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THE EFFECTIVE BULK ENERGY OF
i THE RELAXED ENERGY OF MULTIPLE

INTEGRALS BELOW THE GROWTH EXPONENT

GUY BOUCHITTE,1 IRENE FONSECA2 AND JAN MALY3

ABSTRACT

The characterization of the bulk energy density of the relaxation in WliP(ft', Rd)
of a functional

F(u,fi):= I f(Vu)dx
Jn

is obtained for p > q - q/N, where u € W1>p(ft; Rd), and / is a continuous function
on the set of d x N matrices verifying

o < no < c{\ + ien
for some constant C > 0 and 1 < q < +oo. Typical examples may be found in
cavitation and related theories. Standard techniques cannot be used due to the gap
between the exponent q of the growth condition and the exponent p of integrability
of the macroscopic strain Vu. A recently introduced global method for relaxation
and fine Sobolev trace and extension theorems are applied.

1991 Mathematics subject classification (Amer. Math. Soc.) : 49Q20, 49J45

Key Words : relaxation, quasiconvexity, covering lemmas, Radon-Nikodym deriva-
tive

1 INTRODUCTION

In this paper we identify the bulk energy density of the relaxed energy when the
class of admissible fields strictly contains the Sobolev space where the functional
is known to be continuous. Precisely, let Q C RN be a bounded, open set, and
consider a functional

F(u,U):= f f(Vu)dx
Ju

1Part of this research was undertaken during the author's visit to the Center for Nonlinear Analysis
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through the Center for Nonlinear Analysis, and by the National Science Foundation under Grant
No. DMS-9500531.
3Research supported by Grants No. 201/93/2171 and 201/96/0311 of Czech Grant Agency
(GACR) and by Grants No. 364 and 189/96 of Charles University (GAUK).
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where U C £1 is an open set, u € Wl5P(fi; Rd), / is a continuous function on the set
of d x N matrices, M d x N , verifying

o
for some constant C > 0 and 1 < p, g < -hoo. This growth condition guarantees
continuity of F on W1^.

We introduce the relaxed energies

T(u,U):= inf {liminf F(un,U): un e Whq(U;Rd), un — u in W1'p([/;Rd)} ,
iu}

In the case where p > q one has (see [AF], [B], [D], [M])

T(u, U) = ^loc(ti, I/) = / Q/(Vu) dx,
Ju

where the quasiconvex envelope of / is defined by

Q/(O:=inf

It is clear that QF < F, and F is said to be quasiconvex if QF — F.

Here we treat the case where there is a gap between the space of admissible
macroscopic fields, W1^, and the space where continuity of the energy follows
immediatly from growth hypotheses, Wl'q. As a prototype example, often occurring
in models related to elastic cavitation, let d = N and

Clearly sequences of deformations in Wl'N with bounded energy will be weakly
compact in Wl'N~l but not necessarily in Wl'N. Here q = N and p = N — 1. This
example has been studied at length, and in particular we refer to [ADM], [CDM],
[FMar].

If p < q — q/N then one may have F(u,Q) — 0 (see [BM], [H]), and in the case
where p = q — q/N it may happen that ^"(u, •) is not even subbaditive (see [CDM]).
These degeneracies cannot occur if 1 < p < q and p > q — q/N. Within this range
it was proven in [FMy] (see Theorems 3.1 and 3.2) that T(u, •) is subbaditive, and
^r\oc{r^"i') is a Radon measure if finite, i.e. if JriOc(w^) < °° then there exists a
finite, Radon measure 1l(u, •) such that

Tioc{u,U) = 1l(u,U) and ft(u,U) < T(u,U) < U{uJJ)

for all open sets U C £1. In addition, it can be shown easily that

u, U) = sup{JT(u, V): V CC U, Vopen}.



A lower bound for the effective bulk energy density was obtained in [FMy] (see
Theorem 4.1 and Corollary 4.2), precisely

for all u e WltP(Q;Rd) and for almost every x0 6 ft. In this paper we obtain
equality in (1.1). This result is achieved by using the global method for relaxation
introduced by Bouchitte, Fonseca and Mascarenhas (see [BFM]) together with an
extension operator P from Wl'p into Wl'q obtained by Fonseca and Maly in [FMy],
Lemma 2.2.

Earlier results on lower semicontinuity for certain ranges p < q and with quasi-
convex integrands were obtained by [Marl], [Mar2], and in the case of polyconvex
energy densities and p > N - 1, q = N, we refer to [ADM], [CDA], [CDM], [DM],
[DMS], [FH], [G], [Myl], [My2], [My3].

2 PRELIMINARIES

In this section we introduce some notation and we recall some trace and extension
theorems for Sobolev spaces. Also, throughout this work constants are designated
by C and may vary from line to line, and B(xo,r) denotes the open ball {x €
RN: \x-xo\<r}.

Given Xo € RN and two radii 0 < rx < r2 we set

A(xo,r1,r2) := {x: rx < \x - xo\ < r2) = B(xo,r2) \2?(zo,ri).

We denote by T the trace operator; if u e WltP(U;Rd) and dB(xo,r) C U, then
T[dB(xo, T*)] u is the trace of u on 8B{XQ, r). We write simply T if the center and
radius of the sphere are clearly understood.

Let x0 € RN and 0 < r0 < n < r2 < 2r0. We consider a linear, compact
operator

such that v is a trace of Ev. Since p > q - q/N the existence of E follows from
standard Sobolev trace and compact embedding theorems.

Furthermore (see [FMy], Lemma 2.2), for p > q - q/N there exists a linear,
continuous extension operator

P = P[x0,ri,r2] : u € W1>p(A(xo,r1,r2);R
d) ^ Pu € W1

such that u and Pu have the same traces on dA(xo,ri,r2), and

llP^llw .̂9(A(xo,ri,r2);R^) < C(r2 - r2)T ( SUp ^ ^
(2.1) ^ € ( r " r 2 )



where C — C(N,p,q,ro) and r = r(iV,p,g) > 0.

The following properties of maximal functions may be found in [S]. Given <p e
Ll(RN) its maximal function is defined by

:= sup * / \4>{y)\ dy,

where CN stands for the iV-dimensional Lebesgue measure. It can be shown that
M(4>) is Lebesgue measurable and that for every a > 0

(2.2) CN({x € RN : M(4>)(x) >a})<^ f \4>(y)\dy.
a JRN

If u € W1 '*^;!**) then we set

(2.3) 4>[u,xo](r) := /
JdB(xo,r)

where HN~~l is the JV — 1-dimensional Hausdorff measure. Clearly 0[u,xo] €
Ll(0,R) whenever B(xo,R) C ft.

In ligth of the definitions of maximal function and of (2.3), it follows that (2.1)
can be written as

< C(r2 - rtf (M{4>[U, xo])(ri)1/p

2.2. Definition. A function <f> : RN —» R is said to be approximately upper
semicontinuous at x if 0(x) > ap lim sup 0, where

:= inf {t € R : lilim ^ ^ ^ ^ t})

Similarly, we say that <f> : R^ —* R is approximately lower semicontinuous at x if
<KX) ^ ap lim inf 0, where

' » -- . } .
The function 0 is approximately continuous at x if it is approximately upper semi-
continuous and lower semicontinuous at that point.

We note that in Definition 2.2 CN stands for the TV-dimensional Lebesgue outer
measure. Also, it follows easily that

ap lim sup <\> > ap lim inf <j>
y->x y->x

and if <j) is approximately continuous at x then

<j>(x) = ap lim sup (j> = ap lim inf 4>.
y-+x y—z

It was shown by Denjoy and Stepanoff that Lebesgue measurability is equivalent
to approximate continuity (see [F], Theorem 2.9.13).



2.3. Theorem. <f> : RN —> R is Lebesgue measurable if and only if it is approxi-
mately continuous at CN almost every point.

In the case where N = 1 this result may be improved as follows.

2.4. Theorem. <j> : R —> R is Lebesgue measurable if it is right approximately
upper semicontinuous at C1 almost every point, i.e. for C1 a. e. x

lim

°
{x) > aplimsup* := inf It e R : lim

Proof. Suppose that <j> is right approximately upper semicontinuous at C1 a. e. x,
where here Cl stands for the one-dimensional Lebesgue outer measure. Fix a > 0.
We want to prove that E := {x G R : <£(x) > a} is a measurable set.

Let E be a Borel set such that E C E and

for all intervals / C R. Define

Af := {x e R : 0 is not right approximately upper semicontinuous at x}

and

P* L^^ v £HB(x,e)nE) 1
jfc/ : = < a: € M : l i m — , , /r>, r r — = 1 > .

\ e-o CHB(x,e)) f
We claim that
(2.5) (E*\M)CECE.

Since CX{N) = 0, by Lebesgue's Density Theorem

L\E\(E*\N)) = 0,

and so (2.5) entails the Lebesgue measurability of E. Clearly (2.5) is equivalent to
showing that

EcDAfcc {E*)c.

Fix x e EcDAfc. Since <j>{x) < a and 4> is right approximately upper semicontinuous
at x, we have

CH(x,x + e)nE)
i™ CHB(x,e))

and so
C1(B(x,e)nE) C1(B(x,e)nE)

CHB(x,e))

thus proving that x £ E*.



3 CHARACTERIZATION OF THE BULK EFFECTIVE ENERGY DENSITY

The main result of this paper is the following.

3.1. Theorem. Let f : MdxN —• [0, -foo) be a continuous function verifying

o < /(o < c(i + m,

for some constant C > 0, 1 < q < +00, and all £ € MdxN. Let 1 < p < q,
p>q- q/N. Ifue Ty1'P(n;Rd) and ;Fioc(u,ft) < +00 then

for CN almost every xo € Cl, where ̂ locC ,̂ •) and the finite, Radon measure 1l(u, •)
are as in the introduction.

As in [BFM], given u € W^p(dB{x0,r)]Rd) we define

m(u,B(x0,r)) := inf{F(t;,.B(xo,r)): t; € ^ '^(^(xo,r) ;R d) , T^ = u}.

If u € W1'p(J3(x0, r); Rd) then we write m(u, JB(X0, r)) in place of m(Tu, B(x0, r)).
Note that if u(x) = £x, £ e MdxN, then

m(u,B{xo,r))

whenever 5(xo ,r) C fi. The theorem below asserts that F\Oc(u, •) and m(u, •) have
the same behavior on small balls, and this will entail Theorem 3.1.

3.2. Theorem. Let 1 < p < q, p > q - q/N, and let f : MdxN -> [0, -foo) be a
continuous function verifying

for some constant C > 0 and for all £ € MdxN. If u e W1'P(Q;Rd) and if

/or 72,(n, •) a. e. xo € 1), ̂ /ierie £{u, xo) w a subset of (0, +00) suc/i t/iai ^1((0? ̂ 0) \
£(u, xo)) = 0 for some ro > 0.

In the sequel we fix f,p and q satisfying the hypotheses of Theorem 3.1, and we
consider a function u € W1'P(H;]Rd) such that ^ioc(w,fi) < +00.

The proof of Theorem 3.2 is divided into a series of lemmas.
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3.3. Lemma. The function m(u, B(xo, •)) ™ measurable.

Proof. We will prove that x/> := m(u, J5(x0, •))
 i s almost everywhere right approxi-

mately upper semicontinuous, which, in light of Theorem 2.4, entails measurability.
Setting

< £ : = <t>[u,x0],

fix R > 0 such that M(0) is finite and approximately continuous at R. By (2.2)
and Theorem 2.3 the complement set to this set of numbers R has measure zero.
Let e > 0 and choose t such that

t < M{<j>){R) + e, hm £ i ( B ( i ? ) ( 5 ) ) = 0.

If r > i? and M(4>)(r) < t then

V(r) < F(«, B(x0, R)) + F(P[x0, R,r)u, A(x0, R, r))

for every v € W^1-«(B(a:o,^);Kd) with Tv = Tu, hence, by (2.4)

C (2M(<p)(R)

- R)qT

Therefore

6-+0

J

,
n

4-
_

We conclude that aplim sup ̂  < ip(R)- n

3.4. Good radii. Let #o € ft. A radius J? > 0 is said to be good radius (for u at
xo), if 5(xo, -R) CC ft and if the following conditions are satisfied:

(i) M(</)[U,XQ]) is finite and approximately continuous at R,

(ii) m(u, B(xo,.)) is approximately continuous at R,

(in) 1l{u,dB{xo,R)) = 0.

The set of all good radii for u at x0 is denoted by £(u,x0). By (2.2), Theorem
2.3 and Lemma 3.3, we have that C1 almost all radii in {r: B(XQ, r) C ft} are good.



3.5. Lemma. Suppose that R € £(it,x0) and B = B(xo,R). Ifun -* Tit weakly
inWl'p(dB{x0,R)',Rd) thenm(u,B)= lim m(itn ,£).

n—*oc

Proo/. STEP 1. We prove that

xn(u,B) < liminf m(ttn,i?).
71—•OO

Fix € > 0 and let vn e W ^ B ^ o , #);Rd) be such that Tvn = un and

F(vn, B{x0, R)) < m(un,

Set

Since B is a good radius for tx at xo, M($) and t/? are finite and approximately
continuous at R. It follows that for any 6 > 0 there exists r € (R, R + 6)C) €(u, Xo)
such that £(xo,r) C fi and

(3.1) tJj(R) -e< ip{r) < ip(R) + e < oc and M{<p){r) < M{<t>){R) + e: < oo.

Abbreviating
P:=P[x o ,H,r ] ,

and setting
_(T T ( u n - i i ) on dB(xo,R),

_ ^ ^ ( x o , ^ ) ,
Wn '"" \ Pu + E6n

then

Pit -f E^n on S(x0, r) \ J5(x0, -R),

(3.2) m(u, JS(x0,r)) < F(tyn, B(x0, r)) = F(un, B(x0, fl)) -f F(tun, A(x0, ii, r)).

Since ^n -* 0 weakly in Wl*(dA(x0,R,r)',Rd) we have

tyn -> Pit strongly in WM(A(x0, .R,r);Rd).

Thus, the continuity of F on ^ ' ^ ( x c i ^ r ) ; ^ ) , (3.1), (2.4), and (3.2), yield

< inf [m(un,B(x0,i?)) + F(u;n, A(x0,il,r))] + e

< Uminf m(un,B(xQ,R)) + F(Pu,A(xo,R,r)) + e
n—>oo

< lim inf m(un, B{x0, R)) + C6qT{2 M{<p)(R) + e)q/p + e.
n—*oo

Choosing 6 so that

(3.4) C6qT{2M(<t>){R)+e)q/p < e,



by (3.1) and (3.3) we conclude that

m(u,B(x0,R)) < m(u,B(x 0 , r ) )+e< lim înf m(un,B(x0,#)) 4- 3e.

STEP 2. Now we will prove that

m(u,B) > li

Fix e > 0. Since R is a good radius for u at xo, for any 6 € (0, R/2) there exists
r e (R-6,R)D £{u, xo) such that (3.1) holds. For a fixed 6 we find such an r, we
write

P :=P[x0,r,JZ], E :=E[x0,r,ii],

and set
T(un — u) on dB(xo, R),
0 onaS(x0 , r) ,

inB(xo ,r),

where v 6 W 1 ' 9 ^ ^ , r ) ; R d ) , Tv = Tu,

F(v,B{xQ,r)) < m(u,JB(X0,r)) + e.

Then, just as in the first step of this proof, using (3.1) and (3.4) we have

limsupm(un,£?(£(),#)) < limsupF(wn,B(x0,R))
n—>oo

< limsup [F(v,B(x0,r)) + F(tx;n,i4(x0,r, ii))]
n—*oo

< m(u, B(x0, r)) 4- F(Pu, i4(x0, r, ii)) + e

n—•oo

It suffices to let e —• 0+.

3.6. Lemma. Lei xo € fi and il e f (tz,xo). Then

Fix e > 0 and let un e W^(B(xo,R)]Rd) be such that un — it weakly in
^ and

lim F(un, B(x0, i2)) < l̂ocCw, S(x0, #)) 4- e.

Let us tacitly assume that un and u are represented in such a way that

!*„ = T[x0, r]un , u = T[x0, r]u

9



for every r € (0, R). By Rellich's compact imbedding theorem we have||un — u||p
0, hence there are an —> oo and C such that

sup / (\Vun\
p + an\u - un\

p) dx < C.
n JB(xo,R)

Setting

/ (IVunl" + an\u - un\*
dB(xo,r)

by Fatou's Lemma

/

R pR

liminf <t>n(
r) dr < liminf / <j)n(r)dr < C

n-*oo n-*oo JQ

and so Cx(Af) = 0, where

M := {r € (0,.R): liminf 0n(r) = oo}.
Tl

Let 6 € (0, R) and define

E:={re(R- 6, R) n 5(u, x0): m(u, B(x0, r)) > m(u, B(xo,R)) - e}.

Then E is a set of positive measure, and if r € E \ M then there is a subsequence
unk such that

(3.5) unk^u Wl*(dB(xQ,ry,Rd).

Using Lemma 3.5 we conclude that

m(u,B(xo,R)) — e < m(u,S(xo,r)) < liminf m(unfc,B(xo,r))
k—+oc

<liminfF(un k ,B(xo ,r))< lim F(un,B(x0,ii)) < ̂ ioc(u, J5(x0,H)) + e.
i t—K» n—*oo

This proves the assertion. rj

3.7. Lemma. Let i? € £(u,xo),B := B(xo,-R), and let v G VF 1 ' 9 ^ ;^ ) 6e such
that Tu = Tv on dB. Then the function w defined by

u(x) t/ x ̂  Bf u(x) t/ x

" \ v(x) i/x

Proof. Let e > 0. Since lZ(u,dB) = 0 and JF(V,-) is absolutely continuous with
respect to CN, we may find 6 > 0 such that

(3.6) ^ioc(w, S6) 4- F(v, B n S6) < e

10



where S6 := A(xo,R-6,R + 6). Let un € W1'P(S6;R
d)nWj£(Ss;R

d) be such that

un - - u weakly in Wl'p(Ss; l
d )

and

(3.7) sup F(un,Ss)<£.
n

By virtue of Rellich-Kondrachov compactness theorem we may suppose that

(3.8) un -+ u strongly in LP{S6; R
d).

As in the proof of Lemma 3.6, we may find a set S° C (R, R+6) n£(u, xo) such that
Cl ((i?, R+6) \ £°) = 0, and for each r e £° there is a subsequence unj (depending
on r) such that

(3.9) Tunj — Tu weakly in W^p(dB(x0, r); Rd),

where

Choose rk 6 5°, r k \ R such that M{(j)){rk) < M(</>)(R) 4- e and, using (2.4),

For each r^ we relabel the subsequence {unj} satisfying (3.9) as {u?} . We write

Pk :=Pk[xOiR,rk], Ek :=Ek[x0;R,rk],

and set

= i° ondB(xQ,R),
\ Tk(u

(
n

k)-u) ondB(x0,rk),

{ v i

Pku + Ek0
{
n
k) onB(xo,rk)\B(x0,R),

u(
n
k) in S6\B(x0,rk).

Since 0{
n
k) — 0 weakly in Wl^{dA{xQ,R,rk);R

d) as n -* oo, we have

w ^ - • Pfcn strongly in Wl«{A{x0, R, rk); R
d)

and thus
F(wik\A(x0,R,rk)) -> F(Pku,A(x0,R,rk)).

Let

11



where, according to (3.8) and (3.10), the increasing sequence {rik}(
kLl is selected in

such a way that

and

(3.11) F(wW

Then {zk} is bounded in W1'p(56; R^, zk e W^(S6] R^, and zfc -> tu in L*>(S6', R*).
It follows that 3fc -> tu weakly in W^SajR*), and using (3.6), (3.7) and (3.11) we
have

F(zk,Ss)<F(v,A(xQ,R-6,R))

^ 0 , R, rk)) + F(uW,A(xQ, rfc, R + 6))

and thus
F\oc{w,S6) < lirainf F(zk,Ss) < 2e.

k—*oo

Hence 1l(w, dB) < 2e and the conclusion follows by letting e tend to 0.

3.8. Definition. We define

m*(u, U) := lim m6(u, U),
6—0+

where

m*(u,C7) :=inf < Vm(ix,Bi): B i = B(x i,r i) CC t/, r» € (0,6) nf(u,Xi),

i are disjoint, 1l(u, U \ | J B^ = 0 \ .

We remark that by Besicovitch Covering Theorem we may always find countable
families {Bi} of balls under the conditions of Definition 3.8.

3.9. Lemma. m*(u, U) < T\oc{u, U) for every open set U C fi.

Proof. Let 8 > 0 and let Bi be such that Bt = B{xu n) CC 17, r» € (0,6) n f (u, x»),
J3i are disjoint, and K(u,U\(J^ Bt) = 0. Then, using measure properties of
^F\oc{u->') a nd Lemma 3.6 we obtain

p

It follows that
^ioc(^,^) > lim :

6-+0+

12



3.10. Lemma. / / / : MdxN —> [0,+00) is a continuous function verifying

for some constant C > 0, then ^iOc(^? U) < m*(u, U) for every open setUcQ.

Proof Fix e > 0, 6 = I/A:, A: € N, and choose B{ such that B* := B(xi, Ri) CC 17,
Ri e (0,(5) n£(u,x j , 'Si are disjoint, ll(u,U\ [j^ BJ = 0, and

(3.12)
t= l

Since 7£(u, •) is a finite, Radon measure, we may choose m large enough so that

m

l̂ocfa, V) < e, where V :=U\\JBI.

Let Vi e W1^(Bi]Rd) be such that Tv» = Tu and

(3.13) F(vi, Bt) < m(u, Bi) + —.
m

Setting
_ f u in V,

by Lemma 3.7
1l{uk, dBi) = 0 for all i € {1 , . . . , m},

and by (3.12), (3.13), we have

loc(uk, U) < ̂ ioc(u, V) +
2 = 1

m

(3.14)

Next we prove that

(3-15) lim Hi,* - u||p =

13



Indeed, using Poincare's inequality and the coercivity hypothesis we obtain

f m f
lim sup / \uk — u\p dx = lim sup Y^ / \vi "" U\P ^x

k-+oo JU fc->oo ~ J JBi
m „

< lim sup V" / rp | Vv» - Vu\p dx
k->oo ~*x JBi

< lim sup V 2p~1T-f f / |Vu|p dx + / |Vui|p

m

< limsup VcaP-V
fc-*oo i = 1

m

< lim sup C 2"-1 fc-p (Jioc(u, U) + V F(wit B*)),

where we have used the fact that Ri < l/k. By Lemma 3.9, and by (3.12) and
(3.13)

(u, U) + 2e < m*(w, [/) + 2e < Jioc(^, f/) + 2e < -hoc,

and we conclude that (3.15) holds. This, together with (3.14) and the coercivity
hypothesis, implies that Uk —> u in W1'p([7;Rd). Finally, once again due to the
coercivity assumption,

w |-> •?rioc( ,̂ U") is sequentially weakly lower semicontinuous in W1'p(f7;Rd),

and so, by (3.14),

(it/c,[/) < lim

The result now follows by letting e —• 0. rj

Using the above lemmas, we proceed with the proof of Theorem 3.2.

Proof of Theorem 3.2. By Lemma 3.6 we have

liminf ———• ~-r- > 1.

Let t > 1 and set

: limsup
r€£(u,x)

14



We claim that

(3.16) H(u,Et)=O.

Fix r, e > 0 with t > r > 1, and define for any 6 > 0

Ai := {B(x,r) : x e Et,0 < r < 6,r e £(u,x),B(x,r) C ft,

B(s, r)) > r m(u, JB(x, r))} ,

Set

<5>0

Clearly Et C UQ, and since Us \ L^ we may find p = p(e) such that 7£(u, Up\Uo) <
e. Choose a compact set K C Uo such that .Fioc^ U$ \ K) < e, and define

y6 := {J3(x,r): x e UP\K, 0 < r < 6, r € £(u,x), B(x,r) CUP\K).

Let 0 < S < p. Since Xs U 3^ is a fine covering of t/p, by Besicovitch's Covering
Theorem we may find a countable, disjoint, subcovering such that

oo oo

Us = [JBlu[JBjuAf

where Bt := B(xt,r») 6
we have

:= B{yj,rj) e y& and H(u,N) = 0. By Lemma 3.6

1 = 1

= r

(u,Up)-(r-l

> Tm*{u, Up) - (r - l)F,oc(u, Up \ K).

Letting 6 -+ 0+ and using Lemma 3.10, we have

^ioc(u, Up) > T m*(u, Up) - (r - 1) Tioc{u, Up \ K)

> r JF1 O C(U, Up) - ( r - 1) JT,OC(U,

15



so that, as Et C UQ C C/p,

(r - 1) ft(u, Et) < (r - 1) ̂ ioc(u, Up) < (r - 1) 5\oc(u, C7P \ K) < e (r - 1)

Since r > 1, letting £ —• 0 we conclude (3.16). rj

Proo/ of Theorem 3.1.

STEP 1. Assume first that the coercivity hypothesis holds, i.e. C""1^|p < /(£) <
C{\ + |^|9) for some constant C > 0.

Let T? := d ^ ' } CN be the absolutely continuous part of H(u, •)• By Theorem
3.2 for r\ a. e. xo € f)

)) m(u,B(xo,r))
l X o j " r / 3 o ) m(u,B(so,r))

(3.17) ' / n . u

r m(u,B(go,r))

In addition, we know that CN a. e. we may choose xo € Ct so that xo is a Lebesgue
point for Vu(xo) and

U e ( y ) : = u(xo + ey)-u(xo)

Write
(

Assume that vn are represented in such a way that vn = T[0,r]i>n for all r € (0,1).
By Rellich's compact imbedding theorem and Fatou's lemma, as in the proof of
Lemma 3.6 we find a set M C (0,1) with Cl(Af) = 0, and a subsequence (not
relabelled for convenience), such that

/ K-vI
JdB{0,r)

liminf / \Vvn(x)\pdHN-l(x) < -hoo
n-^°° JdB{0,r)

for all re (0,1) \ M. Let

n-1

It is clear that £x((0,1) \E) = 0. Fix a e E. Then there is a subsequence unj such
that

16



and

(3.18) vnj^v weakly in W1'p(d.B(O,£T);Kd).

In view of (3.17) we have

dTlju,-),
dCN V J n^cx

and by an obvious rescaling we obtain

W i n , - ) , , l:w
(X°) = «J™o £"(JJ(O,<r)) •

Using Lemma 3.5 and (3.18) we conclude that

dTZju, •) m(Vu(ao)y,B(0,(r))

STEP 2. Finally, we remove the coercivity hypothesis. By (1.1) we know already
that

ll(u, •) = fCN + /i

where // is a Radon measure, singular with respect to CN, and / > Qf(Vu). It
remains to prove that

(3.19) f<Qf{Vu) £Na.e.

Consider the perturbations /e(£) := /(O+£ICIP
7 ^ > 0, with corresponding relaxed

energy f\oc{u, •) and associated Radon measure 7Ze(u, •). Using the result obtained
on Step 1,

Clearly K(u, •) < fce{u, •), hence

f(x) < liminf Qf£(Vu(x)) CN&.e. x e Q.

It is easy to show that
lim Qf£(O=Qf(O

£—•0 +

for all £ e MdxN, and we conclude the proof of (3.19). •
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