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BULK AND CONTACT ENERGIES:
NUCLEATION AND RELAXATION

IRENE FONSECA f & GIOVANNI LEONI J

Abstract An integral representation formula in BV(Q;RP) for the relaxation H(u, Q) with respect to the L1 topology of
functionals of the general form

f/(u,Q):= f h{x,u{x),Vu(x))dx+ f O(x,Tu(x))dHN-i(x), u € W1A(n-R*>),
Jn Jan

\s obtained. Here Q. C RN is an open, bounded set of class C2, T is the trace operator on dQ and H^-i is the AT — 1
dimensional HausdorfT measure. The main hypotheses on the functions h and 0 are that /i(x, u, •) is quasiconvex and has linear
growth, and that 0(z, •) is Lipschitz. The understanding of nucleation phenomena for materials undergoing phase transitions
leads to the study of constrained minimization problems of the type

inf /

where A' is a nonempty compact subset of Rp, and T : Q x K —> R is a. continuous function. It is shown that if r(x, •) is a
double well potential vanishing only at a and 0, then minimizers u of the total energy are given by pure phases, that is, there
exists Qu C fi such that u(x) = a for CN a.e. x € Qu (liquid) and u{x) = p for £N a.e. x € Q\QU (solid). This conclusion is
closely related to results previously obtained by Visintin, and where the interfacial energy is assumed to satisfy a generalized
co-area formula. Here this condition is replaced by a property which may be verified by energies for which the co-area formula
might not hold.

1991 Mathematics subject classification (Amer. Math. Soc): 49J45, 49Q20, 49N60, 73T05, 73V30
Key Words : functions of bounded variation, nucleation, relaxation, bulk and contact energies, generalized
co-area formula

§1. Introduction.
This paper is divided into two parts. In the first part we obtain an integral representation formula in

BV(ft; Rp) for the relaxation 7i{u, ft) with respect to the Ll topology of functionals of the general form

(1.1) H(u,n):= I h(x,u(x),Vu(x))dx+ f e(x,Tu{x))dHN-i{x), u e Wu(ft;Rp),
Jn Jan

where ft C RN is an open, bounded set of class C2, T is the trace operator on <9ft and -HAT_I is the
N — 1 dimensional Hausdorff measure. The main hypotheses on the functions h and 6 are that /i(x, u, •) is
quasiconvex and has linear growth, and that 0(z, •) is Lipschitz.

Under a degenerate coercivity assumption on h(x, u, •) we obtain the following integral representation for

W(u,n)= f h(x,u(x),Vu(x))dx + f h°°(x,u(x),dC(u))
(1-2) J a , Jo ,

L/ {) f
s{u)nn Jan
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I. Fonseca and G. Leoni

where Vu is the density of the absolutely continuous part of the distributional derivative Du with respect
to the TV-dimensional Lebesgue measure £N, (u+ - u~) is the jump across the interface 5(u), and C(u)
is the Cantor part of Du. For the canonical model /i(x, u, Vtt) := a|Vu|, where a > 0, the relaxed energy
H{u,Q) reduces to

(1.3) H(u,Q) = cr [ \Du\+ [
JQ Jdn

In the scalar case where p = 1 the lower semicontinuity of the functional (1.3) was proved by Massari and
Pepe [MP] when 6(x,u) := o\u\, with \&\ < a, and by Modica [Mo2] under the assumption that

(1.4) IflfouJ-flfouOl^alu-Uil

for all x € dQ and all u> u\ € R.
One of the motivations for the introduction of a relaxed energy is that nonconvex variational problems

may not have a minimizer in the space of smooth functions - this fact was first pointed out by Weirstrass
in 1869, when he published his celebrated counterexample to Dirichlet's principle. Therefore, to apply
the direct method of Calculus of Variations one has to extend the original functional. Although Sobolev
spaces are considered to be the natural extension to the space of smooth functions, in recent years the
theory of phase transitions, and the need to determine effective energies for materials exhibiting instabilities
such as fractures and defects, have led us to further extend the domain of functional of the form (1.1) in
order to include functions u which present discontinuities along surfaces. Motivated somewhat by Lebesgue's
definition of surface area, Serrin in [Sel, Se2] proposed the following notion for the relaxed energy of H(u, Q)
(in the case where 6 = 0)

{ ( n , ) n e ( ; ) , n in
{ u n } v. n—• oo

One of the main issues in the Calculus of Variations concerns the search and characterization of an integral
representation for 1i(uM) in the space BV(Q;RP).

In the scalar case where p — 1 and h(x, u, •) is convex, the integral representation (1.2) was first obtained
by Goffman and Serrin [GSe] when h = h(Vu) (see also [Re]), and by Giaquinta, G. Modica and Soucek
[GMS] for h = h(x, Vti). These results were then extended by Dal Maso [DM] who considered the general
case where h = h(x, u, Vu), and emphasized the important role of the coercivity condition in establishing
(1.2). Indeed, Dal Maso showed that, while (1.2) holds for nonnegative functions h = h(u, Vu) without any
lower bound on /i, wThen h = h(i,Vw), or, more generally, when h = /i(x, it, Vu), the representation (1.2)
may fail unless one requires a weak coercivity assumption of the form

(1.5) . h{x,u,Vu)>g(x,u)\Vu\.

In the vectorial case where p > 1 and /i(x,u, •) is quasiconvex, Ambrosio and Dal Maso [ADM2] proved
(1.2) when h = h(Vu) and without (1.5). Independently, Fonseca and Miiller [FM2] obtained this result for
general functions h(x,u, Vu) which verify (1.5).

In all the works mentioned above 6 = 0, and one of the purposes of this paper is to extend these results
to the new case where possibly 6 ^ 0. The relaxation of functional of the type (1.1) arises in the van
der Waals-Cahn-Hilliard theory of phase transitions for fluids (cf. [CHI, CH 2, vdW]). In this context the
boundary term JdQ 0(x, Tu) CIHN-I represents the contact energy between the fluid and the container walls,
where 6(x,u) is the contact energy per unit area when the density is u (see [C, G]).

We present here two relaxation results. In Theorem 2.5 we show that, without any a priori coercivity on
the function /i, the functional on the right hand side of (1.2) actually gives the integral representation for
the following relaxed energy

= inf {liminf#(un,D) : un € Whl(Q;Rp), un — uinL\Q]Rp), sup ||un||wn.* < oo},
{un} n—>oc n
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while in Theorem 2.2 we prove that Hb(u, ft) = H{u, ft) if h satisfies a condition of the type (1.5). Therefore
we may conclude that the right hand side of (1.2) always coincides with Hb(u,fl), and we restate all the
results mentioned above by saying that Ti^u^ft) = H(u,ft) in the scalar case if either h = h(u, Vu) or if
h = /i(x,u, Vu) satisfies (1.5), and in the vectorial case if either h = /i(Vu) or if h = h(x,u,Vu) satisfies
(1.5). In the remaining cases it may happen that H(u, ft) < Hb{u, ft) .

It is worth mentioning that the fact that the relaxation W(u, ft) is simply given by the decoupled sum of
the relaxation of the functional Jfi h(x, u, Vu) dx and the contact energy may be somewhat deceiving, since
it hides the competition between the bulk energy and the contact energy. A more insightful way to look at
(1.1), and consequently, at (1.2), is perhaps to consider the equivalent form

(u,Q)= f
Jn

H(u,Q)= f {h(x,u(x),Vu(x)) + <f(x)-VuT(x)Vu8(x,u(x))} dx
J

where if € Cl(RN;RN) depends only on ft and \<p(x)\ < 1 in ft (see Lemma 3.2). In particular, in the
isotropic case where /i(x,u, Vu) := a|Vu|, o > 0, we obtain

H(u, SI) = f {a \Vu(x)\ + V(x) • VuT(x)Vu6(x, u(x))} dx

+ I e(x,u(x))div<f(x)dx+ I <f(x)- Vx6(x.u{x))dx,
Jn Jn

and it is clear that the functional H is not bounded from below in general, unless one assumes a condition
of the type

|Vu0(z, u)\ < a for a. e. x e ft and for all u e RP,

which is essentially the condition found by Massari and Pepe [MPj and by Modica [Mo2].
In the second part of the paper we are concerned with constrained minimization problems of the type

inf <H(u, ft)+ f r(x, u(x)) dx : u € BV(ft: K) \ ,

where K is a nonempty compact set of Rp, and r : ft x K —^Risa continuous function. This kind of
problems has important applications in the study of phase transformations and in nucleation phenomena
(cf. [VI, V2]). According to the van der Waals-Cahn-Hilliard theory of phase transitions (cf. [CHI, CH2,
vdW]), the total energy of a fluid of total mass m and density u(x) confined in a bounded container ft C KN,
is given by

(1.6) E£(u):=e2 [ |Vu|2dx + [ Wx(u)dx + e f W2(Tu)dHN-U u e Wl^(ft;R),
Jn Jn Jan

where the coarse-grain energy W\{u) is a double well potential vanishing only at a and 0 and corresponding
to the stable two-phase configuration of the fluid, the gradient term £2|Vu|2 models the interfacial energy
across a smooth transition layer, with e a small parameter, and W2 represents the contact energy between
the fluid and the container walls. The stable configurations of the fluid correspond to solutions of the
problem (see [C])

inf <E£(u) : ue W^^fyR), [udx = m\.
I Jn J

Confirming a conjecture of Gurtin [G], Modica in [Mo2] was able to show that if a sequence of minimizers
{ue} converges in L1 to a function uo, then UQ solves the liquid-drop problem

inf {H(u, ft): ue BV(ft; {a, /?})} ,
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where ?i(u,Q) is the relaxed energy of

H{u,Q)= [ \Vu\dx + & [ TudHN-u u£Wl^(Q;R).
Jn Jan

Here a depends only on Wx and W2. The hquid-drop problem admits a solution if and only if \a\ < 1.
An analogous result is due to Alberti, Bouchitte and Seppecher [ABS] who recently showed that if the
parameter e in front of the contact energy in (1.6) is replaced by A£, where

lim e log A£ = K € (0, oc)

and W2 is a double well potential which vanishes only at cx\ and /?i, then the limit problem is given by
a different model for capillarity with line tension. It is worth noting that in this case the effective energy
takes the form

\G{Tu) - G(v)\ dHN-X + — f \Dv\2 : v € BV(dQ; {oi, /3i})l
^ Jdn J

/
an

for u e BV(£l;{a,j3}) and W(u, Q) = oc otherwise. Here G is a primitive of 2^/W[. It can be seen
immediately that in this capillarity model the contact energy is strongly nonlinear, which leads us to
consider functions 6 other than 8(x,u) = au (see [VI, V2]).

In the last section of the paper we prove some minimization results which are related to solid nucleation.
For a complete description of this phenomenon we refer to the recent monograph of Visintin [VI] and to the
bibliography contained therein. By solid nucleation we mean the formation of a new solid phase, that is of
a connected component of solid in a liquid. If the new solid phase is formed in the interior of the liquid, the
nucleation is called homogeneous, while if it is also in contact with other substances, such as the container,
impurities dispersed in the liquid or nucleants, then we name it heterogeneous nucleation (cf. [VI, Ch.
VII.2]). By thinking of these impurities or particles as holes in the domain Q, we can represent the contact
energy by an integral term over the boundary of Q. Furthermore, since the new solid phase is formed
through crystallization, and crystals are anisotropic, the classical isotropic interfacial energy a JQ \Du\ is
now replaced by fQh(x,Du). In the applications one sees often h(x,Du) = \A(x)Du\, where A(x) is a
nonnegative definite N x N tensor (cf. [VI, p. 157]).

The main results of this part are Theorems 5.1 and 5.4, where we show that minimizers u of the total
energy are given by pure phases, that is, there exists Qu C fi such that u(x) — a for CN a.e. x e fiu (liquid)
and u(x) = /? for CN a.e. x e Q\QU (solid). This result is closely related to Theorem 2 in [V2], where
the interfacial energy is assumed to satisfy a generalized co-area formula. We replace here this condition by
some hypotheses which are easy to verify and allow us to include interfacial energies of the form J^ /i(x, Du),
where h(x, •) is convex and positively homogeneous of degree one, and for which the co-area formula might
not hold.

§2. Relaxation.
We consider the functional

Jn
/
dn

defined on the Sobolev space W1^1(Q.:RP), where Q C RN is an open, bounded set of class C2, T is the
trace operator on 9Q, H/v-i is the N — 1 dimensional HausdorfT measure and the functions

h : Q x Rp x MpxN -> [0,00), 6:dnxRp ->R

satisfy the following hypotheses:
(H\) h is continuous;
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(i/2) h(x,u, -) is quasiconvex for all (x, u) e ft x Rp;
(i/3) there exist a nonnegative, bounded, continuous function g : ft x Rp —* [0,oo) and a constant C > 0
such that

(2.1) 0(*,u)iei < *(*,*, 0 < C#,u)( l + |e|)

for all (x,u,f) 6 f i x R p x M p x N , where MpxAr is the vector space of p x N matrices;
(H4) for every compact set K <E ft X Rp there exists a continuous function u; : [0,00) —> [0,00), with
u;(0) = 0, such that

(2.2) IM^ ti ,0 - A(*i,t*i,OI < u(\x - Xl\ + |u -

for all (a:,u,f)» (^i?wi»O € i^ x M p x N . In addition, for every x0 € ft and (5 > 0 there exists e > 0 such
that

(2.3) /i(x0,«, 0 - h(x, u, 0 < (5(1 + ff(x, u

for all x e Q with \x - xo\ < e and for all (u, C) € Rp x MpxN;
(H&) there exist C > 0 and m € (0,1) such that

for all (x, tx,0 € ft x RP x MpxAr, where the recession function h°° of h is defined as

admits an extension fl € C(Q x RP;R) n C!(fi x RP;R) such that

for £ N a.e. x € ft and all u € Rp, where a2 € L2(ft,R), Ci > 0 and ^c is the Sobolev exponent qc :=
N/(N — 1) if N > 1 and gc < 00 if JV = 1. Moreover, for every xo € ft and <5 > 0 there exists e > 0 such
that

(2.4) |Vtt0(xo,ix) - Vtt0(x,tx)| < 6p(x,tx)

for all x € ft with |x - xo | < e and for all u € Rp;
(H7) g(x,u) > |Vtt0(x,u)| for all (x,u) € ft x RP.

Remark 2.1. (i) Conditions (#1) - (i/5) were considered by Fonseca and Miiller (see [FM2]), who treated
the case where 8 = 0. It can be shown that the recession function h°° of h is still quasiconvex and is
positively homogeneous of degree one in the £ variable (see [FM2, M]).

(ii) By the Mean Value Theorem and conditions (#3) and (H7) we have

(2.5) l^t/J-^txOI^

for all x € ft and all u, u2 € Rp. Taking ux = 0 it follows by (H6) and (2.5) that

(2.6) l«(x,tt)|

for all (x, u) € ft x Rp. This growth condition, together with (2.1), implies in particular that the functional
#(u,ft) is well defined and finite for u € W7l-1(ft;Rp) .
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(iii) A typical example of the energy densities is (see Visintin [VI , V2])

(2.7) /i(x,u,C) :=cr|C|, J ( i , u ) :=du ,

where a > 0 and a € R. It is easy to see that conditions (Hi) - (H6) hold with g(x,u) := a, while
assumption (H7) reduces to the inequality \a\ < a. More generally, (H6) is trivially satisfied if 0 — 0(u).
__ (iv) If in (1.3) we take 0(x, tt) := a\u\ for (x,u) 6 9fi x Rp (cf. [MP]), then it is possible to extend 9 to
flxRPas follows

9(x,u):=ay/\u\2 + ip2(x),

where ^ € C^fljR) is such that ^(x) > 0 for x € ft and t/>(x) = 0 for x € dft. Conditions (Hi) - (if7) are
then verified with g(x,u) := cr, provided \c\ < a. The problem of finding an extension of 0 : <9ft x Rp —• R
to ft x Rp which satisfies (#6) — (#7) for the functional (1.3), and when (1.4) holds, will be addressed in a
forthcoming paper.

Our first goal in this paper is to obtain an integral representation for the relaxation of H(u,Q) in
BV(Ct:Rp) with respect to the L1 topology, that is

tt(u,ft):= inf (liminf #(un,ft) : un e W^^W), un-> u in L^ty
{un} I n->oc

Prom the definition of W(w,ft) it follows immediately that the functional H(u,Q) is lower semicontinuous

Before stating the main theorems of the section we introduce the surface energy associated to the function
h. For any v G S^"1 := {x € R^ : |x| = 1} let {1/1, • • • , 1^-1, ^} be an orthonormal basis of RN varying
continuously with v. For fixed a, b € Rp we define «4(a, 6, v) as the class of all functions tp € ^^^(Q^; Rp)
such that

a i f y i / = - l / 2
b if 2/ • v = 1/2

and which are periodic of period one in the remaining directions i/i,--- , ^ A T - I - Here Q^ := {x € R N :
|x • Vi\ < 1/2, |x • v\ < 1/2, i = 1, • • • , N — 1}. The surface energy Kh(x, a, 6, v) associated to the function
h is defined by

Kh(x,a,b,v):= inf If hoc(x^(y),V^(y))dy : 0 €

For a detailed study of the properties of the function Kh(x, a, 6, v) we refer to [FR].
We recall briefly some facts about functions of bounded variation which will be useful in the sequel. A

function u € I/1 (ft;Hp) is said to be of bounded variation if for all i = 1, • • -p, and j = 1, • • • N, there exists
a Radon measure /Xy such that

for every <p e Co(ft;R). The distributional derivative Du is the matrix-valued measure with components
fiij. Given u € I?V(ft;Rp) the approximate upper and lower limit of each component Uj, t = 1,- • p, are
given by

uf(x) := inf it e R : ^ ^ £ N ({y € ft H JB(i, e) : ut(y) > t}) =

and
u~ (x) := sup | t € R : £Um+ ^v £ N ({t/ € ft H B(i, 5) : ux(y) < t}) = 0 J ,

while the jump set of u, or singular set, is defined by

5(u) := Up
=1{x € ft : u~(x) < u+(x)}.
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It is well known that S(u) is N — 1 rectifiable, i.e.

where Hw-i{E) = 0 and Kn is a compact subset of a C1 hypersurface. If x € Q\S(u) then u{x) is taken
as the common value of (iti~(x), • • • ,u+(x)) and (uj"(x), • • • ,u~(x)). It can be shown that u(x) € W for
i7/y/_i a.e. x € Q\S(u). Furthermore, for H^-i a.e. x € S(u) there exist a unit vector i/u(x) € SN~l,
normal to S(u) at x, and two vectors u~(x), u+(x) G Rp (the traces of u on 5(u) at the point x) such that

lim ^ / \u(y) - u+(x)\N/{N'l)dy = 0

and

Note that in general (u t)
+ ̂  (u+)i and (ut) ^ (u ),-. Moreover, the Sobolev inequality

<C(N)\\u\\Bv

holds in BV(Q:W) when Â  > 1. Finally, Du may be represented as

Du = Vu£N -f (u+ - ii") ® ̂ A '_! [S(u) -f C(tx),

where Vw is the density of the absolutely continuous part of Du with respect to the Ar-dimensional Lebesgue
measure CN. These three measures are mutually singular.

We are now ready to state the main results of this section. For u e BV(Q; Rp) we define the functional

[ 6{x,Tu{x))dHN.l{x).
JdQS(u)nn JdQ

Here, and in what follows, if g is a positively homogeneous function of degree one and if ̂  is a Rm-valued
measure then we define

:= / p(Q(x))rf|M(x)|,

where |/x| is the nonnegative total variation measure of /i, and a : Q —> S771"1 is the Radon-Nikodym
derivative of fi with respect to |/z|.

Theorem 2.2. Let (Hx) - (H7) hold. If u € BV(Q:Rt>) then

Corollary 2.3. ///i = fc(z,f) tftcn

W(u,f2)= [ h(x,Vu(x))dx+ f h°°{x,dC{u))
JQ Jn

-f f hoc(x,(u^(x)-u'(x))^uu(x))dHN.1(x)^ f O(x,Tu{x))dHN-i(x).
JS(u)nQ JdQ

The proof of Corollary 2.3 follows from Remark 2.17 in [FM2].
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Remark 2.4- (i) Rather surprisingly, in general the functional C(u,Q) is not lower semicontinuous in Ll if
the domain fi is only Lipschitz. This fact was first pointed out by Modica in [Mo2] who gave the following
simple example. Let Q := (0,1) x (0,1) C R2 and take h and 6 as in (2.7), with -a < a < -ay/2/2. Then
(H\)-(H7) are satisfied (see Remark 2.1 (iii)), and

[ \Du\+& [ TudHN-i, ueBV(Q;R).
n Jan

(0
un(x1,x2):=<

In

Consider the sequence
if xi +X2 > 1/n
if xi -f X2 < 1/n.

Thenun(x) -•OinL1(fi;R) but£(un,f)) = aV/2 + 2<7 < £(0,fi) =0 , and this shows that W(u, fi) ̂  £(w,Jl)
since W(u,Q) is lower semicontinuous in Ll.

It is worth noting that in the special case where 6(x,u) = |TX — xp(x)\ in (1.3), with xp € Lx(9f2;R), one
can still prove lower semicontinuity of £ for Lipschitz domains. The first result in this direction is due
to Massari and Pepe [MP] who treated the case where xp = 0. Modica [Mo2] then extended it to include
xp e Lx(dft;R). The idea in [MP, Mo2] is to find a function xp e BV(RN\Q;R) whose trace is xp and then
use an extension theorem (see [EG, Th. 5.4.1]) to rewrite the integral Jdn \Tu - xp\ dH^-i as

\Du\ - f \Du\ - /
an Ju» Jn JR

where
fu(x) i fx€

u(x) := < 7
L xp(x) if x €

(ii) Without condition (if7) Theorem 2.2 may fail. As an example, let Q := (0,1) C R and take h and
6 as in (2.7). In this case condition (if7) is equivalent to the inequality \v\ < o. Assume that a < a and
consider the sequence

_ J -n3(x - 1) - n if 1 - 1/n2 < x < 1
Un{x) : = I 0 otherwise.

Then un{x) — 0 in Ll(Q\R) but £(un,ft) = (a - a)n < £(0,£2) = 0.

Theorem 2.5. Let (H\) - (HQ) hold, with (2.1) and (H7) replaced by the weaker hypothesis

(2.8) |Vu0(x,u)| |f| < /i(x,u,$) < Cg(x,u)(l H- |^|)

/or a// (x,u,f) € fi x Rp x M p x N , and some C > 0. T/ien i/ie relaxation of H(u,n)

Hb(u,Q)= inf {liminfif(un,Jl) : un € Whl(Q\Rp), un -> uinL1(Cl\Rp), sup\\un\\WiA < 00}
{un} n—>oo n

in BV(Q.\ RP) with respect to the Ll topology has the integral representation

Remark 2.6. Under the assumptions of Theorem 2.5, the functional £(u, fi) provides the correct integral
representation for Tib(u,Q.) but not necessarily for H(u,Q). Indeed, in the scalar case where p = 1 and
when 6 = 0, Dal Maso has shown in [DM] that W(u, Q) = £(u,Q) when h = h(u,£) satisfies only (2.8),
while possibly H(u,Q) < £(it,Q) for h = /i(x,£) unless one assumes a condition of the type (2.1).

In the vectorial case where p > 1 and when 0 = 0, Ambrosio and Dal Maso [ADM2] proved that
W(u,fi) = C(u,Q) when h = h(£) satisfies only (2.8). Independently, Fonseca and Miiller [FM2] have
obtained this result for general functions h(x,u,£) which verify (2.1), still in the case where 0 = 0.

§3. Proof of Theorems 2.2 and 2.5.
In this section we give the proofs of Theorems 2.2 and 2.5. We start with some preliminary results. In

what follows, and unless otherwise specified, we always assume that conditions (ifi) - (H7) hold.
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Lemma 3.1. If u e BV(Q;RP) then the function v(x) := 0(x,u(x)) € BV(Q;R) and

x0(x, u) CN + DuTVu6(x, u) on Q\S(u)
Dv = s

I {6{x,u+) - 6(x,u-)) ® VUHN--L[S(U) onS(u).
Moreover

Tv(x) = 9(x,Tu(x)).

The proof of Lemma 3.1 is straightforward in light of related results on the chain rule for BV functions
(see [ADMl] and the references contained therein).

Lemma 3.2. There exists <p € C&(RN;RN) with |y?(z)| < 1 in Q such that for any u G BV{Q;RP)

f 6{x,Tu{x))dHN-l(x)= [ e(x,u(x))div<p(x)dx+ [ tp(x)
JdQ Jn Jn

Proof Since dQ is compact and of class C2, we can find a finite open covering {Uj}j of dQ, where U3 are
balls centered at points of dQ, j = 1, • • • , P, and for each U3 there is a C2 diffeomorphism 3^ : U3 —* $J(UJ)
such that *j(£/;•) C B(0, Ro) C RN for some R3 > 0,

(3.1) nnUj = {xe Uj : (*J(X))N < 0}

and for x e dfin Uj the exterior normal to dQ at x is given by

"v-"'-|V*J-(*)ew|-

Let ^ be a partition of the unity for U^Uj subordinate to {U3}3. For any ip e $? there exists j e {1, • • • , P}
such that ip € C^{U3), and we define

then ^ ( x ) € C^C/jjR^) and | ^ ( x ) l < 1 for x € finf/j. If we set ip^ to be zero outside U3 we obtain that
if^x) € C^R^jR^) , and thus we can apply the Trace Theorem (cf. [EG,Th. 5.3.1]) to the BV function
v{x) = 0(x, u(x)) to obtadn

/
dQ

= f e(x,u(x))div^(x)dx+ f
JQ Jn

where we have used Lemma 3.1. On the other hand, since by (3.1) (p^(x) = n(x,£2)^(x) if x € dQ n U3,
while <Prp(x) = 0 if x € dQ\U3, we get

<PxP(x).n(x,Q)e(x,Tu(x))dHN-1(x)= f
Jafan Jan

Hence

= f 6{xMx))div
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The proof of Lemma 3.2 is complete if we show that <p(x) := ]Ct/>€* ¥\i>(x) satisfies \<p(x)\ < 1 in ft. Fix
x e ft. If x g UJLxt/j then <p(x) = 0. If x € U^f/, then X ^ * ̂ ( X ) = *' a n d s o t h e r e e x i s t s a t I e a s t o n e

</>o € # such that t/>0(x) > 0. Let j € {1, • • • , P} be such that tp0 G C^{Uj). Then by (3.1) and (3.2)

and consequently, since ^(^) = 0 for all but finitely many \p € ^ ,

By Lemmas 3.1 and 3.2, for any u € W1'1(ft;Rp) we can rewrite the functional H(u,Q) as

H(u,Q)= f {h{x,u{x),Vu{x)) + ip(x) 'VuT{x)Vu6(x,u(x))} dx
(3-3) JQ

4- / 6(x,u(x)) div ip(x)dx+ / </>(z) • Vx6(x,u{x))dx.
Jn JQ

This equivalent form gives us a better insight into the competing roles played by the two energy integrals
fnh(x,u,X?u)dx and fdQ6(x,Tu)dHx-i. In particular, it is now clear that without a condition of the
type

M*,u,o>|vtt0(x,u)|K|
one may have H(u,Q) = — oo, as in the example in Remark 2.4(ii).

Define/(x,u,0 := ft(x,u,0 + <p(x) -fTVu0(:r,u) for (x,u,0 6fi x R ^ x M ^ , set

(u,n):= //(x,u(x),Vu(x))dx, u € Url4(ft;Rp),

and let
fiu.Q) := inf < lim inf F(un,ft) : un € H/1'1(ft;Rp), un —> u in Ll(

{un} I n—oc

Lemma 3.3. If u € BV(ft;Rp) then

H(u, ft) = T(u, ft) + / 0(x,u(x))div<£(x)dx-f / <̂ (x) • Vx9(x,u(x))dx.
JQ JQ

Proof Clearly it is enough to show that

liminf#(un,ft) = lim inf F(un, ft) + / 0(x,u(x))div<p(x)dx+ / v(x) • Vx0(x,u(x)) dx
Tl—*OO TI—+OO JQ JQ

for any sequence {un} C VFM(ft;Rp) such that un -> u in Lx(ft;Rp). We first observe that, since v? €
C Q ( R N ; R N ) , the functions ^ and div(/: are bounded in ft. Moreover, by (2.5)

\e(x,Un(x))-0{xMx))\<\\9\\L~\un(x)-u{x)\ for £N a.e. x€ft.

Hence
lim = / ^(x,u)di

JQ
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By (HQ), by virtue of the Sobolev inequality, and due to the fact that <f is bounded, the functional u
fQ V • Vx0(x, u(x)) dx is continuous in Ll(Q; RP) (see [K, Th. 2.1]) and thus

lim [ <p-\7x6(x,un)dx= [ in-°° Jn Jn

We are now ready to prove Theorem 2.2.

Proof of Theorem 2.2. By Lemma 3.3, in order to find an integral representation for W(u, 0) in BV(Q; ]
it is sufficient to determine one for T(u, Q). The idea is to apply Theorem 2.16 of [FM2]. In order to do so
we need to show that the function

/(x, u, 0 = /i(x, u, 0 + ip(x) 0(x, u)

satisfies conditions (H\) - (H$) which are essentially the same of [FM2 ].
Condition (Hi) is trivially verified since the functions 0 and if are of class C1. As / is the sum of a

quasiconvex function and a function linear in f, it is clear that /(x,u, •) is still quasiconvex and that

which, in turn, implies that

by (i/5). Thus / verifies also (H2) and (/f5).
To prove (2.2) for / , consider a compact set let K <i Q x Rp. Applying (2.2) to the function /i, we have

\<P(X) , U) -

for all (x,u,O< (xi,wi,0 G ^ x MpxN. There exist a compact set Kx <g fi and a ball Bp(0,R) C Rp such
that K C K\x BP(Q: R), and, without loss of generality, we may assume that fi C B^(0, R) CRN. Take

|x - \u - 5,

x,

The function Q(s) is non decreasing, with lims—0^(5) = 0 = a>(0) and u(4R) < 00. Therefore we can find
u>i, continuous and non decreasing, such that u>i(s) > u?(s) for all s € [0,47?] and u>i(0) = 0. Condition
(2.2) for / now follows by taking CJO := u> + u>i.

Next we prove (2.3). Fix xo € Q and (5 > 0. There exists e > 0 such that for x € fi with \x - xo| < £ and

|Vtt«(x0,ti) - V U

by the continuity of (/?, (2.3) and (2.4). Hence

/(x0 , u, 0 = ft(x0, u, f) + <p(x0) • u)

-f , u) - , u)}

< /(x, u, 0 + 3 , u)\i\
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which is (2.3), and where we have used (H7) and the fact that |<p(xo)| < 1.
Finally, condition (if3) is replaced by the condition

(3-4) - \<p(x)\) < /(x,u,0 < 2Cg(x,u)(l

which follows from (2.1) and (H7). Although (3.4) is weaker than condition (H3) in [FM2], the proof there
carries out even with (3.4). Indeed, condition (#3) was used in [FM2] only to show that

^ ,u^ ,vu)dHN-i(x)./
S(u)nn

The proof of this inequality relies on the blow-up argument introduced in [FMl] which is a local argument,
in the sense that in order to prove the three main pointwise inequalities (2.10)-(2.11) in [FM2] at points
xo € ft, one is only interested in what happens in a ball B(xo,e). Since in our case |^(xo)| < eo < 1 for
some €0 > 0, if we take e sufficiently small we can assume that \<p(x)\ < eo for all x e J3(xo,£) and thus
(3.4) reduces to

- e0) < /(x,u,0 < 2Cg(xyu)(l + |£|)

for all (x,u,f) € B{xo,e) x R p x MpxN, which is the local version of (H3) in [FM2].
In conclusion, we may apply Theorem 2.16 of [FM2] (see Remark 3.5 below) to obtain that for u e

Jn
I

Jn
u)} dx+ I h°°{x,u,dC{u))

J

/
S(u)r\Q

where

, a, 6, v) = i ip{x)/ : xp e A(a, 6,

Given any ^ € >t(a, 6, v) we have

<p{x) • n{y,Qu)

and so
, a, b, 1/) = ^ ( x , a, 6,1/) + (x, 6) - fl(x, a)) 1/.

If we now use lemmas 3.1, 3.2 and 3.3, we finally obtain that W(u,Q) = £(u, Cl). This concludes the proof
of Theorem 2.2.

Remark 3.4. The continuity hypotheses (Hi), (H4) and (2.4) may be replaced by
(Hi)' h is Caratheodory;
(H4)

f for all (x0, u0) € fi x Rp and for all 6 > 0 there exists £ > 0 such that

for all x € ft with |x - xo| < e, ui, u2 € £(uo,£) and £ € Mp x N ;
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provided f •—• f(x, u, •) is coercive (e.g. if g(x, u) > a > \\VU6\\L~ for some a > 0). In this case, in Theorem
2.2 we would use the integral representation obtained by Bouchitte, Fonseca and Mascarenhas [BFM] in
place of the corresponding result by Fonseca and Miiller [FM2].

Proof of Theorem 2.5. By Lemma 3.3 it is enough to find an integral representation for the corresponding
Tb(u,Q) in BV(Q;Rp). Let f£(x,u,£) := /(x,u,f) +£|f|, for e e (0,1), where, as before, / ( x , u , 0 :=
/i(x, u, £) -f (f(x) - £TVu6(x, u), and define

^(u , f i ) := inf | lim inf F£(un,Q) : un € Whl(Q;Rp), un-* u in

where

We claim that
lim ^(w,n) =

Fix u e Ll(Q;Rp). For any given 6 > 0 there exists a sequence {un} C W1A(Q;RP), with supn ||un||UMi =
M < oo, such that un -» u in L^fi;!**) and

> lim //(x,Un(x),Vun(x))dx.

In turn, for all e > 0

Q) + 6 > liminf / /£(x,un(x), Vun(x))dx - eM,

and using the definition of T£(u, ft) we obtain

Therefore
l i m s u p ^ ^ f i ) < Th{u. Q) -f 6,

and it suffices to let 6 —+ 0 to conclude that

Conversely, fix it € L ^ f i ; ^ ) and e > 0. Then there exists a sequence {u^} C W1A(Q;RP) such that
-> u in L^njRP) as n — oc and

(3.5) ^£(u,fi) + £> Urn / [ / (x ,< ,V<) + e |V< | ]dx> liminf

Without loss of generality we can assume that T£{u, Q) < oo. Since |<£>(x)| < 1 in Q, by (2.8) we have

/(x, u, 0 = A(x, u, 0 + ^(x) • f Vu^(x, u) > 0,

hence by (3.5) it follows that supn | | ^ | |w i i < oo and so

We conclude that
liminf J>(u,fi) >^i(tx,
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and the claim is proven.
It is not difficult to show that the function /£(x, u, f) satisfies conditions {Hi) - (H5). We omit the details

since the proof is very similar to that of Theorem 2.2.
By Theorem 2.16 of [FM2] we obtain that for u e

•e\Vu\}dx+ f f°°(x,u,dC(u)) + e f \dC(u)\
(3.6) ' " Jn Jn

If we let e —• 0 in (3.6) we obtain that

lim/e(u,fi)= [ f{x,u,Vu)dx+ [ f°°(x,u,dC(u))

+ lim£-*°
and so the proof is completed provided we show that

(3.7) lim / Kf.fau-iU+^dHN-^ f f
e~-*° Js(u)nn Js{u)nn

We first prove the pointwise convergence

(3.8) lim^ /e(x,a,6,i/) =^/(x,a,6, i /)

for all x e H, a, b € Rp and v € S^"1 . For any fixed 6 > 0 there exists ^ € >l(a,6,i/) such that for all
e>0

Kf{x,a,b,v) + 6> f f°c(x^6{y)^My))dy>Kfc(x,a,b,iy

If now we let £ —• 0 in the previous inequality we get

Kf(x, a, 6, z/) + 6 > lim sup X /e (x, a, 6, i/),

and by letting 6 —> 0 we deduce that

Kf{x,a,b,v) > limsupX/c(x,a,6,i/).

Conversely, let ip € A(a,b,v). Then

Kf(x,a,b,v)<

where we used the fact that f°° < f£°. Taking the infimum over all ip € -A(a, 6, v), we get

Kf{x, a, b, i/) < Kf€(x, a, 6, i/).

Therefore (3.8) holds.

As it can be seen from the proof of Lemma 2.15 in [FM2], we may find a constant C\ independent of £
such that
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and hence (3.7) follows by Lebesgue Dominated Convergence Theorem and (3.8). This concludes the proof
of the theorem.

•
Remark 3.5. In the proof of Theorem 2.16 of [FM2] the inequality

(3.9) T(u,S(u)nQ)< / Kffau-iU+^dHx-xix)
Js(u)nn

was derived by using a result of [FR] which requires the function /(x, u, •) to be coercive, that is to satisfy
the inequality

(3.10) / ( x , u , 0 > C i K | - c 2

for all (x,u,f) € fixRpxMpxAr, which is stronger than condition (Hs). To circumvent this difficulty consider
the function /e(x,u,£) defined as in the proof of Theorem 2.5. Since it satisfies conditions (Hi) — (H$) and
(3.10), the inequality (3.9) holds for f£. Also the inequality f < fe clearly implies that

F(u,S(u) n Q) < T€(u,S(u) n f i ) < / Kfe(x,u~,u+,vu)dHN-!(x).
JS(u)r\Q

If we now let e —> 0 and use (3.7) we conclude that (3.9) holds also for / .

§4. Mesoscopic scale.
We are interested in the following constrained minimization problem

inf jw(u,n)+ j r(x,u(x))dx: ueBV(Q;Rp), u(x) € K for CN a.e. x € fij ,

where i^ is a nonempty compact set of Rp, and T : Q x K —•Risa Caratheodory function such that

(4.1) k(z,tz)| < ao(x) for CN a.e. x € fi and for all ue K,

for some function ao € Ll(Q:R). In applications in phase transitions, often K = {a, b] or if is a convex set.
For ti € £*(£}; Rp) we define the functional

where
if u(x) € K for

+oc otherwise.

Lemma 4.1. If (Hi) — (i?7) ZioW t/ien the functionall(u,Q) is lower semicontinuous in Ll(Q;Rp).

Proof Consider un, w € LX(^;KP) such that un — tx in L^ftjRP). If liminfn-.ooI(un,n) = oc there is
nothing to prove. Assume that liminfn_oo J(un,fi) < oo £uid take a subsequence {unk} which converges
pointwise to u for CN a.e x e fi, and such that

lim I(iLTlk,Q) = liminfI(unM) < oo.
fc— oo n—oc

For k sufficiently large we can assume that I(unkM) < oc, hence

l(unk, fi) = W(unfc, fi) + / r(x, unfc (x)) dx
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and Unk(x) G K for CN a.e. x G ft. Since {unk} converges pointwise to u for CN a.e x G £2, we obtain that
u(x) € if for CN a.e. x G ft. In turn I(u, ft) = H(u, ft) + JQ r(x, u(x)) dx. The assertion now follows from
the lower semicontinuity of H(u, ft) in L1(fi;Rp) and the fact that

lim / r(x,unk(x))dx = / r(x,u(x))dxk-+°° Jn Jnk-

by (4.1) and by Lebesgue Dominated Convergence Theorem.

•
In addition to conditions (H\) - (H7) we now assume the following hypotheses:

(Fi) there exist a function p € C(ft x R?;W) nCl{Qx RP;W) and a function b € L1^;**) such that

(4.2) |Vxp(x, u)\ < b{x) for CN a.e. x € ft and for all u e K,

and

(4.3) /i°°(x,u,O>|Vup(x,u)||C|

for all (x, u,£) € ft x X x Mp x N ;
(F2) iov CN a.e. x € ft the function p(x, •) : K <GRP -+ p{x,K) <E Rp is invertible and (x,y) *-* (p(x, •))"1(y)
is Caratheodory. In addition, there exists a function c € L1(ft;R) such that

(4.4) ^(x,-)"1^')! <c(x) for£N a.e.x€ ft and for all v € p(x,K).

Let
D(I) := {u G L!(ft;Rp) : I(u, ft) < oc}.

Then

Di := {u € BV(Q-,RP) : tx(x) G K for £ * a.e. x G ft} C D(I)

but in general the two sets do not coincide, unless one assumes that /i(x,u, •) is coercive.

Theorem 4.2. There exists a function u G D(I) such that

I(u, ft) < inf {Z(iu, ft) : w e D i } .

Proo/. Let {un} C -Di be a minimizing sequence, that is

lim I(un,ft) = inf {I{w,Q) : w G -Di} < M < oc.
n—»oo

Then, for n sufficiently large,

(4.5) Z(un,ft) = W(un,ft)+ / r ( x , u n ( x ) ) d x < M .

We claim that Tun(x) G K for H^-i a.e. x G 9ft. Indeed let £ n := {x G 9ft : Tun(x) £ K} and suppose
for contradiction that HN-i(En) > 0. Take x0 G £„ for which (cf. [Z,Th. 5.14.4])

lim
r—o meas (JB(X0, r) n ft)

Since K is compact we have dist(Tun(x0),if) = e0 > 0, while from the fact that un(x) G if for £ N a.e.
x G ft, it follows that
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for CN a~e. x e B(xo, r) n£2. Taking the average over B{XQ, r)C\fl and letting r —> 0, we get a contradiction.
Therefore the claim holds, and by (4.5), Theorem 2.2, and (2.6) we have

//l(x,Un,Vun)
Jn(4.6) " " JQ

)dx + [ /l°°(x, Un, dC(un))
J

+ / Kh(x,un,u+,vUn)dHN-i < Mi,
J

for some constant Mx independent of n. By (i/5), (2.1)i and(4.6)

/ / i ° ° (x ,u n ,Vu n )dx< / ( / i o o (x ,u n ,Vu n ) - / i (x ,u n ,Vu n ) )dx

Using Holder's inequality and (4.6) again, we conclude that there exists M^ € (0, oo) such that for all n

(4.7)

+

Define vn := p(x,un(x)). As in Lemma 3.1 we can show that vn(x) e BV(£l;Rp) with

v = f Vxp(x, tin) ^Ar + Vup(x, un)Dun

1 (/O(X,W+)-/9(X,U^))®I/U T I i/Ar_i[S(un

on
1 ( / ( ) / ( ^ ) ) U T I A i [ ( n ) on

F u r t h e r m o r e

(4.9) / |I>t;n| =
/n

By Remark 2.17 in [FM2] and the fact that S(vn) = S(un) and vVn = i/Un, we can rewrite the last integral
as

where

Given rj 6 A{un{x),u+(x),vUn), the function ip(y) := p{x,r}(y)) € >4(f-(x), v+(x),*/Un) and
Vup(x,77(y))Vr?(y). By (4.3) this implies that

Therefore, also by (4.2), (4.3), (4.7), (4.8) and (4.9)

f f f f
/ \Dvn\< / |Vxp(x,un)|dx+ / |Vup(x,un) | |Vun |dx+ / |Vtxp(x,un)| \dC(un)\

JQ JQ Jci Jn
(4.10) + f

Js<
/
s(un)nn



18 I. Fonseca and G. Leoni

Finally, since vn(x) € p(x,K) for CN a.e. x € ft, p{x,K) is a compact set of Rp, and by (4.10),
there exists a subsequence, still denoted {vn}, which converges strongly in Ll(Q;Rp) and pointwise almost
everywhere to a function v e BV(Q;RP) (see [Z, Cor. 5.3.4]), with v(x) e p(x,K) for CN a.e. x e Q. Define
u(x) := (p{x,-))-l(v(x)). By (F2) the function u is measurable. Since un(x) = (p(x, •))"1(^n(x)) it follows
that un(x) —> u(x) for £ N a.e. x € ft, thus u(x) € K for £ N a.e. x € fi. Moreover, by (4.4) we have that
|^n(z)| < c(x) for £^ a.e. x 6 fi, therefore by Lebesgue Dominated Convergence Theorem un —> u strongly
in L^fijR*). By Lemma 4.1 we conclude that

Z(u, 12) < i

Corollary 4.3. Assume that conditions (F\) and (F2) in Theorem 4-2 are replaced by the assumption

/i°°(x,u,0 > a\i\ for all (x,u,£) e Q x K x Mpx7V,

/or some a > 0. Then D\ = D{1) and there exists a function u € D\ such that

X(u, Q) = inf {l(w, Q) : w € Dx} .

/. It suffices to take p(x,u) := QU in Theorem 4.2. Then vn = aun converge strongly in Ll(tt;Rp) to
a function v € BV(Q:RP), and therefore u := ^v 'is the desired minimizer.

§5. Nucleation: the scalar case.
In this section we study the constrained minimization problem introduced in Section 4, restricted to it

the scalar case p = 1, when K is a closed, connected subset of R (not necessarily bounded), and when the
potential r(x,u) is given by

r(x,u) := Ti(x,u) + ip{x)r2(u),

wrhere T\ (X, U) is a Caratheodory function, concave in the u variable, rp is a nonnegative, measurable function,
and T2 is a continuous function such that

(5.1) all the connected components of S := {u e int K : r£*(u) < T2(u)} are bounded,

where r%* is the convex envelope of r2. As remarked in [V2], (5.1) holds if

Inn sup , , = oo.

lul-oo M

Furthermore we assume that

(5.2) r(x,u) > -L i - L2\u\ for £N a.e. x 6 Ct and for all u € K,
for some L\, L2 > 0.

Under appropriate assumptions on the functions h and 0, we prove that minimizers u e Ll(Q;Rp) of

[ r(x,v(x))dx
n

have the phase structure
u(Q) C K\S.
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In particular, if K = [a, fc], if r2 is concave in [a, b], and if u is a minimizer of Z, then tx must have a
2-phase structure, i.e. there exists a set Qo C Q such that u(x) = a for £ N a.e. a: € flo and u(x) = b
for £ ^ a.e. x € £)\f2o. This result has important applications in nucleation phenomena which have been
studied extensively by Visintin in [VI,V2], where usually K is bounded, T\{X,U) := — £{x)u, f € L°°(f};R)
is proportional to the relative temperature, and rp(x) r2(u) is the double well potential xp(x)(b - u)(u — a)
(see Remark 5.2 below). Given a simple function u € Ll(Q; K) of the form

(5-3) «(*)

with Ct € K, CN{UJX) > 0 for all i = 1, • • • , A:, and £N(Q\ uf=1 a;,) = 0, without loss of generality we may
assume that

(5.4) iniK <c\ < c2 < " < Ck < supK.

Theorem 5.1. Let £ be an algebra of measurable subsets ofQ, and consider a functional V : Ll(Q\R) —•
[0, oc] such that

Sl := iueLl(Q;R): u = ^ c , x ^ , ^ G f ^ G N l C D(V) := {u e Ll(Q:R) : V(u) < 00},

one?
(i) for any u G ̂ (V)!^!,^!!; /f) t/iene exists a sequence {un} C «SinL1(n;A') converging to u in Ll(Q]K)

and such that
UmsupV(un) < V(u).

n—»cx:

(ii) For any u € 5i 0/ t/ie form (5.3) - (5.4), witfi k > 2, there holds

(5.5) V(u) =
T = l

(iii) r/ie function c H-> V(C) is concave in K.
In addition, suppose that the functional u »—• JQ r(x, u(x)) dx 25 continuous in D(V) C\ Ll{Vt\ K). Then

inf{V(u) + /*(u,n) : u e ^ ( V ) } = inf{V(u)+//c(u,n): u € D(V), tx(x) e K\S for CN a.e. x € Q} .

Remark 5.2. (i) The functional V(u) + /K-(U,J2) is well defined by (5.2).

(ii) Theorem 5.1 is closely related to Theorem 2 in [V2], where K = R and conditions (i) and (ii) are
replaced by the assumption that V satisfies the generalized co-area formula

(5.6) V(u)= fv(X{xeQ:u(x)>t})dt

It is easy to see that (5.6) reduces to (5.5) for functions u of the form (5.3)-(5.4). Therefore (5.5) is weaker
than (5.6). On the other hand, conditions (i) and (5.6) do not seem to be related. Indeed, consider the
functional

V(u):= [ \Du\ + {
J I 0 otherwise.

From the proof of Theorem 5.4 below it follows that V satisfies hypotheses (i)—(iii) of Theorem 5.1. Take
u(x) := 1 in (5.6); then V(l) = £N(Sl), while the right hand side of (5.6) is infinite. Therefore (5.6) fails.
We note that V is not lower semicontinuous in L1.
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We remark that Theorem 5.1 may be applied to a large class of functional of the form (1.1), for which
the co-area formula might not hold.

(iii) If, in addition to hypotheses (i)-(iii) in Theorem 5.1, we assume that V is lower semicontinuous in
Ll{Sl;R), that K = R, and that there exist a set u> e £ with 0 < £N{u) < £N(ft), then V satisfies the
following properties:

1) V(c) = 0 for all c € R;

2) V(A u) = A V(ti) for all A > 0 and u € D(V);

3) V(u + c) = V(u) for all c € R and u e D(V);

4) V(u) > /R V(X{x€n:u(x)>t}) * for all u € D(V).
In order to prove the first property, define

c + en if z € u;
c if x € n v ,

where £„ := £ min{l, l / V ^ ) } if V(*w) > 0, and en := ^ otherwise. Clearly un -• c in L^fijR), therefore
by the lower semicontinuity of V and (5.5)

0 < V(c) < liminf V{un) = lim enV(Xu;) = 0,
n—+oo n—>oo

where we have used the fact that V(Xu>) < °° because 5i C D(V).
We omit the proofs of properties 2) and 3) since they follow quite easily from hypotheses (i) and (ii) of

Theorem 5.1 and from the lower semicontinuity of V.
In order to show 4), fix u e D(V). By (i) there exists a sequence {un} C Si converging to u in Lx(n;R)

and CN a.e. x e ft such that

V(u) > lim V(un)= lim / V{x{xeQ:un(x)>t})dt > / liminf V(x{

by (5.5) and Fatou's Lemma. Since CN({x € £1: u(x) = t}) = 0 for all t € R\M, where Cl(M) = 0, we fix
t € R\A/ and take a subsequence {unk} of {un} such that

liminfV(x{x€n:un(x)>t}) = lim V(x{x€n :u (x)>t})-
n—>oo fc—•oo *

Then {x{xen-. unk (x)>t}} converges pointwise to X{xen-. u(x)>t} for £N a.e. x e ft and, by Lebesgue Dominated
Convergence Theorem, also strongly in L^ftjR). Therefore by the lower semicontinuity of V

lim înf V(x{i€n:un(*)>t}) >

for £} a.e. t € R, and we conclude that

We do not know if the reversed inequality of 4) holds, i.e. if the co-area formula (5.6) is satisfied.

Let
13 := inf {V(u) + IKfa ft) : u € D(V), u(x) € K \ 5 for CN a.e. x e Q} .
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Lemma 5.3. If u € S\ then

Proof. As IK(u, J2) = oo for u £ Ll(Q;K) it suffices to prove the result for u € Si D L^fi ;#)• By (5.1) we
can decompose the open set 5 as a disjoint union of bounded intervals

S =

Following Visintin [V2] we replace the function r2 by

( T2{U) ifueR\5

r2(b)-r2(a r ) ( u_ a r ) + T 2 ( a r ) ^ ^
br - ar

and denote by f and J/?(u, Q) the corresponding functionals. Define

l W r) , ai(c) := / f(x,c)dx.

Then by (5.3), (5.4), and (5.5)

fc-l

V(u) + IK(u, Q) = 53(Ci+i
t = l 1=1

Let r e 11 be such that (̂  € (a r,6 r) for some 2 G {I,-*- ,/c}. There can only be finitely many such r.
Assume that k > 2. and suppose that c/ 6 (ar, 6r), / € {2, • • • , A: — 1}, c, < ar for all i < I (the cases where
/ = 1 or / = k can be treated analogously). Define the function

k-l

t = l , t

for t e [ar,d\, where d := Q+I if Q + I < br and d := br if c/+i > 6r. Since T2(U) > T2(u) by construction,
then clearly V(u) +//c(u,fi) > V(u) + IK{u,Q) = * ( Q ) . Observe that since.f{x, •) = r}(x, •) -f ^(x)f2(-)
is concave in [ar,d], then the function ai(-) is also concave in [ar,d], and $(t), being the sum of a linear
function and a concave function, attains its minimum at one of the endpoints Q of [ar,d]. It follows that

V(u) + IK(u,Q) > V{u) + IK{u,Q) = * ( Q ) > *(Q) = V(fi) + IK(u,Q)

where

{ Wt (x) + arxWi (x) if Q = ar

E ^ l . i ^ * X«*(S) + fcrXu,f(x) if Q = br

j=i,t#/,f+i c» X*i{x) + cj+iXwiUw^jW if (? =

If k = 1, namely if u(x) = c, then(5.7) V(u) + /^(u, Jl) > V(u) -h /^(u, Q) = V(c) + / f(x, c) dx.

Assume that c € (a r,6 r) for some r e 71. Since by (iii) and by the construction of f2 the right hand side
of (5.7) is a concave function of c € [ar,6r], its infimum is attained at one of the endpoints, say at 6r, and
thus we can replace u(x) by u(x) := br € K \S.
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We conclude that it is energetically possible to reduce at least by one the number of values o, between
ar and br. Repeating this procedure for the finite number of intervals (ar, br) which contain at least one of
the Q, by means of a finite induction argument we can construct a simple function u of the form

where k < k, such that ti(fi) C K\(or,br) for any r € 11 and V(u) 4 7* (u, ft) > V(u) 4 IK(u,n). Since
T2(u) = f2(u) for u€ K\S, it follows that IK [u,Q) = /*(u,ft) and thus V(u)+IK(u,Q) > V{u)+IK(u,Q) >
(3. This concludes the proof of the lemma.

•
Proof of Theorem 5.1. Let u € D(V) D Ll(Sl\K). By (i) there exists a sequence {un} C Si n Ll(Q;K)
converging to u in ^(Q'^K) such that

limsupV(un) < V{u).
TI—+OC

Moreover, by hypothesis

lim / r(x,un(x))dx = / r(x,u{x))dx,

and since by Lemma 5.3 V(un) -f 7/^(un,n) > /3, it follows that

and we conclude that
inf {V(u) 4 7/f(u, ft) : u <

The reversed inequality is trivially satisfied.

•
In order to apply Theorem 5.1 to functional of the form (1.1), we consider the special case where

h = /i(x, £) is positively homogeneous of degree one in f, 0(x, u ) : = a u , a ̂  0,

and (#i) — (H7) are satisfied. Clearly /i(x,f) = /i°°(x,f); moreover, from (i?7) it follows that p = g(x) >
\&\ > 0 for all x € ft, so A(x, •) is coercive. By Corollary 2.3, (3.3), and Lemma 3.3, for u € BV(Q;R) we
have

W(u,ft)= / / (x ,Vu)dx4 / f(x,dC(u))
JQ JQ

4 / /(x, (tt+ — u" )^ ) dHw-i 4 <7 / udiv^dx,
Js(u)nQ JQ

where, we recall,
/(x, $) = /i(x, $) 4- a ̂ (x) • ̂  for all (x, $) € ft x RN.

Furthermore, we assume that the potential r also satisfies the growth condition

(5.8) r(x,u) < 6i(x) 4 Mx(l 4 \u\Qc) for £ N a.e. x € ft and all ue K,

where bx € ^ ( ^ R ) , Mx > 0 and, as before, qc is the Sobolev exponent qc := JV/(iV - 1) if N > 1 and
oc < oc if N = 1. Define

J / n / ( a « ) ifueBV(fi;R)
\ oc otherwise,
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where

[ f(x,Du):= [ f{x,Vu)dx + [ f(x,dC(u))+ f f(x,(u+-u-)vu)dHN-U
Q JQ JQ Js(u)nn

and take £ to be the algebra generated by the class of open polyhedral subsets of ft. If u € S\ nL1 (ft; K) has
the form (5.3), then either UJX = Et or u?i = ft\£i> where £» is an open polyhedral set of ft. Therefore, in both
cases duJi D ft = S ^ n ft, which is given by the intersection of a finite union of hyperplanes. Consequently,
if i < j for HN-I a.e. x € 5u^ 0 duJi the outward unit normal Vj(x) to the set u?j at the point x coincides
with -Vi{x). Moreover, for j < i < I we have

(5.9) HN-i(du>j nduji ndui nfi) = o,

and

ft = uf=1 Ui nfi , a^ nft = u^t9o;t n&^- nn,
a (uf=l sj/ n n) = d (uf=t+1 ̂  n ft) \ (uf= t + 13^ n a ^ n ft) u (u^ duj3 n a ^ n ft).

These properties will be useful in the sequel.
The main result of the section is the following theorem

Theorem 5.4. / / (Hi) - (H7) and (5.8) are verified then

inf {Z(tx, ft) : u e BV(Q: K)} = inf {I(u, ft) : ti € BF(ft; K\S)} .

Remark 5.5. Theorem 5.4 no longer holds in general if 0(x, •) is non linear. Indeed, consider the simple case
where ft := (c, d), X := [-1,1],

[ \Du(x)\- [ sin{7rTu{x))dHN-i(x), tx€£F(ft;R)
Q Jan

and r(x, tz) := a(l - u2). Here K \S = {-1.1}, and if a > n then all conditions (H\) — (H-j) are satisfied.
Let u e BV(fi;R), with u(x) € {-1,1} for CN a.e. x € ft. Then J(u,ft) = a JQ \Du(x)\ > 0. On the other
hand, if we take u(x) = \ then J(u, ft) = - 2 + f a(d - c) < 0 provided a(d - c) < | .

For the proof of the lemma below we refer to [F], [LM], and [Re].

Lemma 5.6. Let f : ft x R^ —> R 6e a continuous function such that £ 6 RN »—• /(x. f) î  positively
homogeneous of degree one for all x € ft, one/

0</(x,0 <C(l + |f|) /or5omeC>0, a//x € ft and£eRN.

Let {zxn} fee a sequence of Radon measures converging weakly-* to a Radon measure JJ, and

Then
lim

Proof of Theorem 5.4- WTe claim that V satisfies conditions (i)—(ill) of Theorem 5.1. To prove (i) fix
u € BV(Q; K). We can find a sequence {un} of the form

t = l
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such that un converges strongly to u in L^fijR) and JQ \Dun\ -* JQ \Du\ (see [AMT]). Here Cn4 € R, the
sets u^i are open polyhedral set of ft, U ^ u ^ H ft = ft, and as in (5.4)

By (5.10) it is not difficult to see that

S(un) =

where Jn = {(t,j) G N2 : 1 < i < j < kn}. Furthermore, if xo € dujn^ n du>nj then u+ (x0) = d j ,
( ) = Cn^ and

/ |-Dun| = >^ (Cn j — Cn i)HN-i(duJi fl dlJj I

Jn

Let tin(x) := 5 3 ^ ! dn,i Xwn,,Wi where

{ sup K if Cn,t > sup K

Cnyi if — inf /C < Cn,i < sup K

infK
Since 0 < (dnj — dn^) < (Cnj — Cn,i), it follows that JQ \Dun\ < JQ \Dun\. Consequently

limsup / |Dun| < / \Du\.
n-*oo JQ Jn

On the other hand, since u{x) £ K for CN a.e. x € ft, then \u(x) — un(x)\ < \u(x) —un(x)\ by construction,
and so {un} converges strongly to u in L2(ft;R). By the lower semicontinuity of the total variation we have
that JQ \Du\ < liminfn^oo JQ \Dun\, thus

lim / \Dun\ = / \Du\n ° ° Jn Jn

and from Lremma 5.6 we conclude that

lim //(x,DtZn)= [ f(x,Du).
»-°° Jn Jn

In order to verify (ii), fix u € BV(Q;R) of the form (5.3)-(5.4), where c* € K, ^ € S, UJL^i n ft = ft,
k > 2, and

ci < c2 < ••• < ck.

Since by homogeneity /(x, 0) = 0, we have

V(u)=

with J = {(i, j ) G N2 : 1 < i < j < /c}, or, equivalently,

V(u) = cfc V / /(x, i/fc) dfTjv.i - d 5 " / /(x,
~ J J d n i = 2 - / d d r 2

(5U) *-» Z
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By (5.9) and (5.10) we can rewrite the first two terms as, respectively,

c* / f{x,vk)dHN-i and - Cl f f{x,-vx)dHN.u
• ^ f c n n Jd(uf=2un)nn

andfor i€ {2,--- , f c - l }

(5 12)

where i>t and i>i+1 are, respectively, the outward unit normals to the sets ufL-Ej" and uL ,, u7[ It now
follows from (5.11)-(5.12) that

V(u) = cfcV(Xta;fc) - CiV(Xuf.aW|) + 5 > V ( X u { U w j ) ~ £*V(x u f _ i + i W | ) ,
t=2 i=2

which is (ii).
Finally, by (5.2), (5.8) and the Sobolev inequality, the functional u >-+ fQr(x,u(x))dx is continuous

in BV(Q;K) (see [K, Th. 2.1]). Therefore we can now apply Theorem 5.1 (with r(x,u) replaced by
r(x, u) + au div <p(x)) to obtain that

inf {I(u, J2) : u € BV(Q; K)} = inf {I(u, Q) : u e BV{Q: K\S)} .

Corollary 5.7. j4ssttme t/iat if = [a, 6] in Theorem 5.4- Then there exists a function u e BV(Q; [a,b]\S)
such that

I(u, fi) = inf {I(u, fi) : u € BV(fl; [a, b})} .

Proo/. By Theorem 5.4

inf {J(u, Jl) : u e BV{Sl\ [a, 6])} = inf {J(tx, Q) : u e BV(Sl; [a, 6]\5)} = 0.

To complete the proof it suffices to apply Corollary 4.3, with K := [a, 6]\5, to find u € BV(Q; [a, 6]\S) such
that I(u, Q) = /?.

Remark 5.8. If we assume that T2 is concave in [a, 6], then 5 = (a, 6) and consequently the minimizer u in
Corollary 5.7 has the property that u{x) € {a, 6} for £ N a.e. x € Q.
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