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1. INTRODUCTION

A particularly fascinating feature of large Reynolds number two—dimensional (2d) magnetohy-
drodynamic (MHD) turbulence is the emergence of coherent structures. By a coherent structure, we
mean a large-scale organized state that persists amidst the small-scale turbule nt fluctuations of the
magnetic field and the velocity field. The prominenc e of such macroscopic states in 2d MHD has
been documented by numerous direct numerical simulations [1, 2, 3, 4], where the coherent structures
typically appear as magnetic islands with flow.

In modeling these organized states in 2d MHD, it is natural to appeal to the methods of equi-
librium statistical mechanics. There have been two popula 1 approaches along these lines, which
we would like to take some time to discuss. One is the k—space approach, which originated with
Lee [5], and was subsequently developed by Fyfe and Montgomery [6]. This theory is based upon a
canonical Gibbs ensemble for a truncated Fourier series approximation of the ideal MHD equations.
While this model yields some important qualitative prediction s about the long-time state of the
magnetofluid, it accounts for only the purely quadratic conserved quantities of the ideal dynamics.
It there by ignores the infinitely many other conserved flux and cross-helicity integrals, which are
not so easily expressed in spectral form. One consequence of this simplification is that it yields an
ensemble with a vanishing mean field and mean flow. Thus the model does not predict a nontrivial
coherent structure. The theory also suffers from the well-known Rayleigh—Jeans catastrophe, in that
the ensemble—averages of the conserved quantities diverge as the number of spectral modes increases
to infinity. Furthermore, it turns out that the Gibbs ensemble

predicted by this theory is not equivalent with the microcanonical

ensemble associated with the ideal dynamics in the continuwmn limit of an

infinite number of spectral modes. This result vitiates the equivalence of ensembles hypothesis
on which the theory rests (see [7] for a discussion of these issues). The other statistical theory for
MHD is the z-space approach, developed by Montgomery, Turner and Vahala in [8]. This model
uses a field line discretiza tion of the vorticity and the current density, together with an information—
theoretic entropy functional. Most probable states are obtained by maximizing the entropy subject to
given constraints on the classical (quadratic) invariants. However, the current and vorticity profiles
predicted by this theory do not necessarily correspond to a steady soluti on of the ideal MHD




equations. This difficulty, along with the lack of a ri gorous justification for the maximum entropy
principle, leads us to believe that the model is a bit too crude.

Putting the above criticisms aside, it must be recognized that these earl y theories laid the
groundwork for more recent, more refined models of cohe rent structures in MHD and in ordinary
hydrodynamics. One such example is the k—space theory of Gruzinov and Isichenko [9], who use
a formal asymptotic analysis to build an ensemble which accounts for the entire list of conserved
quantities and which predicts a

nontrivial steady mean field—flow. By appropriately rescaling with the number of spectral modes
the inverse temperature parameters in their Gibbs ensemble, they are able to obtain a meaningful
continuum limit, in which the ensemble—averaged ideal invariants remain finite. The recent continuum
statistical model of Robert et al. [10, 11] for coherent vortex structures in 2d

hydrodynamics owes a great deal to the information-theoretic z—space model of Montgomery
et al. [8]. It too is based upon the maximization of entropy subject to constraints dictated by the
conserved integrals of the ideal dynamics (the Euler equations in this ca se). The major innovation of
the Robert approach is the use of an z—parameterized probability measure to provide a macroscopic
descripti on of the coherent structure. Such a description captures the statistics of the fluctuating
vorticity field in an infinitesimal neighborhood of each poi nt in the low domain, and allows for the
inclusion of the complete family o f conserved integrals of the 2d Euler dynamics.

Our continuum statistical model of organized states in 2d MHD [12, 13, 7] is inspired by the Robert
theory of coherent vortices in 2d hydrodynamics. We introduce an z—parameterized probability
measure to capture the fluctuations of the magnetic field and the velocity field at each point in the
spatial domain. We call such an x—parameterized

measure a macrostate. The most probable macrostate is then determined by maximizing an
appropriate entropy functional subject to constraints dictated by the conserved quantities of the
ideal (nondissipative) 2d MHD equations. The entropy maximizer defines a statistical equilibrium
state consisting of a mean field—flow, which is a steady solution of the ideal dynamics, coupled with
Gaussian fluctuations of the field and the flow in an infinitesimal neighborhood of each point in the
spatial domain. The predictions of the theory are shown to be in good quantitative and qualitative
agreement with the results of

high-resolution numerical studies of the dynamics of slightly dissipativ e 2d magnetofluids.

The paper is organized as follows. In section 2, we review the equations

ideal 2d MHD, and list the dynamical invariants. In section 3, the featu res of the dynamics are
discussed, and the important separation of scales pos tualte is stated. The macroscopic description
of the ideal MHD system in terms of the parameterized probability immeasures is introduced in section
4, and th e maximum entropy principle to determine the statistical equilibrium states is formulated
in section 5. In section 6, we employ the Lagrange multiplier rule to calculate the equilibrium states,
and we discuss some of the most important predictions of the model and compare them with results
of direct numerical simulations. We conclude in section 7 with a cursory account of our recently
developed lattice model of coherent structures in 2d MHD, the construction of whic h leads to a
rigorous justification of the continuun statistical model [7].

2. IDEAL MAGNETOHYDRODYNAMICS

The equations of ideal, incompressible MHD in appropriately normalized variables are:

B, = Vx(V xB), (1)
V,+V.-VV = (VxB)xB—Vp, (2)
V.-B=0, V-V=0, 3)



where B(z, t) is the magnetic field, V(z,t) is the velocity field, and p(z,t) is the fluid pressure. Note
that p is determined instantaneously in response to the incompressibility constraint on V| s o that
the state of the magnetofluid is completely described by the field— flow variable Y = (B, V). These
equations are assumed to hold in a regular bounded spatial domain D in R?, and = = (z1, z3) denotes
a generic point in D. The magne tic field and the velocity field take values in R2. We will assume
the perfectly conducting boundary conditions '

B-n=0,V-n=0 onC, (4)

where C is the boundary of D and n is the outward normal to C. The model described below also
applies, with minor modifications, to the case of periodic boundary conditions on a rectangle D.

A 2d ideal magnetofluid conserves energy, flux, and cross-helicity. These quantities are given by,
respectively [14],

B = é/D(B2+V2)dm, 5)
Fro= [ fla)ar, (6)
Hy = ./DB-Vf’(a.)(l:t:. (7)

Here a is the vector potential (or flux function), and is defined by th e relation
B = (az,, —a,,). (8)
The vector potential satisfies the homogeneous boundary condition,
a=0 onC. (9)

The function f in (6) and (7) must satisfy certain regularity (eg. smoothness) conditions, but is
otherwise arbitrary. Thus, there are infinite families of conserv ed flux integrals and cross-helicity
integrals. These conserved functionals , which give the dynamics of the 2D magnetofluid its special
characteristic s, will play a fundamental role in the model sketched below. The physical meaning of
the flux and cross—helicity integrals is most readily grasped by choosing f(a) = X{a>c}, the unit step
function on the interior of

the magnetic surface ¢ = ¢. Then the conservation of Fy (for any

o ) implies that the mass within any given flux tube is a constant

of the motion. Similarly, the invariance of Hy means that the total vorticity within any flux tube
is conserved by the dynamics.

3. FEATURES OF THE DYNAMICS: SEPARATION OF SCALES

High-resolution numerical simulations clearly display the turbulent behavior of a slightly dissi-
pative 2D magnetofluid [1, 2, 3, 4]. As the field-flow state Y = (B, V) evolves, it develops rapid
fluctuations on very fine spatial scales. Fluctuations at nearby points appear to be only weakly cor-
related. After a certain period of time, however, large scale coherent structures emerge in the form
of macroscopic magneti c islands, typically with flow. These structures persist for a relatively long
time period amidst the turbulent fluctuations, and seem to approach a quasi-stationary state, before
the dissipation causes them to decay. In the ideal limit of vanishing dissipation, we expect that the
mixing would continue indefinitely, exciting arbitrarily small spatia 1 scales, and that a final relaxed



state, consisting of a large-scale coherent structure and infinitesimal-scale local fluctuations, would
be

approached. These considerations lead us to postulate the following

separation of scales property for the ideal magnetofluid:

SEPARATION OF SCALES HYPOTHESIS In the long-time limit, the fluctuations of the field and
the flow occur on an infinitesimal scal e at each point in the spatial domain, and the statistics of the
fluctuatio ns at distinct points are uncorrelated.

Our statistical model of coherent structures is built upon this hypothesi s. The rationale behind
this postulated separation of scales has been explai ned in detail in [7].

4. MACROSCOPIC DESCRIPTION OF THE IDEAL SYSTEM

The field-flow state Y constitutes a microscopic description of the MHD system. Due to its
highly intricate small-scale behavior, the microstate Y does not furnish a meaningful description
of the long—tim e behavior of the magnetofluid. For this reason, we introduce a coarse-grained, or
macroscopic description of the system. A macros tate (p(z,y))zep is a family of probability densities
on the values y € R* of the microstate Y at each point z in the domain D. That is, for each z in D,
p(z,y) represents a joint probability

density on the values y = (b, v) of the fluctuating field-flow pair (B(x), V(x)). The macrostate is
intended to represent a possible long ~time average weak limit of the microstate Y (z,¢) in the sense
that

1 (T
// G(z,y)p(z,y) dydr = lim —/ /G(.?:,Y(m,t))d:ndt,
D JR4 T—oo T Jo D

for all bounded and continuous test functions GG. An equivalent way of expressing this relationship is

1 (T
plx,y) = j}i_l};o T /0 8(y — Y(x,t))dt,

where & is the Dirac mass concentrated at the origin in R, and the convergence is understood in the
weak sense of probability densit ies on D x R4 [15].

The conservation of energy, flux and cross-helicity under the ideal dynam ics now translates into
corresponding constraints on admissible macrostates. The se constraints are formulated in a manner
consistent with the above-defined weak convergence of Y (x,%) to p. The requisite expressions are (s
ee [12, 13, 7] for mathematical details):

E(p) = %/D ./124(1)2 + v?) p(x,y) dydz = E°, (10)
Filo) = [ S@)dr=F, 1)
Hs(p) = /D /R“ b-vf'(@(x))p(x,y) dydr = H?, (12)

where E°, F}’, and H}’ are the values of energy, flux, and cross-helicity fixed by the initial state of
the MHD system; the local mean magnetic field B(x) is defined by the relation

B(z) = /R,“ bp(z,y) dy, (13)

and @(z) is the vector potential corresponding to B(z) (see egs. (8)—(9)). For future reference, we
also define the local mean velocity field

V(z) = /R‘1 vp(a,y) dy . (14)
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Let us note that in deriving the expressions for the flux and cross-helicity constraints, we have
anticipated that the fluctuations of the vector potential a are negligible in the long-time
limit, i.e., that
1 T
a(z) = lim 7;/ a(z,t)dt, vara(z)=0,
0

T— 00

where var denotes the variance of a random variable. Intuitively, this vanishing of fluctuations is
expected because the vector potential is obtained by “integrating” the magnetic field, and the process
of integration smo othes out the fluctuations. Similarly, we expect the velocity stream function
o, which is defined by V = (¢z,,—¢2,), to b e insensitive to fluctuations in the limit. The
mathematical basis for the '
vanishing of fluctuations of the flux and the stream function is the compactness of the operator
curl ' : B —a,V — ¢ [12].

5. THE MAXIMUM ENTROPY PRINCIPLE

From standard principles of statistical mechanics, we expect that the system approaches a most
probable macrostate which respects the prescribed values of the conserved quantities [16].

This most probable state is determined as the maximizer of an appropriate entropy functional
subject to the constraints on energy, flux and cross—helicity. The entropy functional that we use is
the classical Gibbs-Boltzmann-Shannon entropy:

S(p) = —/ / px,y)log p(a:, y) dyda. (15)
D JR4

As such, S is a measure of (the logarithm) of the munber of microstates

corresponding to the macrostate p. Implicit in its definition as an

integral over D is the assumption that fluctuations at two separated po ints in D are statistically
independent. This property is demanded by the separation of scales hypothesis enunciated above. As
an integral over the y—variable, S uniformly weights the entire range R4 of the values of the microst
ate Y. While these features of S are quite natural, the real justification for the use of this particular
entropy functional relies on the Liouville property of the underlying dynamics, as is discussed briefly
below and in detail in [7].

The maximum entropy principle to determine the statistical equilibrium states can now be for-
mulated:

(MEP) S(p) — max, subject to E(p) = E°, Fy(p) = F?, Hs(p) = H?

where f varies over all (sufficiently smooth) functions on the invarian t range of the flux function a.
This is an infinitely—constrained nonconvex variational principle in the

density variable p. Because of the analytical difficulties associat ed with the infinitely many
constraints, we find it desirable to approximate

the continuously infinite families of flux and cross—helicity integrals by the linear combination of
a finite number of such integrals. For this purpos e, we could choose a finite basis of functions f;, =
1,---, N, having suitabl e growth and regularity properties, and consider only the corresponding flux
and cross-helicity integrals Fy, = F;, Hy, = H;. Of course, an arbitrary f can be approximated by
a linear combination of the f;. That this discretization of the flux and cross—helicity constraints
yields an accurate approximation of the infinite families of these constraints follows from the analysis
of Turkington et al. in [17]. The resulting maximum entropy problem, which has been discussed
in detail in [7], yields equilibrium states and corresponding mean field—flow equations that are too
complex to be analyzed in any meaningful way in this brief note. Thus, for clarity and economy, we
consider here the further simplified problem



(SMEP) S(p) — max subject to E(p) = E°, Fi(p)=F®, H(p) =

where

Fi(p) = /D fi@dr, H(p)= / / b-vp(z,y) dydz ,

and F?, H® are prescribed values of the flux integrals and the quadratic cross-helicity, respectively.
The index z ranges from 1 to N.

In taking into account only the quadratic cross-helicity constraint, we are simplifying considerably
the full statistical equilibrium problem (MEP). However, this reduced problem does capture the
essence of the correlation

effects between the field and the flow that result from the conservation of cross—helicity. For an
analysis of the consequences of including the generalized (nonquadratic) cross-helicity integrals, the
reader is referred to [7].

6. PREDICTIONS AND COMPARISONS WITH NUMERICAL STUDIES

The solution p of (SMEP) follows from the Lagrange multip lier rule:

S'(p) = BE'(p) + >_ aiF(p) + vH'(p), (16)

where 3, a;, and v are Lagrange multipliers corresponding to the constraints on energy, flux, and
cross-helicity, respectively. The derivatives in (16) are, of course, functional derivat ives. From (16)
it follows that

p=2""exp(=BE'(p) = Y_aiFi(p) —7vH'(p)),
where Z(z) is the partition function which enforces the normalization constraint [gs p(z,y)dy = 1
for all z € D. After algebraic manipulations, we arrive at the expression

2(1 — p? 3 . - ( .
= 'H—(—:‘ll?/——l exp (-—-%(1 —12)(b=B(x))? - —2-(’(1 - /I,I))Z) , (17)

where p1 = —v/8. We note that —1 < j < 1 (see [12, 7] ).

A glance at equation (17) reveals that the most probable macrostate

p is for each = in D a Gaussian distribution on the field-flow pair (B(x:),V(x)). The covariance
matrix can be determined by straightf orward calculations. We obtain that

1
B — 1?)

for : = 1,2 and for each =z € D. The other components are uncorrelated. The mean field-flow, which
is calculated via (13)—(14), can be shown to satisfy the equations (see [12, 7])

V(z) = uB(x =) Nifi(alx) (18)

where \; = —a;/(B8(1 — ;12)), and the current density J is defined by

var B;(z) = var Vi(z) = , corr (Bi(z),Vi(x)) = p,

T(x) = V x B(x) = —Va(x). (19)

In particular, it follows from (18)-(19) that the mean field-flow is a stationary solution of the
ideal MHD equations (1)-(3). We also see from (18)—(19) that the mean field B is a critical point
of the (deterministic) magnetic energy, 3 [ B?dx;, subject to the flux constraints, [}, fi(a) dz = F?,

1

6



and that the mean vector potential @ satisfies the celebrated Grad-Shafranov equation from plasma
physics; that is, the mean vector potential is given by a nonlinear elliptic equation of the form
—V?%a@ = A(a) [18]. The theory predicts, therefore, that the ideal magnetofluid will relax to a
state consisting of a stationary mean field-flow (the coherent structure) and microscopic Gaussian
fluctuations about this steady mean.

A particularly remarkable prediction of our model is that the ratio of kinetic to magnetic energy in
statistical equilibrium is less than 1, regardless of the initial ratio. This follows from straightforward
calcul ations and the fact that the correlation p satisfies —1 < p < 1. Indeed, we have for the
magnetic energy Fn,, and the kinetic energy Ej the following expressions

Em = l/ / b2 p(z,y) dydz = l/ B’ dr + volume (D)/(BQ — 11%)),
2 J/p Jps 2J/p

Ex = 3 [p [ra v2p(x,y) dydz = %2 fD§2 dr + volume (D) /(B(1 — u?)).

This prediction, which is true even when the generalized cross-helicities are accounted for [7], is
in accord with the numerical studies of Biskamp et al. [1, 2, 3], in which there was observed the
rapid relaxation of Ey/FE.; to an almost constant value less than 1, even for initial ra tios as large
as 25. In general, the predictions of our maximum entropy model are in good agre ement with the
numerical simulations of Biskamp et al. [1, 2, 3] . They observe local Gaussian distributions on the
magnetic field and velocity

field, and predict a cascade of flux to large scales, which is indicative of the formation of macro-
scopic magnetic structures. There is also good qualitative agreement of our theory with other pre-
dictions of Biskamp et al., as well as with the computational studies of Politano et al. [4]. For more
detailed discussions of the predictions of our model and for further comparisons with the numerical
simulations, the reader is referred to {12, 13, 7).

7. MORE RECENT DEVELOPMENTS: THE LATTICE MODEL

The continuum statistical model outlined above is based upon the essential separation of scales
hypothesis, which asserts that the fluctua tions of the field and the flow occur on an infinitesimal scale
at each point in the spatial domain, and that the statistics of the fluctuations are uncorrelated from
point to point. In our recent work [7], this crucial hypothesis is clarified through the construction
of a lattice model that converges to the continuum model in the fixed—volume, small-spacing limit.
The appropriate lattice model is developed with the help of the discrete Fourier transform, which
allow s us to exploit the relationship between truncation in Fourier space and discretization in real
space. It is through this natural correspondence

between finite k—space and finite x—space that the basis for and the consequences of the separation
of scales hypothesis can be fully appreciated. The need for the synthesis of the z—space and the k-
space methods arises fro m the particular forms of the conserved quantities of 2d ideal MHD. These

invariants include energy, as well as the two infinite families of flux and cross-helicity integrals.
The disparate weights that these different invariants place on the spectral modes makes a k—space
analysi s essential, while the x—space analysis is needed to incorporate the nonlinear and nonquadratic
(generalized) flux and cross-helicity integrals into the th eory. The lattice model is defined by what
we call the implicit canonical ensemble on discrete phase—space, which maximizes entropy subject to
the approximated dynamical constraints. The term “implicit” reflects the fact that the constraints
on flux and cross—he licity depend nonlinearly on the ensemble, which is unlike the case of the usual

canonical ensemble, where the ensemble appears linearly in the constraint s [6]. The implicit
canonical ensemble is consistent with the Liouville property of the discrete dynamics, and m ost

~1



importantly, it agrees with the microcanonical ensemble associated with these dynamics in the con-
tinuum limit. This asymptotic equivalence of ensembles provides a strong theoretical justification for
our theory. The interested reader should consult [7] for details.
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