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where

c(p):=W'(p)=p3-p (1.2)

is the stress, / 3 > 0 , 7 > 0 , a > 0 corresponds to the stiffness of the elastic matrix,
and where uxxt, w, and uxxxx account for, respectively, viscoelastic damping, forcing
term, and local surface energy penalization. The associated potential energy is given
by

!(«)(*) := \ f\ul(x,t) - I)2 dx + | f u\x,t) dx + | f ul,(x,t) dx.
4 Jo * Jo * Jo

(1.3)

Jo * Jo
Suppose, in addition, that u satisfies the initial conditions

f u(a:,0) = a{x), 0 < x < 1,
\ ut(x,0) = b(x), 0 < * < l .

Given a sequence of initial data {ae,6e}, with corresponding family of solutions
{ue}, we seek to understand how the initial oscillations propagate.

The creation and propagation of oscillations of solutions of (1.1) were studied
by BRANDON, FONSECA, & SWART [BFS] in the case where local penalization of
surface energy is not taken into account, i.e. when 7 = 0. It was shown that if initial
velocities have oscillations then these are lost immediatly as time increases, while
oscillatory strains {ux} (hence miscrostructure) cannot be created, but persist for all
times if initially present. Here we prove that there is no propagation of oscillations in
the velocities and strains; precisely, if {ae, b€ } remains bounded in HQ (0,1) xL2(0,1)
then for every T > 0 {u€} and {u£

t} converge strongly as e -» 0 in L2((0,1) x
(0,T)), and {w^},{u^} converge strongly as e -¥ 0 in Lfoc((0,1) x (0,T)) (see
Proposition 3.4 and Theorems 3.6, 3.7). Moreover, we show that there is no creation
of oscillations in {ue

xt}, in that if {as,b£} is bounded in {H$(0,1) n #4(0,1)) x
#o(0,l) then {uxt} converges strongly in Lfoc((0,1) x (0,T)). These results rely
heavily on the theory of compensated compactness of Murat and Tartar(see [M],
[Tl]), and on Aubin's interpolation theorem (see [A], [L] and [T2]).

In Section 2 we establish existence and uniqueness of strong and weak solu-
tions for (1.1)-(1.3). In Section 3 we study the creation and propagation of os-
cillations. We end this section remarking that if the Dirichlet boundary con-
ditions were placed on uxx rather than on the strains ux, and assuming that
P2 > 47 and that supe ||ae||#3 + ||65||#i < +00, then the strong convergence
of {««}, {««}, K } . K * > ^ L>((0,1) x (0,T)) and of {u%t}, {u%xx} in Lfoc((0,1) x
(0,T)) for all T > 0 could be easily obtained using energy apriori estimates (see
Proposition 3.11). In Section 4 we use a finite difference scheme to illustrate the
behavior of solutions in the case where a6 = 0 and b€ = sin6 (jftx). In particular,
we show {uxt} does not oscillate although the unboudedness of {b6} in H2 prevents
us from applying Theorem 3.10.

2. FORMULATION OF THE PROBLEM. EXISTENCE THEOREM.

In this section we will obtain existence of solution for the equation

v>tt = [wx ~" ux + Puxt — 1fu>xxx]x — ai t (2.1)

where (x,t) G (0,1) x (0,oo), /?,7 > 0,a > 0, with boundary conditions



and initial conditions

u(x,0) = a ( x ) , 0<x
ut(x,0) = b(x), 0<x

The total energy corresponding to the system is

E(t)~lC(t)+1(0,

where the kinetic energy is given by

1 ' J

/
Jo

and the potential energy is defined as

:= \ f\u2
x(x,t) - lfdx+ 2 f u\x,t)dx + l fulx(x,t)dx.

4 Jo ^ Jo . z JO
Differentiating the total energy

:=4 / u2
t{x,t)dx+\ /

+ | f\2(x,t)dx + l fulx(x,t)dx
* Jo z Jo

and using (2.1)-(2.3), we obtain

£ l (2.4)
hence E(-) is non-increasing.

We prove existence and uniqueness of a classical solution for problem (2.1)-(2.3).

Theorem 2.1. Let a G #4(0, l)n#£(0,1) and b G #o(0,1). There exists a unique
global solution of (2.1)-(2.3) with u(t) G #4(0,1) for all t > 0 am/ such that

ueC1 ([0, oo); i/2(0,1)) H C2([0, oo); L2(0,1)).

Proof We introduce the new variables

Then (2.1) and (2.3) can be rewritten as the initial-value problem

(zt = Az + f(z), t > 0 ,

\z(0) = z0

in the Banach space X := L2(0,1) x L2(0,1), where z = (v,w), ZQ = (axx,b),

A := d2/dx2, and

x,f) - l)t)(*,t)-a I* V(s,t)ds, V(x,t) := ['v(s,t)ds.
Jo Jo
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The boundary conditions (2.2) imply

{ w(0,t) = wx(0,t) = 0,

w(l,t) = wx(l,t) = 0. ( 2 ' 6 )

We define D{A) := H2(0,1) x H$(0,1), and we consider in X the inner product

- f1

""" io
where z» = (^i ,^) , t = 1,2.

By virtue of (2.4), if u is a solution of (2.1)-(2.3) then

\\z(t)\\2
x<2E(t)<2E(0)=:M2, (2.7)

and so it is natural to consider the truncated problem

{ zt = Az + /(z), t > 0,

z(0) = zQ

where
/(*) := K( | |* | | ) / (Z) ,

and «(•) € ^([OjOo)) is a decreasing function such that n(s) = 1 for 0 < s < ^ ,
and K(S) = 0 for $ > 2M. By Theorems 6.1.2 and 6.1.5 in PAZY [P], the initial
value problem (2.8) admits a unique solution

( V , I I ; ) € C 1 ( [ 0 > O O ) ; L 2 ( 0 , 1 ) X L 2 ( 0 , 1 ) ) ,

(v{t)M*)) £ ^ 2 ( ° ? 1) x Ho(0,1) for all t > 0,
provided A generates a C° semigroup on X, / is globally Lipschitz and continuously
differentiate from X to X, and z0 G D(A). We start by showing that A generates
a C° semigroup on X. By the Hille-Yosida Theorem (see [P], Theorem 1.3.1), it
suffices to prove that

||(AZ — ^4)~1|| < \ for all A > 0. (2.9)

Fix A > 0, let z € D{A), and set y := (A/ - A)*, y =: (fc, fe). Thus

and since w 6 HQ (0,1) we have

y,z>= / (jkv + hw)dx

l

\v - wxx) + tt;(A

= A / (7V2 + ri;2) da: 4- 7 / (—vwxx + n;vXx) dx — f3 wwxx dx
Jo Jo Jo

/"I

= A|W& + 7(-vwx + wvx)\l - 0wwx\l + P wx
2 dx

Jo

Hence
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proving (2.9). In order to show that / is globally Lipschitz, we assert that

*a||x. (2-10)

Indeed

Wf(z1)-f{z2)\\\

= J { 3 ( 1 ^ - V2
2v2) - (Vl - v2) -aj\v,{s) - V2(s)) dsj dx

< C (J\v?vi - V2v2)
2dx + J\v, - v2fdx +y J \J Vi(«) - V2(s))ds\ dx)

< C {\\V?Vl - V*v2\\l3 + \\v! - v2\\
2

L, + ||H - m | | a ) .
Since

(2.11)

we conclude (2.10), and the Lipschitz property for / follows immediatly from the
fact that K is Lipschitz and has compact support. Continuous differentiability of /
may be easily obtained.

We define

f [
Jo Jo

Clearly uxx = v, and (2.8) implies that

u(x,t):= f [\(z,t)dzdy. (2.12)
Jo Jo

implies that
r* rv rx ry

ut(x,t)= / vt(z,t)dzdy= / wxx(z,t)dzdy = w(x,t)
Jo Jo Jo Jo (2.13)

because w € Hi (0,1). Thus

ut(l,t) = w(l,t) = 0, ti*t(l,*) = wx(l,t) = 0,

hence u(l, •) and uz(l, •) are constant functions. Since a G HQ (0,1) we have
r l /-X r l rx

u(l,0 = t*(l,0)= / / v(y,0)dydx= / axx(y)dydx = 0
Jo Jo Jo Jo

and

t**(M) = «**(l,0)= / a^ (
Jo

Note that the conditions u(0,t) = ux(0,t) = 0 follow trivially from (2.12). More-
over, (2.12) and (2.13) yield

fx fy

u(x,0) = / / axx(z)dzdy = a(x), ut(x,0) = w(x,0) = 6(x).
Jo Jo

By (2.8)
utt =wt= 0wxx - ivxx + K(| |*| |X)G(V)

= /S^xxf ~ 7WXXXX + K(\\Z\\X)[(3UX
2 - l )u x a : - an] . ( 2 14^

Now



is a continuous function of t with

Hence

:= ir > 0 : \\z(t)\\x < | M for all t € [0, r ) |

is nonnempty. Let T be the supremum of A. Clearly K(||2(£)| |X)
 = 1 f°r all

* G [0,T), therefore z is a solution of (2.5) (that is it is a solution of (2.1)-(2.3)) in
[0,T) and (2.7) implies the energy bounds obtained earlier, i.e.

\\z(t)\?x<2E(t)<2E(0)<M*

for all t < T. If T was finite then, by continuity, ||z(T)||x < M and so ||z(t)||x <
2M- for t € [0,T*) for some T* > T, contradicting the fact that T is the supremum
of A. The regularity properties of u stated in the theorem follow from (2.12) and
(2.13). •

Existence of weak solutions under milder initial regularity assumptions is guar-
anteed by Theorem 6.1.2 in PAZY [P].

Theorem 2.2. Let a E #o(0,1) and b € L2(0,l). There exist unique weak solu-
tions u of (2.1)-(2.3), and z = (v,w) of (2.8), with

u e C([0, oo); ifo
2(0,1)) H C1 ([0, oo); L2(0,1)),

3. PROPAGATION AND CREATION OF OSCILLATIONS.

Consider the parametrized family of problems

with boundary conditions (2.2) and initial conditions

= a€(x), 0 < x < 1,

= b*(x)i 0 < ar < 1.

We assume that

where C does not depend on e.
In the sequel C will denote a generic positive constant which may vary from

formula to formula. If X is a Banach space and 0 < T < +oo then a sequence
w£ : (0,T) -* X of Borel measurable functions is said to belong to BL2(0,T;X) if

sup/ \\tif(t)\\2
xdt<C,

£ JO

for some constant C > 0. Also, we write {we} G J3L°°(0,T;X) if

sup ess sup ||w*(t)||x < C,
£ t€(0,T)



By virtue of the bounds (3.1), the initial sequence of strains {a€
x} does not

oscillate. We start by showing that oscillations are not created in {u%} for t > 0.
To fix notation, if 0 < T < +oo we define JCT := (0,1) x (0,T) and /C^ :=
(0,l)x(0,oo).

Proposition 3.1. Assume that (3.1) holds. Then {ue} e BI/°°(0,oo;i^(0,1)),
{ul} e BL°°(Q,oc\L2(Q, 1)), and {u£

xt} £ BL2(/CT)- In particular, there exists a
subsequence and U € L°°(0,oo;^(0,l)) such that

ue -±U weakly* in L°°(0, oo; i^(0,1)),

u\ -* Ut weakly* in L°°(0, oo; L2(0,1)),

u\x -»« Utx weakly in L2(/Coo).

Proof. We note that (2.4) implies that

* Jo
j f\(u'x)

2(x,t) - \)2dx

+ 1 f\u%x)
2(x,t)dx

<E€(O)<C.

Thus
{u6} e BL°°(0,oo;H%(0,1)), {u\} G RL°°(0,cx);L2(0,1)).

Again, (2.4) implies that for all r > 0

C > E€(0) > Ee(0) - E€(T) = 0 f f (uxi)
2(x,t)dxdt

Jo Jo
and so, letting r -> c» we conclude that {t/^} ^ BL2^^). •

In what follows we assume that a subsequence has been extracted in accordance
with the previous result. The strong convergence of {ux} is provided by the method
of compensated compactness ([M], [Tl]), more precisely by the Div-Curl Lemma
(see Theorem 1.1 in [Tl]).

Lemma 3.2. Let ft C RN be an open, bounded domain, andletEe,Ge € L2(Q;RN)
be such that

dEl dG\ dGej

belong to a compact subset of H^, for all 1 < i,j < N. Suppose further that
E£ -> Eo and G€ -» Go in L2(Q;RN). Then

N

in the sense of distributions.

An immediate consequence is



Corollary 3.3. Fix T > 0 and let {U€} be a bounded sequence in H1(K,T) such
that {U*x} is bounded in L2(KT). If Ue -^ U weakly in Hl(KT) then U£ -> Ux

strongly in Lfoc(£r).

Proof. Using the notation

div(/,0) := fx + gt, curl(/,p) := ft - p x ,

it follows that E£ := (U£
x,0) -- Eo := (Ux,0) and G£ := {U^UD ̂  Go := (Ux,Ut)

weakly in L2()CT)> with

url(l/|,[7/) = 0.

Therefore, by the Div-Curl Lemma (see Lemma 3.2)

W)2 - (Uzf
in the sense of distributions. Hence, for every <j) G D(ICT) we have

/

and we conclude that

U£-*UX strongly in L?OC(/CT).

D

Note that by Proposition 3.1 the sequence U€ := uE is bounded in H1 (/Coo)
and it satisfies the hypotheses of Corollary 3.3. Using Sobolev-Rellich-Kondrachov
Compact Imbedding Theorem and Corollary 3.3 we obtain the following result.

Proposition 3.4. Under the hypotheses of Proposition 3.1

u€ -> U strongly in LP(ICT) andux-*Ux strongly in Lfoc(/Coo) for all 1 < p < oo.

Strong convergence of {txf} is an immediate consequence of an interpolation
compactness result due to Aubin (see [A], [L], Theorem 5.1, and [T2], page 50).

Theorem 3.5. Let BQ C B\ C B<I be three Hilbert spaces with B\ continuously
imbedded in B2 and Bo compactly imbedded in B\. Let 1 < p < 00 and consider a
sequence {V€} such that

dVe

Ve e £Lp(0,T;Bo), -37- € J5Lp(0,T;B2).at
Then {V€} is contained in a compact subset o/Lp(0,T;Bi).

We have

Theorem 3.6. Under the hypotheses of Proposition 3.1

u\-*Ut strongly in L2(fCT) for all T > 0.

Proof. Set
Ve :=ue

t.

By Proposition 3.1 we have

V'eBL2 (0,^,^(0,1)),



and using (2.1) we obtain

Setting Bo := H&(0,1), B1 := L2(0,1) and B2 := #~2(0,1), from Theorem 3.5 we
conclude that every subsequence of {u£

t} admits a subsequence converging strongly
in L2(/Cr), and so

u\-*Vt strongly in L2(KT)-

D

Next we want to show that

Theorem 3.7. Under the hypotheses of Proposition 3.1
ue

xx->Vxx strongly inL2
oc{Koo).

This result will follow from the partial differential equation satisfied by u£ and
from the compactness lemma below.

Lemma 3.8. Fix T > 0 and let {R£}, {U£}, {V£}, {W£},{F£}, {Z£} G BL2{KT).
Suppose further that

Tie pc i ye I w?e
^xx XKix ' rt ^ ^ r r

ut — zx + r .
Then {V£} remains in a bounded subset o/i71/3(/C/) for every compact K! CC fCr-

Before proving this result we show how to derive Theorem 3.7.
Proof of Theorem 3.7. Set V£ := u£

xx. By Proposition 3.1 we have {V£} € BL2(JCT),

V\ = Z£
x, where Z£ := u£

xt G BL2()CT),

and

U£
xx = u£

xxxx = i [ ( « ) 3 - < ) x + /3u^xt - au£ - u\t]

= K + vt
£ + w£,

where

* 7 * x ' * 7 a : x < ? # 7 *
By Sobolev Imbedding Theorem and Proposition 3.1 it follows that {R6}, {V£} and
{W*} G BL2(ICT)' Hence, due to Lemma 3.8 we have that {u£

xx} is in a bounded
subset of Hl/Z(K,') and, in particular, {u£

xz} is in a compact set of L2
0C()C') for

every compact tCf CC /Cr- D
Proo/o/Lemma 3.8. Fix <p€ Cg°(0,T),il> e C^°(0,1) and define

Then

where

A£ :=

and
D€ := <pipZ€, Ee :=
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are uniformly bounded in L2{KT)- Applying Fourier transform to the system of
equations we have

Therefore

and as 6e € BL2(R2), from (3.2) we deduce that

In particular, using Holder inequality with p = 3/2 and p' = 3, we deduce that

| t 7 | l Kl + i J V Ifl + M + i J
SO

remains in a bounded set of L2(R2). We conclude that U€ is in a bounded set of
H1/*(£') for all compact set K' CC /CT. •

Next we show that {u%t} converges locally strongly provided the initial data
{(ae,be)} admits uniform bounds on Jf4(0,l) x ^2(0,1). We remark that this
regularity was prescribed in Theorem 2.1 asserting existence of strong solutions,
and that under this assumption {be

x} does not oscillate. We will, therefore, establish
that there is no creation of oscillations in {u€

xt}. First we provide uniform bounds
on {u\t} and {u€

xxt}.

Proposition 3.9. // {(a5, be)} is bounded in (#g(0,1) n i/4(051)) x #£(0,1) then

K J , K x J €£L~(0,oo;L2(0,l)). (3.3)

Proof. Let ue be the solution provided by Theorem 2.1 with initial conditions
(ae,65), and define

Note that £e(<) is well defined for all t > 0 due to the fact that u\t^u€
xxt^u\ G

C([0,oo);X2(0,l)).
Define

By (2.1) we have

and the boundary conditions (2.2) imply that for t> 0

Ahu£(x,t) = Afct4(x,t) = Afc«f(x,*) = Afctt«t(x,«) = Ofor x € {0,1}.
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Integrating by parts we have

Ahu
e
tt(x,t)Ahu

e
t(x,t)dx = f Ahul(x,t)Ah((ux)

3-ux)x(x,t)dx
o Jo

- / ? / (Ahue
xt(x,t))2dx-i Ahuxxt{x,t)Ahuxx{x,t)dx

Jo Jo (3.4)

- a / Ahu\{x,t)Ahu€{x,t)dx.
Jo

Setting

?h (*) • = \ f (A/ ,<) 2 (*> *) + 7 (A/ ,< J 2 (x, t) + a (Ahu*f (x, t) dx,
* Jo

(3.4) implies that

^JT = j " [AhuUx,t)Ah((u<x)
3-u'x)x(x,t)-0(Ahult(x,t)f] dx

= -j [Ahu%t{x,t)Ah (K)3 - u%) (x,t) + 0(Ahuxt(x,t)f] dx. (3-5)

Hence
ft fl

'*W=£*(0)-/ / Ahuxi{x,s)Ah((uxf -u%){x,s)dxds
Jo Jo

-P f f (Ahuxt(x,s)f dxds,
Jo Jo

and since

ax - 0x2 < —a 2 f° r all x>
4/3

we conclude that

tt(t) < mo) + 7Z f f (Aft (K)3 - uDfdxds. (3.6)
^P Jo Jo

Given f € C1 ((0,1) x (0, t + ft)) we have

and so

/ ( {Ahf)2{x,s)dxds<\ [ f T + f?(x,r)drdxds
Jo Jo n Jo Jo Js

f ' dsft(x,r)dxdr
3 Jmax{0,r-/i}

t+h

/
O Jo

W+/i yl
< / / f?(x,r)dxdr.

Jo Jo
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Using a density argument, we may apply this inequality to / := {u£
x)

3 — u%, and
(3.6) yields

[(K)3 - <)t)
2 (x,r)dxdr

where C is independent of h, e and £, and where we used Proposition 3.1 and Sobolev
Imbedding Theorem to guarantee that {u€

x} £ BL°° (JCoo). Finally, by Theorem 2.1

hence

tend to zero as h -> 0, and so

lim

Using the fact that the bounds on the initial conditions imply that ££(0) remain
bounded, taking the limit in (3.7) as h -» 0 we deduce that

£€{t) <c(l + ^ \ foralHX).

•
Finally, we prove

Theorem 3.10. If {{a£,be)} is bounded in (H%{0,1) n#4(0,1)) x #g(0,l) then

ue
xt->Uxt strongly in tfoc(KT) for all T > 0.

Proof. By Propositions 3.1 and 3.9 the sequence Ue := u\ satisfies the hypotheses
of Corollary 3.3 and the proof is concluded. •

We remark that the proofs leading to strong convergence of {u€}, {ux}, {u£},
{u£x} and {uxt) used different analytical arguments, including Sobolev-Rellich-
Kondrachov Compact Imbedding Theorem, interpolation theorems, Fourier trans-
forms, compensated compactness, and difference quotient regularity techniques.
However, we note that if we prescribe Dirichlet boundary conditions on uxx rather
than on the strains ux, and assuming that /32 > 47 and that

sup ||ae||H3 + 116*11*1 = C < -hoc, (3.8)
e

then strong convergence of {u€}, {ux}, {u\}, {uxx} in L2(KT) and of {i4t)> {wjw}
in L2

OC(ICT) for all T > 0 may be be easily obtained using simple energy apriori
estimates, compact imbedding theorems and compensated compactness. Indeed,
suppose that

u e €C( [0 ,+oo) ; J J 3 (0 , l ) )n^^

is a solution of

u\t = [(««)3 - u% + 0uU - -yu*xxx}x - au* (3.9)

satisfying the boundary conditions

{0,1}
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and the initial conditions

Proposition 3.11. For T > 0 the sequences {ue}, {u€
x}, {u\} and {ue

xx} converge
strongly in L2(JCT), and {uxt}, {u€

xxx} converge strongly in L,2oc(/Cr).

As before, using Sobolev-Rellich-Kondrachov Compact Imbedding Theorem and
Corollary 3.3, the above result follows immediatly if we prove that

[T ( e 2 2 2 2 \
JQ \ xx #2(0,1) xxt LHOA) t //*(0,l) tt L*(0A)J ^ ^

To prove this inequality first we remark that by virtue of (2.4), which still holds,
we have

E£(t) < Ee(0) < C

and so

We recall the following regularity result (see [E], page 326). ISz € L2(0,T;H£(0,1)),
«t€L8(O>T;£T-1(O,l)),andif

Zt - VZxx + F

where ft > 0, F £ L2(0,T;L2(0,1)), and z(-,0) e H&(0,1), then

f
T

<C (lk(0)|||r.(o,,)+yo \\F(t)\\lH0A)dt\ .

We may write (3.9) as

(ft - Ad2
x){dt - B%)u< = -au* + ( K ) 3 - ux)Xi

where A,B > 0, and setting w€ := (ft - Bdl)ue and / e := ~au 5 + ((w^)3 - u%)z

we deduce that

wf = ^w;|x -f / f , and w6 = 0 if x £ {0,1}.

By (3.8), (3.11) and (3.12) we have

Since

letting z€ := u^ or ze := w x̂ it follows that

\ ^ff = 0 if are {0,1},
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where Fe := wf or F€ := w£
xx. In both cases, by (3.8) and (3.13)

lk£(0)||tfMo,i) < C, / \\F£(t)\\lH0il) dt < C,
Jo

and so, applying (3.12) to each one of the sequences {ze} defined above we obtain
(3.10).

4. NUMERICAL SIMULATION

In this section we use a finite difference scheme to illustrate the behavior of
solutions of (2.1), (2.2) with initial conditions

f txe(x,0) = 0 0 < x < 1,
\ tt£(x,0) = sin6

 (JTTX) , 0 < x < 1,

where e is taken to be 1/m with m an integer. By Theorem 3.7 we know that {uxx)
converges strongly in Lfoc(/Coo)3 hence we ask whether {ue

xx} converges strongly in
L2(ICT)- The simulations carried out in Figures 1 through 4 seem to indicate that
this is true, in spite the fact that a residual, bounded, boundary layer remains.

We also consider the sequence {*4t}- Note that the stronger assumptions on
the initial conditions made in Theorem 3.10 do not hold here. However, Figure 5
through 9 lead us to believe that {uxt} converges strongly under the present weaker
conditions.

First we describe briefly the difference scheme used. Taking Ax := -j^y with K
an integer, we set Xk := (k - l/2)Ax, tn := nA£, and denote

(suppressing the dependence on e). For the boundary conditions we require

< = «? = un
K = uJU = 0,

and for the initial conditions

/ «2 = o,
\ u\ = At sisin6 (j

Then the difference scheme is

k+l iuk + uk-l _ uk+\ luk + uk-l

(Ax)2 (Ax)2

- 7 - (Ax)<

Ax
where

This scheme is second order in space but only first order in time. The time stepping
method was chosen because it is unconditionally stable and its Fourier analysis (on
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the whole line with only the principle part of the equation) closely resembles that
of the continuous equation; that is, high frequency modes decay rapidly in both.

Now we consider the solution to (2.1) with /? = 3 and 7 = a = 1. Figures 1
through 4 show the graphs of

x^ 103w^(a?,5x 10"5)

for e = 1/20,1/40,1/80,1/160, respectively. It appears that {u€
xx} does converge

strongly in L2(fCr), but that the limit (as e -4 0) has more interesting behavior
near the boundary. Figures 5 through 9 display the graphs of

a :^^ (a ; ,10" 5 )

for e = 1/20,1/40,1/80,1/160,1/320, respectively. These suggest that for fixed
t > 0

x *-> ue
xt(x,t)

converges strongly in L°°(0,1). Note that

x »-> uxt(x,0)

is unbounded in £°°(0,1).
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FIGURE 1. u{x,0) = 0, ut{x,0) = sin6
 (20TTZ), /3 = 3, 7 = a = 1,

At = 1.25 x 10~6, Ax = 1/4000, y x 10~3 = uxx{x, 5 x 10"5).
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FIGURE 2. u(x,0) = 0, ut(x,0) = sin6
 (40TTX), /? = 3 , 7 = a = l ,

At = 3.125 x 10~7, Ax = 1/8000, y x 10~3 = uxx{x,b x 10~5).
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FIGURE 3. u(x,0) = 0, ut(x,0) = sin6 (80TTZ), p = 3, 7 = a = 1,
At = 7.8125 x 10-8, Ax = 1/16000, y x KT3 = uxx(x,5 x 10"5).
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FIGURE 4. u(x, 0) = 0, ut(x, 0) = sin6 (160TTX), p = 3, 7 = a = 1,
A* = 1.953125, Ax = 1/32000, y x 10"3 = uxx(x,$ x 10"5).
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FIGURE 6. u(x,0) = 0, ut(x,0) = sin6 (40^) , /? = 3, 7 = a = 1,
A* = 7.8125 x 10-*, Ax = 1/16000, y = uxt(x, 10"5).
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FIGURE 7. w(x,0) = 0, ut(z,0) = sin6
 (80TTX), f3 = 3, 7 = a = 1,

At = 1.953125 x 10-8, Ax = 1/32000, y = uzt{xy 10"5).
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FIGURE 8. u(x, 0) = 0, ut{x, 0) = sin6 (160TTX), /? = 3, 7 = a = 1,
At = 4.8828125 x 10~9, Ax = 1/64000, y = ^ ( s , 10""5).



24

35.00

30.00

25.00

20.00

15.00

10.00

5.00

0.00

-5.00

-10.00

-15.00

-20.00

-25.00

-30.00

-35.00

0.00 0.20 0.40 0.60 0.80 1.00

FIGURE 9. tx(x,0) = 0, ut(x,0) = sin6 (320TTX), /3 = 3, 7 = a = 1,
At = 1.220703125 x 10~9, Ax = 1/128000, y = uxt{x, lO""5).
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