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CLASSIFICATION OF POSITIVE

SOLUTIONS OF THE ELLIPTIC EQUATION

) + x • V{uq) + a ^ = 0 IN Rn

GIOVANNI LEONI

Center for Nonlinear Analysis, Department of Mathematics,
Carnegie Mellon University, Pittsburgh, PA 15213, USA

ABSTRACT. We prove the existence and the asymptotic behavior of nonnegative radial
ground states of the semilinear elliptic equation div(|Vu|p~2Vu) + x • V(uq) -f auq = 0,
which arises in the study of selfsimilar solutions of degenerate parabolic equations.

§1. Introduction.

In this paper we study the existence and the asymptotic behavior of ground states of
the quasilinear elliptic equation

(1.1) divfl Vu\p~2 Vu) + x • V(uq) + auq = 0, x E f ,

where p > l , n > l , g > 0 and a > 0. By a ground state we mean a nonnegative,
nontrivial entire solution of (1.1) which approaches zero as |x| —> oc.

We restrict our attention to radial ground states u = u(\x\) of (1.1) and thus we are
led to the ordinary differential equation

(1.2) ( |u' |p-V)' + ^ — ^ \u'\p-2u' + r(uq)f + auq = 0, r = \x\ > 0.

Equation (1.2) arises in the study of selfsimilar solutions of the degenerate parabolic
equation

(1.3) qvq~1vt =

which includes, as special cases, the heat equation

(1.4) vt = At;,
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2 G. Leoni

the porous media equation

(1.5) vt = A(vm)

and the evolution p-Laplacian equation

(1.6) vt =

Equation (1.3) has been studied by several authors in the one dimensional case n = 1,
see in particular the work of Barenblatt [2], Esteban and Vazquez [10], Kalashnikov [16],
and it arises in physical situations such that water filtration through porous media in the
case of large velocities (see [10] and the references contained therein) and in the turbulence
flow of a gas in a porous medium.

When p — 2 in (1.3), after a simple change of variables we obtain the celebrated porous
media equation (1.5). This equation has received an enormous amount of attention in
the last decades. It arises in the theory of gas flow in homogeneous porous media, but it
also has other applications in the theory of ionized gases at high temperature, in plasma
physics, lubrication theory and in populations dynamics. We refer to the paper of Aronson
[1] for more details and for an extensive bibliography. Finally equation (1.6) has been
studied in relation with the mechanics of non-Newtonian fluids (cf. [10]). See the work
of Di Benedetto and Herrero [7, 8] and of Hulshof and Vazquez [14].

As a corollary of our main results on equation (1.2) we give a fairly complete picture
of existence and non existence of selfsimilar solutions of the initial value problem

which turns out to be particularly important in the study of the large time behavior of
solutions of (1.3) whose initial data v(x, 0) decays algebraically as \x\ —> oc; see the work
of Kamin and Peletier [17] and Peletier and Junning [23].

It is worth mentioning that selfsimilar solutions only give a first approximation of the
asymptotic behavior of solutions of (1.3). In [28] Tartar has constructed a larger class
of explicit solutions for (1.4) and (1.5). These solutions give a better estimate of the
asymptotic behavior of solutions for the heat equation (1.4), and it is natural to expect
that the same holds for (1.5).

In addition to its connection with the parabolic equations (1.3)-(1.6), we believe that
the elliptic equation (1.2) is of interest in itself and thus we do not impose any restriction
on the coefficient a and on the exponents p and q. Indeed a simple change of scale
transforms (1.2) into the equation

(1.7) (|u'|*-V)' + ^—^ \u'\p-2u' + er{u*)' + uq = 0,

where e — I/a, and thus we can regard equation (1.7) as a perturbation of the celebrated
Emden-Fowler equation

(1.8) (W\p-2u')f + — - \uf\p~2uf + u« = 0.
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It is well known that positive ground states of (1.8) exist if and only if the exponent q is
greater or equal than the critical exponent

n(p— 1) + p

n-P

and that they exhibit the asymptotic behavior (1.12) below. From a heuristic point of view
we would expect, at least for a large (equivalently for e small), solutions of (1.7) to behave
somewhat as those of (1.8). This turns out to be the case, as shown in Theorems 3-5
below. On the other hand, when a is small, more precisely when a < n the gradient term
has a dominant effect with regards to both existence and asymptotic behavior of solutions
of (1.7), as it appears from Theorem 2 below. The case a = n represents somewhat the
borderline and in this case we can actually determine explicitly the solutions of (1.2). To
see this multiply the equation (1.2) by rn~x and integrate by parts. We obtain

(1.9) rnu* = (n-a) f tn~
Jo

where we have used the symmetry condition u'(0) = 0. Since a = n a simple integration
of the identity \uf\p~~2u' + ruq = 0 gives the famous Barenblatt solutions [2]

Theorem 1. Assume that a = n in (1.2). Then the solution u = u(r) of (1.2) is given
by

ifq=p-l

^ ) , / , # p - 1

for 0 < r < R, where

if q> p — 1

Note that when q < p — 1 then u(R) = u'(R) = 0 so the solution has compact support.
We consider next the case a < n. Let

(I.IUJ Ai — —, A2 - —— , A3 = - ,
q q+l-p p-1

where obviously A2 is defined only when q ^ p — 1.
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Theorem 2. Assume that a < n in (1.2). Then all solutions u of (1.2) are positive.
Moreover

(i) if q <P — I or q > p — 1 and Ai < A2 then

(1.11) lim rA lu(r) = £ € (0,oo);
r—too

(ii) if q> p — 1 and Ai = A2 t/ien

Hm

(iii) if q > p — 1 and Ai > A2 then

(1.12) lim
r->oo *2 Ai — A2 J

When a > n the situation is more complicated and not complete.

Theorem 3. Assume that a > n in (1.2). / /

(1.13) q<p—l or p>n or p<n and l—p<q<—
n — p

then (1.2) has no positive solutions.

From the proof of Theorem 3 it is easy to see that when (1.13) holds all solutions u
of (1.2) change sign at least once. Changing sign solutions of (1.2) have been studied
extensively by Hulshof in [13] when p = 2 and q < 1 and by Dohmen in [9] when p = 2
and q > 1.

Theorem 4. Assume that a > n > p and Ai < A3 in (1.2). Then all solutions u of (1.2)
are positive. Moreover if q > qc then u exhibits the asymptotic behavior (1.12), while if
q < qc then

(1.14) cxr-*2 < u{r) <

for r sufficiently large and where C\, C2 > 0.

To prove (1.12) and (1.14) in Theorem 4 we transform (1.2) into a dynamical system.
This idea has been used by several authors, see in particular the work of Johnson, Pan
and Yi [15] for elliptic equations and of Dohmen [9] and Hulshof [13].

In the remaining range the critical exponent qc turns out to play an important role.
We consider first the case in which q is either supercritical or critical, that is q > qc.
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Theorem 5. Assume that a > n > p, Ai > A3 and q > qc in (1.2). T/ien a// solutions u
of (1.2) are positive and satisfy (1.12).

In the subcritical case n _ ^ < q < qc positive solutions do not exist when a is large.

Theorem 6. Assume that a > n > p, \\ > A3 and £-p < Q < Qc in (1.2). / /

A\ > A* —

then (1.2) /ms no positive solutions.

The question of existence of positive solutions of (1.2) in the range

n > p, A3 < Ai < A* and < q < qc

n — p

is open, although from Theorems 4 and 6 it is reasonable to expect the existence of a
critical exponent Ac such that positive solutions exist when A < Ac, while they do not
when A > Ac. A natural candidate seems to be the exponent A given in (3.1) in Section 3
below, since as A crosses the value (3.1) the nature of the equilibrium point (^1, — A2^i)
of the autonomous system (3.8) changes from attractor to repeller.

This paper is organized as follows. In Section 2 we give some preliminary results
and prove Theorem 2. In Sections 3 and 4 we prove Theorems 3, 4 and 5, 6 respectively.
Finally in Section 5 we apply the results of the previous sections to the study of selfsimilar
solutions of the degenerate parabolic equation (1.4).

§2. Proof of Theorem 2.

In this section we present some preliminary results and give the demonstration of
Theorem 2. We consider the initial value problem

(KrV) ' + — |u'|P-V + r(u«)' + an* = 0,
(2.1) T

tz(O) = u0, t/(0) = 0.

Proposition 2.1. For any UQ > 0 the initial value problem (2.1) admits a positive solution
u : [0,i?) -> R+? with R possibly infinite, (i) u'(r) < 0 for r e {0,R);

(ii) lim u(r) = 0;
R

(iii) lim uf(r) = 0 when R = 00.

Proof. See [18, Theorem 1].
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Lemma 2.2. Let u G C2(ro,oc) be a positive function tending to zero as r -^ oo

- (rn-VlP~2^') ' > Crn-luq for r > r0.

Then n > p, q > n^~ ' and

C\r~Xz < u(r) < C2r~X2 for r large.

Proof See [22, Theorems 2.1, 2.2, 6.1, 6.2] and [4].

Lemma 2.3. Let u be a positive solution of (2.1) in [0, R). Consider the function Ec(r) =
cu + rul, where c > 0. (i) At any time r > 0 for which Ec(r) = 0 we have

(p - l)\uT2E'c{r) = - (p - l)[c - X3}cf-1 {^Y~l + q(c - Ax)r u*.

(ii) If R = oo then Ec(r) cannot be ultimately nonnegative for

A l tfq^p-io< c< /
\ min{Ai, A2} if q < p — 1.

(iii) If R= oo and either q <p— 1 or q > p—1 and lim^oc rA2u(r) = ^ G {0, oc}
-Ec(

r) Z5 ultimately of the same sign for all c ^ Ai, A3.

(iv) E\l(r) is always positive if A3 > Ai and can /ia?;e at most one zero if A3 < Ai.

(v) E\3(r) is always positive if A3 > Ai and can /iat;e at most one zero if A3 < Ai.
Moreover if A3 < Ai and E\l(r) is always positive then E\3(r) is always positive.

Proof (i) Direct calculation. To show (ii) assume for contradiction that Ec(r) > 0 for all
r *> ro? for some ro > 0. From the idertity

(2.2) (rcu(r))' = r^E^r)

we obtain that

(2.3) lim rcu(r) > 0.
r—•oo

On the other hand by (2.1)

V ' V 1 1 - c ) ^ " 1 ^ for r > r0.

Therefore we can apply Lemma 2.2 to obtain that n > p, q > n ^ ~ ' and

Czr~c < u(r) < C2r~Xi for r large,
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where we have used (2.3). This is a contradiction since c < A2 and the proof of property
(ii) is complete.

We prove (iii) only for c < Ai and £ = 00, the other cases being completely analogous.
If Q < P ~ 1 then since u(r) - ^ O a s r - > 00, by (i)

(p - l)\uT2E'c(r) = - ^ {rPq(c - Ax) - (p - l)[c - A ^ " 1 u ^ 1 - * } < 0

at any time r sufficiently large, say r > r*, such that -Ec(r) = 0. Therefore i?c cannot
have more than two zeros after the time r*, otherwise we would find TQ > r* such that
Ec(ro) — 0 and E'c{ro) < 0 which is a contradiction. Hence Ec is ultimately of the same
sign. If q > p — 1 and linv-^oo rX2u(r) = oc then again by (i) we have

(p - l)\uT-2E'c(r) = ^ {9(C- AOr^^+^r) - (p - l)(c - Aa)^"1} < 0

at any time r sufficiently large. Therefore Ec is ultimately of the same sign and the proof
of (iii) is complete.

At any time r for which E\x (r) = 0 we have

therefore E\1(r) is always positive if A3 > Ai (since E\1(0) > 0) and can have at most
one zero if A3 < Ai. If Ai = A3 then from the equation

(2.4) (p - l)\uT2E'Xl (r) + qrU^EXl (r) = (p - 1)[A3 - A ^ u ' r *

we obtain

P 1 Jr0

which implies that E\x (r) is always positive, provided r0 is taken so close to zero that
EXl (r0) > 0.

The proof of the first part of (v) is very similar to (iv) and therefore we omit. To
prove the second part we use an idea of Clement, de Figueiredo and Mitidieri [5]. We first
observe that since E\1(r) > 0 by hypothesis, then we have R = 00 by (2.2). Assume for
contradiction that E\3(ri) = 0 for some r\ > 0. Then by the first part E\z(r) < 0 for all
r > ri . Moreover by (2.1) and our assumption that E\x (r) > 0

(p - l)rn-2\uT2E'X3(r) = -qrn-lu^EXl{r) < 0,

so the function E\3(r) is negative and strictly decreasing for r > ri, which implies that

r u'(r) < Ex3 (r) < - e for all r >r2 > r1.
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Integration of the previous inequality gives

u{r) - u ( r 2 ) < elog(r2/r).

If we now let r —> oc we obtain a contradiction.

Proo/ of Theorem 2. Since n > a the function r71"1^'^"2*/ + rnuq is strictly increasing
and positive for r > 0 by (1.9). This clearly implies that R = oo since tz'(r) < 0 in (0,i?)
by Prop. 2.1(i).

Furthermore when </ > p — 1 integration of the inequality \u'\p~~2u' + r uq > 0 yields

(2.5) u(r) > c\r"~X2 for r large.

Multiplying the equation in (2.1) by r 0 " 1 and integrating by parts from r\ > 0 to r > r\
we get

(2.6) rQ-V'r"2^ + rQuq = r^~l\uf\p-2uf{n) + r^uq(ri) + (n-a) f t^u'^dt,

which implies that the function r 0 1" 1^ '^" 2^ + rauq is increasing and positive by the
previous argument. Therefore

(2.7) u(r) > c2r~Xl for r large.

By Lemma 2.3(iv) the function E\1(r) is ultimately of the same sign and thus by (2.2)
there exists

(2.8) lim rXlu(r) = ie (0,ool
r > o c

by (2.7).
We now divide the proof according to the three cases (i)-(iii).

Proof of Theorem 2(i). To show Theorem 2(i) it remains to exclude the case £ = oo in
(2.8). Thus assume that £ = oc. In turn E\1(r) — — r\v!{r)\ + \iu(r) must be ultimately
positive, say for r >r\. Consequently, from (2.6)

(2.9) rauq < C^) + A;"1ra"ptxp"1 + (n - a)A?"1 f t 0 ^ " 1 ^ " 1 * .
Jri

We now use Lemma 2.3. Fix c in Lemma 2.3(ii) in such a way that a — p < c(p — 1) (this
can be done by the hypotheses of Theorem l(i)). By Lemma 2.3(ii)-(iii) the function Ec

is ultimately nonpositive. Therefore by (2.2) there exists limr_+oo r
cu(r) = 0 (if the limit

were not zero for some c than by replacing c with c+e we would have lim^oo rc+eu{r) = oo
which would contradict the fact that Ec+e is ultimately nonpositive) . For r sufficiently
large we have u(r) < r~c. Consequently from (2.9)

< C{rx) (n - a)A?"1 f
provided r\ is taken sufficiently large. From the fact a — p < c(p — l )we conclude that
the right hand side of the previous inequality is bounded as r —> oo and thus £ < oo. This
concludes the proof of Theorem 2(i).



On the equation divflVu|p~2Vtx) -f x • V(u*) + a u 9 = 0 9

L e m m a 2.4. Le£ u be a positive solution of"(2.1) m [O,JR). Consider the function Fc(r) =
(c + \)u' + ru", where c > 0. (i) 4̂£ any time r > 0 /or w/izc/i -Fc(r) = 0 we have

(p - l)\u'\p-2Ffr) = - lu'l^1 {i4 + qr2uq-2\uf\p-2[(a - c)u + (q - \)ru'}} ,

where A = A(n,p, q, c, a).

(ii) If q > p— 1, Ai = A2 and limr_^oc rX2u(r) = oc then Fc(r) is ultimately of the same
sign for all c / Ai.

Proof, (i) Direct calculation. To show (ii) we need to exclude the possibility that Fc

changes sign infinitely many times as r —> oc. Fix C\ < A2 and C2 > A2. By Lemma 2.3(ii)-
(iii) the function ECl (r) is ultimately nonpositive, while from the facts that limr_^oo rX2u(r) •
oc and C2 > A2 it follows from Lemma 2.3(iii) and (2.2) that EC2(r) is ultimately nonneg-
ative. Therefore

(2.10) c\u(r) < r\u'(r)\ < C2u(r) for all r sufficiently large.

Let c ^ Ai = a/q and assume that q > 1. Then (a — c)/(q — 1) ^ X±. Take 7 > 0 inside
the segment of endpoints (a — c)/(g — 1) and Ai and write

(2.11) (a - c)u + (q - l)rur = [(a - c) - 7(9 - \)]u + (q - l)(/yu + ruf).

There are various cases. If c < Ai then Ai < 7 < (a — c)/(q — 1) and consequently the
right hand side of (2.11) is greater than [(a — c) — 7(9 - \))u > 0, since Ey is ultimately
nonnegative. Therefore from (i)

(2.12) (p - l ) ! ^ ^ - 2 ^ ^ ) > - l ^ l ^ 1 [A + qrpuq+l~p[(a - c) - -y(q -
r I

at any time r sufficiently large such that Fc(r) = 0, where we have used (2.10) and C3 = c\
if p > 2 while C3 = C2 otherwise. Since linv^oc rpuqJrl~p(r) — oc by hypothesis, we
get that (p — l)\u'\p~2Ff

c(r) > 0 at any time r sufficiently large such that Fc(r) = 0.
Consequently Fc(r) is ultimately either nonnegative or nonpositive.

If c > Ai then (a — c)/{q — 1) < 7 < Ai and consequently the right hand side of (2.10) is
less than [(& — c)— 7(9 — l)]u < 0, since E1 is ultimately nonpositive. In this case we obtain
(2.12) but with the reversed inequality sign and we conclude that (p— \)\v!\p~2Ff

c(r) < 0
at any time r sufficiently large such that Fc(r) = 0. Similar estimates can be obtained
when q < 1.

Proof of Theorem 2(ii). We claim that t = oc in (2.8). Indeed, assume for contradiction
that £ < oc. From (1.9)

(2.13) r " - 1 ! ? / ! ^ 1 = rauq - (n - a)rQ~
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Since a < n and X\ = a/q the integral on the right hand side diverges as r —> oo by (2.8).
Thus we can apply Hospital's rule to obtain

Urn (n - a)rQ~n [ i n " V d t = lq.
r->°° Jo

Hence from (2.13) and the fact that (a - l)/(p - 1) = Ai + 1 we get

lim ( - r A l + V ) P - 1 = 0

which implies, again by Hospital's rule, that £ = 0 in (2.8), a contradiction by (2.7).
Therefore £ = oo and the claim is proved.

We now let w = rx u(r). From (2.1) we obtain

(2.14)
( p - •/' + (A3 - 2A + l)r w' + \w{\- A3)]

Taking A = Ax = A2 gives

(2.15)
rw

p-2 r2w"

' = 0.

1 - rw
P - 2

- 1

r w
)

w

Lemma 2.5. Under the hypotheses of Theorem 2(ii)

rwr _. r2wn

lim = lim
r-+oo W

= 0.

Proof. Since a < n and Ai = A2 we have A3 > Ai and thus from Lemma 2.3(iv) the
function E\x(r) is always positive. On the other hand from the facts that £ = oc in (2.8)
and that A2 = Ai we can apply Lemma 2.3(ii)-(iii) to conclude that Ec(r) < 0 ultimately
for all c < Ai. In conclusion

(2.16) J5?c(r) = ru'(r) = r"Xl{rwf f > 0 for c = Ai
< 0 for c < Ai and r large.

Therefore
0 < rwf(r) < (Ai — c)w for c < Ai and r > rc
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which shows that that

r w1

(2.17) lim = 0 .
r-+oo w

Furthermore from (2.2), (2.8) and (2.16) we also obtain that

oc for c > Ai
lim rcu(r) =

r->oo t 0 for c < Ai

and thus by Hospital's rule,

-oo for cr c+i n \lim r ^ u(r) = <
r->oo W \ 0 for C <

where the limit exists by Lemma 2.4(ii) and the fact that

(2.18) ( r c + V ( r ) ) ' = r
c F c ( r ) .

In turn

Fc(r) = ru"(r) + ( c+ l)u'(r) = r - A l - 2 [ r 2 iy"

(2.19) f < 0 for c > Ai and r large
+ (c+l-2A1)r«;/ + Ai(Ai-c)Hr . , . , .

(̂  > 0 for c < Ai and r large.
Consequently for c\ < X\ < C2 and r > r* = r*(ci, c2)

-Ai(Ai - cx) - (Cl + 1 - 2 A x ) — < — < - ( c 2 + 1 - 2 A i ) — + Ai(c2 - Ai).
w w w

If we now use (2.17) and the fact that c\ and c2 can be taken arbitrarily close to Ai we
obtain that l im^oc r2w"'/w = 0 and the proof is complete.

Proof of Theorem 2(ii) completed. By Lemma 2.5 and (2.15)

w*-pw> = £l!(A3 - A1)Ar1~ + o (I) ,
g r \rj

which after integration gives

and completes the proof of Theorem 2(ii).
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Proof of Theorem 2(in). From (1.9)

(2.20) rx*quq = r ^ - V l * - 1 + (n - a)rA2<?~n f tn-xuqdt.
Jo

Since 2£A2(0) = A2u0 > 0, for r small E\2(r) = —r\u'(r)\ + A2u(r) > 0 and the function
rX2u{r) is increasing. Consequently, from (2.20)

(rx*u(r))q < Afp1 (r^ulr))'"1 + (n - a)rx^~n {rx*u(r))q f t^^^dt
Jo

or equivalently

(rx*u(r))q < Ar1 {rX*u(r))p-1 + -?—£- (rx>u(r))q

71 — A 2 ?71 —

as long as E\2 (r) > 0, where we have used the fact that n > A2?. In turn, since n/q >
Ai > A2

(2.21) (r u
2 - A2 ^ Ax - A2 " £ l *

Assume for contradiction that there exists r\ > 0 such that E\2 (ri) = 0. Then J5^2 (rx) < 0
and hence by Lemma 2.3(i) we have rX2u(ri) > H\, which, together with (2.21) implies
that

(2.22) ri>u(ri) = h, rx>+1u'(ri) = -A2rj2u(n) = -X2£i.

Making the change of variables

(2.23) x = rX2u(r), w = rXi+1u'{r), t = logr

we obtain the first order autonomous system

The equilibrium positions of (2.24) are (0,0) and (^i, — A2^i). Since at the time t\ =
we have x{t{) = rX2u{r{) = t\ and w(ti) = r^^u'fri) = — A2£i by standard uniqueness
theory we get that rX2u(r) = t\ and rA2+1u'(r) = — A2 î which is a contradiction. There-
fore E\2{r) > 0 for all r > 0 and thus, by (2.2) there exists

lim rX2u(r) = £2 G (0,£i]
r—foe
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by (2.5) and (2.21). To show that £2 = f-\ we proceed somewhat as in the first part of
Theorem 2(ii). We omit the details.

§3. Proof of Theorems 3 and 4.

In this section we give the proof of Theorems 3 and 4.

Proof of Theorem 3. By (1.9) and the fact that a > n

(3.1) {rn-l\u'\p-2uf + rnuq)' < 0 for all r G (0,i2)

and in turn

(3.2) | u ' | p -V + r uq < 0 for all r G (0, R).

The remaining of the proof is now essentially as in Theorems 2.2, 2.3, 6.1 and 6.2 of [22]
(see also [20, 21]) and therefore we omit it.

Proof of Theorem 4- When R = 00, it is not difficult to see (cf. [22, Theorems 2.1 and
2.2]), using (3.1) and (3.2), that

(3.3) Cir"A3 < u(r) < c2r~X2 for r large.

Since A3 > Xu by Lemma 2.3(iv) the function EXl(r) = Xxu + rv! > 0 for all r G [0,i2)
and hence R = oc by (2.2). Moreover by (2.4) and Prop. 2.1(i)

(3.4) Aitz(r) > EXl(r) > EXl(r0)exp ( Q— f u^u^tdt] > 0.

Assume now for contradiction that

(3.5) lim rX2uir) = 0;
r->oo

then by Lemma 2.3(ii)-(iii) the function Ec{r) is ultimately negative for c < A2. Therefore

(3.6) cu(r) < r\u'{r)\ < Xiu{r) for all r > rc.

Fix e < A2, then for r > re > rc

P — 1 J9 — 1 ~~

by (3.5) and (3.6), where ci = Ai if p < 2 and ci = c otherwise. Therefore from (3.4),
with r0 = re,

re

) > EXl(r€)exp(-e\og{r/re) = EXl(r€)-£,
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which contradicts (3.3)2 by the choice of e. Hence, also by (3.3)2,

(3.7) lim sup rX2u(r) = £x G (0,oo).

If E\2(r) is ultimately of the sign then (3.7) is actually a limit by (2.2) and reasoning as
in the first part of the proof of Theorem 2(ii) we can show that £\ is as in (1.12).

If E\2 (r) changes sign infinitely many times as r —» oc the situation is more complicated.
In this case we return to the autonomous system (2.24). The linearization of (2.24) at the
equilibrium point (^i, — A2^i), where the value £\ is given in (2.21), leads to the system

x'(t) = X2x(t) + w(t)

1-X2
{-^]x+^^[X2(p-2)-X1(p-l)}^

q J A2 - Ai

The determinant and the trace of the associated matrix A are respectively

(3.9) teA-^-X,), traced = (A, - A2)[A2 + (p-1)(A2 - A3)] - A2(A3 - ^
Ai — A2

Since Ai, A3 > A2 we have in particular that det A > 0. A straightforward calculation
shows that

(3.10) X2 + (p- 1)(A2 - A3) > 0 iff q is subcritical.

Therefore when q > qc the trace of A is always negative, while when q < qc then the trace
of A is negative iff

A2 + (p-1)(A 2 -A 3 )

By standard dynamical system theory it follows that when Ai, A3 > A2 the equilibrium
point (^1, — A2^i) is an attractor when either q > qc or q < qc and Ai < Ac, while it is a
repeller when q < qc and Ai > Ac.

Since under the hypotheses of Theorem 4 we have Ai < A3 then the equilibrium point
(£1, —X2£i) is an attractor.

By (3.3)i and the fact that EXl(r) = Xiu(r) - r\u'{r)\ > 0 we have

x(t) = rx*u{r) < C, \w(t)\ = rA 2 + 1 |^(r) | < C

and hence by Poincare-Bendixson theory either (x,w) tends to the equilibrium point
(^1,— A2^i) or there exists a closed orbit 7 around (̂ 1,—A2̂ i) which does not touch the
axes and such that (x,w) spirals toward 7. When q is supercritical we can exclude the
second possibility. Let w = y^^2'^^p~1\ then (2.24) becomes

x'(t) = A2x + y li/l^-ri/fr-1) = P(x, y)

y'(t) = (p - 1)(A2 - A3)y - qx^y^2^^^ - az« = Q(x, y).
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Since

A 3 )

p — 1
in the simply connected region E = {(x,y) : x > 0, ?/ < 0} by (3.10) we can apply
Bendixon's criterion (see Theorem 3.9.1 in [24] or Theorem 1.10 in [29]) to conclude that
when q > qc there are no closed orbits in E and thus (x, w) approaches the equilibrium
point (^i, — A2^i) . If q < qc we cannot apply Bendixon's criterion, so we cannot exclude
the existence of a limit circle and we can only conclude that (1.14) holds.

§4. Proof of Theorems 5 and 6.

In this section we give the proof of Theorems 5 and 6. The two main tools are the
following Pohozaev-Pucci-Serrin differential identity [25]

_£_ u<H-ij + a r f c-V|p-Vu

(* - 1) + a] + ar*"V+1 ( ^ - a)

n ) ^ " 2 ! ^ ^ " 2 ^ + qrkuq~l\u'\{au + ru')

and an extension of Poincare inequality which is due to Serrin and Zou [27].

Proof of Theorem 5. We claim that E\x (r) > 0 for all r > 0 when R = oc. Indeed from
Ai > A3 and (3.3)2 we get lim^oo rXlu(r) = oo. By (2.2) and Lemma 2.3(iv) it follows
that E\Y (r) > 0 cannot have a zero. Therefore

(4.2) r\u'{r)\ < Aiiz(r) for all r > 0.

Property (4.2) allows to extend a result of Serrin and Zou [27] for R < oc to the case
R = oo.

Lemma 4.1 (Serrin and Zou ). Let u be a positive solution of (2.1) in [0, i?) and //, v,
7 > 0, with 7 > v. If R = oo assume that (4.2) holds and that

/•OO

(4.3) lim r^~vu^v{r) = 0, / r^u^u^u{r) < oc.
r-+oo Jx

7 - ^ 7o

Then

(4.4) / u'Vr
Jo

Proof. The proof is exactly the same of Proposition 2 in [27], with the exception that
when Q = Rn the condition u = 0 on <9fi should be replaced by (4.3)i , while conditions
(4.2) and (4.3)2 are only used to guarantee that all the integrals in (4.4) are finite. Note
also that in Proposition 2 in [27] /J, = 1, but the proof there carries out also for // > 0.
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Lemma 4.2. Let u be a positive solution of (2.1) in [0, oo). Assume that

(4.5) lim rX2u(r) = 0.
r—KX>

(4.6) lim rXsu(r) = £ e (0, oo) and lim r X s +V(r) = -£ A3.
r—KX>

Proof. We first claim that

(4.7) rX3u(r) <C for all r > 0,

for some constant C. Property (4.7) has been proved by Serrin and Zou [26, Lemma 4.5]
for the equation Au+up — \Vu\q = 0. Their proof also works for (2.1) and we present it here
for the convenience of the reader. We now apply identity (4.1) with k = p(n — 1 — S)/(p— 1)
and a = 0. We obtain

k [ ^.8) i(4.8) irk [^i |t/|p + ̂  ^+1] | = -5rfc-Vlp + f& r^u^1 - q r

By Lemma 2.3(iii), (2.2) and (4.6) the function £ A 2 ( 0 = -r\u'(r)\ + X2u(r) < 0 for r
sufficiently large, therefore

In turn by (4.8)

k [^ \u7 + fii u^1} } < rk-l\u'\* (S + jgfe r^u^1^) < 0[
for r sufficiently large by (4.5), which shows that

(4.9) rkf*\u'(r)\ < C Ak"p^pu(r) < C.

Another use of identity (4.1), this time with k = p(n — l)/(p— 1) and a = 0 gives

\u<\v + _̂ _ u9+ij X = f± r^u**1 - grfc+1u«-V|2

by (4.9). Integration of the previous inequality, together with the fact that k + (q +
k)/p < 0, gives the desired estimate (4.7).

By Lemma 2.3(v), (2.2), (3.3) and (4.7) we obtain (4.6)!. To prove (4.6)2 we proceed
somewhat as in the first part of Theorem 2(ii). We omit the details.
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Proof of Theorem 5 continued. We first prove that R = oo. Thus assume for contradiction
that R < oo. By (3.1) and (3.2) the function u cannot have compact support. Applying
identity (4.1) with k = n and a = n/(q + 1), we obtain

(4.10)

If we now take r = R we obtain a contradiction, since the left hand side of (4.10) reduces
to R™^^ \v!\p{R) > 0, while the right hand side is nonnegative by the fact that q > qc

and by the inequality

(4.11) / \ \
Jo n

which follows from Lemma 4.1 by taking

(4.12) H = q, v = \, 7 = n + l .

This shows that all solutions are positive.
To prove (1.12) assume again for contradiction that (4.5) holds. By Lemma 4.2

= O (r-x^q~qc)-T^^ , r n -Vl p~Vu = O (r"^"1) , rn\u'\p = O (r"

roc /-oo /*

Therefore condition (4.3) is satisfied when the parameters //, v and 7 are chosen as in
(4.12) so we can apply Lemma 4.1 to obtain (4.11) with R = 00. Furthermore we can let
r —> oc in (4.10) and we get

' / / 1 «" 1 | u / | 2 dt < 0.

If Q > Qc we immediately get a contradiction, while if q = qc then we conclude that (4.11)
is an equality, but since the only tool in the proof of Proposition 2 in [27] is Holder's
inequality then we can have equality sign in (4.11) iff rnuq\u'\ = Const, r12^1^"1]^]2

which is clearly impossible. Consequently (3.7) holds and we can continue as in the proof
of Theorem 4 to obtain (1.12).

Proof of Theorem 6. To prove Theorem 6 we use the following modified Pohozaev-Pucci-
Serrin identity

jr* [fizl \U'\P

^ - (n - 1) + a] + ar*" V + 1 (*$=?• - a)

+a(k - n)rk-2\u'\p-2ufu + 9r^u^V'IK^ + *ie) w + r u'].
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Choosing

n

in (4.13) gives

(4.14) lrn \s^\u'\* + yffiuq+l\ +ar

where
n —

c = '•

n "

P
Since Ai > , _xw _ x it follows that c > A3. By (4.2) and Lemma 2.3(v) the function
Ec(r) is positive for all r > 0. Therefore the right hand side of (4.14) is positive and we
can continue as in the proof of Theorem 3.1 of Ni and Serrin [22].

§5. Applications to parabolic equations.

We consider the parabolic equation (1.4)

(5.1) qvq-xvt = div(\X7v\p~2Vv),

Due to the symmetry of the problem it is natural to study selfsimilar solutions of the
form

(5.2) v(x, t) = t~a/bu (\x\t-1/b) , a, b > 0,

where u(r) is a nonnegative solution of

(5.3) (It/?" V) ' + ^ | « ' r V + l-r(u«)' + | u* = 0, r = \x\t~l/b > 0

with

(5.4) a(q - p + 1) + b = p.

Clearly, for (5.4) to hold we need to impose some restrictions on the exponent a, more
precisely (q — p + l)a > —p. A simple change of scale transforms (5.3) in (2.1) where
a = aq.

Theorem A. The initial value problem

qvq-lvt = div(\S7v\p-2Vv),

v(x,0) = A\x\~a,

where A, a > 0,admits a selfsimilar solution v of the form (5.2) if and only if

aq < n and a(q + 1 — p) < p.
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