€)) and F(u; Q(zo,€)) when € goes to 0. This
is made clear in Lemma 3.3 below where, via a blow-up argument, it is shown
that as € gets small we may conclude that relaxation reduces to solving a Dirichlet
problem. An important tool of this method is Lemma 3.1, which allows us to

replace u by its limit obtained by a blow-up at z,.

Lemma 3.1. There exists a constant C such that
jm(us; 4) = m(uz; A)| < C / fbr (s — ug)] dHY (3.2)
84

for all uj,up € BV(Q:;RY) and A € A(Q).
Proof. Let u;,us € BV(Q;R?) and A4 € A(Q). For § > 0 small enough, set

Ag = {z € A| dist (z.04) > 6}.

Given v € BV (Q;R?) with v|g4 = uz|s4. define vs such that vs = v in As. and
vs = u; in 2\ As. In view of (3.1) and (2.1) one has

m(uy: A) < F(vs; A)
= F(vs: As) + F(vs: A\ As) (33)
< F(v; A) + Flus: A\ As).

From (2.3’), which still holds for Borel sets, we obtain
F(vs: A\ Ag) < C’/ (1+|Vuy|) dz +C|Dsuy |(A\ Ag) + C|D,vs|(84s). (3.4)
A\As
As 6 goes to zero, one has immediately
/ (14 |Vuy}) dz — 0, |Dsuy|(A\ As) — 0, (3.5)
A\As
and, using the definition of trace and Green’s formula (see [EG], 5.4),
Devel(040) = [ fer (wlaa—ola)ldH = [ fer (u-w)lan® . 36)
BAs 8A
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From (3.3) - (3.6) we conclude that
m(uy; A) < F(v; A) + C/ ltr (u; — ug)| dHN L.
8A

Taking the infimum over v and interchanging the roles of u; and u,, inequality
(3.2) follows. D

Fix u € BV(®;R?), v € S¥~1, and define y := LV + |D,u|. Let
A, = {Q.(z,e) z € Q, € >0} 3.7)

and for 6 > 0 set

mi(u; 4) = inf {3 m(uQ:) Qi € A, QNQ; =0, Qi C 4,

t=1

diam(Q.) < & u(4\UZ, Qi) = 0}.

Besicovitch’s Covering Theorem guarantees the existence of such coverings of A.
Given that § — m®(u; A) is a decreasing function, we define

m*(u; A) : = sup {m®(u; A)| 6 > 0}

= lim mé(u; A).
5§—0

Lemma 3.2. Under hypotheses (2.1), (2.2) and (2.3'),
F(u; A) = m*(u; A).

Proof. Since F(u;-) is a Radon measure (see (2.1)), and because m(u; A) <
F(u; A), the inequality m*(u; A) < F(u; A) is obvious. We prove that

Fu; A) < m*(u; A).

Fix 6§ > 0 and let (Q¢) be an admissible sequence in the sense of the definition of
m®(u; A), such that

i m(u; Q%) < mé(u; A) + 6. (3.8)

i=1

Using the definition of m, choose v¥ € BV (;R?) such that
vflage = ulags,  F(of;QF) < m(w; Q) +6 LY(Q)). (3.9)
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Set -
U5 = Z vaQf + UXNéM

=1

where N§ := Q\UZ,Q¢. From (3.8), (3.9) and the coercivity hypothesis (2.3'), it
follows that v® € BV(Q; R9) (*),

oo
D = Z D! Q% + Du|N¢,

i=1 (3.10)
|Def||[N® =0, u(N°) =0,
where N® := AN N§, and
F(* N8 < C (LN (NS + |Dvb|(N¥)) =0.

Using (2.1), (3.8) and (3.9), we deduce that

oo

FbA) =Y Ff:Qf) + F(v5 NY)
i=1 (3.11)

<mb(u; A)+6+6 LN(A).
We claim that ©v® — u in L!(A). If so, using hypothesis (2.2) we have
F(u: A) < lim inf F(r4 A),
which, together with (3.11), yields

Flu; A) < ligniglfm‘s(u;A) =m"(u; A).

It remains to prove the claim : ¢ — u in L'(A). By Poincaré’s inequality there
exists a constant C such that

l[v® = ullzr(qey < €6 | D — Dul(QF).

(*) For every ¢ € Co(Q). integrating by parts on every Q¢ and recalling that v =u
on 8Q¢, we can write

(D(v® —u),¢) = ‘Z/Qb(”f —u)® Vpdr = Z/QA ¢.(Dv® — Du) .
=1 i 1=1 i
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thus oo
of —wllzacay = 3 llof = ulliror)
i=1
< C6 |Dv® — Dul(UR, Q%)
<Cé (|Dv6|(A) + lDuI(A))-

In view of the coercivity condition (2.3’) and by (3.11), |Dv%|(A) is bounded and
we conclude that {|[v® — ul|z1(4) — 0. O

Lemma 3.3. Under (2.1),(2.2) and (2.3'), the following equality holds

lim }-(u; Qu(xOv E))

= N-1
A e Quizae)y — b M T €R andforallve ST (312)

Proof. Since m(u; Q. (zo,€)) < F(u: Q. (z0,€)), we have

e T Qu(%0.€))
P Qo)

We only need to prove that, y a.e. 7o € Q and for all v € SN-1,

. f(UQQu($0,€))
s 0, (0. e) =

For each t > 1 let E; be defined by

E, = {x € Q| there exist v € SN-1 and e}, — 0 such that

Fu;Qu(z,er)) >t m(u; Qu(z,ep)) for all h}.

Our aim is to show that u(E;) = 0. Consider an open set w and a compact set K
such that K C E; C w. Fix 6 > 0 and define

X5 .= {Q,,(x,e)|e <6z €K, Qu(z,e) Cw, Flu;Qu(z,)) >t m(u; Qu(z,€)) }

ys .= {Q.,(:r,e)| £ <6, Qulz,€) C w\K}.

By virtue of the definition of Ey, if z € K there exists ¢ < & such that Q,(z,€) € X°

e w=( U @@a)u( U ek9)

Q.(z.£)EX® Q.(z,£)eYS
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Using Besicovich’s Covering Theorem, we may find a subcovering of w such that
é &
w=(UeX)u(Ue)un,
i€l j€J

where I and J are countable, QX° € X?, Q}'é € Y, the sets QX° and Q}'é are
mutually disjoint, and u(N) = 0. Since m(u;-) < F(u;-) and F(u;-) is absolutely
continuous with respect to u, we have

Fluw) =Y FuwQ¥)+3 Fw Q)

i€l j€J
>3t mw QX)) + Y muw Q)
€] i€J
=t (T QX )+ Ymwr)) + (1-1 3 mwQ)")
i€l j€J 1€t

>t mf(ww) + (1 —t) Flu;w\ K),
and letting § — 0 we deduce that

Flujw) 2t m*(uiw) + (1 - t) Flu;w \ K)
=t Flu;w)+ (1 -t) Flu;w \ K),

where we have used Lemma 3.2. Letting w \, E;, K / FE;. and using the
regularity of F(u;-), we get F(u: E;) = 0, hence u(E;) = 0 due to the coercivity
assumption. ) O

We now prove the following representation theorem.

Theorem 3.4. Under hypotheses (2.1), (2.2) and (2.3'), for every
u € SBV(Q;RY) and A € A() we have

f(u;A):/f(z.u,Vu) dr+/ glz,ut,u", 1) dHN 1
A S

(u)NA

where ‘
f(zo.a,€) := limsup ma+£( -Eﬁo)’Q(IO’E)), (3.13)

e—0

m(uxg. (- = Zo); Qu(Zo,€))
eN-1 ’

g(zo, A, 0,v) := limsup

e—0

(3.14)
forallzo € Q, a, 6,2 € R, £ e R¥*N v e SN-1 and where

Aify-v>0,
6 otherwise.

ure(y) = {
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Remark 3.5. for LN almost

1) If for all (u,A,b) € BV(;R?) x A(R) x R? we have F(u + b; A) = F(u; A),
then f = f(z,€) and g = g(z, A — 6,v).

2) Iffor all (u, 4, z) € BV(Q;RY) x A(Q2) xRN we have F(u(-—z); z+A) = F(u; A),
then f = f(a,£) and g = g(},6,v).

3) In case both conditions 1) and 2) are satisfied we find that the upper-limits in
(3.13) and (3.14) are indeed limits.

Remark 3.6. It is easy to check that the conclusions of Lemma 3.3 still hold if we
replace the hypercube Q. (zo,€) by K(zo,¢€) := z¢+¢K, where K is any bounded,
open, convex subset of RN containing the origin. This remark will be useful to
obtain the characterization of the Cantor part of F(u; A) when u € BV (Q;R9).

Proof. We first prove (3.13). For u € BV(;R%) and v € S¥~! (in particular for
v = ey) it is known that for LV a.e. g € Q

lim 6—1N-IDUI(Q,,(I0,6)) = [Vu(zo)|,  lim ELNIDSUI(QV(IO,E)) =0, (31%)

hm /Q o) lu(z) — u(zo) — Vu(zo)(z — zo)| dz =0, (3.16)
dF(ui)), . F(u;Q,(x0.¢))
acr (o) = lim —— 75—

and, in view of Lemma 3.3,

dﬁt;-)(xo) ~ lim &QEM (3.17)
Let
uely) = ot E) ~ulzo)

€

By (3.16) we have u, — Vu(zo)y in L'(Q,;R?). We claim that
[Duel(Qu) — [Vu(zo)l. (3.18)

If so, by Lemma 2.3 we obtain

/ It (ue(y) = Vuleop)] 1)

1

=5 tr [u(z) — u(zo) — Vu(zo)(z — z0)]| dHN"}(z) =0,

Q. (z0.€)
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and, consequently,

dF(u;
dacy

)

using Lemma 3.1 we obtain from (3.17)

(z0) = lim m(u(zo) + Vu(zoe):&ir —20): Q. (x0.€))

= f(zo,u(z0), Vu(zo)).

We now prove claim (3.18). By definition of |Du.|(Q,),

[Duel(Qy)

= sup / u(IO + Ey) - U(Io) div ¢(y) dy

secl@u) €
ol <1
1 .
= sup -~ [u(z) — u(zp)] div ¢(z) dz,
1 £
¥€C(Qu(zg.€)) Q.(z0.€)

llellae <1

= ELN]DuI(Qu(xo.E))s

where we took 2(z) := ¢(_1.:€£a) Therefore,' by (3.15) |Du|(Q.) converges to
|Vu(zo)|, and the proof of the claim is complete.
Finally, we prove (3.14). For u € BV(€;R9) it is known that for H¥~! a.e.

o € S(u)

(o) = lim —= | Dul(Qu(z0.¢). (3.19)
gi_% 5\— o oo lu(z) — u™(z0)| dz = 0, (3.20)
lim —1— ju(z) — u™ (zo)| dz = 0, (3.21)

N
€=0€" JQ7 (z0.6)

where v = vy (zo) is the normal to S(u),Qf (zo,¢) := {z € Q.(z0.€)|(z — o) -
v(zo) > 0} and Q; (zo.€) := {z € Qu(z0.€)|(x — z0) - ¥(z0) < 0},

dF (u:-)

o F(u;Qu(zo,€))
RIS 0 T e T e

=0 EN—I

and, in view of Lemma 3.3,

dF(u;- ) 1Qu(zo.€
EHT'—%—S)(’J(“’) = lim T(—“EQT_(T"—ﬁ (3.22)

Defining, for each y € Q,,

ue(y) := u(To +€y) and gz, (y):

ut(zo) if y-v>0
u™(zo) if y-v <0,

15



from (3.20) and (3.21) we have that u, — @,,, in L1(Q,) and, by the same
argument used to prove (3.18) and by (3.19), we obtain that

IDucl(@) = =5 1Dul(@u (20, €)) = |1 @0)] = 1Dz 11(Q0).

In light of Lemma 2.3, we have

_ - 1 _ -
/ ltr (e = Tgo,)| dHN 7! = N—l/ ltr (u— fizo0 (- — 20))| dHN ™1 — 0
Q. € 3Q. (z0.€)

and, by (3.22) and Lemma 3.1, we conclude that

dF(u;-)
dHN=1[S(u)

m(lzy (- — To); Qu(Zo,€))
eN-1

(zo) = lim
= g(Io,U+(IO),U- (xO)-,V‘u(IO))'

]

In order to complete the integral representation on all BV (; R?), it remains to
obtain the characterization of the energy density with respect to the Cantor part
of Du, C(u). By Lemma 3.3, this problem reduces to the computation of

dF(u;-)
d|C(u)|

(zo) = lim m(u; 2o + eK)

e—0 |Du|(zg + €K) (3.23)

at C(u)-almost all zg € Q, where (see Remark 3.6) K is any convex bounded open
subset containing the origin in its interior. Recall that, by Alberti’s result [A], the
Cantor measure C(u) is rank one, precisely,

dC(u) _
m(lo) = ay (o) ® vu(z0) (3.24)

for |C(u)| a.e. zo and for suitable (a, (o), vu(z0)) € R? x S¥~1. In Lemma 3.7
below we will use (3.23) taking for K the hypercube Qf,k) , with v = v, (z0),
obtained from Q, by a dilatation of amplitude k& (k € N will tend to +oc) in the
directions orthogonal to v, precisely,

Ek\" 111
o= ((-55)  (-4))

where R, denotes a rotation such that R, (en) = v (see Section 2).
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Lemma 3.7. Given u € BV (Q;R?), for |C(u)| almost all o € Q there exists a
double indexed sequence ( Ek),bé“’) € (0,400) x R such that, for every k,

t®) L oo, et®™ 0, 5% = u(zo), as € — 0,
and
dF (u;-) mb® +tP a @ (- - z0);20 + QW)

(zo) = lim limsup , (3.25)

d|C(u)] k—+o00 £0 kN-1 N 4R

where a = a,(zp) and v = v, (z¢) satisfy (3.24).

Proof. Let us apply (3.23) with K = Qf,k) and set Qf,k)(:ro. €):=1zo +5Q.(,k). There
exists a [C(u)|-negligible set N, S(u) C N, such that for all zo € 2\ N and for all
keN

dF(u;-) _ m(u; Q4 (z0.€))
actl = (pu P (zn.e) 20
k) = |Dul(Qu" (zo.€)) , t s tee et S0, (3.27)

eNEN-1

Condition et — 0 follows easily from the fact that H" ~1(B) < +oc implies that
|C(u)|(B) = 0 (see Prop. 3.1 in [Am1)).
Define, for each ¢ > 0 and k € N,

1
%) .= —/ dr, 3.28
p eNEN-1 QL“’(xo.e)U(I) xz, ( )
1 . a
plk) = —/ u(z) dHN"Y(z) — et =, 3.29
¢ eN-1EN-1 Io+en<:’<g->( ) (z) - ete 2 (3.29)
v (z) := b+t a @ v(z - o), (3.30)

m(u: QY (0. €)) = m(v!; QI (z0.€))

(k) .
AE . kN—leh‘tgk)

(3.31)

where. fort € R. IV (t) := {y e RN y v =t , |y~ (y-v)v| < &}

Using Alberti’s result on the blow-up of the Cantor part (see [A] and also [ADM],
Theorem 2.3) and Lemma 5.1 in [L], we can also choose N so that for all o € Q\ N
there exists a sequence (€,,) tending to 0 and, for every k, a nondecreasing function
¥k : (=1, 1) — R such that the following conditions hold :

3
VALY (% - 0) Y (—% + o) =1, / v®) (5)ds =0, (3.32)
-3
) u(Zo + €ny)—0ix) (k) (k) 11 (k). wd
U, (y) = . t(k) —‘uo (y) = ‘I’ (y - V)a' mL (Qu ;R )’(333)
nten
lim |Dul®|(QK)) = |Du Q) = kNVal. (3.34)
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We notice that the negligible set N and the sequence (£,) were chosen indepen-
dently of k. Fix 2o € O\ N.

Owing to (3.26) and (3.31) we have that, for every k € N,

(k). H(k)
. m(UE ?Qu (IOaE)) _ d']:(u;') P (k)
TP T o) ) TR AT
which, together with (3.27) and (3.28), yields the result of Lemma 3.7 provided
we show that
(¢) lim b = u(zo),
e—0
e ) (3.35)
(¢4) lim liminf|4A%®)] = 0.
k—+o0c €—0

Step 1. We prove (3.35) (i). Since zo ¢ S(u), we have that lin%) 6% = u(zy).
g
Then, in view of definitions (3.27), (3.28) and (3.29), it is enough to show that

1 1 N-
|;x;~—.1/Q u(z) dz - Wlfx u(e) a2 (z)| <

) (zo.€) o+elll¥ (3)

< 1Du|(@P(z0.€))
- eN-1pN-1

(3.36)

With no loss of generality we prove (3.36) assuming that u is smooth. This
extends to a general u € BV (Qf,k)(:ro,e);Rd) by considering a sequence (uy) in
C=(QF (20, ); RY) such that u, — u in L}(QY(zo,£): RY), |Vun (QY (0. €)) —
| Dul( f,k)(:ro,e)) and passing to the limit as n — 400 in the corresponding
inequality (3.36).

Setting, for each t € (—=1/2,1/2),

aft) = / u(zo + ez)dH Y 1 (z),
P (t)
changing variables and using Fubini’s Theorem we have that

1 1 N /1/2
—_— - dH = t) — a(l/2)|dt
|5 [, )= /,.,ﬂngn(;(““') @)| l_l,;““ a(1/2)jd

12 p1/2 1/2 1/2
= ./ / a'(s) dsdt‘ = ]/ / / Vu(zg +ez)szd’HN"l(r)dsdtl
-1/2Jt 1724t Jn¥(s)

|Du|(Q) (20, €))
2 .

eN-1

1/2
< E/ / |Vu(zg + ex)| [z|dHNY(z)dt < O(KN™?)
—172J0%) (1)
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Step 2. We prove (3.35) (ii). By Lemma 3.1, and using the change of variables
I — X9

y= , we have
J lu(z) - v{ (z)|dHN 1 (z)
A(k)l <C QL (z0.en)
A% < TR
c .
S /ao“‘) [l (y) — aly - v) + < 1dHN 1 (y), (3.37)
k) _ pk)
where cf) 1= e = £ _}\:’1—_1/ u®) dHN-Y,
Ente 2 KN nhg

By (3.33), (3.34) and Lemma 2.3, we have the strong convergence of the trace
of ul¥) to the trace of ¥®)(y - v)a on H,(,k)(%) and so

*) _ 1 a__1 (k) o N-1
nBToc € = ngr-?oc (2 kN-1 /]'li,k)(l) un dH (y)>

2

a 1

_a 1 k)¢, N-1
=5~ N /X;L“(%)W (y-v)adH" (y)

1 1
kY [2) _ =
“(W (2> 2)'
Thus, from (3.37) we deduce

Cla|
khr-l aQLk)

limsup |A(‘c | <

n—+oc

YO (y v)—y v - W (%) + %l dHN 1 (y),

and by (3.32) the function [¥®¥)(y - v) — y - v — ¥*)(1) + 1] vanishes on the facets
ol (:t%) and is bounded. We conclude that

hmsuphmmflA(")l < hm limsup |[A®)| < lalkh -2 _.

k—+4+oc €0 —0 n—+o00 k

O

In order to identify the right hand side of (3.25), we assume now that the
continuity assumption (2.4) holds, that is (see Section 2) there exists a modulus
of continuity ®(t) such that for all (u,A,b,z) € BV(Q;R?) x A(Q) x R? x RV,
with 2+ A C Q,

|F(u(- = 2) + bz + A) = Fu; A)| < B([b] + |2]) (LV(A) + |Dul(4)) -
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Remark 3.8. An immediate consequence of (2.4) and of the growth condition (2.3)
is that the integrands f(zo, uo, &) and g(zo, A, 6, v) defined by (3.13) and (3.14) are
continuous with respect to zg and ug. In fact, applying (2.4) with A = Q, (zo,€)
and u such that u(z) = ug + £(z — o) on 8Q, (zo, €), we obtain
[m(uo + b+ &(- — 2 — 20); Qu(2 + To, €))—m(ug + (- — To); Q. (0, €))
< ([l + |2]) (1 +1€]) €V .

Dividing by eV and passing to the limit as € — 0, we are led to
|f(zo + z,u0 + b,€) — f(z0,u0, )| < (Jb] + |2])(1 + [€]) - (3.38)
Similarly, we obtain
lg(IO + Z,A + b,9 + bv V) - g(l‘OaA’ 9’ V)I S <I)(Ibl + |Z|) lo - A|

On the other hand, from (2.4) and the coercivity assumption (2.3'), we can also
infer that

[m(u(- = z) + bz + A) — m(u; A)| < ®(Jb] + |2]) (LY (A) + Cm(u; A)) . (3.39)

We notice that, since F(-; Q) is weakly lower semicontinuous on W11(A4;R¢9) and
coincides with the functional u € W'}(4;R?) — [, f(z,u, Vu)dz (see Theorem
3.4), the integrand f(zo,uo,-) must be quasiconvex for every (zo,ug) € Q x R¢
(see, for example, [D]). Thus, defining the recession function f> by

s t
1= (@0,u0.€) = limsup L0200 %) (3.40)

t—+0o0

the right hand side of (3.40) is actually a limit whenever £ is a rank one tensor.

Lemma 3.9. Let (a,v) € RY x SN-1 (zo,up) € Q x R? and let (en,t,) be a
sequence such that ¢, — 0, t, — +oc and e, t, — 0. If (2.4) holds and if f is
defined by (3.13) then

. .mug+tna®u(-—xo);To + €nQ(uk))
lim inf

> f(xo,ug,a ®v) — f(xo,up,0).
ek phes tnE.,]:lkN—l -—f( 0, 4o ) f( 0,40 )

We leave the proof of this lemma to the end of this section. Now we are able to
present the full representation of F on BV (€;R%).

Theorem 3.10. Under hypotheses (2.1), (2.2),(2.3') and (2.4), we have for every
u € BV(Q;R9Y)

Flu; 4) = /A f(z,u, V) dz + /S oz, ut,um,vy) dHN !

(u)NA

+ [ 5= (s 228 dc
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where f,g, f>° are defined by (3.13), (3.14) and (3.40), respectively.

Proof. By Theorem 3.4 it remains to prove that for [C(u)| a.e. £ €

dF(u;-) o dC(u)
) 5 =1 (“‘(I)’ d1C(w) (“) '

Let z¢ be a point of approximate continuity of u where :l_g(% Zo)=a (xo) vy (x0)
and set ug := u(zg). By Lemma 3.7 and taking into account (3.39), it is enough

to show that for every fixed k € N, a = a,(z¢) and v = v, (z) one has

. m(ug+tha®u(-—zo);xo +5nQ§/k))
lim

— o
n—+oc tn el KN-1 = f¥(zo,u0.a®v), (3.41)

where, for simplicity of notation, we have deleted the superscript (k) from 5,

One inequality is easy. Indeed, by Theorem 3.4 we can write
m(ug+tna @ v(- —zo);zo+5an,k))§ Flug+tna & v( — zo); zo+,QF))

S/ flz.up+tna @ V(T — z0), tha @ v)dz
Toten QLY

so that, by (3.38).

- . (k)
limsup muo +tha ® U(N iO)] To+EnQu) < lim sup f(zo.up, tha ® v)
n—+oc thel kN e b0 t
< f*(z0.u0.a ® ). (3.42)

To prove the opposite inequality, we apply Lemma 3.9 after replacing (t,,a) by

(%,ta) for any t > 0 fixed. We get

L m(uo+tna®u(x—xo);xo+£an,k)) f(zo.up. ta ® v) — f(zg,up,0)
lim inf —— >
n—oc tp el kN-1 t

Letting t tend to +oc and taking into account (3.42), we obtain (3.41).

U

Proof of Lemma 3.9. Set o, := m(up + tha & v(- — zg); Zo + enQ(Vk)) and

Qx(/k)(IQ,E) = z¢ + le,k) . By the coercivity hypothesis (2.3'), we have a, >
—tn|«:1|e:f‘;k]\"1 , and by (2.3) and since t,, tends to +oc, we have lim sup On
C n—+oc ne,')’
+00. Choosing C > 0 large enough, we may assume that

<

0< an < Celt,. (3.43)
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Fix n > 1. By the definition of the set function m, there exists a function
2, € BV(Q,(,k)(zo,en);Rd) such that

F(zn; Q,(,k)(:co,sn)) <Nap, zn=u+tha@v(-—zp) on BQ,(,k)(xo,en). (3.44)

Taking into account the continuity assumption (2.4) and the coercivity (2.3'), we
can choose pp small enough so that

bl+|7|<2p0 = Flzn(-—7)+b; Q¥ (zo+7,€n)) < 7° an+®(200)eN kN1, (3.45)

Without loss of generality, we suppose that o = 0 and v = ey. Let us extend
Zn to (—ken /2, ken/2)N -1 x R by setting

a . £ a . €
Zy 1= Ug + §ent,, ifxy > 7", 2y 1= Ug — §5ntn fry < —?",

and define a function w, on the whole RY by considering, for every (i,j) €
ZN-1 x Z, the hypercube

N-1
Qi = ((1 - —;—) ken, (i + %) kEn) X ((  — ';‘) Entn, (J + %) Entn) )

and defining
Wn(z',TN) 1= 2, (2" — thEn, TN — jEntn) + ajentn , (z',2N) € QY.
Also, we introduce a family of piecewise affine functions
(T IN) 1= @n(TN — jEntn) + ajentn , (z'.2N) € QY7
where
uo-l»m‘,n%zL if s > 5,_;1

¢n(s) = up+atys  if |s] < B
up —atp, P if s < -5

Fix p > 0 such that 0 < p < pg and denote
I2:={(i,7) €ZV ' xZ| Q¥ NQ, #0},  Q,:=(-p/2,0/2)".
If N, denotes the cardinality of I, it is clear that

lim Npelt, kN-1=pN. (3.46)

n—+00

Since wy, agrees with z,(- — 7) + ajtnén on Q%7 , with 7, := (ikep, jtnen), and
it coincides with v, on Q%7 N {|zN — jentn| > €n/2}, we have, for all n > no,

F(wn; Q4) < n? an + ®(200)el kN1 + F(vn; Q) for all (1,5) € I, (3.47)
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where we have used (3.45) and the fact that Q¥ (zo+7y; £n) = QYN |z N — jents] <
%’} Now v, is continuous and piecewise affine on Q%’, thus by the integral

representation of Theorem 3.4 we can write F(v,; QY) = fQ.., f(z,vn,0)dx.
Summing (3.47) with respect to (i,j) € I? and using the additivity of F, we
get

F(wn,Qp) < Ny (% an + ®(2p0) el kN1) + / f(z,vn,0)dz.
Q,

Passing to the limit, as n — +o0o0 and then as n — 1, in the previous inequality,
using (3.46) and recalling that t,, — +00, we obtain

Qn P, (wna Qp)
—_—_— > -
lim inf N kh’ 1 lim inf ——— DN lim sSup — N ’ (I Un, O)dl‘ (3 48)

A simple computation shows that

lim |lvn —vollpr(Q,key =0, where wo(z'.zn):=ug+azn. (3.49)
n—++0c e

Hence, by (3.38), we have

lim / f(z,vy,0)dz = / flz,vo,0)dz . (3.50)
n—-+oc Q, Q,

On the other hand, using Poincaré’s inequality in each Q37 N {|zn — jentn| <
€n/2} (with Poincaré constant Ce,), we obtain

JECRCEESS

/ (wn(z) = ta(z)] dz
N{lzn —jentnl<en/2}

(1.5)€If
<Y caf Dy — D
(.)€l? QulN{lzn—jentn|<en/2}
< Y Cen (/ [Dzg,| + |altn kN-’e,’)’)
(k)
(t])EIp (T0.€n)
< C'pNe,.

where we have used (3.43), (3.44), (3.46) and the coercivity hypothesis (2.3'). We
conclude that

lim lwn(z) = vn(z)] — 0,
n—+4oc .

which, together with (3.49), yields

n_l_l.l;r’lw Hwn - ‘Uo”Ll(Qp) =0.
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Finally, by (3.48), (3.50) and by the lower semicontinuity property of F(-;Q,). we
deduce that

.. n f(UOa Qp) 1
liminf ey > TR /Q f(@.volz).0) d
1
=25 [ U@ w(e)a®y) - f(z.0(2).0)dz
Q
The conclusion follows by letting p tend to 0 and using (3.38). C

4. Applications.

We apply the characterization of the relaxed energy obtained in Section 3 to
particular situations where we are able to obtain a more explicit formula for the
relaxed energy densities.

4.1. Relaxed Energy for Discontinuous Integrands.

Here the functional F is the relaxed energy corresponding to an integrand fo
satisfying the following hypotheses :
(H1) .

fo :QxREx RN [0, +0c) is a Borel integrand;

(H2) there exists C > 0 such that

é;ﬂ < folz,u.6) < CA+€))

for all (z.u.€) € Q x RY x R*N ;
(H3) for every € > 0 there exists § > 0 such that

lu —v] < &= [fo(z.u.§) = fo(z,v.£)| < Ce(1+[£])

_ for all (z.u.v.€) € Q x (R¥)? x RIXV;
(H4) there exist C > 0,0 <m <1, L > 0 such that

B fo(z. u, t€) < C

t = m

f5° (., €)

for all £ e R¥*N, ||€]l =1,t > L, and for all (z,u) € Q x R%, where the recession
function f§* is defined by

(2, u.€) = limsup 22T % 1)
t—+o00 t
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The functional F : BV(Q;R4) x A(Q) — [0, +oc) is defined by
F(u: A) := inf { lim inf/ Fo(Z, un(z), Vun(2)) dz| un — u in L1 RY),
n—+oc f4

Uun € W1~1(9;Rd)}.
(4.1.1)

Lemma 4.1.1. Under hypothesis (H1) and (H2), the functional F defined by
(4.1.1) satisfies conditions (2.1), (2.2) and (2.3').

‘We omit the proof of this lemma since it is quite similar to the one presented
in Section 4.3 for the more general case of the I'-limit of a sequence of functionals.

Thus we may apply the representation Theorem 3.4 and Lemma 3.7 to our
case. In order to obtain a more explicit characterization of the energies, we need
to identify m(u; A), as introduced in (3.1). Given (u;A) € BV(S:R9) x A(Q)
define

mo(u; A) := inf {/A fo(z,v(x). Vo(z)) dz| v € WL RY), v|sa = ulaA}.

Lemma 4.1.2. Under hypotheses (H1) and (H2), for all (u: A) € BV(Q;R?) x
AQ)
mo(u; A) = m(u; A).

Proof. The inequality mo(u; A) > m(u: A) is trivial since for every v
WO R?) with v = u on 8A we have [, fo(z,v(z), Vu(z))dz > F(v: A)
m(u: A).

Conversely, given € > 0 let v € BV(Q:R%) be such that v|s4 = u|s4 and

m(u; A) > F(v; A) — €. (4.1.2)

Let (v,) be a sequence in W11(Q;RY) converging to v in L}(Q;R9) such that

IV m

F(v;A) = lim Jo(z,vn(z), Ven(z)) dz. (4.1.3)

n—<+oc A

Using Lemma 2.6 and Remark 2.7, consider w, € W11(A;R?) such that w, =
v =uon 04, |lwp —v|1 4 re) — 0 and

limsup/ fo(z,wn(z), Vwp(z)) dz < hT / fo(z,vn(z), Ven(z)) dz.
A nmTecJa

n—<+oc
From (4.1.2) and (4.1.3) we conclude that
m(us ) 2 limsup [ folzwa(z), Viea(z) dr — ¢ 2 mo(us 4) - e
n—+oc JA

Letting € go to zero the result follows. O

We now prove the following representation theorem.
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Theorem 4.1.3. Under hypotheses (H1), (H2), (H3) and (H4), the functional F,
defined by (4.1.1) and evaluated at (u, A) € BV (Q;R9) x A(Q), is given by

F(u; A) =/ f(z,u,Vu) dz +/ glz,ut,u 1) dHN !
A Stuin4 (4.1.4)

+/Ah(z,u,au,l'u) d|C(u)l,

where v, (z) agrees with the unit normal to S(u) at  for HN~1 a.e. T € S(u)
and with the unit vector that, together with a,, satisfies (3.24) for C(u) a.e.
T € Q\ S(u). The energy densities are defined as

) [} = 1 i f ) 3 ) ede
f(xo.uo,§) := limsup v(ev)v_;ér;m:g‘g {/Q fo(zo + €y, u0, Vo(y)) dy} (4.1.5)

g(zo. A, 0,v) := limsup inf {/ foo(zo + ey. v(y), Vu(y)) dy} , (4.1.6)
e—0 uewl-uovg-;) Q.
v=uy g, ©n v

h(zg,ug,a,v): = limsup limsup
k—+oc e—0

. 1

vew 1@ ra)
v(y)=a(v-y) ondQLY

(4.1.7)

with
Aify-v >0,
6 otherwise,

ur 0.0 (y) = {
for all (zo,u0) € Q x R, (A,0) € (RY)?, a € R% and v € SN-1,

Remark 4.1.4 In general F does not verify the continuity condition (2.4), and so
we cannot apply Theorem 3.10 to identify the Cantor part. Instead, we use Lemma
3.7 together with hypotheses (H3) and (H4). Note, however, that if fy is continuous
with respect to (z,u) then f will coincide with the quasiconvex envelope .of fo, h
will agree with f* and we will recover the representation theorem of [FM1] and
[FM2] or [ADM], under coercivity hypotheses. We remark that it is not necessary
to assume (H3) and (H4) to obtain the representation of F on SBV (Q; R¢) which
will hold like in Theorem 3.4 with f defined by

f(z0,uo,€) = limsup _inf { /fo(zo+ey,uo+ev<y>,w<y)) dy},
e=0 el kol

(4.1.5")
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in place of (4.1.5), and with g defined by

e—0 vewl-1(Q,k9)
v=u) g, ondQ,

g(zo. A, 6,v) := limsup inf {/ efolzo + €y.v(y), % Vu(y)) d,y} .
Q.
(4.1.6")
instead of (4.1.6).

Proof of Theorem 4.1.3. Using Lemma 4.1.2 and (3.13), the density f is
given by

flzo,up,€)=limsup inf {E—lﬁ/;( )fo(:t,v(:c),VU(x)) d:r:}.

£—0 vewl.1(Q(z,.6):R9)
v(x)=uo+€(r—1xp5) 0n8Q(xp.€)

Using the change of variables z = zg + €y. and considering as test functions

w(y) = ————"(‘0'*?)"‘0 , We get

f(zo-ug.€) = limsup inf / fo(zo + ey.ug + ew(y). Vu(y)) dy. (4.1.8)
0 yenilen o

Hypotheses (H2) and (H3), combined with Lemma 2.8, allow us to obtain (4.1.5).

In fact. due to the coercivity hypothesis (H2), both infima in the right hand sides
of (4.1.5) and (4.1.8) are attained on

Ep={we W (Q:RY). uw=¢y on 9Q. [VulL:oxe < R},

for a convenient R. independent of €. In view of this, using Lemma 2.8 for each
n € N we can find M,. independent of €, such that

inf / fo(zo + ey.uo + ew(y), Vu(y)) dy —
u.e“‘] I(Q‘id) Q
uly)=£fy ondQ

| (419
g [ oo+ ey + euly). V) ay] < 1
wewl 1 Qrd)~L>x (Q:rd) Q | n
wiy)=£y ondQ. lLulis <My
and
inf / Sfo(zo + €y, uo, Vu(y)) dy —
wewl.1(QRd) Q
w(y)=£fy on8Q
- (4.1.10)

i 1

- inf fo(zo + ey, uo. Vu(y)) dy| < =.
wewl l(Q:rd)nL=(Qrd)  Jo n
w(y)=£&y ondQ. lwls <My
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On the other hand, for fixed n and using (H3) we get that

lim su inf To + ey, ug + ew(y), V dy =
mawp L oo+ ev. o + ute), V) dy
w(y)=€y on8Q, llwliac <A

(4.1.11)
= lim sup inf / fo(zo + €y, uo, Vw(y)) dy.
Q

e—0 wewl1(Q:pd)nLoc(Q:Rd)
w(y)=€y ondQ. lwlioc < Mn
By (4.1.8), (4.1.9), (4.1.10) and (4.1.11) we obtain (4.1.5) up to an error of order
2 Tt suffices to let n — +oo.

Using (3.14) and Lemma 4.1.2, the density g is given by

. 1 .
sao o) =lmswp g it [ folea(a), V@)
e u(:):u)"svv(:—uzo)‘;‘n&by(zo,t) Qu(zo0.€)

For y € Q,, define #(y) := v(zo + €y). Thus 9(y) = urg.(y) for H¥N-! ace.
y € 0Q,, and

w= [ flev@ Ve de= [ g (20 + evv.0), 2 V8000 )

v

consequently,

e—0 vewll(Qu:Ed)
:v=uA.9vvon8Qy

g(zo,,8,v) = limsup inf / € fo (Io+5y, v(y), éVv(y)) dy. (4.1.12)

Hypothesis (H4) yields

et (s0+ 1.0 39000 ) dy = o)+ [ S50+ ewnta). Tt
Q. Qv
¢ ()] < Ce™ Vol 1300, re- (4.1.13)

Since the function f§° also satisfies hypotheses (H2) (with the same constant C),
one sees easily that both infima in the right hand sides of (4.1.6) and (4.1.12) are
attained on

Egr= {v € WH(Qu:RY), vlsg, = wrpulaq.. IVVlLiq,re) < R}’

for a convenient R, independent of £. Thus, taking the infima in (4.1.13), one
obtains that

1
Uiengn /@ efo (:co + ey, v, th)) dy — vllsx}sz /Qy fot(zo + €y, v, Vv)dyl

< sup [{e(v)]
veEER
< Ce™R!™™,
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Passing to the limit, as € goes to zero, (4.1.6) follows.
Finally, we show (4.1.7). In view of Lemma 3.7 and by Lemma 4.1.2, we have,
for |C(u)| almost all o € 2 and for a suitable sequence (bgk),tﬁk)) converging to

(uo,+00),

mo(b) + 8 (a @ v)(- = z0); 20 + £Q))

h(zo,ug.a,v) = lim limsup

k—+00 0 k) eN N -1
= lim limsup ——
k=too ool N1
. 1
inf / —= folzo + €y, b + et w(y), tF Vw(y))dy.
wewi i@ rey Joub k)

w(y)=a(v-y) on BQL“)

Using as before hypotheses (H2), (H3) and Lemma 2.8, we are led to

h(zg.ug,a.v) = lim limsup

k—+o0c ¢_40 kN-1
1
i —_ (k)
wewl-lll(lg(,k):p@ v/Qf,“) ték) folzo + ey uo, 7 Vu(y))dy.

w(y)=a(v-y) on 6QLY)
Then (4.1.7) follows from (H2) and (H4). O

4.2 Relaxation of bulk and interfacial energies.
We consider the functional defined for each A € A(Q?) by

/fo (z,u,Vu)dzx
A
Flu: A) = +/ go(z.ut u".m)dHY T ifueSBV(QiRY)  (421)
S(u)nNA
+ o0 otherwise ,

where the densities fo and go are continuous integrands satisfying the following
hypotheses :

(H1) fo : Q x RV x R¥*N — [0, +oc) is a continuous function, and

1
Elﬁl < fo(z,u,€) <CQ+[€))
for all (z,u,€) € Q x RY x R¥*" and for some C > 0;

(H2) for every € > 0 there exists § > 0 such that
lz =yl + |u—vl <é=[folz,u,&) - f(y,v,€)| < Ce(1+[¢])
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for all (z,y,u,v,€) € 0% x (R¥)? x RNV,

(H3) go: 2 x (R¥)2 x SN-1 — [0, 400) is a continuous function, and
1
EI)‘ -0 < go(z,A,6,v) <C(1+|A-6])

for all (z,),68,v) € Q x (R%)? x SN-1;
(H4) for every € > 0 there exists § > 0 such that

|z —yl+ |2l <6 = |go(z, A+ 2,0 + 2,) — go(y, A, 0,v)| < Ce|X -6
for all (z,y,A,6,z,v) € Q2 x (R%)3 x SN-1,

Our aim is to identify the relaxation of F' defined for each open subset A € A(Q)
as

F(u,A) := inf {liminf F(up; A)| up — uin LI(Q;R")} . (4.2.2)
n—<+0Cc

Theorem 4.2.1. Under hypotheses (H1), (H2), (H3) and (H4), the functional F,
defined by (4.2.2), is given by

F(u; A) =/ f(r,u,Vu)d:r+/ g(z,ut,u”, v, )dHN !
A s

(u)NA

s [ (xu;llg—%') dic(w)),

where, for all 2 € Q, for all (ug, £) € RIxR¥*N and for all (), 8,v) € (R%)2xSN-1,

f(zo,up. &) := limsup inf . {/fo(:zo,uo,Vv(y))dy
=0 espgr Ua

. / go(To,up + vt (y), uo + v (y), l’v(y))d?_t}\’—l(y)}7 (4.2.3)
QnS(v) €

1
9(zo, A, 0. v) := limsup inf {/ € fo (:ro,v(y), = VU(!/)) dy
i, e 5
vioQy =va.v v

+ 90 (zo,v* (¥), v (¥), Vo (¥)) dHN‘l(y)} (4.2.4)

where
Aify-v>0,

6 otherwise.

ux 0. (y) = {
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Remark 4.2.2 Let us define

1
fo(zo,up,€) := gi_.n})ffo (zo,uo,gé),

1
gO(anu@a/\’a»V) = Eh_r.%z go(:ro,uo+e)\,u0+59,u) .

Using hypothesis (H4), one can easily see that g, satisfies the invariance property
Jo(Zo,u0, A + 2,0 + z,v) = Go(zo, uo, A, 8, V) for every z € RY, therefore it can be
written as

gO(:cO» U, ’\v g, U) = §0(I01 Uo, A-6, V)-:

for a suitable function go : 2 x R4 x R% x SN-1 |
Let us assume, in addition, that the following estimates hold

1 _
f5¢(zo. u0, &) — efo (ro,uo, EE)‘ <Cemgtm,
|§O(I.uo,A —0,v) - %go(z,uo,s)\,ee,u)] < Ceoix - g|i*e,

for suitable a, m € (0,1) and € < €g, and for all zp € RV, € € RN yp, A\, 6 €
Re, v e SN,

Then, as in Section 4.1, it is possible to verify that formulas (4.2.3) and (4.2.4)
can be rewritten as

veSBV(QFd)

vigQ=£¢y (423’)
[ Gl vo bW n )Y ),
QNS(v)

faouog)= _inf [ folao.uo Vot

veSBV(Q,:Fd)

vigQ, =vir.leqQ, (424’)
+ g0(@0,v* (v). v (¥). (W) AH T (1) }.

As a particular case we recover the characterizations of bulk and jump densities
obtained in [BBBF] where it is assumed that fo = fo(zo,£) and go = go(zo, A —
6,v).

gzorbv)= _inf | /Q 15 (20, 0(y). Vo(y)) dy

Proof. As in the proof of Lemma 4.3.4 of Section 4.3 it can be shown that
the functional F defined by (4.2.2) satisfies conditions (2.1),(2.2) and (2.3'). In
addition, assumptions (H2) and (H4) yield condition (2.4). Therefore, we may use
Theorem 3.10 to obtain the integral representation of F on all BV(Q;R9), and it
remains to indentify the integrands f and g given by (3.13) and (3.14), respectively.

31



By Lemma 2.6 and Remark 2.7 1), we obtain that for every (u, 4) € BV () x
A(Q) the function m(u; A) defined in (3.1) agrees with

mo(u; A) :=inf {F(v; A) | vlaa = ulaa} -
Replacing m by mg in (3.13) we have

flzo,a,8) = hmsup inf {;V-/Q Jo(z,w(z), Vw(z)) dz

(z0.€)

1
+— go(z, w¥ (z),w™ (z), vu(z))dHN " 1(z) |
Q(zo,e)NS(w)

w € SBV(Q(zo0,¢);R?Y), v(z) =a+ &(x — z0) on BQ(xo,e)},
Using the change of variables y = #=%¢, and setting v(y) := e w(¥22) — a, we are
led to

f(zo,a,€) = limsup inf { / fo(zo + ey,a + ev(y), Vu(y)) dy
e—0 Q
+2 [ mae+eat v ha+ o @YW | @25)
QNS(v)
ve SBV(Q:RY), v(y) =€y on 5Q}~

Similarly, replacing m by mg in (3.14), changing variables and setting now
v(y) == w(Z522), we get

g(zo. A, 6,v) =limsup inf {/ £ fo (-730 + ey, v(y), VUE(U)) dy
Q.

e—0

t [ e @ WM | @26)
Q.NS(v) )
ve SBV(Q,:R?), v(y) = ux,(y) on BQ,,}.

By the coercivity condition (2.3'), it turns out that sequences (v.) approaching
the minimum in the right hand sides of (4.2.5) and (4.2.6) are uniformly bounded
in BV (€;R?). Thus with the help of the continuity assumptions (H2) and (H4),
we can replace fo(zp + €y,,-) by f(Zo,-,*) in (4.2.5), and go(zo + €¥,-,",") by
go(zo,-,-,-) in (4.2.6). This concludes the proof of Theorem 4.4.
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4.3 Homogenization.

In what follows 6 will stand for a positive parameter, converging to zero. For each
A € A(Q) consider the functionals Fs(-; A) defined in BV (9;R9) by

/A fo (% Vu(z)) dz

Fo(u; 4) = +/ go(f,[u](x),u,,(z)) dH = Yz) if ue SBV(2RY)
Swna 16
+ o0 otherwise ,
(4.3.1)

where the densities fo and go satisfy the following hypotheses :

(H1) fo : RN x R¥*N — [0,400) is a Borel function, Q-periodic in the first
argument, and

1
Elfl < fo(z.8) < C(1+[¢])
for all £ € R4*N | for all z € RY, and for some C > 0:

(H2) there exist m,L, 0 <m <1, L > 0, such that

_folztd))  C

fe(m g - RER < =

for all £ e RY*N |i¢]l =1, t > L, and for all z € R, where the recession function
o< is defined by
fo(z.t€)

52 (z, &) := limsup ————;
t—+oo t

(H3) go : RV x R% x S¥-1 — [0, +40c) is a Borel function, Q-periodic in the first
argument, satisfying

SN < go(z A ) < CIA
forallz e RV, Ae R¢?and ve SN-1;

(H4) there exist a.l, 0 < a < 1, I > 0, such that

< Ct®

_ I, tA\ v
go(xv A,V) - th—)

forallz €e RN, Ae R4, ||\ =1, ve SN~ t <, where Jo is defined by

A
oz, A, v) := limsup QLI{_U)-
1m0

33



We recall the following definitions (see [DM]) :

We say that a functional F : BV(Q;R%) — [0,+00] is the I-lower limit
(respectively I'-upper limit) of a sequence of functionals Fy, : BV (Q; R%) — [0, +]
for the L!(Q;R?) topology if

i) given u € BV(Q;R?) and (u,) in BV(;R?), u, — u in L}(Q;R9), then

F(u) < lémir;g F,(un) (respectively F(u) < limsup Fy(un));

n—<+0o

ii) for each u € BV (Q;R?) there exists (&,) in BV (£; R?) such that @, — u in
LY(;R?) and

F(u) = Lxm+1n°£ F,(4y,) (respectively F(u) = limsup Fy,(uyn))-

n—+0o

We write
F =T -liminf F,, (respectively F =T — limsup F},).
n—+oc n—+oo
We say that (Fy,) I-converges to F if the I'- lower limit and I'- upper limit coincide,
or, equivalently, if condition i) for the I'- lower limit and the following condition
iii) are both satisfied,

iii) for each u € BV (;R?) there exists (i) in BV(Q;R9) such that @, — u
in L}(Q; R?) and
F(u) = lim F,(4y).

n—+oc

We write
F=T- lim F,.

n—+oo

Remark 4.3.1. Since L'(Q; R?) is a separable metric space, we can deduce from
Kuratowski’s Compactness Theorem (see [DM]) that a sequence (Fy,) I'-converges

to Fifandonlyif F=T — lkiminf F,,,, for any sequence of indexes ny — +oc.
—+o0

Given A € A(f?), we define

F (A =T- ligni(r)lng(-;A) and F*(:;A) =T — limsup Fs(-; A).
- 6—0

Theorem 4.3.2. Under hypotheses (H1) - (H4) we have ¥~ = F+ = F where,
for each u € BV(Q;RN) and A € A(R), F is defined by

ol w)an + [ 1= (ZEE) ),

(4.3.2)

F(u; A) :=/Af(Vu)d:c+/S

(u)NA
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b L . -
o= plim g ot f [ pote e [ gt g

(4.3.3)

g\ v):= lim 1 inf { 5z, Vu)dr
TQ.

li
T—4o0 TN-1 UESBV(TQ,:k9)
u:uA'yonB(TQy)

t [l fdman ),
Su)NTQ.
(4.3.4)
Aify-vr>0

where uy . (y) := {0 otherwise

According to Remark 4.3.1, in order to prove Theorem 4.3.2 it is enough to
show that for any given sequence 6, — 0 the I'-lower limit of (Fj, (-; A)) agrees,
for every A € A(Q), with the functional F(u;-) defined in Theorem 4.3.2. Having
this in mind, and in order to simplify the notations, we will represent the sequence
(6n) by the parameter é.

Lemma 4.3.3. The functional F~ satisfies
F (u(-h);A+h)=F (w;A4) and F (u+aqA)=F (u;4).

for all u € BV(Q;R?), A € A(Q), h € R¥, and a € RY.

For the proof of this lemma we refer to [BDV], Lemma 3.7.

Lemma 4.3.4. Under hypotheses (H1) - (H4), F~ satisfies conditions (2.1), (2.2),
(2.3') and (2.4).

Proof. Condition (2.4) is an immediate consequence of Lemma 4.3.3.

We prove (2.2). Since the I'-lower limit of a sequence of the functionals is lower
semicontinuous (c.f. [DM]), F~(;4) is L}(Q;RY) lower semicontinuous. In view
of the local character of F~, easily deduced from its definition, we conclude that
F~(; A) is also L' (A; R?) lower semicontinuous.

In order to prove (2.3'), and by (H1) and (H3), we consider the double inequality

ZIDul(4) < Fe(uw: 4) < C(LV (4) +|Dul(4))

for all (u,A) € SBV(Q;R?) x A(f), and we pass to the I' - lower limit in each
member.

Finally we prove (2.1). We claim that for every u € BV(Q;R?) and for every
A,B,C in A(Q), the following implication holds :

CCCBCCA = F (wA) <F (;B)+F (w;A\C). (4.3.5)
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In fact, let (vs) and (ws) be two sequences converging to u in L!(Q; R?) and such
that

li%niélng(v,s;B) = F (u; B) and lifsnicx)lng(wg;A \C)=F (u; A\ ).

By means of hypotheses (H1) and (H3) we can apply Lemma 2.6 and Remark 2.7
to the sequence (F;), and find two other sequences (w}) and (v;) in SBV(Q;R9),
both converging to u in L}(Q;R?), w; = v} = u on T and

lim sup F5(wy; A\ B,) < lirén i(r)1f Fs(ws; A\ B,),
60 -

lim sup Fs(vj; B,) < li%n igf Fs(vs; Bp),
6—0 -

where
Y :={z € B\C | dist (z,0B) = p} and B, := {r € B| dist (z,6B) > p},
for some 0 < p < dist (0B,C) and such that |Du|(X) = 0. Defining 75 = wy
in Q\ B, and U5 = v in B,, we get T; — u in L'(Q;R?). Since B, C B and
A\ B, C A\ C, we also obtain
F~(u; 4) < lign_}(r)lng(ﬁg;A) = “fsn_.i{,‘f [Fs(vs; B,) + Fs(ws; A\ B,)]
< lim inf Fy(vg; Bp) + lim sup Fy(wj; A \B,)
< lign_}(x)lf Fs(vs; B) + 1i£t1_}31f Fs(ws; A\ C)
=F (w;B) + F (1 A\C),

which proves (4.3.5).
Now consider (ug) in SBV (£; R?) such that

F (u;Q) = li%nigxf Fs(us; Q).
Let u be the Radon measure on the compact Q defined as the weak limit, up
to a subsequence, of (fo (-5, VUé) LN+ go (;5-, [us]. z/ub) HN =1 (S(us) N Q)) as

& — 0. We have _
F~ (u; Q) = () (4.3.6)

and, by definition of F~, for all A € A(Q),
F (u; A) < lign iélf Fs(us; A) < u(A). (4.3.7)

Let B € A(R2) and € > 0 be fixed and consider C € A(§2), C CC B such that
u(B\C) < . We get

u(B) S u(C)+e=pu@) - p@\C)+e¢.
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In view of (4.3.6), applying (4.3.7) with A = Q\ C and (4.3.5) with A = Q, it
follows that

wB) S F (4;Q) = F (w;Q\C)+e < F (w;B) +e¢.
Letting € — 0, we conclude that
#(B) < F~(u: B) < u(B),

for all B € A(Q).

In order to prove that F~ (u; A) = p(A) for all A € A(Q), we fix again € > 0 and
choose C, B € A(Q) such that C cc B cC A and LN (A\C)+|Du|(A\C) < ¢/C.
By (4.3.5), (4.3.7), and since F~ satisfies (2.3),

F(w;A) S F (w,A\C) + F~(u; B) < e + u(B) < € + p(A).
We complete the proof by letting € — 0 . O
Lemma 4.3.4 enables us to apply Theorems 3.4 and 3.9, which, together with
Remark 3.5, yield

o™ (ul a1 [ ()= (Z28 )acl

.’F‘(u;A):/Af"(Vu)d:H-/S

(u)NA
where f~ : RN — [0,+0c0) and g~ : R% x SN-1 — [0.+¢) are given by (3.13)
and (3.14). In order to prove that f~ = f and g~ = g, as defined in (4.3.3) and
(4.3.4), respectively, we introduce (c.f. (3.1))

m(u: A) := inf {f’(v:A)[ Vloa = ulga.v € BV(Q;Rd)}

and. for each 6 > 0,

mes(u; A) = inf {Fé(v;A)I vloa = uloa,v € BV(Q;]R")}.

Lemma 4.3.5. For eachu € BV(Q;RY), 20 € Q, v € S¥~!, we have
lim inf mg(u; Qu (2o, 1)) = m(u; Qu(2o,1)),

for almost all t > 0 such that Q,(zo,t) C Q.
Proof. We divide the proof into two steps.
Step 1. We show that

lixén_}(r)lf mes(u; Qu(zo,t)) < m(u; Q. (z0,1)) (4.3.8)
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for all ¢ > 0 such that Q,(zo,t) C Q. Fix 4 € A(Q), € > 0, and let v € BV(Q;R9)
be such that
m(u;A) > F~(v;A) —e and v = wuon A

Let (vs) be such that F~(v; A) = lign i‘lef Fs(vs; A). Using Lemma 2.6 and Remark
2.7 2), we can find another sequence (1) satisfying 95 = u on 8A and such that

F~(v;A) = lign_}(l;lf Fs(0s; A).
Since mg(u; A) < Fs(0s; A), we have
hl‘;n_’i(l)flfmé(u; A)—e < F (v;A) — e <m(u; A).

Letting € go to zero we conclude (4.3.8).

Step 2. We prove that for almost all t € (0,T) such that Q,(z¢.T) C £,

li?l‘i(l)lf me(u; Qu(zo,t)) = m(u; Q. (o, t)). (4.3.9)
We claim that t — m(u; Q,(z0,t)) is a measurable function. Indeed,
m(ui Qu(20.t)) < m(u; Qu(@0.1)) + C(1+ Dul) (Qulz0. ) \ Qu(z0.1)),

for t > t', and so limsupm(u;Q,(zo.t")) < m(u;Q,(zo,t)). This implies the
'\t
measurability of ¢ — m(u; Q,(zg.t)). Define

E:= {to € (0,T) | t = m(w; Qu(z0.1))

is approximately continuous at to}.

Recalling that a measurable finite function is approximately continuous almost
everywhere (see [EG]), we have that £!((0,T) \ E) = 0. The conclusion of step 2
follows from the two following claims.

Claim 1. For each t € E,

lim sup m(u; Qu(Zo,t')) 2 m(u; Q. (zo,t)).
'\t

This is a consequence of the approximate continuity of the function
m(u, Q,(zo,-)) at t, which implies that, for every € > 0, the set

{t’ € (t,T) ’ m(U; Qu(ant’)) < m(U;Qu(io,t)) - E}
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has Lebesgue density at t equal to 0, i.e.
lim £ £1({#' € (6,1 + 8)[ m(u; Qu(z0,)) < m(u; Qu (@0, 1)) ~ €} = 0).

Therefore, there exists a sequence t,, \, t such that

m(u; Qu(zﬂy tn)) > m(u; QU(IOa t)) — €.
The claim 1 follows by letting first n — +o0c and then € — 0.
Claim 2. For every t > 0,

lim inf ms (u; Q (zo,t)) 2 limsup m(u; Qu (0, t')).

For each § > 0 choose u; satisfying us = u on 0Q,(zo,t) and

mes(u; Qu(To,t)) > Fs(us: Qu(z0,t)) — 6.

For ¢’ > t consider the extension s of us, is := us in Q,(zo,t) and s := 4
in Q,(z0,t") \ Q. (zo,t), where & € Wh(Q,(zo.t') \ Q.(z0,t);R%) and & = u on
0Q.(zo,t') U OQ,(z0,t) (see Lemma 2.5). We have

ma(u: Qu (z0.1)) > Fo(ie: Qu(za.t) = C | (14|Va |) dz - &,
QuUz0,t")\Qulz0,t)
Using the coercivity conditions (H1) and (H3), together with Poincaré’s inequality,
we infer that the sequence (iis) is bounded in BV ((Q, (zo,t'); R?). Let v be defined
as the limit, up to a subsequence, of @5 in L' (Q, (zo,t'); R?). Since by construction
v=1u=uon 0Q,(xo.t'), we obtain

lim inf ms(w: Qu (z0.8) = F~ (v: Qu (20.t')) = C / (1+|Va |) de
6—0 Qu(zo ' )\QuAzot)

(1+Va ) dz,

> m(u Qu(z0.t)) = € [
Quz0.,t')\Qu(zo0.1)

The claim is proved by letting t' \ t.
0

The following lemma is due to C. Licht and G. Michaille (see [LM], Theorem
3.1 and its proof). We refer to Section 2 for the definition of the class A.

Lemma 4.3.6. Let p > 1 and let S : A(RP) — R* be such that

1) there exists C > 0 such that S(A) < C LP(A),

ii) S(C) < S(A) + S(B), for all A,B,C € A(R?), ANB=9, C=AUB,

i11) there exist T C RP and M > 0 such that T + [0, M)? = RP and
S(A+71)=S(A) forall Ae AR?) and T €T.
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Then, for any cube A of the form [a,b)P there exists the limit of the sequence

(C—‘S;’((—s‘s——xgj),ass—»+oo, and

S(sA) lim S([O,s)”)'

s—+o00 LP(SA) s—+oc P

Futhermore, if {Sy}1 is a family of set functions satisfying i) - iii) for C, T and
M independent of L, the above limits are attained uniformly in L.

Lemma 4.3.7. The limits in the right hand side of (4.3.3) and (4.3.4) exist and

F7(&) = f(8), (4.3.10)
g~ (A ) =g(Av). (4.3.11)

Proof.
Part 1. First we prove the existence of the limit in the right hand side of (4.3.3)

and then we prove (4.3.10).
Let us define, for €,7 > 0 and (w, A) € BV(Q;R?) x A(Q),

Fop(uw; A) = / fo(yT,Vw)dy—#% / 9o (uT, efw], vo)dH 1, (4.3.12)
A S A

(w)N

For(w;A) = / fo(yT, Vw)dy + / 0T, [w], ve)dHN Y, (4.3.13)
A S A

(w)N

and
mo.r(€x; A) := inf{Fo r(w; A)| w € SBV(4;R?), w =€z on 0A}.  (4.3.14)

For A € A(Q) set
S(A) :=mg1(£x; A).

In view of the periodicity hypotheses (H1) and (H3), we may apply Lemma 4.3.6
to obtain

m S0 i mea(en TQ) = £(6) (43.15)

which proves the existence of the limit in the right hand side of (4.3.3).
From (3.13) and in view of Remark 3.5, proving (4.3.10) is equivalent to asserting

that .
£

fasse = f(g)!
or, by virtue of Lemma 4.3.5, it suffices to prove that

. me(€T;€Q)
Eh_x‘%hgn_}(r)lf—g—,v—— = f(§),
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for a suitable subsequence still denoted by e.
Step 1. We show that

o= hn})lugimf% > f(é).
We have
o = lim lim Tne (67:6Q)
- e—=0 n eN !

where, for each € > 0, 6, —y 0. We extract a diagonal subsequence é(¢) such
n—+0C

that T, := €/6(e) — +oo and

o = lim mé(z)(§I £Q)
e—0

= llm Fé(s)(vs Q)
for suitable v, € SBV(;RY), v, = £x on 8(¢Q). Changing variables and writing

1
Te(y) := ;ve(sy), we have
a= li[I(l) Fo1,(0:5Q). (4.3.16)
£—
Due to the coercivity hypotheses (H1) and (H3), together with (4.3.16), we have
sup ||Te |l v (@ire) = C < +oc. Since Te(y) = £y on 0Q, using Lemma 2.8 with
€

uo = £y, for fixed > 0 we may find M, = M (n,C, C. ||€yllL=(gxe)) and for each
€ we may find w, € BV(Q;R%) N L>=(Q: R9) such that

lwellL<(Q:rt) € Mn, we(y) =&y on 8Q, [Dw|(Q) < C,

and
lin’b Fer,(0e:Q) 2 limsup F, 1, (we: Q) — 7. (4.3.17)
£— e—0

By (H4) we have

. 1 _ _
thUP/ l— 90(yTe € [we) vu,) = Go(yTe. [we], v, ) [dHN !
S(w)nQ '€

e—0

e—0

< limsup C 6"/ [we)|etldHN !
S(we)NQ

<limsup C C ¢° My =0

e—0

Setting W, (y) := T.we (y/T:), we deduce from (4.3.15), (4.3.16) and (4.3.17) that

We; T Q) —

a > limsup Fo 1, (we; Q) —n =
e—0

E—

msup Q) -n=_lim TNmm(sx TQ) -1 =1(€) -
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To conclude the proof of the first step it suffices to let n tend to zero.
Step 2. We prove that

‘lim lim inf
€—=0 6—0

< £(8)-

ms(€z;€Q)
N

Let ur € SBV(;R?),ur = £z on 8(T'Q) be such that

1

TETOO T~ Fo1(ur; TQ).

€)=
Setting Tz (y) := 1 ur(yT), we obtain
f(€) = TETOO For(ur; Q)

and so, just as in Step 1, given 7 > 0 we may replace Ur by wr such that
wr = £y on Q and sup ||wr||L=(g;re) = C < +00. We have
T

f(€) > liminf For(wr;Q) —n = limsup liminf F, r(wr;Q)—1n
T—+o0 e—0 T—+o00

. 1
= lim sup lim g;g o~ For (wre;eQ) —n
E—O

1
o1 N L
> llr?jctjlp lim inf o Me (§z;€Q) — m,

where wr.(y) := ewr(y/e).

Part 2. We prove the existence of the limit in the right hand side of (4.3.4) and

we prove (4.3.11).
For ¢,T > 0 and (u, A) € BV(;R?) x A(Q) define

Ger(w; A) := e/ fo (yT, le) dy +/ 9o (yT, [w],uw)d’HN'l, (4.3.18)
A € S(w)NA

Gor(w; A) = /A 55 (T, Vw)dy + /

S(w)n

90(yT, [w), v )dHN "1 (4.3.19)
A

and
mo.r(uxy; A) := inf{Gor(w; A)| w € SBV(4;R?), w =u,, on JA}. (4.3.20)

From (3.14) and in view of Remark 3.5, to prove (4.3.11) is equivalent to assert

that
m("A,V? EQU)

li-[n €N_1 =g(A,U) *

e—0
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Then, by virtue of Lemma 4.3.5, it suffices to show that

lim liminf (2w €Q0)

S mi TN-1 = g(\,v), (4.3.21)

for a suitable subsequence still denoted by . Provided we establish the existence
of

. 1
TETOO TN-1 mo1(uru; TQL), (4.3.22)

the proof of (4.3.21) is quite similar to the one presented in Steps 1 and 2 of Part
1. Indeed, it is enough to replace the functional F, r by G. 1, Fo.r by Go r, and
to use hypothesis (H2) instead of (H4).

We prove the existence of the limit (4.3.22) in three steps.

Step 1. We recall that, for v € SV~ R, denotes a rotation satisfying
R,(en) = v and v — R, (e;) is continuous in S¥~1\ {ey}, foralli=1,---,N -1
(see Section 2). As in [BDV], define S* to be the set of all v € SV~! such that
R,(e;) = iz, for some 7; € R\ {0}, 2z, € ZV, i =1,---,N — 1. The set §* is
dense in SN-1. Let

QTLt =R, {z e RY| |zy| < L/2 and |z,| < T/2,fori=1,---,N —1}).

Fix v € S*, L > 0 and define

N-1
Ai .
T(v):= {Z ?y-e, | A\i €Z, R,(e;) =7izi. v € R\ {0}, 2; € ZN} .

1=1
For each open subset A C R™¥~1! with Lipschitz boundary, set
Sp(A,v) :=mg1(uxr,; Ru(A x I)),

where It = (—L/2,L/2). In view of the periodicity hypotheses (H1) and (H3) we
have that, for C independent of L,

S (A+7,v)=Sr(A,v) and S (A,v) <CLVN"1(A), (4.3.23)
for all A€ A(Q). 7 € T(v), and also T(v) + [0, M)V~ = RV~ where

M= ,Jmax i Applying Lemma 4.3.6, with p = N — 1, we conclude that

. 1
TBTOC TR-1M0. (urw; QTF) (4.3.24)

exists and is finite.
Step 2. We prove that, for all v € §*,

. 1
TEIBconmo'l (‘U)“,,;TQ,,) = g(/\,I/). (4325)
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In fact,

1 i —-——-l
#E}iﬂf TR0, 1(ua; TQy) 2 hmi%ﬁ ‘Efo TN-1 mo1(ur i Q') (4.3.26)

. . 1 T,L
= juf lm e (i QF),

having in mind that, since the limit in (4.3.24) is uniform in L, we can interchange
the infimum in L with the limit as T goes to +oc.

Conversely, fix L and let T > L. Using again, for each test function in QIL,
the extension by uy,, to the whole T'Q,, we obtain

1 1
TN mo,1 (uaw; QTE) > TNT mo,1(ux; TQv)

and, consequently,

1 T.L
. s > .
I{I;fo T—l-l»riloo TN-T mo1(ur; Q) 2 17131.512) TN= T Mo1(uaw; TQu). (4.3.27)

From (4.3.26) and (4.3.27) we conclude the proof of Step 2.

Step 3. We extend the proof of existence of the limit (4.3.22) to all v € SN-1,
In view of the continuity of v — R,, for each v € S¥~1\ {ex} and € > 0 we may
find v, € S* and 7 satisfying 1 < n < € + 1, such that

(1/mQv. C Qv C1Qy,,
'HN_1<3(%Q,,‘) N{z e RN| z-v. <0} N {z € RY| :c~u>0})+

MM (a(%QW) N{zeR¥z v >0 N {z Rz v <0})+  (43.28)

'HN"I([Q,,\(%QV‘)]ﬁ{xERle-V=O}) <e

and analogous estimates hold with nQ,, in place of Q, and @, in place of %Q.,,.
Given T > 0, extending each test function defined in (T'/7)Q,, to TQ, by ux,.,
and taking into account estimates (4.3.28) and hypothesis (H3), it follows that

mo, l(uA UvTQU) TT I AN—-1 mo, l(u)\ Ve s (T/ﬂ)Qu;) + C}AIE

1
-1 ~(T/n )
Therefore, using Step 2 to justify the existence of the limit as T tends to +oc in
the right hand side of the previous inequality, we get

limsup ——

im sup 7 mo1(ux,; TQy) < _lim —Tv_—l mo,1 (s (T/1)Qu.) + O(€)

T—+oo (T/

mo,1 (uA‘Uz 5 TQuc ) + O(E)
(4.3.29)

- T—+o0 TN-1
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Similar reasoning concerning the inclusion Q, C nQ,, leads to

o1 . 1
gr_r}irg Tr=T Mo (unu; TQw) 2 lim AL mo,1(ur v, 1TQ., ) —O(€)
, 1
= lim m mO,l(uA,U‘;TQut) - 0(5)

T—+0o0
. . (4.3.30)
Letting € go to zero in (4.3.29) and (4.3.30), we conclude the proof of Step 3. O
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