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Abstract

We determine the asymptotic behavior of the system of Cahn-Hillard/Euler's equations that con-

trol the dynamics inside the thin boundary layer separating two inviscid, incompressible, and

nearly immiscible fluids. This model was proposed recently in order to replace the classical mov-

ing boundary model of two immiscible fluids, separated by the interface with the surface tension.

We formally verify that these two problems are related. Using the method of matched asymptotic

expansions, we show that when the width of the interface and the miscibility of the fluids con-

verge to zero, then the system of Cahn-Hillard/Euler's equations converges asymptotically to the

classical moving boundary problem. In addition, we analyze for the different timescales the

behavior of the mixture inside the boundary layer.



1. Introduction

When studying the behavior of two immiscible fluids, separated by the interface with sur-

face tension, it is normally assumed [So] that the condition

[ P n ] r = o*n, (1)

is satisfied on the interface r . Then the equations governing fluid motion in each phase are solved

subject to the condition (1) on the moving interface. Here P is the stress tensor, n is a unit normal

vector to r , and k is the mean curvature of T. Also a is a constant and [<|>] r denotes the jump in

<|> across r . The existence of a solution for this classical problem has only been shown for a small

time or close to the exact solution ([St]). The possible complications can be seen in a particular

case, when two phases are mixed by the action of the imposed flow. Then the amount of the inter-

face area per unit volume increases with time, while the characteristic length of the microstructure

created during the flow decreases. As the result, the flow becomes very complex, making both

analytical and numerical analysis of the problem extremely difficult. In a view of this, the numer-

ical simulations based on the classical formulation may provide misleading results.

In recent years the different approach to this type of problems has been suggested and used

by several authors (Chella and Vifials in [CV], Gurtin, Polignone, and Viiials in [GPV], Staro-

voitov in [St], and Truskinovsky and Lowengrub in [LT]). Their basic idea is to replace the sharp

interface between two phases by a thin boundary layer in which the relevant quantities vary con-

tinuously but may have large gradients. To track the interface one introduces and follows the

dynamics of an order parameter that is assumed to have almost constant values within each phase.

As a such parameter we could take, for example, a concentration of one of the fluids in the mix-

ture. Then the classical problem can be replaced by a system of two equations, one describing the



motion of the fluid and another describing the evolution of the order parameter. The thickness of

the interface enters these equations as a small parameter.

This approach is based on the same principle as Ginzburg-Landau models of phase separa-

tion [GSS], phase-field models for solidification (see e.g. [Ca] or [CF]), and various models used

to study the decay of fluctuations at the critical point [HH]. The particular model that we study

here is referred to as "model H" in the literature on critical phenomena ([HH]) and was used by

Siggia, Halperin, and Hohenberg [SHH] to study behavior at the critical points of single and

binary fluids. We will, however, be interested in describing the behavior of the same model away

from any critical points, when the phase separation is largely completed and the order parameter

assumes almost constant values in each of the phases, separated by the interface of the small

width e over which the order parameter changes continuously.

The model under consideration was also obtained following the methods of continuum

mechanics by Gurtin, Polignone, and Vinals in [PGV] and consists of the coupled Navier-

Stokes/Cahn-Hilliard equations, that can be written for our choice of parameters as

5
e r-, e e 2 . e

u + Vw -v = e A\x ,

v + Vv v = - \p - E AM V« ,

for every e > 0. Here v8 denotes a velocity of the fluid, we is the order parameter, and

F ( £ \ 2 £

li = /1 u I - e Aw is the chemical potential (the definition of / will be given in the next sec-

tion). We will assume that the fluid is incompressible

(3)



and inviscid. Also, for simplicity, we will set the density of both phases identically equal to one.

Our goal will be to use the method of matched asymptotic expansions to determine the

asymptotic limit of the system (2) as e -> 0, as well as to study the behavior of the mixture inside

the boundary layer. Observe that as e -* 0, two fluids become immiscible. To simplify our analy-

sis, we choose the mobility (the coefficient in front of chemical potential in the first equation) and

capillarity coefficient in the Euler's equation in such a way that the relevant processes inside the

boundary layer are separated in time or, in other words, occur on different timescales. Also we

note that our analysis can be directly applied to the case of viscous fluid when the Reynolds num-

ber is large. For a low Reynolds number our technique does not seem to work.

Assuming that the initial velocity of the fluid v (JC, 0) = O (e) , we show that

1. On the fast timescale s = - the interface T remains stationary and the order parameter

remains equal to its initial value everywhere in the domain. The velocity v of the fluid also

remains unchanged inside the regions away from T. However, near the interface, the tangential

component of the velocity increases linearly in time, driven by the gradients in the initial distribu-

tion of the order parameter. Therefore, on the timescale t, the velocity of the fluid can be by the

order of magnitude larger inside the boundary layer than away from the interface (in the bulk).

2. On the "regular" timescale t the high velocity inside the boundary layer forces the redis-

tribution of the order parameter along the interface. Simultaneously the velocity inside the regions

near T decreases down to the same order of magnitude as in the bulk. The resulting structure of

the order parameter inside the boundary layer is such that at the leading order the capillarity term

disappears from the Euler's equation in (2) by compensating the change in pressure across the

interface. Furthermore, the interface itself remains stationary on the t timescale.

3. On the slow timescale a = -^ the order parameter has the structure, described in (b), for



every a > 0. We use this to show that, near the interface, the equations in (2) can be decoupled by

using the appropriate change of variables. In addition, we show that the equation for the order

parameter u, written in the new variables, is the one-dimensional Cahn-Hilliard equation. It fol-

lows then that the asymptotic limit of (2) is the classical moving boundary problem with the con-

dition (1) satisfied on the interface.

If the function u is interpreted as a concentration of one of the parameters in the mixture,

then our result is in agreement with the conclusion in [LT], that the presence of concentration gra-

dients in the boundary layer gives rise to an effective surface tension between the fluids.

For our analysis we use the method of matched asymptotic expansions in the same form as

used, for example, by Pego in [Pe] and Rubinstein, Sternberg, and Keller in [RSK].

The convergence of (2) to the classical moving boundary problem was also formally shown

by Starovoitov in [St] by employing a cruder version of the asymptotic analysis. In particular,

Starovoitov did not analyze the dynamics of the mixture behavior near the interface. Moreover,

although the expansions in [St] produce at the leading order the set of equations that is similar to

ours, the presence of the viscosity term in [St] should cause problems at the higher order in the

expansion for velocity.
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3. Preliminaries.

As we have already discussed in the previous section, we study the asymptotic limit of the

system

e T-J e e 2 . e
ut + VM v = e A|i ,

£ _ _ £ £ _ £ 2 A £ ~ £

v ^ V v v = - Vp - E AM VM,

(4)

as e -> 0. We suppose that the spatial variable x e d c R , where Q has a smooth boundary and

that for every e > 0

an an = v n = 0. (5)

Also the chemical potential \iE = /\^uEj - 8 Awe and div v£ = 0. The function f(u) = W (u)

and W(u) is a double-well potential. We will assume without loss of generality that

. The energy functional corresponding to (2) is given by

2V111

(6)

and is nonincreasing on the solutions of (2). We suppose that uE and ve satisfy the following ini-

tial condition:

(7)



for all e > 0 and that, in addition, |VQ (JC) | < Ce for all x e Q, and e > 0. Here uE (JC, 0) = uZ
Q (x)

and vE (JC, 0) = v* (JC) . Then, we have that

(b) supt>0 jlluE)2-l) dx<2Me.

(8)

(9)

Also we can adopt the following compactness result from [BK]:

Theorem 1 : Assume that (7) is satisfied. Then for any sequence of z 's tending to zero there

exists a subsequence e. such that the limit lim u J (JC, t) = u (JC, t) exists for a.e.J e.->0

(JC, t) e £1 x (0, oo) . The function u takes only the values ±1, and there is a positive constant Q

depending only on M such that:

Q

Set

F°[u)

V«

(JC)€ {-1,1} a.e.in£l,

otherwise,

where JT = P */2W~(s)ds (in our case £T=4/3) and Pcr^( A ) is a perimeter of A in Q (for the

definition of perimeter see e.g. [Gi]). It turns out that F is a T^L (Q) J -limit of F6 (see e.g.

[FT]). In other words, the following holds



Theorem 2 : Let Fz and F be as above.

(1) if w
e->w° inLl(Q) then liminf FE[wE] > F°[w°].

e->0

(2) For any w e L (Q) there exists a family ( w e ) such that wZ -» w in Ll(£l) and

lim F I w J = F [w J.
e > 0

Using this theorem, we can assume that for every t > 0 there exists a front Tf separating two

regions in Q, where u (JC, t) = 1 and u (JC, t) = - 1 . As we will indicate later, some of our results

will only be valid in R . In this case the first part of the Theorem 2 shows that the total length of

the front Tf is uniformly bounded in time.

In the remainder of this paper we will assume the following:

1. For every t > 0 and e > 0 small, the functions u (JC, t) = ±1 + O (e) uniformly in Q

except in an e - neighborhood of the front Tf. At distances greater than O (e) from T(, the deriv-

atives of if will be presumed to be bounded independently of e as e -> 0.

2. For every £ > 0 the solutions of (2) are sufficiently smooth to justify our calculations.

3. Let T^ : = { uE (JC, t) = 0} for every e > 0. We suppose that both T( and TE are smooth,

closed surfaces in the interior of the set Cl that evolve continuously in time and Tt -^ T( as e -> 0

for all, but finitely many / > 0. Here the convergence is assumed in the following sense. Let At be

the region of Rn enclosed by Ff and AE be the region enclosed by TE. We will say that rE con-

verges to Tf as e -»0 , if measl A*AA J -» 0 as e -» 0, where meas (B) denotes the Lebesgue

measure of the set B while AAB is the symmetric difference between the sets A and B. Some

additional restrictions will be imposed on the convergence of rE later on.

4. The width of the boundary layer is small in comparison to the distance separating layers

and their radii of curvature.



4. Fast timescale

4.1. Outer Expansion

First, we develop the expansions for the solutions on the fast timescale s = - . Then (2)

takes the form

. £ ~£ ~ £ l 2 A ~ £
i + \U ' V =

V £

1 f ~
v I = - y p - £ AM VM .

(10)

p / c \ 0 c p

where >v (JC, 5) = w (x, ej) for any function w, while j ! - f\^u J-t Au and ^/v v = 0. Con-

sider now the outer expansion of the solutions of (10) away from the front T . We set
u (x9s) = uQ(x, s) +Wj (x,

~£ ~ 2 3 4
v ( x , s ) = v Q ( x , s ) e + v l ( x , s ) z + v 2 ( x , s ) e + . . . , (11)

^e(x,^) = po(x,s)

Then, substituting these expressions into (10), we have for the lowest order terms

v0*= " V ^ 0 '

J/v VQ= 0.

(12)

It follows that there is no change in the leading order term for the order parameter u on the times-

cale 5; the initial values are preserved. As we will see later, the same can be said about the leading

10



term in the outer expansion for the velocity v.

4.2. Inner Expansion

To determine the behavior of the solution near the interface suppose, following [Pe], that

9 (JC, s) is the signed distance to r^. Suppose, in addition, that the location of 1^ can be approxi-

mated by the function

q E ( x , s ) : = (f>l(xys)e + (p2(x,s)E + . . . , (13)

where qe is first defined for every x s Fs through the relation uZ[x + q (JC, s) m (JC, s),sj = 0 and

then ex tended into the ne ighborhood of Fs by assuming that q (JC + am (JC, s),s) = qE(x, s) for

every small a > 0 . Here m (x, s) = Vcp (JC, S) is the unit normal to the front r at JC G r , and r
s s s

and r^ are supposed to be such that the above definitions make sense.

We introduce a new variable z = ^ ^ ? s' and define the functions uZ (JC, Z, S) and

vz(x,z,s) by
_ef cp(jc, s) } ~i ( xu I x, v v ? \ s\ = u (x, s) ,

V t J

and

_w. Cp (JC, S) , -^ f .
V JC, - ^ - , S = V (JC, S) .

We define the functions pZ (JC, Z, 5) and pe (JC, z, j) in a similar manner.

Assume for every w (JC, Z, ̂ ) that

(a) w does not change if z is fixed, while JC changes in the direction normal to T , that is

11



w (JC + am (JC, S) , z9 s) = w (JC, Z, 5) for every a > 0 .

(b) The limit limz ^ ±owz (JC, Z,S) = 0 .

The assumption (a) implies that Vxw (JC, Z,S) m (JC, S) = 0 and one can show for every

wf JC, ̂  ^Xi s), 5 j = w (x, s) that the following hold

w + wws =

Aw = —w + -&w + A w.
e

2 zz e z *

(14)

(15)

(16)

Here V (x, s) = <p (JC, 5) is the normal velocity of the front r and k (x, s) = Acp (x, s) is its mean
S S

curvature. In the new variables the equations (10) take the form

- d v + - v V+Vvv v + - T "" -

Also we have that

= 0,

(17)

(18)

due to the incompressibility of the fluid and

=f[ut)-uE
zz-ekut

z-e
2Axii. (19)

12



by the definition of the chemical potential. Moreover, by the definition of r* and (13),

(20)

Note that q is independent of z.

Next, suppose that

e
u (x,z,s) = uo(x,z,s) +ul(x,z,

e 2 3 4
v ( x , z , s ) = v Q ( x 9 z , s ) e + v l ( x , z , s ) z + v 2 ( x , z , s ) e + . . . , (21)

p (*,z,s) = po(x,z,s) +pl(x,z,s)e + p2(x,z,s)z + . . .

Substituting these expansions into (17) and collecting terms with the same powers of e we obtain

that

V ( x , s ) = 0 , (22)

uQs(x,z,s) = 0, (23)

U + T )
 =0' (24)

In addition, due to (18),

*oz'm = 0 (26)

and

13



By taking a derivative of (25) in z, multiplying the result by m and using (26) we obtain

that

Since by our assumption the limit limz _̂  ±eowz (x, z,s) = 0 for every w (x, z, s) , then

(Pi+n0zniz\ + knlz = °'

and therefore

^ = - V ^ o - a o 2 z
V ^ o - (28)

By (24)

PQ (X, Z, 5) + - ^ = p 0 (Jt, ±eo, S) , (29)

and

Furthermore, by imposing the appropriate initial conditions on u , we can use (24) to conclude

that in fact,

5 = O o n r .
sm s

Then (12) implies that p0 = 0 in the interior of the set enclosed by Ts (and vQ remains unchanged

in the outer expansion), hence by matching the inner and outer expansions, we obtain by (29) that

= 0.

Substituting p0 into (28), integrating in s, and using (23) we find that

vQ (x, z, s) = vQ (x, z, 0) + («OzVJcwQz - uOzzVjpo) s. (30)

14



Notice that as z -» ±«> the function vQ (JC, Z, S) -> vQ (x, +«>, 0) for every ^ > 0. This, along with

the fact that the velocity remains unchanged in the outer expansion (due to the constant pressure),

ensures that the matching condition for the velocity v holds in space variables for every s > 0.

By (30) the tangential velocity at some points in the boundary layer near r^ will increase

linearly with the time s. Hence we will assume for the regular timescale t that the velocity v is

of the order one near the front Tt. This will provide for the correct matching of inner expansions

of solutions of (2) for the fast timescale s and the timescale t. On the other hand, using (7), we

can see that in the outer expansion the velocity ve cannot have the order of magnitude lower than

7 i . We will begin by assuming that in the outer expansion, away from the front r , the function

ve = O (e) for every t > 0.

5. Timescale t

By repeating for the t timescale our arguments from the previous section, we find that in the

outer expansion the lower order terms should satisfy the following system of equations

uOt = 0, (31)

v0r = -VPl' (32)

V/>0 = ° ' (33)

divv0 = 0. (34)

while we obtain from the expansion near Ft that

(35)

+ hm , (36)

15



?o = ° ' (37)

0, (38)

= 0, (39)

( p l f (x, t) + Vx(p1 (x, t) • v 0 ( x , 9 j (x, t ) , t ) - g (x, ( p , (x, t ) , t ) = 0 , (40)

m v o + V = O (41)

Here (pj (J:, 0 is as defined in (13) and we have taken into account that

B Q U ^ C J C O . O = 0. (42)

In addition,

_2
h = p, + (5Q iij ) + ku.Q ,

and

The following matching condition should also hold

Then using (39) we obtain that

If we suppose that pJ =0 then (33) implies that p0 (JC, r) s 0 in the outer expansion, away from

the interface Tf. It follows then from (39) that

^ 2 = 0. (44)

By (38), (41), and (43) we have

V(x,t) = 0,

16



and

[ v o - m ] r = 0, (45)

(46)

Hence, on the t timescale the front separating the fluids remains stationary.

2

Suppose for the remainder of this section that £1 c R . Since the normal component of vQ

vanishes in the inner expansion (see (34)), we can show that vQ would satisfy in the outer expan-

sion

div vQ = 0,
(47)

with UQ independent of t, while in the inner expansion

(48)

where vQ is subject to the boundary conditions (43) and t is a unit tangent vector to rQ . Parame-

trizing the curve TQ with respect to its arclength s, we can rewrite the system (48) in terms of the

v a r i a b l e s z and s . L e t % (z , s , t) = uQ (x ( s ) , z, t) a n d T| (Z, S, t) = vQ (x (s) ,z,t) x(x (s)) t h e n

(49)

= 0.

17



Integrating the second equation in (49) in z by parts and using the third equation we obtain

:• (50)

Suppose now that rQ is a closed curve and that the region enclosed by rQ is convex and

in/ r k (s) > 8 for some 8 > 0. Integrating (50) in s over TQ we have

j f J jr\(z,s,t)dsdz+ J jk(s)T]2(z,s,t)dsdz = 0. (51)
ro

We conjecture that (51) implies that f f T\ (Z, S, t) dsdz -> 0 and that
oo -p

d f 2 ~°° 0
— J £>z (z, s, t) dz -> 0 as t —> o©. Here the first identity implies that the lowest order term in the

—oo

inner expansion of the tangential velocity converges to zero as t -> °°. Indeed, by (7) we can

assume for every t > 0 that

l l

J ji)(z,s,t)dsdz<M2\Q\2, (52)

or0

where |Q| is the Lebesgue measure of the set £2 and M is defined in (7). Then , by (51),

= 0;

otherwise (52) will be violated. Using (50) we can formally conclude that

18



(53)

Furthermore, the latter result can be extended in the following way. Fix any O e C (R) such that

O (£) > 0 for every X G R . Multiply the first equation in (49) by r |O' (£) and add it to the second

equation, multiplied by O (£) . Then integrate the resulting equation over r Q x R by parts to

obtain

j t \ j<t>(&mz,s,t)dsdz+ J jk(s)<!>&)r\2(z,s,t)dsdz = 0. (54)

Using the same reasoning as above we can conclude that

(55)

or, differentiating in s and integrating by parts,

(56)

as t -> oo. Assume that £z (s, z, ~) * 0 on r Q x R then, since the function O was chosen arbi-

trarily, we may deduce that

%z (S, Z, oo) ^ (S, Z, oo) - ^ ( j , Zy oo) ^ (s, Z , oo) = 0 , ( 57 )

for all (s, z) e TQ x R. The equation (57) can be rewritten as

19



Since ^ O o n r 0 x R b y our assumption, we conclude that

>,z,~) (59)

for every (s, z) e TQ x R. On the other hand, by differentiating the equation (42), and letting

t -» oo, we have that

£5 (5, q>j (5, oo) , oo) + %z (S, 9 j (J, oo) , ee) 9 ^ ( j , 00) = 0 , (60)

and it follows that 9 l 5 (5, ») = c (s) . Therefore, by fixing some s^ e rQ and setting

\j/ (5) = 9j (j 00) ~ cp1 (j9 00) , the function £ can be written as

$(S9Z, 00) = ^ ( 5 0 , Z + V ( j ) f o o ) . ( 6 1 )

We emphasize that the rigorous proof of these results can only be provided by studying the

asymptotic behavior of the nonlinear system (49). Also, even formally, the different arguments

should be used to show whether our results hold for rQ that might contain affine parts or rQ that

is not closed, or not convex.

Remark 1. Notice that if we set r| = ^ and g = - £5, when k (s) =0 on rQ and

2£ € C ( r 0 x R) , then (£, % g) is the stationary solution of the system (49).

20



Hence, we have established that on a fast timescale of order e the gradients of the initial dis-

tribution of order parameter will cause the rapid acceleration of the fluid particles inside the

boundary layer. On the timescale of order one, however, the transport effects associated with now

moving particles will in turn "equilibrate" the order parameter along the boundary, leading to the

solution structure, described by (61). At the same time the tangential component of the velocity of

moving particles will decrease back to the same order of magnitude as in the outer expansion.

It follows from (47) that for t » 1, the function vQ in the outer expansion has to satisfy

div vQ = 0,
(62)

Assume that Fo is connected. Then using (53) we conclude that the velocity vQ will grow

almost linearly in the outer expansion on the timescale t, provided that k{s) is not identically

constant on FQ.

6. Slow timescale.

Consider now the behavior of the system (2) on a slow timescale of the order —. Let
Ve

a = Jet. Based on our results for the / timescale, we will assume that the velocity v on the a

timescale will be of order one everywhere in Q, and that the leading order term uQ in the inner

expansion of the order parameter u satisfies

u0 = u0(z + V(x,o)9o) , (63)

21



for every a > 0.

For every w (x, t) suppose that w (x, a) = w\ x, — ] and for every w (JC, z, t) suppose that

w (JC, z, a) = w\ x, z, -—: ). Then (2) should be rewritten as

„£ „ „ £ Ae 2 Ae
uo + \u -v = 8 Aft ,

v v = - - Vw .

/v v = 0,

£ f £ ^ 2 £

where fl = /^f i l -£ Afi , while the energy inequality (8) has to be replaced with

Ql

(64)

(65)

The system (64) leads to the following equations in the outer expansion

= 0,

div \>Q — 0 .

(66)

(67)

(68)

(69)

Near the front r the system (64) can be rewritten to obtain

1 £ £ £ 1 z{ z\ €

1 £I7 « £ £ 1 tf e\
+ -v V+ VYv v + -v I m - v I

e 2+ e

(70)

22



and

where the variable z is as defined before. Hence in the inner expansion we will have

£ = f{u )-uzz-tkuz-e Aux, (72)

(73)

(74)

(76)

( 7 8 )

v O z m = O, (79)

< / i v x K 0 + ( j n - K j ) = 0 , ( 8 0 )

2

We are going to concentrate more closely on the equation (74) when x e R . We will use the

same notation (with some obvious changes) as in the previous section. We already know from

(61) that

uQ (s, z, a) = uQ (s0, z + \\f (s, a), a) , (82)

23



when a = 0. Furthermore, this structure must be preserved during the evolution on the slow

timescale, that is (82) must hold for every a > 0. Set

y: = z + y(s,c) , (83)

and

: = u0(sQ9y,o) . (84)

Substituting w into (74) and changing variables we obtain

In order to preserve the structure of (82) the factor

A(s9y,c) : = VO + V 5 ( V T ) + 0»-*i) »

must be independent of s.

Taking the derivative of A with respect to y we obtain

( 8 6)

for some function a of y and a . We can use this equation along with (80) (written in the new

coordinates) to conclude that

and thus (vQ • x) = a (y, a) = 0 since the function (vQ • x) is periodic in 5. Hence, (vQ • x) is a

function of (y, a) and

(JII-VJ) = -Vs(Y0-i)+y(s,G)9

24



by (86), for some y :Rx[0 ,«>) -» R. Substituting this equation into (85) we have

wo + <Va + Y) *y = (f (w) - wyy) ̂  .

The coefficient in front of w should remain independent of s, thus, by denoting

r| (o) : = V G ( J , G ) +y(j ,c) ,

and

W(y,o) : = w^y + J Tj(j)*fa,oJ,

we obtain the one-dimensional Cahn-Hilliard equation

= (f(W)-Wyy)yy. (87)

Then, by using (87), we can conclude, following Pego ([Pe]), that for large a the order parameter

uQ (x, z9 o) should approach for every x e FG a translate U (z - A, (JC, a)) of £/, where f/ is the

solution of

2

7T-0. (88)
dz

U(-oo) =_1, t/(co) = 1.

We will assume that the values of X are uniformly bounded on its domain.

Hence, we may conclude for large a » 1 that the asymptotic limit of (2) is

v0 = -Wp,

div vQ = 0, (89)

"0 = 0,

in Q. \ r o . Here g, for any function g, denotes the advective time derivative g = g( + vQ • Vg. In
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addition we obtain using (77) and (88) that

[p]r =-kjJW{u)du, (90)

-1

and using (73) that

Comparing (90) with (1) we deduce that the asymptotic limit of (2) as e —> 0 is the classical

problem of motion of two immiscible, inviscid fluids. In addition, by Theorem 2, the total length

of the front Tf is uniformly bounded in time, hence the interface stretching (the amount of inter-

face length per unit volume) is bounded during the motion on the slow timescale as well.
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