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1 . INTRODUCTION

Processes that involve disparate length scales and which are only metastable are

inherent to the investigation of mesoscopic and microscopic systems. We focus

here on a mechanism we believe to be deeply intertwined with these properties.

Certainly the most established method for accomodating widely varying length

scales is the use of stochastic analysis in the study of chemical systems. This is so

famous that nothing more need be said about it. Let us recall that the distributions

that describe these systems are usually solutions of a Fokker-Planck Equation, or

forward Kolmogoroff Equation, determined by the stochastic process, [4]. New

methods for the characterization of material microstructure have resulted in the

development of weak convergence methods, often employing the Young measure

and its generalizations, ([6],[7] are review papers). The Young measure solution of

a typical nonconvex energy principle may be viewed as the zero temperature limit of

a sequence of solutions of Fokker-Planck Equations, [8],[9].

The compelling mechanism we wish to bring forward here is that the

gradient flux of the native thermodynamic energy is the Fokker-Planck Equation,

when taken in a suitable metric, [8],[9],[10]. This is the Wasserstein metric and it

defines the weak* topology on the admissible class of probability densities. This

immediately provides a deep connection between variational principles and

stochastic differential equations. Moreover, we are allowed a format to discuss

metastable systems: evolution may be interpreted as a competition between energy

and distance in the weak* topology.

In this note, which is a plan for research more than a statement of results,

we take up some of these issues. Our attention is confined to the simplest case.

2 . A SIMPLE PARADIGM

For illustration, consider a potential \j/(^), for a generalized snap spring or a shape

memory element, for example, where ^ is the relative elongation of the spring or

the shear length of the shape memory element, -«» < ^ < +«>. Let n̂  denote the

number of elements of elongation £ e { £, ^M } so that

E = X V(£)nt a"̂  d = £ £ nt,

are the total energy and elongation of the configuration. For such a system there is

a configurational entropy or degeneracy given by Boltzmann's statistical definition

S = - l o g

0n J l
where is the number of ways of arranging I n̂  I objects into M subsets

with rip elements in the j t h subset. The average free energy of the system is, N

- I nE I, a > 0,



\nt\
IN = :2,y(£)n, + a log

I n , f

perhaps subject to an imposed constraint like d = d0, with d̂  fixed. The parameter

a plays the role of the temperature. The potential energy of independent layers or

springs, given by E, seeks to be minimum while the entropy seeks to be maximal

by distributing elements evenly over the range. See Hou and Muller [5] for

development of this sort of model in shape memory alloys. Passing to the limit as

N,M -> w, gives, typically, the functional, defined on probability densities p,

Fo(P> = 1 P log P
R R

This is the type of functional we wish to consider.

A convex function of p, it admits a unique minimum, the (stationary)

Gibbs distribution

P&) = e CT , with Z(a) ={ e ° dt
Z(a) \

We witness in this construction virtually the paradigm of classical statistical

statistical mechanics and, in the example as a particular case, the derivation of a

Young measure formulation of a variational problem coupled to an cntropic

stabilization. The relaxation or Young measure distribution of a nonconvex

variational principle may be realized as the zero temperature limit of Fo . Namely,

= J
represents the Young measure relaxation approach to a minimization problem and in

our interpretation it has become ineluctably wedded to an entropy functional.

Likewise, its driving force equation becomes linked to a Langevin Equation.

3 . FOKKER-PLANCK DYNAMICS

Were we to give and initial distribution of elements p0 and ask how it relaxes to

equilibrium, we might impose evolution of the probability flux or the Fokker-

Planck Equation

(VP).
ap a2p
at a ^

P l i - o = Po-

The motivation for this is that the solution of (3.1) satisfies

d ,

, t>0 , (3.1)

dt
Fo(p) < 0 for solutions p of (3.1).

This is equivalent to seeking the distribution of the relaxation of the driving force

equation of the strain rate, with a small stochastic force, given by the Langevin

Equation

dX = -Y(X(t))dt+ V2a dB(t), (3.2)

where B(t) is standard Brownian motion and dB(t) represents white noise.

The compelling connection we wish to bring forward is that the implicit

scheme

Determine p*} that minimizes

—d(p,p(lt-1))2 + J \|/p d^ + a J p log p d£, (3.3)
2h R R

where d is the Wasserstein metric, briefly described below, gives rise to a solution

of the Fokker-Planck Equation, [8],[9],[10].



The Wasserstein distance, [12], between two probability

on R is
and

= inf / f (3.4)

P = P(\i^pL2) = probability measures on R x R with first

marginal n, and second marginal fa.

So for pe P, p(AxR) = jn,(A) and p (RxB) = y.2(Bl It is well

known that d defines a metric equivalent to the weak* topology on probability

measures with the property

when appropriately defined as contained in a dual space. Equivalently,

dOvfa,)2 = mfE(IX-YI3),

where E denotes the expectation of the random variable and the infimum is taken

over random variables (X,Y) where X has distribution jt, and Y has

distribution \xr Since

ECJX-Yr2) = E(!Xt2) + E(l Y I2) - 2E(X-Y) and

E(fXI2) = , E(IY!a) = J I y I

calculating the Wasserstein distance consists in maximizing the correlation between
X and Y.

The variational problem (3.4) is an example of a Monge-Kantorovich mass

transference problem with the cost function c(x,y) = I x - y f\ [2]f(3]. Variational

problems of this type have applications in many disciplines. A rninimizer in (3.4)

is called an optimal transference plan is easily shown to exist, fn our situation, |i,

and m will always be absolutely continuous with respect to Lebesgue measure and

so we shall not distinguish between them and their densities, sayt p, and p2.

4 . A SYSTEM EXHIBITING HYSTERESIS

Systems that exhibit hysteresis are only metastable. HeTe we illustrate an extremely

simple example determined by a family of double well potentials of varying relative

heights y(£X). The two wells are at ±1 and y is a step function of the

parameter L. In this elementary testbed, the solution of the Fokker-Planck

Equation which gives the distribution of the % is simulated by a straight forward

Figure 1 A hysteresis portrait determined by a Fokker-Planck

Equation showing metasfable states

explicit scheme and implemented with Maple. The first moment, or average



is plotted as a function of the load parameter L. Although we lack the space to

provide details, most of the outer loop does represent a distribution which is in

equilibrium, which is the appropriate Gibbs distribution. But the inner segment and

the portion of the outer loop from 0.5 < L < 0.8, x = -1 is only metastable.

5 . A BRIEF VIEW OF THE CONSTRAINED THEORY

In this section we give a schematic description of work with Richard James and

Shlomo Ta'asan. The notion of the wiggly energy was first introduced by

Abeyaratne, Chu, and James [1] in the shape memory CuAINi system to interpret

the hysteresis in evolution of the microstructure. A system similar to that of §2,

governed by a Helmholtz free energy W(a) and an additional work of loading

T(ot) will have total energy, in its homogeneous Young measure form,

| (W(a) + T(a)) dv(a).

Assume that the system is near equilibrium, which leads to the constraint

suppv c {W = minW = 0} (5.1)

and energy

E = min J (W(a) + T(a)) dv(ot) = min J T(a) dv(a).
V R v R

Assume that the set of Y o u n g measures obey ing ( 5 . 1 ) is a l-parameter family v ^

depending on £. Then

E = v(£) = min JT(a)dv(li)(a),
^ R

leading to the driving force equation, where \i > 0 is a parameter,

% =
dt

We take (I = ! in the sequel.

Owing to the accomodation of a finer scale structure, whose details we do

not describe here, we are led to augment y by a family \yt which we take to be,

with

V« periodic of period 1, ly'o 1 < a, and J yo(y) dy = 0.
[ 0 l |

We arrive in this way at a Langevin Equation

dXe = -VE(X t)dt + V2a dB(t),

and corresponding Fokker-Planck Equation

Our objective in this exercise is to show that the effective Fokker-Planck Equation,

as a,e —> 0, has a greatly reduced drift. The perturbed system may dwell in states

that are not equilibria of the original one.

Let us sketch a formal argument. Multiplying by a test function £ e CJ5*(R),

I ( a — - , C ) | = I a [ C" p dE | £ a max IC" I -> 0 as a - » 0 ,

as2

so,



This first order linear equation may be solved by differencing in time, as suggested

by our discrete scheme, which leads to the approximating equation

j|(VeP> = ;<P-P f t-").

or in weak form,

-J cV tPd(i= {J CCP-P"")^ .
R h R

Choosing £ a suitable Heaviside function with jump at a given c;,

where F and F(k l), the distribution functions of the probability densities p and

p(k r ) , converge pointwise as E -» 0. From this and the fact that \yE has on the

order of 2a/e zeros in [-a,a], we may infer the form of the limit transport equation

d d - " - -'
—p = -ri-(bp) where b(c)

(0.1)

= 0 if

This is the form obtained in [I],
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Processes that involve disparate length scales and which are only metastable arc

inherent to the investigation of mesoscopic and microscopic systems. We focus

here on a mechanism we believe to be deeply intertwined with these properties.

This is the competition between the thermodynamic energy and nearness in the

weak* topology for the distribution of microscopic variables whose averages

describe the evolution of the macroscopic system. Brief examples show metastable

evolution and the possibility of accomodating additional fine scale variables.


