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ABSTRACT. - We prove existence of a solution u for the nonlinear elliptic
system

-div a(x,u,Du) =/ i in Vf(Q,),

u = 0 on dfl

where \x is Radon measure on Q with finite mass. In particular we show
that if the coercivity rate of a lies in the range (1,2 — ^] then u is
approximately differentiable and the equation holds with Du replaced
by ap Du. The proof relies on an approximation of // by smooth func-
tions fk and a compactness result for the corresponding solutions uk>
This follows from a detailed analysis of the Young measure {8U(X) ®vx)
generated by the sequence {(uk,Duk)} and the div-curl type inequal-
ity (^x,a(x,w, •)•) < (j{x)(vx,-) for the weak limit a of the sequence
{a(-,uk,Duk)}.
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1 Introduction

We consider existence and compactness questions for elliptic systems of the form

(1.1) — diva(x,u(x),Du(x)) = fi in ft,

(1.2) u = 0 on dft

with measure-valued right hand side on an open, bounded domain ft in H n . We
assume that a satisfies the following hypotheses (H0)-(H3). Here M m x n denotes the
space of real rax n matrices equipped with the inner product M : N = MijNij (we
use the usual summation convention) and the tensor product a ® b of two vectors
a, b G IRm is defined to be the matrix (^67)^=1,...,m-

(HO) (continuity) a: ft x IRm x IMmxn -> Mmxn is a Caratheodory function, i.e.,
x »-» o{x,u,p) is measurable for every (u,p) and (u^p) i-» a(x,ii,p) is contin-
uous for almost every xGf i .

(HI) (monotonicity) For all x G ft, u G IRm and all F, G e Mmxn there holds

{a(x, u, F) ~ a(x, n, G)) : (F - G) > 0.

(H2) (coercivity and growth) There exist constants Ci,C3 > 0, c2 > 0 and p, 9 with
1 < p < n and 9 - 1 < ^rj(p - 1) such that for all x G ft, w G K m and
i? e Mmxn

(H3) (structure condition) For all x G ft, u G H m and F G M m x n there holds

a(x ,u ,F) : M F > 0

for all matrices M G IMmxm of the form M = Id - a ® a with |a| < 1.

Remarks. 1) Assumption (HO) ensures that cr(x,u(a;),f/(x)) is measurable on ft for
measurable functions u : ft -> IRm and U : ft -» MmXTl.

2) A typical example for a function a satisfying (H3) is <J(X, u,p) = a(x,u,p)p with
a real valued non-negative function a.

A serious technical obstacle is that for p G (1,2 — £] solutions of the system (1.1)
in general do not belong to the Sobolev space W1'1. This fact has led to the use of
renormalized solutions in [LM] and generalized entropy solutions in [BB] for elliptic



equations of the above type. We will use a notion of solution where the weak deriva-
tive Du is replaced by the approximate derivative &pDu. Recall that a measurable
function u is said to be approximately differentiate at x e f2 if there exists a matrix
Fx e Mmxn such that for a lU > 0

lim — meas{j/ € B(x, r): \u(y) - u(x) - Fx(y - x)\ > er} = 0.
r->0 Tn

We write &pDu(x) = Fx.

Definition 1 A measurable function u : Q -> IRm is called a solution of the system

(1-1) if

(i) u is almost everywhere approximately differentiate,

(ii) r]oue Wl^(Q] IRm) for all rj e C^(TRm; IRm),

(in) a{;u,apDu) e Ll(n]Mmxn),

(iv) the equation

— diva(x,u(x)JalpDu(x)) = /x

holds in the sense of distributions.

Moreover we say that u satisfies the boundary condition (1.2) ifrjoue WQil(Q) for
all 7] e C0

1(IRm, H m ) with r\=: id on 5(0, r) for some r > 0.

Remarks. 1) The conditions in Definition 1 (except (ii)) are the weakest possible in
order to define the equation (1.1) in the sense of distributions. Note that if u is
approximately differentiable, then apDu is measurable and hence cr(-,u, apDu) is
measurable.

2) The assumption rj o u G Wlil(Q; Mm) ensures minimal regularity of u. For exam-
ple, if /JL = 0 and cr(x, u,p) = a(p) with a(0) = 0, then piecewise constant functions
u satisfy ap Du = 0 almost everywhere but are not admissible solutions.

The following theorem is the main result in this paper (see the end of this introduc-
tion for the definition of the weak Lebesgue space Ls'°°).

Theorem 2 Let Q be a bounded, open set and suppose that the hypotheses (H0)-
(H3) hold. Assume in addition that one of the following conditions is satisfied:

(i) F H-> <j(x, ix, F) is a C1 function.



(ii) There exists a function W: ft x IRm x IMmxn -> IR such that a(x,u,F) =
^f{x, u, F) and F H-» W(X, U, F) is convex and C1.

(iii) a is strictly monotone, i.e., a is monotone and (a(x,u,F) — a(x,u,G)) :
(F - G) = 0 imp/ze5 F = G.

Let // denote an TRm-valued Radon measure on Q with finite mass. Then the sys-
tem (1.1), (1.2) has a solution u in the sense of Definition 1 which satisfies the weak
Lebesgue space estimate

(1.3) IkllL^^nj + I^P^^IlL-^cn) ^ G(ci,Ci,||/x||tM,measn).

Here

and

is the Sobolev exponent of s. If C2 = 0 the right hand side of (L3) reduces to

Remarks. 1) If p > n one can replace the Ls*'°°-norm of u in (1.3) by the C0}/3-norm
with (3 = 1 — -. For p = q = n it is an open question whether D?/ G Ln'°°. See
Section 7 for the (weaker) inclusion u G BMO\OC.

2) The exponents in (1.3) are optimal as can be seen from the nonlinear Green's
function Gp(x) = c\x\~n/s* for the p-Laplace equation

in IRn, n > 3. In particular L5'00 cannot be replaced by Ls.

3) The pointwise monotonicity condition can be replaced by a weaker integrated
version, called quasimonotonicity, see Definition 3 and Corollary 4 below.

The key point in the proof of the theorem, which we give in Section 6, is the "div-curl
inequality" in Lemma 11 for the Young measure {vx}xen generated by a sequence
Duk of gradients of approximate solutions. Together with the identity

(1.4) ap£>u(z) = K J d )

the div-curl inequality implies easily that a(-yUk,Duk) converges weakly in L1 to
a(-,u,a$>Du) (see Lemmata 12 and 13 for details). The identity (1.4) is a conse-
quence of general properties of Young measures if p > 2 — ^ since in this case Duk
is bounded in Ls for some s > l . I f l < p < 2 — ^ one only has the weaker bounds

J \Duk\
pdx<C(a)



but this still suffices to derive (1.4) (see Lemma 9). The main point here, as well as
in the proof of the div-curl inequality, is that while ap Du may not be bounded in Ll

it still behaves at almost every point as an L1 function (and even as a C° function up
to a set of density zero). Young measures achieve a sufficient localization to exploit
that fact.

We will also use a weaker, integrated version of the pointwise definition of mono-
tonicity (HI) which we call quasimonotonicity. The definition is phrased in terms
of gradient Young measures (see Section 2 for further details). Note, however, that
although quasimonotonicity is "monotonicity in integrated form", the gradient Drj
of a quasiconvex function 77 is not necessarily quasimonotone.

Definition 3 A function 77: M m x n —> HVtmxn is said to be strictly p-quasimonotone

if 1I fo(A) - nW) : (A - A) <MA) > 0
•/DM

for all homogeneous WliP-gradient Young measures v with centre of mass A = (1/, Id)
which are not a single Dirac mass.

A simple example is the following: Assume that rj satisfies the growth condition

\V(F)\ < 1

with p > 1 and the structure condition

/ (r](F + Vip) - r)(F)) : V(pdx>c [ \Vcp\pdx
n Jn

for all <p e C%°(n) and all F 6 M m x n . Then 77 is strictly p-quasimonotone. This
follows easily from the definition if one uses that for every W^-gradient Young
measure v there exists a sequence {Dvk} generating v for which {|D^|P} is equiin-
tegrable (see [FMP], [KP]).

As a consequence of our results we state the following corollary:

Corollary 4 Assume that the hypotheses (HO), (H2), (H3) are satisfied and that a
is strictly p-quasimonotone. Let fi be an JRm-valued Radon measure on Q, with finite
mass. Then the system (1-1), (1-2) has a solution in the sense of Definition 1 and
the a priori estimate (1.3) holds.

Our results generalize recent results in [FR] and [DHM] for the p-Laplace system.
The main improvements with respect to existing results are the relatively weak as-
sumptions in Theorem 2 and Corollary 4. In particular it suffices to assume mono-
tonicity or the weaker p-quasimonotonicity condition instead of strict monotonicity.



Moreover different coercivity and growth rates are allowed and the case p < 2 — -
is included. For another approach to such questions see [DMM1] and [DMM2].

There exists an extensive literature on elliptic and parabolic equations with measure
valued right hand side see, e.g., [BB], [BG], [BM], [LM], [Mul], [Mu2], [Mu3], [Ra]
and the literature cited therein. Compactness questions have been discussed in [Fr],
[La], [Zh]. Partial results concerning uniqueness of solutions can be found in [BB],
[DA], [KX], [LM].

We end this introduction by recalling the definition of the weak Lebesgue spaces
Ls'°°. A measurable function / : ft -> R/ belongs to L5'°°(ft) if ||/||£«.oo :=
S}ipt>ot

l/8f*(t) < oo where f*(t) := inf{y > 0 : Xf(y) < t} is the non-increasing
rearrangement of / and Xf(y) = £ n { | / | > y} is the distribution function of / . The
expression ||/||^,oo is only a quasinorm, but for s > 1 it is equivalent to the usual
norm of Ls>°°. For more information about topological properties of the Lorentz
spaces Ls'r (in particular for 0 < s < 1) see [Hu].

2 A brief review of Young measures

In this section we briefly summarize basic facts concerning Young measures. We fol-
low the formulation given by Ball (see [Bl] and references therein). The fundamental
theorem about Young measures may be stated as follows:

Theorem 5 (Young, Tartar, Ball) Let ft C IRn be Lebesgue measurable (not
necessarily bounded) and Zj: ft —> IRm, j=l,2, . . . , be a sequence of Lebesgue mea-
surable functions. Then there exists a subsequence Zk and a family {vx}xen °f non'
negative Radon measures on TRm, such that

(i) \\ux\\ := I dvx < 1 for almost every x G ft

(ii) <p(zh)
 A (p weakly* in L°°(ft) for all if e C$(TRn), where (p{x) = {vx, <p)

(Hi) IfforallR>0

(2.1) lim sup meas{x € ft n J5(0, R) : \zk(x)\ > L} = 0
£->°° hew

then \\ux\\ = 1 for almost every rr € ft, and for all measurable A C ft there
holds tp(zk) -^ (p = {vx,(p) weakly in Ll(A) for continuous <p provided the
sequence ip(zk) is weakly precompact in L1 (A).

Here, "meas" denotes the Lebesgue measure restricted to ft and Co(IRm) = {</? G



Notice, that under hypothesis (2.1) for any measurable A C fi,

(2.2) <̂ (-? zk) -* {vx, (p(x, •)> weakly in Ll(A)

for every Caratheodory function <p: Ax IRm ->> IR provided the sequence
is weakly precompact in Ll(A) (see [Bl]). Moreover, if Cn(Q) < oo,

(2.3)
zk —> z in measure 4=> the Young measure associated to z* is 6Z(X).

The Young measure associated to the sequence (yk, z*) is

(2.4) Sy(x) ® i/a.

\lyk -$ y in measure and if z/x is the Young measure associated to zk.

A Young measure {i/x}x€n is called WlfP-gradient Young measure (1 < p < oo)
if it is associated to a sequence of gradients {Duk} such that {uk} is bounded in
WliP(Q). It is called homogeneous if vx = /i for almost every x e fi. If {^x}x€fi is
a PF ̂ -gradient Young measure then there exists a function u G TV1>p(fi) such that
Du{x) = (^x,Id) almost everywhere.

The following Fatou-type lemma will be useful in Section 5:

Lemma 6 Let F: Q x R m x M m x n -> IR be a Caratheodory function and uk: Q -»
R m a sequence of measurable functions such that uk —> w in measure and such that

generates the Young measure vx. Then

(2.5)

lim inf / F(x, uk(x), Duk{x)) dx > F(x, u, X) duJX) dx

provided that the negative part F~{x^uk{x))Duk{x)) is equiintegrable.

More general versions of this lemma may be found in [Bdl], [Bd2] and [Vail], [Val2].
Our assumptions allow the following elementary proof.

Proof We may assume that the limes inferior on the left-hand side of (2.5) agrees
with the limit and is finite. Consider the Caratheodory functions FR(X,U,P) =
min{J?, F(x, u,p)} for R > 0. For fixed R > 0 the sequence {FR(x, uk{x), Duk(x))}k

is equiintegrable. We have

/ FR(x, uk(x),Duk(x)) dx < I F(x, uk(x), Duk{x)) dx < C < oo

for all k and R > 0. By (2.2) we have that for all R > 0

lim / FR(x, uk(x), Duk(x)) dx = f [ FR(x9 u{x), A) ̂ ( A ) dx < C,
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and by monotone convergence of the integrands as R —> oo

(2.6) J J mxn F(x, u(x), A) dux{\) dx < C < oo.

On the other hand

/ F(x,uk{x),Duk(x))dx- f f F(x,u(x),A)dux(X)dx =
Jci Jci Jmmxn

= J F(x,uk(x),Duk{x))dx- J FR(x,uk(x),Duk(x))dx +

+ / FR(x,uk{x),Duk{x))dx- f f FR{x,u(x),A)dvx{\)dx +

+ / / FR(x,u(x),A)dux(X)dx- I I F(x,u{x),A)dux{\)dx
jQJ]Mmxn JnJMmxn

Now we have

/ * > 0 ,
Ilk —̂  0 for any fixed R > 0 as k —> oo,
III -» 0 as R —> oo, because of (2.6) and monotone convergence,

and the claim follows. •

3 Refined convergence results for 1 < p < 2 — -

We shall see in the next section that solutions uk e Wo
llP(fl) of the system

-diva(x,uk(x),Duk(x)) = fk

with /fc G C°°(ri) satisfy the a priori estimate

(3.1)

If p > 2 — - one can deduce (see Lemma 10 below) that Duk is uniformly bounded
in some Ls(Cl) with s > 1. For p < 2 — ^, however, Du^ may not be bounded in L1

and hence it is not clear in what sense Duk converges and whether the (weak) limit
of Uk is differentiate in any sense. This difficulty has in fact led to the restriction
p > 2 — ~ in many previous results.

In this section we show how Young measures can be used to extract from (3.1)
almost the same information as from uniform IP estimates of the gradient. In
particular we show that, for p > 1, the estimate (3.1) implies pointwise almost

8



everywhere convergence of (a subsequence of) Uk (see Lemma 8) and approximate
differentiability of the limit as well as the important identity

ap.Du(:r) = (^i,Id) almost everywhere in Q,

(see Lemma 9). In the following Ta denotes the truncation function

,1^ f}y, a > 0.
\y\

By definition |jTa(j/)| < a and

DT ( ) = J I d f ° r

Lemma 7 Let Uk: fi —> H m 6e a sequence of measurable functions such that

(3.2) sup / \uk\sdx < oo /or some 5 > 0.

Suppose that for each a > 0 i/ie sequence of truncated functions

{Ta(uk)}kejN is precompact in Ll(Q).

Then there exists a measurable function u on Q such that for a subsequence

\z. —> u in measure.

Proof. Choose a subsequence of [uk] (not relabeled) which generates a Young mea-
sure {vx}xen- By (3.2) and Theorem 5(iii) the measures vx are probability measures
for almost every x e Cl and

weakly in L1^,!!771) and in fact strongly since Ta{uk) is precompact in L1. Conse-
quently there exists a subsequence such that

(3.3) Ta{uk{) —> va almost uniformly,

i.e., Ta(ukt) -» va uniformly up to a set of arbitrary small measure. Let

Ma = {xe n : \va(x)\ < a } .

Then for each e > 0 and S > 0 there exists a set Ee of measure meas(jE'£) < e and
an index lo(e,5) such that

^ ( ^ ) 1 < \va(x)\ + 6 for all x e Ma \ Ee a n d all l>l0.

9



It follows that

ukl(x) -> va(x) for almost every x G Ma \ E£

(consider first x G Mp, ft < a and then the union over (5 < a). Since e > 0 was
arbitrary it follows that

vx = $Va(x) for almost every x e Ma.

In view of the equivalence (2.3) it suffices to show that UMQ has full measure. Now
clearly Ma C Mp for a < /3 since

Tpiufy) —» Tp(va) = i;Q almost everywhere in Ma ,

and therefore vp = i'a on MQ. By (3.3) there exists for each e > 0 a set E£, and an
index lo(e,a) such that meas(£?£) < e and

K l > |T a K) | > | on (0 \ Ee) \ Ma for all I > lQ.

In view of (3.2) this implies

meas( ( f t \£ £ ) \M Q ) < — .

Letting e -> 0 we deduce

meas(Q \ UMQ) = lim meas(Q \ Ma) = 0

and the proof is finished. •

Lemma 8 Let Q be a domain in IRn with £n(Q) < oo and uk e Wl9l{il\TRm).
Suppose that there exist p > 1 and s > 0 such that

(3.4) sup / \Duk\
pdx < C(a) < oo for all a > 0

and

sup / |ufc|5cte < C < oo.

Then there exist a subsequence ukj and a measurable function u: Q —> H m such that

uk. —± u in measure.

Moreover u is for almost every x G Cl approximately differentiate. For all 77 G
C0°°(IRm;IRm) there holds 77 o u G Wl>p{Sl]Mm). If uk G W^l(Q) then rj o u G
W Q 1 ' 1 ^ ) PI WliP(Q) provided that r\ = id on B(0,r) for some r > 0.

10



Proof. Choose a subsequence (not relabeled) of the sequence {uk} which generates a
Young measure {vx}xen- Suppose first in addition that £2 is such that the compact
Sobolev embedding W1*^) -4 L"(fi) holds. Note that by (3.4)

\\D{Ta(\uk\))\\h(fl) < C{a).

Hence by the compact Sobolev embedding the sequence {Ta(|^|)} is precompact in
Ll and by Lemma 7 there exists a measurable function w such that (after passage
to a subsequence)

Kl -»w
in measure. It follows that

(3.5) spt vx C Sw{x) = {y G Hm : \y\ = w(x)}.

Let Ma = {x G fl: |w(#)| < OL) and choose a radially symmetric cut-off function
77 G C£°(.B(0,3a);]R,m) such that 77 = Id on 5(0, 2a). Then by (3.4) and by the
compact Sobolev embedding 77(11*) is precompact in LP(£l) and thus

v(uk) ~~+ v in measure.

Hence

(3.6) spt I/* Cr]-l(v{x)).

If v (x) 7̂  0 then 77~1(^(x)) is concentrated on the ray through v(x) and it follows
from (3.5) and (3.6) that vx is a Dirac mass. If v(x) = 0 then 77""1(T;(X)) C {0} U
(IRn \ B(0, 2a)). For x G Ma one deduces from (3.5) and (3.6) that ux = (50. Hence
z/x is a Dirac mass for almost every x G Ma and thus for almost every x G fi since
UQ>oMa = fi \ £* where E1 is a set of measure zero. Therefore Uk converges by (2.3)
in measure to a measurable function u.

Now we remove the additional regularity restriction on Q. Let Qk C ft be a sequence
of Lipschitz domains (choose, e.g., a finite union of balls for Qk) such that Cn(Sl \
Qk) -> 0 as k —> 00. Application of the previous arguments to ft* shows that vx is
a Dirac mass for almost every x G £V Hence ^x is a Dirac mass for almost every
x e Q and w* —• u in measure, where u(x) := (i/XJId).

To see that u is approximately differentiate, let Ma = {x G fi: |w(x)| < a}. It
suffices to show that u is almost everywhere approximately differentiate in Ma for
all a > 0. For 77 as above we have

In particular, 7](u) is almost everywhere approximately differentiate. Let xQ G Ma

be a point of approximate differentiability of 77(u) and of approximate continuity of
w, z.e.,

lim — meas{x G fi(x0, r) : |zz(x) - u(xo)\ > 6} = 0, for all 5 > 0.

11



For e > 0 consider the set

Er,e = {x e B(xo,r) : \u(x) - u(x0) - 8LPD(T]OU)(XQ)(X - xo)\ > er}.

Then, by the approximate continuity of u,

1 a
) ()I > }) 0lo ^ ( ^ n i\u(x) - u(xo)I g }) >

while

1 a

since u and rj o u agree on that set and 77 o u is approximately differentiable at x0.
Hence TX is approximately differentiable at XQ and ap Du = apZ)(77 o u)(x0). D

Lemma 9 Lei Uk be as in Lemma 8 with p > 1. Then the Young measure vx

generated by (a subsequence of) Duk has the following properties:

(a) vx is a probability measure for almost every x eCl.

(b) vx has finite p-th moment for almost every x G fi, i.e., fmmxn \X\pdux(X) is
finite for almost every a:6 0 .

(c) vx satisfies
(i/x,Id) = a,pDu(x) almost everywhere in fi.

(d) vx is a homogeneous WliP-gradient Young measure for almost every x e Q.

Proof. Let vx denote the Young measure generated by (a subsequence of) the se-
quence {(uk, Duk)}. By Lemma 8 we have

Let rj e C£°(£(0,2a);IRm), 77 = Id on JB(0,a), and let i/> be the Young measure
generated by

D(rj o uk) = (Drj)(uk) Duk .

Then i/£ is a probability measure, has finite p-th moment and

It follows for v e C%°(Mmxn) that

o uk)) - (i/2, V> = / ^ m x n V(A) di/2(A)

12



Rewriting the left hand side we have on the other hand

(p{(Dr})(uk) Duk) -+ I ip(Dr}(p)\)di>x(p,\)
7lRmIMm x n

<p(Dr}(u(x))X)dux(X)./

Hence

(3.7) vl = vx M\U{X)\<OL.

Therefore the properties in (a), (b) and (c) hold for almost every x e {\u\ < a}
since they hold for v^. Taking the union over a > 0 we obtain (a), (b) and (c).

To prove (d) note that

/ \D(T] ouk)\
pdx< sup \Dr)\p f \Duk\

pdx < sup \Dr]\pC(2a).

By the localization principle in [KP] we conclude that i/? is a homogeneous WliP-
gradient Young measure for almost every x G £1 Thus (d) follows from (3.7) and
the fact that a was arbitrary. •

4 Approximate solutions and a priori bounds

Throughout this section we assume that p = q in (H2), i.e., that the growth and
coercivity rate of a coincide. In order to establish existence of a solution of (1.1),
(1.2) we introduce the following approximating problems:

(4.1) -diva(x,uk(x),Duk(x)) = fk(x) in Q,

(4.2) uk = 0 on

For fk we choose the standard mollification

where, for A; € IN, yk(x) = kn^0(kx) with a function 70 € Cg°(B(0,1)), -y0 > 0,
||7O||LI = 1. Then fk e C°° n L1 n L°° for each A; and

fk -^ /j, in M.

Let A: W0
1>p(ft) -»• W~hp'(n) denote the operator

A:ui->(vh-* a(x,u(x),Du(x)) : Dvdxj.

13



By (HO) and (H2) this operator is well defined. If we assume for simplicity (see also
the remark below) that a only depends on x and Du but not on u then, by (Hi),
the operator is monotone, i.e.,

(A(u) - A(v),u-v)>0 for all u,v e W

where (•, •) denotes the dual pairing of W^p and W~liP'. The coercivity hypothesis
in (H2) implies that A is coercive, i.e., (A(u),u) > C{\\U\\W^P)\\U\\W^P f° r a real
valued function c with lim^oo c(t) = oo. On the other hand the growth condition
in (H2) (with q = p) implies that A is hemicontinuous, i.e., the mapping t ^ (A(u +
tv),w) is continuous on the real axis for u,v,w € WQiP(Q). Then by a standard
theorem for monotone operators (see, e.g., [Va]) it follows that A is surjective and
hence that (4.1), (4.2) has a solution uk G Wo*(Q) for all k € IN.

Remark. If a depends explicitly on u or if a is merely strictly p-quasimonotone
rather than monotone it is slightly more difficult to show existence of solutions
of (4.1), (4.2). However, using Borsuk's theorem one can solve (4.1), (4.2) approx-
imately in finite dimensional subspaces of WQ*(Q) and then pass to the limit by a
suitable adaptation of Lemma 13 below.

As in [DHM], one easily derives a priori estimates for the solutions it* of the approx-
imating problems.

Lemma 10 Let Q C IRn be an open set, f G L^fylR™). Assume that a satisfies
(H2) and (H3) with p = q and that u € WQ*(Q\TRm) is a solution of

(4.3) -div a{x,u{x),Du(x)) = f

in the sense of distributions. Then

u e L ^ f y l R ™ ) ,
Du G Ls'°°(fi;IMmxn)

where n ns n
S = T(p - 1) , 5* = = (p - 1)

n - 1 n — s n — p

and

(4.4)

If c2 = 0 the right hand side in (44) reduces to C^^WfWlT1.

Proof. We use similar techniques as Talenti [Ta] in connection with quasilinear ellip-
tic equations and also as Benilan et al. [BB, Lemma 4.1] for solutions of the p-Laplace

14



equation. As above define the truncation function Ta by TQ(y) = min(l, ^ ) y. By
definition |Ta(y)| < a and

fid for M < "»

Testing (4.3) with Ta(tt) and observing (H2) and (H3), we obtain

(4.5) ci / |L>u|pdz < a||/||Li(n) + c2
J\u\<cc

Using the fact that \Du\ > \D\u\\ and defining ua = min(|u|,a), we obtain from the
Sobolev embedding theorem that

c / \uafdx < (a|

Hence we may estimate the distribution function A|u| of \u\ by

A|«|(a) < a~p' I \uafdx

and trivially
\u\(&) ^ measfi.

The combination of these two estimates implies

(4.6) IM|^.oo < C m a x d l / U ^ ^

From (4.5) and (4.6) one deduces that the distribution function X\Du\ satisfies for all
a> 0

n—p

Choosing a = pn~l and observing that \\DU\ ̂  measfi we deduce (4.4). Repeating
the proof with c2 = 0 we easily establish the form of the constant in that particular
case. •

5 A div-curl inequality

The result of this section is the key ingredient for the proof that one can pass to
the limit in the equation (4.1) for the solutions {uk}keiN of approximating problems.
Since it is independent of the differential equation we state it in a more general form
using only the hypotheses (5.1)-(5.7) below. Using Lemmata 8 and 10 it is easily
verified that they hold under the assumptions in Section 4.
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(5.1) a : f i x R m x Mmxn -» IMmxn is a Caratheodory function.

(5.2) a(x,u,F) : MF > 0 holds for all matrices M = I d - 6 ® b G Mmxm with

(5.3) uk G W^^TEC") and there exists an s > 0 such that Jn \Duk\
sdx < C

uniformly in k.

(5.4) The sequence ak{x) = o(x,uk(x),Duk(x)) is equiintegrable.

(5.5) The sequence uk converges in measure to some function u, and u is almost
everywhere approximately differentiable.

(5.6) The sequence fk := — divcr^ is bounded in

(5.7) Duk G L\oc and ok G L\'oc for some r, 1 < r < oc.

Remark. Assumption (5.2) coincides with condition (A5) in [La] if a(x, u, F) : F >
0. This condition could be relaxed to a(x,u,p) : Mp > — C\p\& if the sequence
\Duk\P is equiintegrable.

We may assume (after passing to a suitable subsequence if necessary) that {Duk}
generates a Young measure v. It follows from Theorem 5(iii) and (5.3) that vx is a
probability measure for almost every x G £1

Lemma 11 Suppose (5.1)-(5.7). Then (after passage to a subsequence) the se-
quence Ok converges weakly in Ll(Vt) and the weak limit a is given by a(x) =
(vx, a(x, u(x), •)). Moreover the following inequality holds:

/ a(x,u(x)y A) : Xdux(X) < a(x) : &pDu(x) for a.e. x G Cl.

Remarks. 1) The assertion of Lemma 11 follows (with equality) directly from the
div-curl lemma (see [Mul], [Tar]) if fk = 0, if {uk} is bounded in Wl>p(Q) and if
{ak} is bounded in If'(Q) with 1 < p < oo.

2) If the sequence {Duk} is equiintegrable then, by Theorem 5(iii), Du(x) =
u(x) = (i/xJd) almost everywhere.

Proo/. Choose a non-negative function ax G C°°([0,oo)) D L°°([0,oo)) such that
ax = Id on [0,8) for some 8 > 0, a[>0 and

(5.8) a'i(5)5 < ai(s) f o r 5

One possible choice is 0:1(5) = s for 0 < s < 8 and
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where the C°°-function e € Ll{[5,oo)\ [0,1]) satisfies e{8) = 1 and e{n)(6) = 0 for
all n > 1. Then let

(5.9) Vi(*)=<*i(M)n forz€lRm ,
\Z\

and chose <£i G CQ°(Q; IR) with </?i > 0 and / ^ <£i dx = 1. The idea is to multiply
the equation in (5.6) by ipi ̂ io{uk—v) where v G C 1 ^ ; IRm) is a suitable comparison
function and to use <pi to localize the resulting equation

(5.10) / ak : D((px ipi(uk - v))dx = / fkipx ipi(uk - v)dx
Jn Jn

in x. We first estimate the left hand side in (5.10). Let

hk := ak : D((px ̂ x{uk - v))

= ok : ipi(uk - v) ® D(^i + crfc : D^i o ( ^ - v) D(uk - v)

and let {/J>x}xen be the Young measure generated by the sequence {ukj Duk}. Then,
by (5.5) and (2.4),

and thus by (5.4) and (2.2)

ak —̂  a weakly in !}

with

(5.11) a(x) =

Note that

where ^ = jfj. By (5.2) and (5.8) we have

(5.12) <T(X, uh, Duk) : Dfa o (uk - v) Duk > 0

and therefore we conclude that the sequence (/ijt)~ is equiintegrable. By Lemma 6
and (5.5) we deduce

(5.13) liminf / hkdx > / a : tpi(u — v) <g> Dcpi dx
k-yoo Jn Jn

xn <r(xt u(x), A) : Di/>i o(u-v)(X- Dv{x))dvx{X)dx.
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To obtain the first term on the right hand side we used the fact that for two se-
quences fk and gk with fk^f weakly in Lr, r > 1, and gk ->> g boundedly almost
everywhere, the product fk gk converges weakly to / g in U which is easily verified
using Egoroff 's theorem and the Lebesgue dominated convergence theorem. To esti-
mate the right hand side in (5.10) note that by (5.6) (after passage to a subsequence
if necessary)

and thus

(5.14) limsup| / hkdx\ = limsup|

nt

Let x0 be a point of approximate differentiability of u and a Lebesgue point of the
measure fi and the function a, i.e.,

(5.15)

(5.16) limsup-f \a(x)-a(xo)\dx = O.
r->0 JB(xo,r)

In addition we may assume that x0 is a Lebesgue point of the functions g^lm defined
in (5.20) below. In order to localize the equation in x we define the rescaled cut-off
functions

where tpi € Co°(B(0,1);B,) is non-negative with J r </?i = 1, and

W(aO = ^ z with ar(x) = r O l ( ^ ) .

Then inequality (5.12) holds for t/v, r > 0, since (5.8) is invariant under this scaling.
Finally let

z = - ( x - z o )r
denote the scaled coordinates around x0 and let

ur(z) = -(u(x)-v(x)),
r

ar(z) = a(x).
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Then (5.11), (5.13) and (5.14) yield

(5.17) LHS(r) := f cpJx) [ a(x,u(x),X) : (D^r(u - v){x)\)dvx(\)dx
JQ JjMTnXn

< r sup |^i

z) dz

I <pi(z)5(xQ + rz) : Dtpi{ur(z))Dv(rz + x0) dz =: RHS(r).
B(O,1)

Choosing the function i; as the first order Taylor approximation of u in x0, i.e.,

v(x) = u(xo) + a,pDu(xo)(x — XQ)

we obtain by the approximate differentiability of u and (5.16) that for r —>• 0

u r —>• 0 in measure in B(0,1),

<7r->cr(z0) in ^(5(0 ,1) ) ,

and hence (at least for a subsequence)

-01 o ur —» 0 boundedly almost everywhere,

(5.18) Dipi o ur —> Id boundedly almost everywhere.

Thus we conclude

(5.19) RHS(r) -» a(x0) : apDu(zo) as r -> 0.

(and in fact the whole sequence r —> 0 converges as the approximate differential is
independent of the sequence).

The passage to the limit r —> 0 on the left hand side of (5.17) is slightly more difficult
since the functions gijim defined by

9ijim(x)=

are in general not in Ll(tt). The remedy here is to define the truncated functions

(5.20) & W = / M m x j ( ^ K ( ^ ^ ) ^ ) A ^ ( A ) for Af = 1,2,...

where 77 e CQ°(B(0, 1); [0,1]) denotes a fixed function satisfying 77 = 1 on 5(0, \).
Note that for every fixed M the sequence cr^(x, Uk{x), Duk(x))(Duk(x))imr](\Duf(x)\)
is equiintegrable (since o^ is equiintegrable) and therefore its weak L1-limit is given
by gfflm. By (5.2) we have

a(x,u(x),X) : Di/>(u(x) - v(x))X > 0
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and thus the left hand side in (5.17) is estimated by

LHS(r) = / <Pr{x)9ijij(x)(Dil>r)u(u - v)(x)dx

(5.21) >

where we take the sum over all repeated indices. Let gijim,r{z) = 9ijim(x) and
9ijim,r(z) = 9ijim(x) denote the rescaled functions as above. Since XQ was chosen to
be a Lebesgue point of gfjim we have

(5.22) 3gmtr(z) -> gMlrn(x0) in ^ ( 5 ( 0 , 1 ) ) for r -> 0.

Using (5.21), (5.22), (5.18) and (5.19) we therefore obtain

f MU M

< &(xo) : &pDu(xo)

for all M G IN. Choosing 6 = 0 in (5.2) we infer a(x0, u(x0), A) : A > 0 and Lemma
11 follows by the monotone convergence theorem. •

6 Compactness and existence of solutions

In this section we use the div-curl inequality in Lemma 11 to show that the approx-
imate solutions Uk constructed in Section 4 converge to a solution u of the equation
(1.1). The key point here is to identify the weak limit a = a(-,u,dLpDu) of the
sequence Gk = a(-,uk,Duk) and to prove the identity

(6.1) ap-Du(x) = (^x,Id) for almost every x G ft,

where v is the gradient Young measure generated by the sequence {Duk}keJN-

We first need the additional assumption (6.1). This will be later removed by
Lemma 9 and the a priori estimates of Section 4.

Lemma 12 Suppose that the sequence {uk}kew satisfies the hypotheses (5.1)-(5.7)
and that the Young measure v generated by the sequence {Duk}kew satisfies the
identity (6.1). Assume that one of the following structure conditions holds:

(i) a is monotone and the mapping F H-> <J(X, W, F) is continuously differentiate
for all(x,u) G ft x IRm.

(ii) a(x,u,p) = ^-(XjUjp) and p *-> W(x,u,p) is a convex Cl-function for all
(z,u) G ft x IRm.
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(Hi) p H-> <J(X, u,p) is strictly monotone for all (x, u) G Cl x IRm.

Then a(x) — o{x,u{x),^Du{x)). If (ii) or (Hi) holds then

a(x,Uk(x)JDuk(x)) —> a(x,u(x),a,pDu(x)) strongly in

In case (Hi) it follows in addition that Duk —>• ap Du in measure.

Proof. We suppress throughout the proof the dependence on x and u, i.e., we write
cr(A) = a(x,u(x), A) and v = vx. Fix x G fi such that (6.1) and the conclusion
of Lemma 11 hold and let A = (z/, Id) = a,pDu(x). We may assume by an affine
transformation that A = 0 and a(X) = 0. Then by Lemma 11

/ a(X) : Xdu(X) < 0 .

By the monotonicity of a we have

a(X) : A > 0

whence

(6.2) <j(A) : A = 0 onspti /

and thus

(6.3) sptz/C {A |a(A) : A = 0}.

1: Suppose that (i) holds. We claim that in this case the following identity
holds on spt v\

a(X) :/jL=-(Da(Q)fi) : A.

Indeed, by the monotonicity of a we have for alH G IR

whence

a(A) : A - a(X) : (t/x) > a(tfi) : A - a(tfi) : (t/j)

The claim follows from this inequality using (6.3) since the sign of t is arbitrary.
Thus

a = f a(X)du(X) = -(Da(0)y f Xdv(X)
«/spt v Jspt v

= -(Da(Q))t\ = 0 =
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Case 2: Suppose that (ii) holds. We may assume in addition that W(X) = 0. We
first show that the support of v is contained in the set where W agrees with the
supporting hyper-plane W(X) + <J(A)(A — A) = 0 in A:

spt v C K = {A G Mmxn : W(X) = 0}.

If A G spti/ then by (6.3) a(X) : A = 0 and it follows from the monotonicity of a
that a(tX) : A = 0 for all* € [0,1]. Hence W(X) = fi a{t\)\dt = 0 as claimed.

By the convexity of W we have W(p) > 0 for all p e Mmxn and thus L = 0
is a supporting hyper-plane for all A 6 K. Since the mapping p 4 IV(p) is by
assumption continuously differentiate we obtain

(6.4) a(A) = 0 = cr(A) for all A G K D spt u

and thus

(6.5) a= f a(X)du(X) = a(X).
J-Mmxn

Now consider the Caratheodory function

The sequence pfc(x) = p(x,ujb(x),Z?Uib(rr)) is by (5.4) equiintegrable and thus

9k ~*9 weakly in I,1 (ft)

and the weak limit g is given by

5(x) = / |cr(x, r?, A) - a(x) | d5u(x) (77) ® dz/x(A)
JlRmxIMmXn

|a(x,u(x), A) — a(x)|di/x(A) = 0

by (6.4) and (6.5). Since gk > 0 it follows that

gk —> 0 strongly in L1 (ft)

and the proof of the second case is finished.

Case 3: Suppose that (iii) holds. In this case (6.2) implies by the strict monotonicity
of a that

Thus Duk converges in measure to ap Du and the result follows by Vitali's conver-
gence theorem using the equiintegrability (5.4) of ak. •
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Lemma 13 Suppose that the sequence {uk}kew satisfies the hypotheses (5.1)-(5.7)
and the inequality

[ \Duk\
pdx < C{a).

J\uk\<a

Assume in addition that the Young measure v generated by the sequence {Duk}kej^
is a WliP gradient Young measure and that v satisfies the identity (6.1). Assume
finally that cr(x,w, •) is strictly p-quasimonotone for almost every x G ft and all
u G TRm. Then a(x) = o(x,u(x),&pDu(x)), Duk -> apjDu in measure and

a(x,Uk{x),Duk(x)) —> o(x,u(x),&pDu(x)) strongly in LX

Proof. Since vx is for almost every x G ft a homogeneous gradient Young measure
(see Lemma 9) we deduce from the definition of the strict p-quasimonotonicity of a
that

(6.6) / a(:r, u(x), X)Xdux(X) > / a(x,u(x), \)dvx(\) I \dvx(\)

On the other hand Lemma 11 implies that in fact equality holds in (6.6) and thus by
(6.1) vx = <5apDu(z)- The result follows now as in Case 3 in the proof of Lemma 12.

•

Proof of Theorem 2 and Corollary 4- We give the proof first for the case that a has
the same growth and coercivity rate, z.e., p = q. The general result follows from
this case using an approximation of a.

Case 1: p = q. The solutions uk of the approximate problems (4.1)

(6.7) -diva(x,uk(x),Duk(x)) = fk(x) in ft

satisfy the a priori bounds (4.4)

||£^A;||I*,oo + ||u*||]>too < C(c1 ?c2J/*| |Li ,measft).

with 5, 5* > 0 as well as the estimate (4.5)

\Duk\
pdx < C(a).

u\<a

In view of the embedding I/3'00 ^ La for 0 < a < p the assumptions of Lemma 8
and Lemma 9 are satisfied. Thus there exists a measurable function u : ft —> IRm

such that (for a subsequence) uk —» u in measure and (^x,Id) = apZ?u(x) for almost
every x G ft where v denotes the Young measure generated by the sequence {Duk}.
It follows from (HO), (H2) and (H3) that the hypothesis (5.1)-(5.7) in the div-curl
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inequality (Lemma 11) are fulfilled and by Lemma 12 and Lemma 13 we deduce the
weak convergence of a(-,Uk,Duk) to <J(-,U, apDu) in Ll. Thus we can pass to the
limit in (6.7) and obtain

— diva(-,u,apZ)i/) = / in V(Q),

i.e., u is a solution of the equation in the sense of Definition 1. Note that if p > 2 — -
then the sequence {Duk} is equiintegrable and consequently apDu(x) = Du(x) =
(z/x, Id) for almost every x e fi, i.e., n is a solution of the equation and ap Du agrees
with the usual weak derivative of u. It remains to prove the a priori estimate (1.3)
for u. Choose a cut-off function 77 G C Q ( 5 ( 0 , 2a)) such that 77 = Id on £?(0, a)
and |DT/| < C where C is independent of a. Since r?(wfc) —̂  rj(u) in VFljP and
ap D(r] O U) = ap Du on {|w| < a} (see the proof of Lemma 8) we deduce

/ \D(T] O u)\pdx < liminf / \Drf\p\Duk\
pdx < C(a)

Q k^oo J\uk\<2auk\<2a

and thus

\&vDu\pdx<C(a).

The estimate for u in the weak Lebesgue spaces follows now as in Section 4.

Case 2: The general case p — I < q — 1 < ^b[(p — 1)- The idea is to consider the
regularized problems

(6.8) — diva£(x,u£(x),Du£(x)) = /JL in Q,

(6.9) ue = 0 on dtt

with
ae(x, u, F) := a(x, u, F) + £|F|S"2F

for some s > n + 1 and e < | . Then a£ satisfies (H0)-(H3) with coercivity and
growth rate both equal to 5, i.e.,

a£(x,u,F) : F > e\F\s,
\ae(XjU,F)\ < jFI5""1 + A:(c3,5,g).

Using the results in Case 1 we find a solution u£ € WQ''(Q) of (6.8), (6.9). Test-
ing (6.8) with u£ yields

j \DueJn
e\

sdx <

Using Sobolev's embedding theorem
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we conclude

and

(6-10) \\e\Du£r\^m

By testing equation (6.8) with Ta(u£) we obtain, as in Lemma 10, that

for a constant C which does not depend on e. Thus, in combination with (6.10), we
have that for all p < jf j

| | | £ |

and hence in particular

(6.11) \\<7e{x> u£, Du£) - ao(x, ue, DU€)\\LHQ) -> 0 as e -> 0.

Thus the weak L^limit <7o of the sequence (7o(-,ue,i)u£) satisfies the equation

-div<70 = /xin 2?'(fi).

If we test (6.8) with ip o [u£ — v) y> (^ and <p as in Section 5) we obtain

y ((j£(x,^,Z?ixe) : (Dip)(u£-v)Du£(p

-o£{x,u£,Du£) : (Dtp)(u£ — v)Dv(p

+a£(x, u£, Du£) : ip(ue — v) ® jDy?J rfx.

By definition

o£(x,u£,Du£) : (Dip)(u£ - v)Du£(p > ao(x,u£,Du£) : (Dip)(u£ - v)Du£cp

and thus (6.11) implies

p
n

limsup / (cro(x,ne?JDu£) : (Dip)(ue - v)Du£

: (Dip)(u£ — v)

Since g — 1 < ^ ( p — 1), the sequence <7o(x, w£, Z)u£) is equiintegrable in I,1 (ft) and
the arguments in Section 5 apply. D
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7 The critical case p = n

In this section we prove that solutions of the elliptic system (1.1) are bounded in
BMO\oc(Ct) for p = q = n. Our proof is strongly inspired by Simon's beautiful proof
of C°'Q estimates for the Poisson equation by scaling and compactness (see [Si]).
Here we say that u G BMO\oc(£l) if u e Lloc(Q) and for all open U CC Q there
exists a constant C(U) such that

\UVBMO{UV) = sup sup — / \u(x) - uyiR\ndx < C{U),
yeu Q(y,R)cn R JQ(y>R)

where uy^ denotes the mean value of u on the cube Q(y, i?). In Lemma 14 we first
show a localized version of the a priori bound (4.5) for solutions u e Wo

ljn(ft;lRm)
of the approximating system

(7.1) - div <j(x, ifc(x), Du(x)) = f

with / € L1(Q; IRm). Since such a result does not seem to hold for q > n we restrict
ourselves to the case q = n = p in this section.

Lemma 14 Let u e W^n{Q\ Hm) be a solution of system (7.1) with f G LX(Q; IRm).
Then there exist constants Co, C\ such that the inequality

(7.2) / \Du\ndx <%^j \u- P\ndx
/J\u-fi\<ai Rn JQ{y,R)\Q(y,R/2)

nO(y,R/2)

holds for all cubes Q{y, R) C ft and all (3 G IRm.

Proof. Let 77 G C^°(ft) be a cut-off function such that 77 = 1 on Q(y, R/2), 0 < 77 < 1
and ID77I < C/R. Choose a smooth function aa : H —>• R. with the following
properties: aa = Id on [0, a ] , 0 < aQ < na, a'Q < 1 and

(7.3) 0 < c ( ^ ) n / ( n < <4W < ^ on (0,00).

A possible choice is

i s for 5 < a,

rS/a\Mn-l)
a + / ( — ) dt for 5 > a.

Define the cut-off function (pa in the target by
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Then

/
n

and by (7.3), (H2) and (H3)

a(Dv) : D((paov) > a(Dv) : Dva'Q(\v\) > af
a{d\Dv\n - c2).

Testing the equation (7.1) with rinipa o (u — 0) we obtain

T]na(Du) : D[(pa o(u- /3)}dx =

= - / nr)n~la(Du) : ipa o (u - (3) <g> Drjdx + f 7]nf(pa o(u- p)dx.
Jn Jn

It follows by (H2) with p = q = n and by using Holder's inequality and (7.3) on the
right hand side that

< | (I vn(c3\Du\ + c2)
na'a(\u-P\)dx) (f \u-(3\ndx

R \JQ{y,R) J \JQ{y,R)\Q(y,R/2) j

+Ca\\f\\Ll{Q)+CRn.

Application of Young's inequality yields

Jn a ~~ R n

and inequality (7.2) follows from the definition of aa. •

The following lemma shows that a function satisfying an inequality like (7.2) is a
function of locally bounded mean oscillation.

Lemma 15 Let ft C H n be open, u G W/1>n(ft;lRm) and suppose that the estimate

(7.4) / \Du\ndx < Q- f \u- p\ndx + Ci(a + Rn)
J\u -fi\<a Rn JQ{y,R)\Q(y,R/2)

nQ(y,R/2)

holds for all cubes Q(y, R) C ft and all 0 £ H m . Then u € BMOXoc(Sl) and

[u]BMO(Ufl) ^ C2j

where C2 depends only on Co, C\, and U.
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Proof. Suppose otherwise. Then there exists an open subset U CC ft and a sequence
uk e WliTl(Q;]Rm) such that (7.4) holds for all uk, but [uk]BMO(u,n) -» oc for k -»
oo. We may assume that ||u/b||Ln(n) < C2 (the rescaled functions uk = *W 11̂ *1 |L* (ft)
satisfy (7.4) with some constant C\ < C\ if ||ifcfc||i,n(n) > !)• Thus there exist xk eU
and rk > 0 such that Q(xk,rk) C fi and

r£ JQQ(xk,rk) 2

We deduce that rfc —)• 0 since ||i£]t||zn(fi) < C*. Define the rescaled functions vk :

vk{z) =

and let Uk = y-(—xk + U). Then vk £ BMO\oc(Qk), [vk]BMO(uk,nk)
 = 1?

/ vkdx = 0,

and

f 1

VQ(O,I) ' 2

Using (7.4) we obtain the following inequality for the rescaled functions vk:

\vk-fi\ < Q i? n JQ(y,R)\Q(y,R/2)

for all Q(y, i?) C fife and all p G IRm. We claim that the sequence {vk} is bounded
in Wl£ for all 5 < n. To see this, fix R$ > 0 and choose fc0 big enough such that
Q(O,2Ro) C fife for all k > fc0. Choosing y = 0 and /? = (^)o,2Ro w e obtain from
the inequality above

~ (̂ fc )0,2R0 I < a

nQ(O,Ho)

Since

we deduce with i(t) = C(\ lnt | + 1)

nQ(0,Ro)
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This implies

\Dvk\
ndx <C + C(a + (rkRo)n) for a >

\vk\<a/2
nQ(0,Ro)

and the idea is to use the methods in Section 4 to bound vk and Dvk in the weak
Lebesgue spaces IP*'00 and IP'00 for allp < n. Define the truncation function Ta as in
Section 4 by TQ(y) = min{l, ^}y. From |(^)o,/2ol < C'(-Ro) and
we deduce

\Ta(vk)\
ndx < f \vk\

ndx

< Cf \vk - (vk)o9Ro\ndx + C f \(vk)OiR<}\
n

and

\D(Ta(vk))\»dx < I \Dvk\
ndx + f:f \D(Ta(vk))\

ndx
nQ(0,Ro)

< / {Dvtfdx + CT-r \Dvk\
ndx

nQ(0,Ro) HQiO.Ro)

< C + C(a+(rkRo)n)-

Sobolev's embedding theorem yields for all p < n

f \vkfdx < (j \Ta(vk)\> + \D(Ta(vk))A' P

Using the same arguments as in Section 4 we obtain for all s < n

In particular there exists a subsequence (not relabeled) such that

vk -> v in Lfoc(IRn) f o r all 9 < 00

and

(7.5) / vdx = 0.
jQ(o,i)

Choose a cut-off function cpa e CQ°(B(0, 2a)) such that <pa = Id on J5(0, a) and
\D(pa\ < C where the constant 0 is independent of a. Then cpa o (vk — /3) is
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bounded in W^(JRn) and converges to <pQ o (v - (3) in Lfoc(IR
n) for all p < oo while

D((pa o (vk - P)) converges weakly in Lpoc(]R
n) to D(ipQ o (v - /?)). By the lower

semicontinuity of the L"-norm we obtain

\Dv\ndx < I
v-p\<cx JQ(y,Ro/2)
nQ{y,Ro/2)

<liminf / \D{<pao{vk-0))\ndx

<Climinf / \Dvk\
ndx

k->oo J\v - 01 < 2a
r\Q{y,Ro/2)

Q(y,Ro)\Q(vtRo/2) [uk]BMO(U,Q)

v- (3\ndx.

Using the monotone convergence theorem we may pass to the limit o: —> oo and get

(7.6) / \Dv\ndx < CC0~ f \v- (3\ndx.

If we choose (3 = {v)y,R then the right hand side in this inequality is estimated by
[V]BMO < 1 since the BMO-norm is lower semicontinuous. Thus Dv € Ln(lRn).
Application of Poincare's inequality to the right hand side of (7.6) shows

\Dv\ndx <C f \Dv\ndx,
JQ{y,R)\Q(y,R/2)

/ \ \
Q{y,R/2) JQ{y,R)\Q(y,R/2)

where C is independent of R. It follows for jf? —> oo that Dv = 0 and in view of
(7.5) that v = 0. On the other hand the strong convergence of Vk in Ln implies that

\ < I
2 JQ

\vk~ (vk)o,i\ndx -> / |t; - {v)0,i\
ndx

This is a contradiction and the lemma is proven. •

Theorem 16 Assume that the hypotheses in Theorem 2 are satisfied withp = q = n.
Then the system (1.1), (1.2) has a solution u € BMO]oc(n;TRm) n W^(fyB?1) for
all s < n in the sense of Definition 1 and the a priori estimate

\\U\\BMO{U,<I) + IM|w".»(n) ^ C(*> u)

holds for all s <n and all open U CC Q,.
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Proof. Consider the solutions Uk of the approximating system (4.1), (4.2). Using
the same methods as in Section 4 one obtains ||t^||vm'a(ft) < C(s) for all s < n and
thus uk converges weakly to u in Wli8(0) for all s < n and strongly in I/(Q) for all
p < oo. By Lemmata 14 and 15

for all open U C 0 and due to the strong convergence of u* in Ln we may pass to
the limit in this inequality. •
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