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ABSTRACT This paper develops a framework for dynamical fracture, concen-

trating on the derivation of balance equations and constitutive equations that

describe the motion of the crack tip in two space-dimensions. The theory is based

on the notion of configurational forces in conjunction with a mechanical version

of the second law. Kinking and curving of the crack are allowed under the as-

sumption that the crack will propagate in a direction that maximizes the rate at

which it dissipates energy.



1. INTRODUCTION
This paper is a continuation of a program, begun in (1996),x whose goal is a ge-
neral framework for brittle fracture based on the notion of configurational forces
in conjunction with a mechanical version of the second law of thermodynamics.
Here we extend the framework developed in (1996) in two directions:
(i) In (1996) we neglected the energy of the crack surfaces. Here we include what

we believe to be all relevant energies and forces.
(ii) We discuss at length propagation of a running crack, crack initiation with and

without kinking, and crack curving. These central issues in fracture mecha-
nics (vid. FREUND (1990)) are here regarded as constitutive, and are accord-
ingly discussed as such.

We work within the theory of finite deformations, because the basic ideas are
most easily explained when there is a clear distinction between reference and de-
formed configurations. As noted in (1996), our analysis is applicable with only mi-
nor modification to small strains.

Our study is divided into three parts. Part I covers the geometry and the
kinematics of a cracked body; Part II, the standard and configurational force
systems in a cracked body, and their balance and imbalance laws; Part III is
devoted to the constitutive aspects of crack propagation. The main contents of the
three parts may be summarized as follows.

a. Part I
We view a two-dimensional cracked body B as a referential neighborhood of a
two-face curve with one end fixed at the boundary 3B of B while the other end,
the crack tip, is contained in the interior of B and has a velocity v = Ve, with
V> 0 the tip speed and e the direction of propagation.

A tool we recurrently use to describe the kinematics and the dynamics of
cracked bodies is the notion of a migrating control volume R(t); an especially im-
portant example of a migrating control volume is a tip disc D$(t), which is a disc
of radius 6 centered at the tip and moving with it. Another tool we utilize, in this
paper as in (1996), is the notion of a tip integral

.# t ip{...}n = lim J{...}n, D6 = D6(t),
6—0 SD6

where n is the outward unit normal to 3D6, and {...} denotes an arbitrary
integrand. With these ingredients and tools, a number of transport theorems are
1(1996) (without names) signifies GURTIN and PODIO-GU1DUGLI (1996).



derived.

b. Part H

A notion central to our account of the phenomenology of cracking, is that of a

system of configurational forces.

As customary in continuum mechanics, we describe the response of a body to

deformation by a system of standard (newtonian) forces. We relate configura-

tional forces to the coherency of a body's material structure and hence stipulate

that they perform work in the addition and removal of material and in the evo-

lution of structural defects. Following GURTIN and STRUTHERS (1990) and GURTIN

(1995,1997), we view configurational forces as primitive objects consistent with

their own balance. That configurational forces may be needed to describe the

internal structure of the material follows from the beautiful work of ESHELBY

(1951,1956,1970) on lattice defects and fracture.2 But Eshelby's studies are sta-

tical, based on variational arguments, with configurational forces defined as deri-

vatives of the energy; for that reason Eshelby does not need a balance law for

configurational forces, a law that to us is essential to the description of time-de-

pendent, dissipative phenomena.

The ingredients of the configurational force system we envisage consist of a

bulk stress C, an internal force gint concentrated at the crack tip, a surface

tension a that acts within the free surfaces of the crack, and other less impor-

tant forces discussed in the text. We associate gint with the breaking of bonds

during crack growth or, more generally, to phenomena occuring at the tip at

length scales small compared to the gross length scale of the body.3 The surface

tension a is purely configurational; in fact, we here choose not to include surface

tension in the standard force-system.4

Essential to the theory are the (dynamical) tip traction j and the energy

release rate5 J, defined by
2 C/ . MAUGIN (1993,1995) for a discussion of configurational forces within an Eshelbian
framework, and for related references.
3 C / . the discussion of FREUND (1990, pp. 10-11). An example of such phenomena is
"small-scale yielding" associated with a crack-tip plastic zone (RICE, 1968).
4To allow for surface tension in the standard force system would necessitate strain-
dependent surface energies (GURTIN and STRUTHERS, 1990; GURTIN 1995). To quote
HERRING (1951a) on crystalline materials: "the principal cause of surface tension is the fact
that surface atoms are bound by fewer neighbors than internal atoms; surface tension is
therefore mainly a measure of the change in the number of atoms in the surface layer." We
interpret this as inferring that surface tension in crystalline materials is primarily confi-
gurational.
5 A concept introduced by ATKINSON and ESHELBY (1968) and justified by FREUND
(1972); cf. FREUND (1990, pp. 221-235). Within the framework of quasi-static elasticity



Here 5 is the (bulk) free energy density, S is the standard stress, FT is the trans-

pose of the deformation gradient F, 1 is the unit tensor, and krel is the kinetic

energy measured relative to the deformed crack tip. The vector j represents the

configurational traction $ti Cn on the material in an infinitesimal neighborhood

of the tip, augmented by an "inertial traction" $tipkrGln. The scalar J is the com-

ponent of j in the direction of propagation.

The manifestation of the configurational force balance most relevant to the

motion of the tip is the localization, to an infinitesimal neighborhood of the tip, of

its component in the direction of propagation:

where vptip represents the energy (= surface tension) of the crack surfaces at the

tip. This relation may be regarded as a balance between -e*gint, the internal for-

ce that opposes motion of the tip, and f = vJ-^tipl the driving force for crack pro-

pagation.

We supplement the configurational force balance with a mechanical version

of the second law; the localization of this law to the tip yields the simple but im-

portant inequality, Ftip = - (e*gmt)V = fV > 0, where Ftip is the energy dissipated

at the tip, per unit time. We view this inequality as indication of a need for

(suitably restricted) constitutive assumptions involving V and e*gint.

We believe it important to -differentiate between the roles played by the

quantities appearing in (1.1). In the literature one typically finds constitutive pre-

scriptions for J. Our view is that e*gint and ^ t i p are constitutive, with J a defi-

ned quantity related to c«gint and ^ t i p through the balance (1.1). To us the pre-

scription of a constitutive equation for J masks both the presence of the configu-

rational force balance and the existence the internal configurational force gint, a

physically significant quantity.

c. Part m
The last part of our study concerns the constitutive aspects of crack propagation.

Here we believe our chief contributions to be:

(i) A fairly complete constitutive theory for the tip with results independent of

bulk constitution.

the basic ideas are inherent in the work of ESHELBY (1956) and RICE (1968); there the
energy release rate coincides with the path-independent J-integral.



(ii) A treatment of anisotropy in the free energy of the crack surfaces and

in the constitutive description of the kinetics of the tip.

(iii) A criterion for crack-initiation that allows for kinking.

(iv) A criterion for determining the direction of a running crack; in contrast to

previous criteria based on minimizing the energy release rate, ours selects

directions that maximize dissipation.

We depart from standard fracture theories by allowing the free energy of the

crack surface to depend on its orientation as described by the angle B of its tan-

gent e = e(a) = (cose, sine). More precisely, as we are primarily interested in the

behavior of the tip, we consider a constitutive equation of the form

for the tip surface energy vpti . Surface energies in crystalline materials typically

exhibit a strong dependence on orientation, and the stability of crystals is known

to depend crucially on the convexity of such energies, with nonconvexity the rule

rather than the exception (HERRING, 1951b; GJOSTEIN, 1963; CAHN and

HOFFMAN, 1974; GURTIN, 1993). Here, because of periodicity, the description of

convexity is not straightforward; using ideas originating in the materials science

literature, we base our definition of convexity on the notion of a Frank diagram

(FRANK, 1963), which, for an arbitrary function cp(e), is the curve defined in po-

lar coordinates (r,e) by r = cp(e)~\ We refer to <p(e) as angle-convex if its Frank

diagram, Frank(cp), is strictly convex.

To describe the kinetics of the crack tip we consider a constitutive equation

giving the crack speed V when the angle B and the driving force f= J-i^ t i , are

known.6 Here we assume that there is an orientation-dependent limit-force

F(e)>0, below which the tip is stationary, and therefore write the constitutive

equation for V in the form:7

V = 0 for f < F(e),

V = V(e,f) > 0 for f > F(e).

Central to our theory is the Griffith-Irwin function

^Basic here is the assumption f t- p y * n - 0 , which is satisfied when y « 0 (r" p ) , p<l . In

linear elasticity, p - J (c/., e.g., FREUND, 1990, §1.4.3, §4).

When orientational aspects are not considered, the experimental results of ROSAK1S et

aJ. (1984) and ZENDER and ROSAKIS (1990) as displayed in Figure 11 of the latter paper, at

least indicate behavior of this form, as does the micromechanical model of LAM and

FREUND (1985) (FREUND, 1990, §8.3).



F(o) > 0. (1.2)

As the propagation condition f>F(o) is equivalent to J(eJ)>$(e), where

J(e,j) « e(e)*j, the classical Griffith criterion J(e,j)>v^(e) is conservative within

our framework.

The issue of crack initiation, i.e., the onset of propagation for a stationary

crack, possibly with the formation of an initial kink, is discussed by making ex-

tensive use of the notion of angle-convexity of the Griffith-Irwin function $(e)

and of the Frank diagrams of both $(e) and the energy release rate J(e) = J(e,j) at

a fixed tip traction j . In fact, these concepts allow for a complete geometric pic-

ture of the qualitative aspects of the fracture process. A stationary crack will re-

main stationary as long as the straight line Frank(J) remains strictly outside the

closed curve Frank($). Initiation of a running crack begins at a time for which

Frank(J) passes across Frank($), with a portion of Frank(J) entering the open

region interior to Frank($); and the crack will continue to run as long as a portion

of Frank(J) remains interior to Frank($). At the time of initiation Frank(J)

touches Frank(§), but has no intersection with its interior the possible kink angles

are those angles B+ that mark the intersection of Frank(§) with Frank(J). In this

latter case there may be many such angles e+, possibly infinitely many; we

prove that each possible kink angle e* is related to j through8

j = §(e+)e(e+) + $'(e+)m(e+), (1.3)

with m(0+) the normal to the crack at the tip. We show further that there is at

most one possible kink angle when the Griffith-Irwin function $($) is angle-con-

vex. Our results show that in general one should not expect the crack to initiate

aligned with the tip traction, although this is always the case for constitutively

isotropic tips, whose Griffith-Irwin function is, in fact, a material constant.

We propose a criterion of maximum dissipation, which postulates that, at

each fixed time t, a crack advance at an angle e(t) that solves the extremum

problem

rtip(j,e) - max Ttip(j,a), Q(j) = {angles e such that J(j,e) > $(e)}.
otcG(j)

A thermodynamical statement of this criterion is that, under isothermal condi-

®Interestingly, surface stress, and surface free energy are related through an identical
relation (c/. Remark 7.1).



tions, a crack propagate in a direction that maximizes the entropy production at

the tip. A main implication of the maximum dissipation criterion is that anisotro-

py generally induces an angle discrepancy between the tip traction and the direc-

tion of propagation. For a class of crack tips with V(e,f) « M[f-F(e)] for f>F(e),

which we refer to as tips with constant mobility M, the propagation angle is uni-

quely determined if $ angle-convex; the same is true for a constitutively isotropic

tip and in this case, as expected, the crack propagates in the direction of the tip

traction.

To put the maximum dissipation criterion into perspective, we observe that

arguments were given by COTTERELL (1965) in support of the requirement that

the crack advance at an angle B that maximizes the energy release rate

J(j,fc).9 A possible extension of Cotterell's criterion to anisotropic tips asserts

that the crack advance at an angle B that maximizes the total energy release

rate J(j,e)- $(e); for isotropic tips and for tips with both F and M constant such

an extension yields predictions coincident with those of the maximum dissipation

criterion, but in general the predictions of the two criteria are not the same.

Our final section contains a sketch of a promising application of our theory to

the fracture of crystalline materials. The typical faceted shapes of those

materials can be shown to be a consequence of restricting the function delivering

the energy density of a free surface to a finite set of orientations. Likewise, we

restrict the functions that specify a material's cracking response to 6, here a fi-

nite set of angles, and we assume that the only impediment to fracture is the

formation of new free surfaces, thus identifying for simplicity fy(0), the tip sur-

face energy, with the energy density on a crystal facet, and choosing F(e)sO. In

addition, to further simplify our discussion, we assume that the mobility is con-

stant. Cracks in such materials propagate without curving, changing their direc-

tion only by kinking; granted this, the qualitative picture of the fracture process

is similar to that discussed above.

9Cf. HUSSA1N, PU, and UNDERWOOD (1974) , PALANISWAMY and KNAUSS (1978) ,

COTTERELL and RICE (1980), LE (1989ab), STUMPF and LE (1990,1992).



PART I. GEOMETRY AND KINEMATICS OF CRACKED BODIES

2. CRACKED BODIES

We begin with a discussion of smooth cracks. In future sections we will apply our

results to crack kinking, an application that involves no inconsistency, as the

evolution of the tip is governed by local physical laws that apply away from (al-

though arbitrarily close to) points at which the crack kinks.

a. Smooth cracks. Migrating control volumes

Let B denote a closed region of IR2 with boundary 3B and, for each t in some open

time interval, let C(t) be a smooth, connected, oriented curve in B with one end,

Zo, fixed at the boundary 9B, with the remainder of C(t) — including the other

end point Z(t) — contained in the interior of B, and with C(T)cC(t) for all T < t.

We view B as a referential neighborhood of a growing crack C(t) with Z(t) the

crack tip (Figure 1). The phrase "in bulk" will be used to signify "away from the

crack".

We measure arc length s from Zo, and write s(X) for the arc length to a point

XcC(t). Let e(X) denote the unit tangent to C(t) in the direction of increasing s.

Then, since e(Z(t)) represents the direction of (possible) propagation, the tip velo-

city

v(t) « dZ(t)/dt (2.1)

may be written in the form

v(t) - V(t)e(Z(t)), V(t) > 0, (2.2)

with V the tip speed.

We let m(X) denote a continuous unit normal field for C(t).

By a (migrating) control volume10 we mean a closed subregion R(t) of B for

which SR(t) evolves smoothly with t, for which C(t) does not intersect 3R(t) at

more than two points, and for which Z(t) tf 9R(t). Then R(t) must be either:

(i) a bulk control-volume, which does not intersect the crack; or

(ii) a crack control-volume, which contains a portion of the crack, but not the

*^ln continuum mechanics one often uses the term part for a fixed subregion R of B; and
by the phrase "evolution of R with time" one refers to the motion of the deformed part
y(R,t)- Parts should not be confused with control volumes R(t), which are not fixed sub-
regions of the reference region B, but instead migrate through B.
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Figure 1
Referential neighborhood of a growing crack.



tip; or

(iii) a tip control-volume, which contains the tip in its interior.

For R(t) a control volume, n(X,t) designates the outward unit normal to

3R(t), while UaR(X,t) is the (scalar) normal velocity of the boundary curve in the

direction n(X,t) (c/. (3.2), (3.3)).

For R(t) a tip control-volume, C(t) intersects 3R(t) at a single point X~(t), and

u-(t) defined by

(X-)-(t) * u-(t)e-(t), e-(t) = c(X'(t)) (2.3)

represents the velocity of X~(t). Similarly, when R is a crack control-volume, C(t)

intersects 9R(t) at two points X±(t), and u±(t) defined by

(X*)-(t) - u*(t)e*(t), «*(t) = e(X*(t)) (2.4)

is the velocity of X±(t), where, for definiteness,

s(X*(t)) > s(X"(t)). (2.5)

An important example of a tip control-volume is a tip disc D6(t) (Figure 2),

which is a disc of radius 6 centered at the tip Z(t); here, letting n~(t) = n(X"(t),t),

v # n * u " = uaD6
/e"#n"' ( 2 - 6 )

and, as 8-*0,

c-(t) -+ e(Z(t)), u-(t) -* V(t). (2.7)

(Since e'Ti"-*-l, we choose 8 small enough that c"«n"^0.)

An example of a crack control-volume is constructed as follows. Let P(t)

denote an arbitrary connected subcurve of the crack, with Z(t)tfP(t). Then the

pillbox P6(t) corresponding to P(t) is the region

6 { X = X*+ocm(X), - 8<a<8 , XMcP(t)} (2.8)

(Figure 2). Writing X±(t), s(X~(t)) > s(X+(t)), for the endpoints of P(t), and suppres-

sing the argument t, 3P6 consists of:

(i) two curves, each parallel to—and a distance 6 from— P(t); on these curves
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Figure 2
Tip disc D$(t) and pillbox P6(t).
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the normal velocity of dP$ vanishes;

(ii) two end faces of length 6 perpendicular to F(t), one at X", the other

at X*.

b. Derivatives following the crack tip. Tip integrals. Transport theorems

We refer to a field <p(X,t) as smooth away from the tip if cp(X,t) is defined away

from the crack and if, away from the tip, ip(X,t) and its derivatives have limits

up to the crack from either side; we then write, for XcC(t),

[ip](X,t) = lim cp(X + em(X),t) - lim tp(X-em(X),t). (2.9)

Given such a field <p(X,t), consider the corresponding field cp(Y,t) in which Y rep-

resents the position of the material point X relative to the tip Z(t):

cp(Y,t) = ip(X,t), Y = X-Z(t). (2.10)

The partial derivative

ipc(X,t) =

with respect to t holding Y fixed represents the time derivative of <p(X,t) follo-

wing the tip Z(t); by the chain rule,

ipc = <p* + Vcp-v (2.11)

in bulk, where

cp-(X,t) = S<p(X/t)/St.

We will repeatedly take limits, as 6-*0, of integrals over 3D6(t) of fields of the

form ip(X,t)n(X,t), where, for example, <p is tensor-valued. We refer to such limits,

when meaningful, as tip integrals, and write

The next definition allows us to state succintly our hypotheses concerning

momenta and energies. We will refer to (p as regular if, in addition to being
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smooth away from the tip,
(1) ip is integrable on B; given any control volume R(t), the mapping t •-» JR( t )9 is

differentiable;
(2) cp° is integrable on B and [<p]m-v is integrable on C(t), both uniformly in t;

c x i s t s-

We will consistently use the following notation:

R6(t) = R(t)\D6(t), (2.12a)

CR(t) = C(t)DR(t), (2.12b)

C6(t) = CDg(t) = C(t)nD6(t) for a tip disc, (2.12c)

Cs(t) = CPg(t) = C(t)nP5(t) for a pillbox. . (2.12d)

Transport Theorems.
(i) Let R(t) be a control volume that does not contain the tip. If <p(X,t) is smooth

away from the tip, then

(d/dt){Jcp) = Jip- + J<pUaR. (2.13)
R(t) R(t)

(ii) Let R(t) be a tip control-volume. If cp(X,t) is regular, then

(d/dt){J<p) = Jtp* + J«pUeR - ftip«p(v.n), (2.14)
R(t) R(t)

with Jattjip' defined as lim 6_ 0 JR6IP*, which exists. Furthermore,

(d/dt){J(p) -» 0. (2.15)
D6(t)

The result (2.13) is standard, while proofs of (2.14) and (2.15) may be found in
(1996, p. 913). Three additional results, each useful, are

J V -» 0, (2.16a)
D$(t)

- (d/dt){/(p) - •tiD«p(v.n), (2.16b)
SD6(t) D6(t)
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(d/dt){ 0, (2.16c)
P$(t)

as 6—»0; (2.16a) follows from the existence of lim 6 _ 0 JR5<P*; (2.16b) is a conse-
quence of (2.15) and the first of (2.6); (2.16c) follows from (2.13) and the properties
(i) and (ii) of the pillbox P6(t) defined in (2.8).

We now state two useful transport relations for fields *(s) (independent of t)
that are continuous on the crack. Using the notation of the paragraph containing
(2.3), let

Jftip(t) = lf(s(Z(t))), r ( t ) = if(s(X'(t))) for a tip control volume, (2.17a)

!i'(s(X±(t))) for a crack control volume; (2.17b)

then

(d/dt){Jjf }
CR(t)

(d/dt){ Ji
CR(t)

Thus, by (2.7), as 6^0,

(d /d t ){ JO -• 0
C6(t)

for a tip control volume, (2.18a)

for a crack control volume. (2.18b)

for a tip disc. (2.19)
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3. MOTIONS

Let y(X,t) be a motion of B; that is, let y(X,t) be smooth away from the tip with

y(X,t) one-to-one and bounded in X on B for each t. The deformation gradient

F = Vy (3.1)

and the material velocity y are then smooth away from the tip.

Let R(t) be a control volume. The boundary curve 3R(t) may be parametrized

in a sufficiently small time interval and in a neighborhood of any of its points by

a function of the form X=X(X,t) (X a scalar variable); the field

u(X,t) = aX(X,t)/at (3.2)

then represents a velocity field for SR(t) in that neighborhood. It is possible to use

such parametrizations to construct a smooth velocity field u(X,t) for all of 9R(t)

in any (sufficiently small) time interval. A field u so constructed depends on the

choice of local parametrizations, but its normal component is intrinsic:

u-n = UaR. (3.3)

Each local parametrization X = X(X,t) induces a corresponding local parametriza-

tion x=x(X,t)=y(X(X,t),t) for the deformed boundary curve y(3R(t),t); the corres-

ponding induced velocity field

u(X,t) = Sx(X,t)/St • (3.4)

for the deformed boundary y(3R(t),t) is related to u by the formula

u = y + Fu. (3.5)

An intrinsic choice for u is normal to 3R; in this case,

u = UdRn, u = y + UaRFn. (3.6)

The tip velocity v(t) may be considered as a velocity field for the boundary of

the disc D6(t) using as a parametrization

X = X6(X,t) = Z(t)
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with v(\) a unit vector at an angle X from a fixed axis. Then

y° = y + Fv (3.7)

represents the corresponding induced velocity field for y(3D6(t),t). We assume
there is a function v(t) such that

y°(X,t) -> v(t) as X -> Z(t), uniformly in (X,t). (3.8)

If y(X,t) has a limiting value y(Z(t),t) asX-> Z(t), so that the deformed crack tip
is well defined, then y(Z(t),t) is differentiable in t and

v(t) = dy(Z(t),t)/dt. (3.9)

A direct consequence of (3.7) and (3.8) is that

for v = 0, y(X,t) -• v(t) as X -+ Z(t), uniformly in (X,t). (3.10)
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PART H. BALANCE LAWS FOR STANDARD AND
CONFIGURATIONAL FORCES. SECOND LAW

4. FORCES
We consider two systems of forces: a standard system consistent with balance

laws for linear and angular momentum; and a configurational system, consistent

with its pecular balance, that maintains the structural integrity of the material.

a. Standard forces

We let S(X,t) denote the (Piola) stress that arises in response to deformation, let

b(X,t) denote the inertial body force distributed over B, consider an inertial body

force i(t) concentrated at the tip, and neglect all other external body forces. We

assume that S is smooth away from the tip; that the crack faces are traction-

free:

limS(X±em(X),t)m(X) = 0 on C(t); (4.1)

that

JlSnl is bounded as 6->0; (4.2)
SD6(t)

and that b is integrable over B. The standard balance laws for forces and

moments then take the following form for each of the three types of control

volumes R = R(t):

JSn + Jb = 0, JyxSn + Jyxb = 0 (bulk or crack control-volume), (4.3a)
SR R dR R

JSn + Jb + i « 0, JyxSn + Jyxb + yxi = 0 (tip control-volume), (4.3b)
SR R dR R

with yxi = y(Z(t),t)xi(t). The balances (4.3a) are together equivalent to the local

relations

div S + b = 0, SFT = FST (4.4)

in bulk. Further, since b is integrable and y bounded, (4.3b) applied to a tip disc
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D$(t) yields, in the limit 8-*0, the following balances at the tip:

b. Configurational forces
We consider a configurational force system consisting of a stress tensor C(X,t), a

body force d(X,t) distributed over B, a force h(X,t) distributed over the crack

C(t), a force g(t) concentrated at the tip, and a surface stress vector a(s) that

acts within the free surfaces of the crack (Figure 3).11

The force g is a sum

8 « Bext + ginf <4-6)

with gext inertial and gint an internal force that maintains the integrity of the

tip when the crack is stationary and acts in response to the breaking of bonds

during propagation. The forces d and h also have inertial and internal compo-

nents, but the corresponding decompositions are irrelevant to what follows.12

Fix s and t, and let C*=C*(t) (respectively, C"=C"(t)} denote the portion of

the crack with arc-length values greater than {respectively, less than} s. The

surface stress a * a(s) then represents the force exerted across s by the material

in C* on the material in C~, with a*e a surface tension and a*m a surface

shear. (Here the term "material11 signifies the material of both crack faces.)

We assume that C is smooth away from the tip, that d is integrable on B,

and that h is integrable and a continuous on C(t). We posit a configurational

force balance that has the following form for each of the three types of control

**We allow neither o nor the surface energy 4> (cf. §5a) to depend on t. Such dependences,
while not difficult to accomodate, seem unimportant to the characterization of real mate-
rials, for which a and ty typically depend constitutively on the normal m to C, while
m « m ( s ) is independent of t {cf. HERRING 1951a, HOFFMAN and CAHN 1972). One generally
expects a configurational shear a»m whenever the surface energy is constitutively aniso-
tropic {cf., HERRING 1951a, HOFFMAN and CAHN 1972, GURTIN 1995).

^^Internal body forces have no classical counterpart. A choice of reference configuration is
an identification of the body's material points with points of euclidean space. Internal forces
represent forces that pin these reference labels in place (GURTIN 1995,1997) . An opera-
tional view of such forces may be phrased in terms of an underlying lattice. A choice of
reference pins this lattice to the underlying ambient space. If the material undergoes frac-
ture, then the lattice, in the reference, remains unchanged, but since bonds between atoms
have been broken, additional internal forces are needed to preserve the referential integri-
ty of the lattice. At the tip such forces are represented by gm t . a quantity that will be cen-
tral to the constitutive description of tip kinetics (1996).
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Figure 3
Configurational forces acting on a control volume R.
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volumes R«R(t) (cf. (2.12b), (2.17)):

JCn + Jd = 0
SR R

JCn + Jd + J h + a* - a- = 0
SR R CR

JCn + Jd + Jh + g - a* = 0
SR R Cn

(bulk control-volume), (4.7a)

(crack control-volume), (4.7b)

(tip control-volume). (4.7c)

The balance (4.7a) yields the relation

div C + d = 0 (4.8)

in bulk.

To derive a local relation for the crack, consider an arbitrary pillbox P§(t).

Then (4.7b) applied to P6(t) yields, in the limit 8->0,

J([C]m + h) + a+ - a- = 0,
s-

where s± = s±(t), s*>s", are the arc lengths values that mark the endpoints of P6(t),

while o± = a(s±). If we let s+->s~ after dividing by s*-s", we find that

[C]m + h + da/ds « 0 (4.9)

on the crack away from the tip.

Finally, since d and h are integrable, (4.7c) applied to a tip disc D6(t) yields, in

the limit 6-*0, the tip balance

rtip
a(s(Z(t))), (4.10)

where we have used (4.6).

c. Inertial forces. Kinetic energy

Let p(X)>0 denote the mass density, assumed continuous, and write

p = py' (4.11)
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for the densities of momentum and kinetic energy. We define the production of
momentum and kinetic energy in a control volume R(t) through

P(R(t)) = (d /d t ){Jp) - JpUaR, (4.12a)
R(t) 3R(t)

K(R(t)) = (d /d t ){Jk) - JkUaR, (4.12b)
R(t) 3R(t)

and, to ensure that these definitions have meaning, we assume that p and k are
regular.

As in (1996) and in PODIO-GUIDUGLI (1996), we characterize inertial forces
through the following two relations involving inertial forces, inertial working, and
the productions of momentum and kinetic energy:

Jb + i = -P(R), (4.13a)
R

J b - y + i-v + gext-v = -K(R). (4.13b)
R

The relations (4.13) {respectively, (4.13) with the terms involving i and gext omit-
ted} are to be satisfied for each tip control volume {respectively, crack or bulk
control volume} R = R(t). Here JRb-y# denotes the limit lim 6 _ 0 jR5b«y\ which
we assume to exist.

The counterpart of (4.13a) for bulk control volumes yields the standard result

b = - p y " . (4.14)

More important are the relations13

i - • t i P P ( v # n ) ' (4.15a)

i-v + gext-v - • t i pk(v-n) , (4.15b)

gext-v = v . f t i p k r e l n , krel = i p l y # - v | 2 ; (4.15c)

(4.15a) asserts the equivalence of i and the release rate for momentum; (4.15b)
1 3 C / . DASCALU and MAUGIN [1993], who, for a homogeneous elastic mater ia l , formally

derive a relation (their eq. (6)) that implies (4.15c). DASCALU and MAUGIN base their re-

sult on a balance, analogous to (4.12a), for the "pseudomomentum" p « - p F T y (cf. MAUGIN

1993, 1995; GURTIN 1997); that balance yields a relation for g c x t , rather than for g e x r v .
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the equivalence of the total inertial-working and the release rate for kinetic ener-
gy; (4.15c) the equivalence of the configurational inertial-working and the release
rate for the kinetic energy measured relative to the tip.

To establish (4.15), note first that, since b and b-y* are integrable,

Jb-^O, Jb-y-->0 (4.16)
D6 D6

as 6->0. The iden t i t y (4.15a) follows f rom (2.16b), (4.12a), (4.13a), a n d t h e first of

(4.16); (4.15b) follows from (2.16b), (4.12b), (4.13b), and t h e second of (4.16); (4.15c)

follows from (4.15ab), the identity

k-p-v = |p ly--v | 2 - iplvl2, (4.17)

and the continuity of p and spatial independence of v.
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5. THE SECOND LAW
In the absence of thermal and compositional effects classical continuum mecha-
nics may be based on a "second law" that utilizes stationary control volumes R
and has the form

(d /d t ){ j£ ) < JSn-y- • Jb-y\
R dR R

with $(X,t) the bulk free-energy. For a migrating control volume R = R(t) the
standard generalization of this inequality would include the transport term

{inflow of free energy} = J$U (5.1)
dR

on the right side, but would not account for configurational forces.
We base the theory on what we believe to be a more fundamental version of

the second law; specifically, we write the second law for a migrating control
volume R = R(t) in a form

(d/dt){free energy of R(t)} <

{rate at which work is performed on R(t)}

that accounts for the working of both configurational forces and standard forces,
but not explicitly for the flow (5.1) of free energy across R(t) as it migrates
(GURTIN, 1995, eqt. (3.12)). (As we shall see, this inflow of free energy will be ac-
counted for implicitly in the working of the configurational forces.)

a. Statement of the second law
We represent the free energy of the material by a bulk free-energy $(X,t)
distributed over B and a surface free-energy i|*(s) distributed over C(t); the free
energy of R(t) is then given by

R(t)

We assume that $(X,t) is regular and i|>(s) smooth, that

R(t) CR(t)

(5.2)
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and that ^ is independent of time (c/. Footnote 11).
The working 1iJ(R(t)) should account for the work performed in the addition

and removal of material at the boundary of R(t) and for the change in material
structure as the crack tip evolves. We assume that Cn*u represents the boundary
working of the configurational stress C, where u is the velocity field computed
via a particular choice of local parametrizations X=X(X,t) for 3R(t). Classically,
the standard stress S expends power over the material velocity y \ but when the
control volume migrates there is no intrinsic material description of its deformed
boundary y(3R(t),t), as material is being added and removed, and it would seem
appropriate to use, as a velocity for yOR(t),t), the derivative u(X,t) of y(X(X,t),t)
with respect to t holding the surface parameter X fixed (c/. (3.4)); we therefore
write the boundary working of S in the form Sn*u.

The vector a represents configurational stresses within the free surfaces of
the crack. If R(t) is a crack {respectively, tip} control-volume, then a performs
work of amount crMXT - C J - - ( X T {respectively, -cx-«(XT) (c/. (2.17) and the
paragraph containing (2.3), (2.4)).

Since material is neither added nor removed from interior points of R(t), and
since there is no change in material structure away from the crack tip, the
working of the body force b should have its standard form b*y\ while the confi-
gurational forces d and h should not perform work. Finally, the motion of the tip
is accompanied by working of the inertial forces g€Xt and i, with the tip velocities
v and v, respectively, as the appropriate conjugate velocities; on the other hand,
the internal force gmt, as such, performs no work.

In view of the foregoing discussion, we write the working 1ff(R(t)) in the form

1ff(R(t)) = J(Sn-u + Cn-u) + J b - y + Tffc(R(t))( (5.3)
SR(t) R(t)

where rWc(R(t)), the working associated with the crack, has the following form for
each of the three types of control volumes R = R(t) (c/. (2.3), (2.4), 2.20)):

1tfc(R) = 0 (bulk control-volume), (5.4a)

1iJc(R) = u+e**cr+ - u~€-*<J- (crack control-volume), (5.4b)

T£TC(R) = i*v + g€Xt*v - u-e-*cr (tip control-volume). (5.4c)

We therefore write the second law for a control volume R(t) — that may or
may not contain the crack tip — in the form
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(d/dt){J$ + J » < J(Sn-u + Cn-u) + J b - y + 1ffc(R(t)), (5.5)
R(t) CR(t) SR(t) R(t)

with u a velocity field for 3R(t) and u the corresponding induced velocity field for
yOR(t),t). The quantity

HR) :« J(Sn-u + Cn-u) + Jb-y + KTC(R) - (d/dt){J$ + J » * 0 (5.6)
SR R R CR

represents the energy dissipated in R = R(t), per unit time.

b. The second law applied to bulk and crack control-volumes
We require that the second law (5.5) be independent of the choice of parametriza-
tion for 9R(t). A consequence of this requirement, applied to an arbitrary time-
dependent bulk control-volume, is the Eshelby relation

C « $1 - FTS (5.7)

for the configurational stress (GURTIN, 1995). Using (3.3), (3.5), and (5.7), we can
rewrite (5.5) in the more familiar form

(d/dt){j5 + J^} * J(Sn.y + $u3 R) + Jb-y + Tffc(R(t)); (5.8)
R(t) CR(t) SR(t) R(t)

when applied to an arbitrary, time-independent, bulk control-volume, (5.8) yields
the bulk dissipation inequality £#<S-F\

Consider next a pillbox P6=P6(t). Since P6(t) does not contain the tip, and since
ty is independent of time, (2.16c), (2.18b), the assertions (i) and (ii) following (2.8),
(4.1), and (5.4b) imply that

(d/dt){J$

J(Sn-y-*$UaR) + Jb-y -> 0,

as 6-*0. Thus (5.8) yields
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4>*u* - i|ru~ < u4e4*a* - u"e*^a", (5.9)

and since u± may be specified arbitrarily, we arrive at the equivalence of surface

tension and surface free energy,

a-e = i|>. (5.10)

c. The second law applied to tip control-volumes
Consider (5.5) applied to the tip disc D6=D6(t). By (2.15) and (2.19),

(d/dt){J$ +

as 6-»0; thus, appealing to the paragraph containing (3.7), we conclude, with the

aid of (4.16), (5.4c), and (5.6) that

J(Sn-y° + Cn-v) + i«v + gext-v - u"e--o- + o(l) = T(D8) > 0. (5.11)
c)D6

Next, by (3.8), (4.2), and the first of (4.5), as 6-»0,

JSn-y° = v-JSn + o(l) -» -v-i, (5.12)
3D8 3D8

while (4.10) yields

JCn-v = v -JCn -» v - (a t i p - g int - gext). (5.13)

Thus, by (2.2) and (2.7), passing to the limit 8-*0 in (5.11) yields two impor tan t

results:

BinfV < 0, (5.14)

which represents an internal dissipation inequality for the crack tip; and

r t i p - - B i n t - v , r t i p - lim r(D6), (5.15)
v 6-0
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establishing -gjnt#v> a n d hence the breaking of bonds, as the sole source of
dissipation at the tip.

By (4.12b), (4.13b), (5.4c) and (5.10), we can write the second law (5.8) for a
tip control-volume R = R(t) in the form

(d/dt){ J($ + k) + J > ) * JSn-y- + J(* + k)UaR - f u - (5.16)
R CR 3R 3R

and can express F(R), defined by (5.6), as the right side of (5.16) minus the left.
Since JQR($ + k)U0R and -tjru", respectively, represent net flows of bulk and sur-
face energy into R across 3R, (5.16) is consistent with more standard views con-
cerning the formulation of basic laws for control volumes. (For a crack control-
volume there would be an additional term ^*u+ on the right side of (5.16); for a
bulk control-volume the terms involving \\> would be omitted.)

In view of the sentence containing (5.16), we find, with the aid of (2.15) and
(2.19), that

tip )} - W - r t ip i (5.17)

which can be regarded as an energy balance for the crack tip.
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6. BASIC DEFINITIONS AND RESULTS FOR THE CRACK TIP
a. Tip traction. Tip J-integral. Driving force
Let e(t) * e(Z(t)). The following quantities are essential to our discussion:

k r - 1)l-FTS}n tip traction,

energy release

driving force.

rate,

(6.

(6.

(6.

la)

lb)

lc)

The vector j represents the configurational traction f tipCn on the material in
an infinitesimal neighborhood of the tip, augmented by the "inertial traction"

• tipkreln-
With a view toward discussing f and J, we assume throughout the remainder

of this subsection that the crack is growing:

v = Ve, V > 0. (6.2)

Since e*a t ip=^ t i (4.15c), divided by V, and (6.1c) imply that

-FTS}n - o t i p + g ,« ] . (6.3)

The stress C = $1-FTS, the surface stress a, and the inertial force gext give rise to
a net non-internal configurational force on the material in an infinitesimal
neighborhood of the tip; f represents the component of that force in the direction
of propagation. Using the Eshelby relation (5.7), we can rewrite the configurational
balance (4.10) in the form

# t i p{$l - FTS}n - a t i p + g int * gext * 0. . (6.4)

The last two relations yield the tangential configurational balance

a balance between the driving force f and -••gin t , the internal force that opposes
motion of the tip (c/. (1.1)). By (5.14) and (5.15),

r t i p - fV > 0, (6.6)
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and hence the driving force f is work-conjugate to the tip speed V.
Letting f « Ftip/V, with Ttip given by (5.17), and comparing the result to (6.2),

we conclude, with the aid of (6.1c), that

J = V^ftip{Sn-y* + ($ + k)(v.n)}; (6.7)

JV therefore represents the working on — and bulk-energy flow into—an infinite-

simal neighborhood of the tip; J itself measures this quantity per unit crack-

length rather than per unit time. Also, by (6.1b), J is the component of j in the

direction of propagation; for krel= 0, J is the limiting value of the Eshelby-Rice in-

tegral.

Consequences of the tangential balance (6.5) and the second law, as manifes-

ted by the internal dissipation inequality (5.14), are the following necessary con-

ditions for crack growth:

(i) the driving force must be nonnegative,

f > 0; ' (6.8)

(ii) the tip traction must form an acute angle with the direction of propagation,

e-j > v|>tip > 0. (6.9)

The Griffith criterion asserts that a crack will run when and only when e-j>^tip

and hence whenever (6.8) is satisfied strictly. Within the present framework (6.8)
represents only a necessary condition for crack propagation; in fact for the class
of constitutive equations we will consider, (6.8) may be satisfied strictly without
motion of the tip. The results (6.8) and (6.9) are, however, independent of consti-
tutive assumptions.

b. Summary of basic equations

The basic equations for the crack tip consist of the standard force and moment
balances

P tiP 0, (6.10)

and the tangential configurational balance
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(c/. (6.5)). These balances are supplemented by a relation

establishing the equivalence of surface tension and surface free energy (c/.
(5.10)), and an internal dissipation inequality

c-gint < 0 for V>0, (6.13)

which is the second law localized to the crack tip (c/. (5.14)); in this regard,

r t i p - -(••Eint>V - fV (6.14)

represents the energy dissipated at the tip, per unit time.

Remarks .
1. The surface shear m-a and the normal internal force m*gmt perform no work,
as there is no motion of the crack normal to itself; and the internal configuratio-
nal forces d and h perform no work, since structural changes in the material oc-
cur only at the tip. For that reason, we consider these forces as indeterminate14

and view the balances (4.8), (4.9), and the normal part of (6.4) as equations for d,
h, and m*(a'+g in t).15 On the other hand, the surface tension e*cx and the tan-
gential force e*gmt perform work, but only when the crack tip advances. Configu-
rational forces therefore play no role away from the tip,16 while at the tip the
sole operative forces are those involved in the tangential part of the balance (6.4),
namely J, e*a t ip = ̂ t i p , and e*gint (c/. (6.1c), (6.5)). Bulk constitutive equations
for $ and S yield, via (6.1b), an auxiliary constitutive specification for J; in the
next section we will discuss constitutive equations for both ^ t i p and the internal
force c-g int.
2. It is important to differentiate between the roles played by the surface energy
1 4That is, not specified constitutively (TRUESDELL and NOLL, 1965, p. 70).
^Contrast this to a phase interface, whose migration results in the working of internal
configurational forces distributed over it and surface stresses acting within it. For that rea-
son such forces are not treated as indeterminate; in fact, their constitution helps to charac-
terize the kinetics of the interface (GURT1N and STRUTHERS, 1990; 6URTIN 1995).
*^The theory away from the tip is therefore equivalent to the classical theory. On the
other hand, configurational forces play a pivotal role in the evolution of the tip, as it is there
that the material structure undergoes change.
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+ tip, the energy release-rate J, and the tangential component e-g int of the
internal configurational force. Throughout the literature one finds constitutive
prescriptions for J (or equivalently for the stress intensity factor). Our view is
that e-gint and 4>tip are constitutive, with J a defined quantity related to e*gint

and i|>tip through the tangential configurational balance (1.1). J is typically repre-
sented by bulk quantities that already have constitutive prescriptions (cf.
Remark 1); to write an additional constitutive equation for J would seem inap-
propriate. In the theory described here the configurational force balance provides
a quantity gint with tangential component available for constitutive prescription.
The physical consistency of this view is underlined by the fact that the second
law yields the single inequality F t ip =-Ve-g i n t < 0, involving the same variable,
whose satisfaction indicates the need for additional constitutive assumptions
involving V and e*gint. In short, our view is that the prescription of a constitutive
equation for J masks:
(i) the presence of a fundamental balance law, the configurational force balance;

(ii) the existence of a physically significant quantity, the internal configurational
force, which acts at the tip, with tangential component e-gxnt a direct res-
ponse to the breaking of bonds during fracture. D

e. The standard momentum-condition
The quantity i = $tipp(v-n) = [f t ipp $n]v represents the momentum flow into
an infinitesimal neighborhood of the crack tip. Theories of crack propagation for
specific materials are generally consistent with the hypothesis

J t ipp®n = 0 (6.15)

(cf. Footnote 6), which we refer to as the standard m o m e n t u m - c o n d i t i o n .
Granted (6.15), i=0, so that, by (6.10),

P tip
 = °- (6.16)

Further, by (6.15), f t ip(p-v)n = 0; thus, since kr€l = $p|y# - v|2 and p = py#,

• tipkreln = *tipkn- (6.17)

The importance of (6.17) is that it results in relations

( 6 . 1 8 a )
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FTS}n, (6.18b)

in which the tip traction j does not depend explicitly on the speed or direction of

the crack. (Without the standard momentum-condition j is dependent on kr€l

and hence, by (3.7) and (3.8), on v.)

By (3.10), for a stationary crack the standard momentum-condition is satis-

fied automatically; in fact, ftipkn= ft- kreln= 0, so that

j = f t iD{Sl-FTS}n, J = T.f t iD{$l-FTS}n. (6.19)
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PART m. CONSTITUTIVE ASPECTS OF CRACK PROPAGATION

Throughout this part we assume that the standard momentum-condition is satis-
fied.

7. GROWING CRACKS
a. Constitutive relations at the tip
It is convenient to characterize the direction of propagation e by its counterclock-
wise angle e from the (1,0) axis:

e = e(e) = (cose,sine), m = m(e) = (-sine,cose). (7.1)

We consider two constitutive relations for the tip: one giving the surface
energy ^ t ip as a function of e; the other giving the speed V as a function of e and
the component -e*gint of the internal configurational force opposing propagation.

We write the constitutive equation for \ptl? in the form

with $ smooth and strictly positive:

fae)>0. (7.3)

The force -e*g i n t opposes the breaking of bonds at the tip, and it seems
reasonable to suppose that propagation is possible only when this force is suffi-
ciently large. For notational convenience, using the balance law (6.11), we write
the constitutive equation for V in terms of e and f, the driving force. We
therefore consider, for the velocity V, a constitutive equation consisting of two
parts: a fracture limit

V = 0 ' for f < F(e), (7.4)

with

F(e) > 0 (7.5)

the limit force for fracture; and a kinetic equation
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V = V(e,f) > 0 for f > F(e), (7.6)

with V(e,f) smooth up to f = F(e) and consistent with lim f_F(e)V(e,f) = 0. The
constitutive assumptions (7.4)-(7.6) ensure that V>0, and, what is most impor-
tant, that the dissipation inequality (6.6) be satisfied.

Remark. Materials scientists often model grain boundaries, phase boundaries, and
free surfaces as sharp surfaces endowed with energy densities dependent on sur-
face orientation (HERRING, 1951ab; FRANK, 1963; GJOSTEIN, 1963). In our theory
surface physics of this type is characterized by the constitutive function ^(e). In
theories of phase boundaries such an energy \\>(B) gives rise to a vector surface
stress of the form

a = (j;(e)e(e) + ^'(e)m(e), (7.7)

where ty(B) is surface tension, while \\)\B) represents surface shear; moreover
(7.7) follows from thermomechanical arguments (GURTIN, 1993, eqt. (6.12)). Here,
unlike phase boundaries, the sole kinetics associated with the crack surfaces is
that associated with the tip: the crack surface cannot move normal to itself. This
"constraint" allows for a*e = ̂ (e), but renders the surface shear a-m indetermi-
nate (c/. Remark 1 following (6.14)). D

b. Constitutively isotropic cra.ck tips. Tips with constant mobility
We will refer to the crack tip as constitutively isotropic if vj;(e), V(e,f), and F(e)
are independent of the orientation B of the crack. Granted this, the constitutive
equations (7.2)-(7.6) become

\\)tip = constant > 0, (7.8a)

V = 0 for f < F, V - V(f) > 0 for f > F, (7.8b)

F = constant > 0, (7.8c)

so that

§ = constant.
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When considering such tips we will assume, in addition, that the speed increase

with the driving force:

V'(f) > 0 for f > F. (7.9)

We will also consider crack tips with constant mobility as defined by the ge-
neral anisotropic constitutive equations (7.2)-(7.6) with the kinetic relation (7.6) in
the specific form

V(e,f) = Mtf - F(e)] for f > F(e), (7.10)

where

M > 0 (7.11)

is a constitutive constant that represents the mobility of the crack tip.

c. The Griffith-Irwin function
We henceforth consider the energy release rate as a function

J(e,j) = e(e)-j (7.12)

of the angle of propagation B and the tip traction j . (When there is no danger of
confusion we will suppress the argument j and write J(e) = J(e,j).) For a material
characterized by (7.2)-(7.6), crack propagation occurs when and only when
f >F(e), or equivalently, by (6.1c),

J (e j ) > $(e), (7.13)

with

ff(e) « $(e) + F(e) > 0. (i.2JWs)

The Griffith criterion f > 0 therefore represents a conservative estimate for propa-
gation, at least within the present framework. We will refer to $(©) as the
Griffith-Irwin function.17

1 That surface energy is not the sole limiting factor to crack initiation was noted by
IRWIN (1948), who proposed that 4» be augmented by a quantity yp representing the "plastic
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d. Angle-convexity. The Frank diagram (GURTIN, 1993, §7)
Crack propagation is related to the convexity of the Griffith-Irwin function. The
definition of convexity for such a function is not obvious: the usual definition is
inapplicable, since §(e) is periodic.

A notion of convexity for §(o) can be given in terms of its Frank diagram
Frank(§), which is the curve defined in polar coordinates (r,e) by r = i(e)"1:

Frank(§) = { (r,e): r=$(e) ' 1} (7.14)

(FRANK, 1963). We will refer to $(e) as angle-convex if its Frank diagram is
strictly convex; that is, if, given any angle a, the tangent to Frank(§) at the point
x with angle oc intersects Frank($) only at x.

We will also consider nonconvex §(e); with this in mind, we will refer to a
straight line C as a convexifying tangent to Frank($) if £ is tangent to Frank($)
at one or more points, but £ does not intersect the region interior to Frank($);
the angles of the points of intersection of £ with Frank($) will then be referred to
as tangency angles of £ (Figure 4).

Remarks .
1. An alternative but equivalent notion of convexity may be phrased in terms of
the function i(x) defined for 1x1*0 by

§(x) = lxl$(e), (7.15)

with B the angle of x, as the angle-convexity of $(e) is equivalent to the require-
ment that

i(x) - $(z) < (x - z)-vi(x) (7.16)

for all non-zero points x and z whose angles are unequal. That angle-convexity
should be related to the more standard convexity expressed by (7.16) becomes
somewhat more transparent upon noting that, by (7.15), the level set J ( x ) s l has
the equation r * ^(e)"1.
2. For a further insight into the consequences of angle-convexity, let the energy of

work dissipated in the surrounding material per unit surface area created" (c/. FREUND,
1990, pp. 8-10, from whom the quote is taken, and who gives a complete discussion of these
ideas, with relevant references). Within our framework the role of *p is played by F.
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Figure 4
Frank diagram (the curve Frank(ip)) of a function <p(0) that is not angle-
convex. Z is a convexifying tangent; $i and $2 are tangency angles.
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an oriented curve c be given by JcE(0(s))ds, where 0(s) is the angle from a fixed

axis to the unit tangent to c at s. Then E(e) is angle-convex if and only if, among

all oriented curves from one arbitrarily prescribed point to another, the straight

line has (strictly) least energy.

3. The Wulff shape (or Wulff crystal) corresponding to E(e) is the region W that

minimizes Ja^ E(e(s))ds over the set of all regions Iff of unit area. The set of

tangency angles of convexifying tangents to E(e) then consists of the angles of all

tangents to 3W. (If E(e) is not angle-convex, then 3W will have corners, and some

angles will be missing.) D

Lemma 7.1.

(i) Strictly positive, constant functions are angle-convex. Thus for a constitu-

tively isotropic tip, <£ is angle-convex.

(ii) A necessary condition for the angle-convexity of 5(0) is that

$"(e) + 5(0) > 0 (7.17)

for all e, where "primes" denote differentiation,

(hi) If 4K0) and F(0) are angle-convex, then so also is 5(0).

Proof. Assertion (i) is immediate; (ii) is proved in (GURTIN, 1993, Theorem 7J);

(iii) follows from the equivalence of angle-convexity and the condition expressed

by (7.16). D

We assume for the remainder of this section that a tip traction j * 0 is pre-

scribed and consider

J(0) - J(0,j)

restricted to the set of angles 0 with e(0)-j>O (c/. (6.9), (7.12)). Then Frank(J) is

the curve r * (e(e)-j}"1; in fact, since x = re(0),

Frank (J) is the straight line consisting of all x such that x-j = 1. (7.18)

A simple but important consequence of the notion of a Frank diagram is

Lemma 7.2. Given an angle 0,
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J(e) = §(e) ** Frank($) intersects Frank(J)
at a point x with angle 9; (7.19a)

J(e) < $(e) «=> the point x on Frank(J) with angle e

lies strictly outside of Frank(i). (7.19b)

In the proof of the next lemma we will use the following consequences of (7.1):

e'(e) = m(e), m'(e) = -e(e). • (7.20)

Lemma 7.3. Frank (J) is tangent to Frank ($) at a point with angle e0 if and only
if j satisfies

j = $(eo)e(eo) + $'(eo)m(eo). (7.21)

Proof. Assume that Frank (J) is tangent to Frank (f) at a point x with angle e0.
Then, by (7.19a), J(e0) = e(eo)-j = $(e0) holds. If we use (7.20) to differentiate, with
respect to e, the curves r = {e(e)^j}"1 and r=$(e)"1 representing Frank(J) and
Frank($), we see that these Frank diagrams are tangent at x if and only if

m(eo)-j = $'(e0). (7.22)

The relations e(eo)-j = $(e0) and (7.22) imply (7.21). Conversely, (7.21) implies
e(e)-j = i(e) and (7.22), and these yield the tangency of the Frank diagrams at x.
D
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8. KINKING AND CURVING OF CRACKS. MAXIMUM DISSIPATION
CRITERION

In discussing kinks we will use local results derived for smooth cracks; this invol-

ves no inconsistencies, as these results will be applied only on the smooth portions

of the crack.

Consider a stationary crack and a program of continuously increasing loads.

Let B' denote the angle of the tangent e(e~) at the tip. In certain circumstances

one might expect crack propagation to initiate at an angle B+ different from e~,

indicating an initial kink. Once the crack has begun to run, the surface energy

and speed of the tip are given by (7.2) and (7.6) subject to (7.3) and (7.5); however

an additional constitutive relation, specifying the direction of propagation, is nee-

ded. We derive this relation under the assumption that the crack will propagate

in a direction that maximizes the rate at which it dissipates energy.

We will consistently use the following terminology: we begin with a stationary

crack and use the term "crack initiation" to indicate the onset of a "running

crack"; and to emphasize the possibility of kinking, we use the term "kink angle"

for the angle e* immediately after initiation, but in so doing we do not mean to

rule out the case B+=B~.

We assume throughout this section that e(e)*j>0, an assumption involving no

loss in generality (c/., (6.9)).

a. Criterion for crack initiation. Kink angle

By (7.2) and (7.12), the driving force (6.1c) may be considered as a function of B

and the tip traction j :

f = f(j#e) = J(j,e) - $>(e), (8.1)

We henceforth restrict attention to situations in which j is a continuous func-

tion of time at the instant of crack initiation,18 whether or not the crack de-

velops an initial kink. This assumption renders the tip traction j a useful "para-

meter" for describing the loading in an arbitrarily small neighborhood of the

crack tip. Also, since (7.4) and (7.6) are presumed to describe the dynamics of the

crack, B before initiation must be consistent with J(j,e) <8Ke), while e after ini-

tiation must satisfy J(j,e) >$(0). With this in mind, we refer to the tip traction j

(or, more simply, to the loading) as:

(i) subcritical if J(j,e) < $(e) for all 0;

*^We expect the continuity of j , at least when inertia is neglected.
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(ii) critical if J(j,©) < *(©) for all 0, but J(j,©) = $(©•) for some © (so that the

loading is not subcritical);

(iii) supercritical if, for some Bt J(j,0) >$(0).

Subcritical loading is then a necessary condition for a crack to remain stationary;

supercritical loading is a necessary condition for crack propagatation; and critical

loading is a necessary condition for crack initiation. The next theorem, a direct

consequence of (7.19) and the foregoing definitions, shows the intimate relation

between these conditions and the geometry of the Frank diagrams of J and §. In

this regard, it should be noted that, by (7.18), there is a one-to-one correspon-

dence between j and Frank(J).

Criticality Theorem. The tip traction j is:

(i) subcritical if and only if Frank(J) does not intersect Frank($);

(ii) critical if and only if Frank(J) is a convexifying tangent to Frank(§);

(iii) supercritical if and only if Frank (J) intersects the region interior to Frank($).

If the loading is critical, then those angles e* that satisfy J(j,©*) = $(©*) will

be referred to as possible kink angles, since, by (7.4) and (7.6), such angles mark

the transition between f<F(©) and f>F(©) and hence between V = 0 and VXD.

Initiation Theorem. Assume that the tip traction j is critical. Then, B+ is a pos-

sible kink angle if and only if B+ is a tangency angle of the convexifying tangent

Frank(J) to Frank($). Granted this, j is related to e* through

j = $(e+)e(e+) + $f(©+)m(©*). (l.Zbis)

Conversely, if for some convexifying tangent £ to $(©) and some tangency angle

B+ of £, (1.3) is satisfied, then j is critical.

Proof. Assume that j is critical. Then, the set of all possible kink angles e+

coincides with the set of ©* that satisfy J(j,©*) = $(©*), we may use (ii) of the Cri-

ticality Theorem and (7.19a) to conclude that e+ is a possible kink angle if and

only if ©• is a tangency angle of Frank(J). Granted this, (1.3) follows from Lemma

7.3.

Conversely, if for some convexifying tangent £ to Frank ($) and some tangen-

cy angle ©• of £, (1.3) is satisfied, then Lemma 7.3 (and the tacit smoothness of $)

imply that £ = Frank ($); the criticality of j then follows from (ii) of the Criticality

Theorem. D
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Corollaries. Assume that j is critical.

(i) If $(e) is angle-convex, then there is at most one possible kink angle,

(ii) For a constitutively isotropic tip there is at most one kink angle 0+ and,

moreover,

e(e+) = j/lj l , (8.2)

so that the direction of the kink coincides with the direction of j .

(hi) If the tip is constitutively anisotropic, and if e* is a possible kink angle, then

m(e+)-j+ = §'(e+), (8.3)

so that, for $'($+) * 0, j has a nonzero component normal to the direction of

propagation corresponding to 0".

Proof. The result (i) is a consequence of the Initiation Theorem and the fact that

for §(o) angle-convex, each tangent to Frank(§) intersects Frank(§) at exactly

one point. For an isotropic tip $ is constant and hence angle-convex, so that the

kink angle is uniquely determined by j . Further, (1.3) with $ = constant implies

(8.2). For an anisotropic tip, (8.3) follows from (1.3). D

Remarks.

1. The formulas (7.7) for a and (1.3) for j are identical granted the replacements

c and +(e) -> y and $(e+). (8.4)

2. The results of this subsection give a geometric picture (Figure 5) of the qualita-

tive aspects of the fracture process. A stationary crack will remain stationary as

long as j is such that the line Frank(J) remains strictly outside the closed curve

Frank($). Initiation of a running crack begins at a time for which Frank(J) passes

across Frank($) with a portion of Frank(J) entering the open region A, say, inte-

rior to Frank($), and the crack will continue to run as long as a portion of

Frank(J) remains within A. At the time of initiation, Frank(J) touches Frank(§),

but has no intersection with A; hence Frank(J) must be a convexifying tangent,

and the possible kink angles are those angles that mark the intersection of

Frank($) with Frank(J). D
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Fronk(J)

(o)

Figure 5
Frank diagrams of $ and J: (a) for a stationary crack; (b) for possible initia-
tion of a running crack (B1 and e2 are possible kink angles); (c) for a running
crack (the angle describing the direction of propagation lies between Bx and e
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b. Maximum dissipation criterion for crack propagation
We now restrict attention to a running crack; by (7.6) and (8.1), this allows us to
consider the dissipation rate (6.14) as a function of the tip traction j and the an-
gle e at which the crack advances:

r t iP
 c r t ip(j,e) = fV(e,f), f = J(j,e) - ^(e), (8.5)

with j necessarily supercritical. A major hypothesis of our theory is that at each
time t the angle e = e(t) satisfy the maximum dissipation criterion:

Ttip(j,e) = max rtip(j,oc), (8.6a)
acQ(j)

Q(j) = {set of angles e such that J(j,e) >§(e)}. (8.6b)

Then, since

j is supercritical, (8.7)

the set Q(j) is a nonempty open set whose boundary consists of angles e that
satisfy J(j,e) = $(e); furthermore,

rtip(j,oc) > 0 for acQ(j), F t ip(j,a) = 0 for occc)G(j). (8.8)

Granted smoothness, the maximum problem (8.6) has a solution, and any such
solution e must satisfy

3r t i p(j,e)/Se = 0. (8.9)

It is important to note that the maximum dissipation criterion may not de-
fine a unique angle of propagation for a given value of j . The next lemma will be
useful in determining conditions under which this angle is unique.

Lemma 8.1.
(i) Assume that $(e) is angle-convex. Then Q(j) is connected.

(ii) Assume that Q(j) is connected. If

52r t i p( j ,e)/3e2 < 0 for all solutions 0€Q(j) of (8.9), (8.10)

then (8.6) has a unique solution.
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Proof. Let J(e) = J(j,e) = j*e(e). To establish (i) we must show that 9Q(j) contains

exactly two angles. dG(j) consists of angles e such $(e) = J(e); thus, by (7.19a),

£2:« Frank($)nFrank(J) contains a point x for each such angle. Since 5>(e) is angle-

convex, Frank($) is strictly convex; thus, since Frank(J) is a straight line, Q con-

tains at most two points, so that 3Q(j) contains at most two angles. But Q(j) is

open; thus 5Q(j) contains exactly two angles.

Assume that Q(j) is connected. If Ftip(j,e) were to have more than one maxi-

mum on Q(j), then it would also have a minimum on Q(j), and this would violate

(8.10). Thus (ii) is valid. D

It is possible to obtain specific results for the direction of a running crack

when the material is one of the specific types discussed in Subsection 7b. Here we

continue to consider a running crack, so that the tip traction j is necessarily

supercritical.

Theorem on the Direction of a Running Crack.

(i) For a constitutively isotropic tip the crack will propagate in the direction

of the tip traction j :

e(e) = j/ljl. (8.11)

(ii) For a tip with constant mobility there is at least one angle B at which the

crack will propagate, and any such B will satisfy the identity

(2f(ej) - F(e)}{m(e)-j - $/(e)} = f(e,j)F'(e). (8.12)

If, in addition, § is angle-convex, then B is unique.

Proof. We begin with some useful identities:

f(j,e) - e(e)-j - $(©) > F(e) > 0 for all ecG(j), (8.13a)

f'(j,e) = m(e)-j - Jj/(e), (8.13b)

f'Ue) = -« (e ) . j - ^"(e), (8.13c)

where f'(j,e) « Sf(jfe)/3e.

To establish (i) we set equal to zero the derivative of Ttip(e)= f(e)V(f(e)); the



41

result is

f'{V'(f)f + V(f)} = 0. (8.14)

Thus, assuming that the loading is supercritical, we may conclude from (8.13a),
(7.8b), and (7.9) that the term {• ••}>(), so that f'(e)«O, which, by (8.13b) and the
fact that \\>(&) is constant, yields

m(e)-j = 0. (8.15)

Also, since f = e(e)- j - vptip> 0, e(e)-j>0; thus (8.11) holds.
Consider (ii). Assume that the loading is supercritical. To establish the uni-

queness of the angle of propagation, we fix j and write f(e) = f(j,e) and
*(e) = r t ip(j,e)/M « f(e)[f(e) - F(e)]; then

*' = f(f - F) + f(f - F1), (8.16a)

f = fM(f - F) + 2f'(fl - F1) + f(fH - FH). (8.16b)

The formula (8.12) follows upon setting (8.16a) to zero, with the use of (8.13b).
Assume that $(e) is angle-convex. Then (7.10), (7.17), (7.20), and (8.1) yield

r + f«-( j , 1 1 - $, r - F11 + f - F = -5 M - $ < o.

Thus setting tf1 = 0 and substituting the result into (8.16b) yields

tf" = fM(f - F) + f(fM - F11) - 2(f)2(f - F)/f

< -2f(f - F) - 2(f)2(f - F)/f < 0.

We have shown that tfM(©)s 0 for any 0 that satisfies tf'(e) = 0; in view of Lemma
8.1, this yields a unique solution of (8.6) and hence results in a unique angle of
propagation. D

For the simple case F * 0 or, more generally, F« constant, (8.12) yields

V (8.17)

showing the extent to which anisotropy in the surface energy can negate the
isotropic result e(e) = j / l j l .
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c. Comparison with the maximum energy release rate criterion

An alternative fracture criterion, due to COTTERELL (1965),19 asserts that the

crack will propagate in a direction e that maximizes the energy release rate

J(j,e). Since J(j,e) = j-e(e), this yields e(e) = j/ljl and hence coincides with the

prediction of the maximum dissipation criterion for a constitutively isotropic tip,

but not generally for one that is anisotropic (c/. (8.12)). The possible extent of the

difference is clear from the sentence containing (8.17).

If for an anisotropic tip the Cotterell criterion is interpreted to signify crack

propagation in a direction that maximizes the total energy release rate

J(j,S)" $(&), then the predictions of the two criteria coincide provided both the

limit force F and the mobility M are constant, but when this is not so the predic-

tions of the two criteria still differ.

Of the two criteria, that of maximum dissipation seems more firmly rooted in

thermodynamics: under isothermal conditions the maximum dissipation criterion

is equivalent to the requirement that the crack propagate in a direction that ma-

ximizes the entropy production at the tip. Further, for a conservatively loaded

elastic material, the maximum dissipation criterion ensures that the total energy

decrease at a maximal rate.

1 9 Cf. HUSSAIN, PU, and UNDERWOOD (1974) , PALANISWAMY and KNAUSS (1978) ,
COTTERELL and RICE (1980), LE (1989ab), STUMPF and LE (1990,1992).
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9. CRYSTALLINE MATERIALS. A SKETCH
In this section we sketch a theory for the fracture of materials whose observed
shapes are typically fully faceted. The surface energy of such a material, as a
function of orientation, is nonsmooth with a nonconvex Frank diagram whose
convexification is polygonal. The corresponding Wulff shape (the crystal shape
that minimizes surface energy for a given volume of material) is then fully face-
ted, with facet-angles confined to the (finite) set 0 of angles that mark the
vertices of the convexified Frank diagram. One method of analyzing such mate-
rials is to constrain the facet angles to the set 0 (c/., e.g., GURTIN (1993, § 12)).
Likewise, we restrict to 0 the functions that specify a material's cracking res-
ponse, and, for simplicity, assume that F(e) m 0, so that the only impediment to
fracture is the formation of new free surfaces. In addition, we restrict attention
to materials with constant mobility. These constitutive assumptions, although
oversimplified, hopefully convey the essence of the underlying physics.

Precisely, we assume that there is a finite orientation-set © consisting of
angles B at which the crack can propagate; angles other than those in © are not
allowed. As before, we allow the energy to be a function

of the orientation of the free surface, but we consider vp(e) as defined only when
0€0. Let Q(I^) denote the finite set of points whose polar coordinates (r,e) satisfy
r - ^(e)"1 , 0€0. We assume that there is a convex (closed) polygonal region,
Polygon(i^), whose complete set of vertices coincides with Q(!!p); the boundary of
this polygon is what we shall consider as Frankity), the Frank diagram of \\>t even
though only its vertices correspond to possible angles of propagation.

Further, to simplify the discussion we limit our discussion to a linear relation
between V and f with constant mobility M:

V(e,f) = 0 for f < 0, (9.2a)

V(e,f) = Mf for f > 0, (9.2b)

with

M > 0. (9.3)

We consider as criteria for initiation and fracture the conditions specified in



Section 8, although the restriction to a constrained set of angles drastically chan-

ges the underlying picture, chiefly because Frank(vp), although convex, is not

strictly convex.

The initiation condition (1.3) reduces to the Griffith condition

,e+) = 5,(0*), (9.4)

and, since

rtip(j,o) = Mf2, f - f(j,e) = J(j,e) - Jj,(e), (9.5)

the maximum dissipation criterion now has the form

r t i (j,0) « max Mf2(j,oc), (9.6a)
OC€Q(j)

Q(j) = {set of angles 0€0 such that J(j,O) >vp(o)}. (9.6b)

Then, arguing as in Section 8, for a program of increasing loads Frank (J) will

eventually touch Polygon ($0 along Frank ($), and fracture will commence when a

nontrivial interval of Frank (J) enters the interior of Polygon ($). At the instant

before that happens the intersection of Frank (J) and Frank ($) will be either: (i) a

single point, or (ii) a complete edge of Frank ((p) In case (i) the intersection will

take place at a vertex of Frank(cp), the kink angle e+ will be the angle of that

vertex, and the crack will run at the angle 0 = 9+ for a nontrivial interval of

time. In case (ii) the intersection will include two vertices; if 0+ and 0+ are the

corresponding angles, then either of these angles is a candidate for the kink angle,

and perturbations in the loading or defects in the crystal would determine which

of the two angles is chosen. Suppose now that the crack is propagating at a fixed

angle 0 « 0+. The possibility then exists that the crack will kink again. Indeed, as

the loading is increased the angle set Q(j) may come to contain, in addition to 0*,

a second angle 0+, and it is clear from (9.6a) that, depending on j , at some time it

might happen that

At that time the minimal dissipation criterion does not yield a unique angle of

propagation, and both 0+ or 0+ are candidates for the angle of propagation (Figure

6).
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Figure 6
Frank diagrams of ^ and J for a crystalline material: (a) for a stationary
crack; (b) for possible initiation of a running crack; (c) for a running crack; (d)
for a possible kink from e* to Q+ (granted a« b).
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