
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

The Core of Programming Systems

Edited by :

Guy Almes
Anita Jones

Bob Schwanke

February 2, 1976

Department of Computer Science
Carnegie -Mel lon Univers i ty

DEPARTMENT
of

COMPUTER SCIENCE

510 f 7808
C28*
7 6 - 8

Carnegie-Mel Ion University

The Core of Programming Systems

Edited by :

Guy Almes
Anita Jones

Bob Schwanke

February 2, 1976

Department of Computer Science
Carnegie-Mel lon University

Th is document is div ided into three parts. The Programming Systems Sy l labus ,
p r e p a r e d b y Nico Habermann, Anita Jones, Mary Shaw, and Bill Wulf, w i th the
ass is tance of the editors , defines the domain of the programming systems qualif ier .
T h e Programming Systems Study Guide, wr i t ten b y the editors, prov ides a guided t o u r
of the sy l labus , filling in the potholes. The Programming Systems B ib l iography
p r o v i d e s the re ferences for both of the first two parts, with some annotations b y
G e r a r d Baudet .

TABLE OF CONTENTS

Programming Systems Syllabus *

Programming Systems Study Guide 8

1. Data St ructures - 8

1.1 Introduct ion •• • • • 8

1.2 Linear st ructures ^
1.3 Non- l inear structures 9
1.4 Accessing Techniques . . ^

1.4.1 Hashing functions 10
1.4.2 Memo functions 10

1.5 Records H
1.6 Formal Specifications H
1.7 F ree Space Management H
1.8 Data Bases 1 1

2. Programming Languages 13
2.1 Introduct ion 1 3

2.2 Data Accessing Issues 13
2.3 Procedure Mechanisms ' 14
2.4 Cont ro l Mechanisms 15
2.5 Concur rency and Protection 15
2.6 Compilation vs. Interpretat ion: consequences 15

3. S o f t w a r e Engineering 16
3.1 Introduct ion 16
3.2 Proposed Methodologies 16
3.3 Program Specification I S
3.4 Ver i f icat ion 18
3.5 Program Analysis 18

4. T rans la to rs 19
4.1 Introduct ion 19
4.2 Components 20

4.2.1 Parsing 21
4.2.2 Symbol Tables 21
4.2.3 Code Generation 21
4.2.4 Macros 21

4.3 Optimization 22
4.4 Runtime Issues 22
4.5 Compi ler -Compi lers 22

5. Opera t ing Systems , 23
5.1 Introduct ion 23
5.2 C o n c u r r e n c y and Synchronization 23

5.3 Address Space Issues
5.4 Memory Management
5.5 Resource Allocation and Scheduling
5.6 Protect ion Concepts
5.7 Examples of Real Systems

Programming Systems Bibl iography

2 - F e b - 7 6 Programming Systems Syllabus Page 1

PROGRAMMING SYSTEMS SYLLABUS - 1975

I. Data Structures
A. Linear [Knuth 68, pp 234-304]

1. Vectors and Ar rays
[Knuth 68, pp 295-302]
[Hopgood 69, pp 12-15]

2. Str ings [Gr ies 71, pp 180-81] [Elson 75, Chap 6]
3. Queues and Stacks [Knuth 68, pp 234-239]
4. Representation [Knuth 68, pp 240-294]

B. Non-L inear
1. T rees [Knuth 68, pp 305-405]
2. General list structures (Graphs) [Knuth 68, pp 423 -434]
3. Directed acyclic graphs
4. Discrimination nets

C Accessing Techniques
1. Associat ive schemes

[Gr iswbld 71, pp 118-120]
[Feldman 69]

2. Hashing functions
[Maurer and Lewis 75]
[Gr ies 71, pp 216-23]
[Knuth 73, pp 506-549]

3. Memo functions [Berliner 75]

D. Records - unordered structures
[Hoare 68]
[Sites 72]
[Hoare 72]
[Dahl 68]
[Elson 75, pp 2 1 - 2 7]

E. Formal specifications
[Liskov 75]
[Parnas 71, 72a]

F. F r e e Space Management
[Elson 75, pp 163-181]
[Knuth 68, pp 4 0 6 - 2 2]
[Steele 75]

G. Data Bases
[Habermann 75b, Chap 9]
[Madnick 69]
[Lefkov i tz 69]

Page 2 The Core of Programming Systems 2 - F e b - 7 6

I I . PROGRAMMING LANGUAGES
A. B y application area

1. Numeric/scientific
Algol [Naur 63] [Habermann 71] [Knuth 61,67]

Fo r t ran

PL/I [Beech 70]

APL [Pakin 68]

Algol 68 [Lindsey 71,72]

PASCAL
[Wirth 71b, 75]
[Habermann 73]
[Lecarme 75]

Algol W [Sites 72]

BASIC

2. Str ing
Snobol [Gr iswold 71] [Elson 75, Chap 7] [Pratt 75, Chap 15]

3. List Processing
L* [Robertson 75]
Lisp [Quam 73] [Weissman 67]

4. Simulation
Simula [Dahl 66]
Simula 67 [Dahl 72]

5. System Implementation
Bliss [Wulf 71]
L* [Robertson 75]

6. Abstract ion languages
Alphard [Wulf 74a]
C L U [Schaffert 75]
E L I

7. Misc:
Cobol [Pratt 75, Chap 12]
RPG [IBM]

2 - F e b - 7 6 Programming Systems Syllabus Page 3

B. Issues
1. T y p e

[Hoare 72, 73b]
[Flon 74]
[Liskov 74]
[Wulf 74a]
[Wirth 73, Chap 8]

2. Scope and Extent
[Moses 70]
[Elson 73]
[Wulf 72, 74a]

3. Name Binding
[Cosine 72, Mod 5]
[Elson 73, Chap 5]

4. Contro l Constructs
[Wulf 74a]

• [Knuth 66,74]
[Dahl 72]
[Dijkstra 68a]

5. Storage Management
[Gr ies 71, Chap 8] '
[Knuth 68, pp 435-455]

6. Procedure mechanism
[Wirth 73, Chap 12]
[Gr ies 71, Chap 8]
[Pratt 75, Chap 6]

7. Except ion handling
[Gr ies 71, Chap 14]
[Beech 70]

8. Reference Variables [Hoare 75]

9. Compilation vs . Interpretation: consequences [Mitchell 70]

10. Concur rency
[Dennis 66]
[Campbell 74]
[Hoare 74]

11. • Protect ion
[Wulf 74b]
[Jones 73]

Page 4 The Core of Programming Systems 2 - F e b - 7 6

C. Methodo logy related to language [Wulf 76]
1. Cont ro l mechanisms

[Knuth 74]

2. Abstract ion mechanism
[Flon 75]
[Dahl 72]
[Wulf 74a]
C L U [Schaffert 75]

3. Modular i ty [Parnas 71, 72a, 72b]

4. Ver i f icat ion [Hoare 72]

I I I . So f tware Engineering [Guttag 75]

A. Mot ivat ion and Perspective
[Weinburg 71]
[Naur 69]
[Bux ton 70]
[Go ldberg 73a]

B. P roposed Methodologies
1. Stepwise Refinement [Wirth 71a]
2. St ructured Programming (the original) [Dijkstra 72a]
3. Modularity [Parnas 71, 72a, 72b]
4. Hierarchical Design [Dijkstra 68b] [Parnas 74]

[SRI 74] [Habermann 75a]
5. Chief Programmer Team [Baker 72] [Brooks 75]
6. Egoless Programming [Weinburg 71]

C Specif icat ion [Parnas 72a] [Liskov 75]

D. Ver i f icat ion [Hoare 71] [Dijkstra 72a] [London 75]

E. Algorithmic analysis [Knuth 68, pp 94-103] [Aho 74]

F. Test ing [Goodenough 75]

G. So f tware Construct ion Tools
Editors
Conversat ional Systems
J o b Contro l Languages
[Weinburg 71]

2 - F e b - 7 6 Programming Systems Syllabus Page 5

IV . TRANSLATORS
A. Int roduct ion

1. Compilers vs. Interpreters [Gries 71, pp 2 -10] [Hansen 74]
2. Assemblers [Barron 69]
3. Loaders [Presser 72]

B. Components [Gries 71] [Hopgood 69]
1. lexical analysis [Gries 71, Chap 3]
2. syntax analysis [Gries 71, Chaps 4-7, 12-13]
3. symbol and name tables [Gries 71, Chaps 9 & 10]

a. data structures
b. search algorithms
c. insertion/deletion [Knuth 73b]
d. interaction with language properties

4. code generation [Gries 71, Chap 17] [Wulf 75b]
5. macros and their processing [Gries 71, Chap 19] [Wegner 68]

C. Global optimization, flow analysis, and register allocation
[Wulf 75b]
[Gr ies 71]
[Johnsson 73]

D. Runtime issues [Randell and Russell 64]
1. Display and stack management [Gries 71, Chap 8]
2. Dynamic storage allocation & garbage collection

[Knuth 68, pp 435-455]
3. Over lay issues
4. Except ion recovery [Gr ies 71, pp 314-320]
5. Debugging
6. I/O and system interaction
7. recurs ion
8. Co - rou t ines

E. Compi ler -compi lers [Feldman 68]

1

V. Operat ing Systems
A. C o n c u r r e n c y and Synchronization

1. Concept of Multiprogramming and context swaps
[Dennis 66] [Saltzer 66]

2. Implementation of Multiprogramming
Interrupts [Digital 71, pp 117-120]
Semaphores [Liskov 71]
Procedure Calls [Organick 73, pp 3 1 - 3 2]
Messages [Jensen 75]

3. Mutual Exclusion
MULTICS Block/Wait [Lampson 68] [Saltzer 66]
Semaphores P/V [Dijkstra 68b]
Up/Down [Wodon 72]
Crit ical Regions [Brinch Hansen 72]

4. Message Systems
RC4000 [Brinch Hansen 70]
As a basic primitive [Jensen 75]
Hydra [Cohen 75, Section 8]

5. Monitors [Hoare 73b,74]

6. Path Expressions [Campbell 74]

7. Deadlocks: concept, prevent ion, avoidance, r e c o v e r y
[Habermann 69] [Holt 72]

8. Classical Problems [Courtois 71]

B, Address ing
1. Segmentation Concepts

S u r v e y [Randell 68]
MULTICS [Dennis 65]

2. Capabi l i ty Concepts
Codeword [Iliffe 62,68]
Descr iptor [Organick 71] [Organick 73]
Capabil i ty [Fabry 74]

3. Multiprogramming Problems [IMeedham 72]

Fag* S Fte Care of Fhcgramming- Systems

2 - F e b - 7 6 Programming Systems Syllabus Page 7

C. Memory Management [Habermann 75b, Chap 7]
1. Relocation/Overlaying [Lanzano 69] [Sayre 69]

[Watson 70, pp 4 0 - 4 5]

2. Paging [Denning 70] [Watson 70, pp 4 5 - 5 2] [Naur 65]
[Ki lburn 62]

3. General Memory Hierarchies [Mattison 70]

D. Resource Allocation and Scheduling
1. Processor Scheduling

Short term [Lampson 68] [Brinch Hansen 71] [Kleinrock 70]
Long term [Habermann 75b, Chap 6]

2. General Allocation [Habermann 75b, Chap 7]

3. Deadlocks [Habermann 69] [Holt 72]

E. Protect ion Concepts [Weinstock 73]
1. Implementation of Domains,

Pr iv i leged Instructions and Address Space Restriction
[Graham 72] [Spter 73]

2. Author i t y Based Protection
MULTICS [Graham 68>[Daley 65]

3. Capabi l i ty Based Protection [Lampson 71] [Fabry 73]
[Jones 73] [Jones 74]

4. Classical Problems
Confinement [Lampson 73]
Mutually Suspicious Subsystems [Schroeder 72]

F. Examples of Real Systems
(Learn some of these)
1. THE [Dijkstra 68a]
2. RC4000 [Brinch Hansen 70]
3. Kernel/Domain Experiment [Spier 73]
4. VENUS [Liskov 71]
5. Hydra [Cohen 74]
6. Cambridge Monitor [Meyer 70]
7. UNIX [Ritchie 74]
8. MULTICS [Corbato 73]

Page 8 Programming Systems Study Guide 2 - F e b - 7 6

1. Data Structures

L I Introduction

Data s t ructures play several roles in programming systems. F i rst , they are
major bui lding blocks from which systems are built. Second, control l ing the
manipulat ion of data structures is a major theme in the development of s t ruc tu red
p r o g r a m s and t y p e - o r i e n t e d languages. Thi rd , most programming systems must handle
e n o r m o u s quantit ies of data; therefore the structure of the data largely determines the
p e r f o r m a n c e for the program. In this section we will deal with the basic anatomy,
manipulat ion, and performance of some common data structures. We will not cover the
full debate surrounding data structure manipulation until we discuss t ypes and
abs t rac t ion in programming languages, nor will we attempt quantitative measures of
p e r f o r m a n c e .

E v e r y data st ructure has two aspects: its specification and its implementation.
T h e t w o can and should be completely separable. For example, consider a s t ructure S,
a va lue x, and t w o operations a(S,x) and b(S.). Operation b returns a value of the same
kind as x. Suppose w e assert that

(Vx)([a (S , x) ; ct -b(S)] -> c equals x)

and , f u r t h e r , suppose we define a recursive sequence d:

d(S,x) « [a(S,x) [; d(S,y)]* j b(S)]

and asser t that

(Vx)(x equals d (S , x))

w h e r e * denotes z e r o or more occurrences of the bracketed sequence, and the value
of a sequence is the value of the last expression in the sequence. Then w e can see
that the net ef fect of d on the structure S is null, with respect to the operat ions a and
b.

N o w consider a vector V and a pointer P into it. The operations
e(V,x) = [V[P]<-x ; p<-p+l]

f (V) « [p « - p - l ; re turn V [p]]
g(V,x) « [e(V,x) [j g (V ,y)]* ; f(V)]

qu i ck l y revea l that g leaves V undisturbed relative to e and f. But now w e see that S,
a, and b desc r ibe a stack, and V, e, and f implement one. Another implementation might
use a l inked list instead of a vector . For a more complete treatment of this exerc ise
s e e [Parnas 72a].

Note the distinction between the operational specification of a s t ructure and its
implementat ion. A stack is a stack is a stack, whether it's implemented as a vec to r and
p o i n t e r , a l inked list, o r a threaded tree.

2 - F e b - 7 6 1. Data Structures Page 9

Most common data structures are thoroughly described in the l i terature; perhaps
the fo l lowing map will help.

1.2 Linear structures

T h e s e include: stacks, queues, vectors , and strings. Multi-dimensional a r rays are
also inc luded here because they can be mapped in a straightforward w a y onto simple
v e c t o r s . Knuth's coverage of linear structures is nearly comprehens ive
[K n u t h 68, p p 234-304] ; one topic he doesn't discuss, is dope vector , or Iliffe v e c t o r ,
r e p r e s e n t a t i o n of arrays , found in [Hopgood 69, pp 12-15]. Strings make their claim to
p r o m i n e n c e b y (a) being necessary for I/O and useful in compilers, business data
p r o c e s s i n g , and user interfaces to most large systems, and (b) being the most common
domain for the practice of pattern matching, a powerful tool. String representat ion
d e p e n d s heav i l y on the operations it must support. If sorting is all that's invo l ved ,
f i x e d length vectors of characters are sufficient. But if the representat ion must
s u p p o r t f requent insertion and deletion, linked lists would be more appropr iate .
[E l son 75, Chaps 6 and 7] give a fine survey of the area, and describe SNOBOL, the
bes t k n o w n str ing processing language today.

1.3 Non-linear structures

[Knuth 68, pp 305 -405] treats trees and their relatives exhaust ively and wel l .
B i n a r y t r e e s are important because the algorithms that manipulate them are simple,
and wel l su i ted for binary computers. Lists (wherein an element of a list can itself be
a l ist) are a convenient linear representation of trees[Weismann 67, pp 5 - 2 4] , Knuth
s h o w s that b inary trees can easily be used to implement any other kind of t ree , as
we l l as l ists, and gives several accessing algorithms and representations.

T r e e s happen to be a special case of the class of structures called graphs. A
g r a p h is a set of nodes with connections between some of them. A connected g raph Is
a g r a p h w h e r e one can follow an unbroken sequence of connections from any node to
a n y o t h e r node. A directed graph is one where the connections are asymmetric
(usua l l y r e p r e s e n t e d on paper as single headed arrows, and on computers as pointers) .
A c y c l i c g r a p h s are ones for which there is no sequence of connections w h i c h
(a) inc ludes no connection more than once, and (b) leads from a node to that same
node . D i rec ted acyclic graphs (dags) are the same, with the added condition that
(c) the sequence follows the directionality of the connectf^Bs. A n acyt l l c g raph is
i somorphic to a f ree tree. A dag having not more than one path from 6ne node to
a n o t h e r is isomorphic to an or iented tree [Knuth 68, pp 362-380] [Elson 75, pp 1 0 8 -

Page J O Programming Systems Study Guide 2 - F e b - 7 6

1.4 Accessing Techniques

Having acquired a collection of alternative representations for one's data, the
p rog rammer must choose among them. One usually finds that the most compact
r e p r e s e n t a t i o n s are fair ly expensive to access, and that those forms most readi l y
accessed take up an inordinate amount of space. The overall quantity of data invo lved
also affects the choice of representation. For instance, finding a g iven item in a list of
ten items is most easi ly done by a linear scan of the list. Finding one item in a list of
100,000 is a task of considerably more complexity. If time is at all important, the
p rog rammer might be willing to use twice the disk space if doing so would permit a
much faster accessing algorithm. Hashing functions were developed to locate items In
long lists based on standardized keys. Memo functions arose to lessen the e f f o r t
r e q u i r e d to t r a v e r s e large trees.

1.4.1 Hanhing functions

Tab le maintenance is an area where machines have inspired a t ru ly new w a y of
do ing something that men thought they knew how to d o . . Tables which will be
s e a r c h e d o f ten must be ordered in a way that lets any item in it be found eff ic ient ly .
F o r small tables, any order will do, since one can afford to examine e v e r y element.
F o r moderate s i zed tables, if the table is totally ordered (e.g. alphabetical ly)
reasonab le algorithms exist (e.g. b inary search) for finding any element. But for large
tab les , b o t h sort ing and searching are too time consuming to be done f requent ly . A
hashing funct ion is a function which tells y o u ' w h e r e an item is, or belongs, in a table,
b y some simple, but not necessari ly obvious, computation. It is a mapping from a
(l a r g e) set of possible table element tags into a (small) set of slot locations. Being a
m a n y - t o » o n e mapping, it is usually accompanied by a secondary function telling w h e r e
to look next if the slot named b y the hashing function contains a dif ferent element.
[Knuth 73, p p 5 0 6 - 5 4 9] details a var iety of search techniques and hashing functions,
and g ives re levant performance figures.

1.4.2 Memo functions

T r e e s t u r n out to be such useful tools that program designers have of ten been
wi l l ing to t r a v e r s e v e r y large trees to avoid complicating their programs. A memo
funct ion is a tag on a subtree, or a way of recognizing subtrees, which permits one to
a v o i d t r a v e r s i n g that subtree. For instance, chess move trees have many congruent
s u b t r e e s , because the same board position can be reached b y several d i f ferent move
s e q u e n c e s . Recent ly , Hans Berl iner has found a way to use memo functions to help
s e a r c h move t rees . He has designed a system which, having evaluated a move and
f o u n d it want ing , catalogues the move and the relevant context of it. Then as the t ree
s e a r c h cont inues , when the move comes up again in a similar context , it can be
r e j e c t e d wi thout reevaluation. Optimizing compilers, such as the Bliss/11 compiler
[Wul f 75] , t reat common subexpressions in a similar way. The code generat ion rout ine
f inds tags o n some subtrees saying "my code has already been generated? skip me".

2 ~ F e b - 7 6 1. Data Structures Page 11

1.5 Records

So far , all the structures discussed have been homogeneous, i.e. all nodes In a
g i v e n s t r u c t u r e had the same format. But in order to permit understandable programs,
many applications require combining different kinds of information (i.e. di f ferent f ields
h a v e d i f fe rent formats) into a single node such that nodes with different formats can
be handled in a uniform way. A data base for keeping track of vehicles for Un i ted
ai r l ines might have different sizes of nodes for baggage carts, tank trucks, and D C -
10's, but each of these nodes would have a field for the manufacturer and a f ield for
its next scheduled maintenance. A record is a node whose fields are accessed b y name
r a t h e r than b y index. [Hoare 68] is one excellent description of themj Algol W
[S i tes 72] has one clean implementation. Also read [Gries 71, pp 182-187] .

L 6 Formal Specifications

W h e n creating new, sophisticated data structures out of old simple ones, one
o f t e n loses his grasp of how the structure behaves, especially when more than one
p r o g r a m (m e r) uses it. This has sparked a drive by some to hide all data s t ruc tures
inside p r e c i s e l y defined procedures. David Parnas was a pioneer in this w o r k
[Parnas 71, 72a]. He developed a number of principles for module design and
spec i f i ca t ion , but was f rustrated by the absence of languages which would enforce his
b o u n d a r i e s . No completely satisfactory languages have been implemented y e t , but
s e v e r a l (cf . C lu , A lphard) are being designed to both enforce the boundaries and to
permit formal specifications to be integrated into the program text. [Liskov 75] g i ves
some c r i te r ia for selecting specification languages.

1.7 Free Space Management

W h e n using a data structure which creates and deletes nodes in an
u n p r e d i c t a b l e fashion, w e need a facility for allocating in which to put nodes, nodes in ,
and reclaiming abandoned nodes for re -use . Such allocation schemes fall Into t w o
c a t e g o r i e s : (1) Reference counts, maintained for each node, reflect the number of
p o i n t e r s to that node. When count falls to zero the space occupied b y the node Is
rec la imed. (2) Garbage collection: when f ree storage runs low,- the system traces d o w n
e v e r y node in use and marks it. Any nodes remaining unmarked are recyc led . Read
[E l s o n 75, p p 163 -181] for a fuller exposit ion.

1.8 Data Bases

A g r o w i n g class of data structures, the so-called 'data bases', are character i zed
b y v e r y la rge size and b y a permanence that often exceeds that of any programs that
access them. When approaching the design of these large quasi -permanent data
s t r u c t u r e s , care must be taken to use robust structures that can suppor t the added
w e i g h t . T o b o r r o w an example from comparative zoology, consider t w o similar animals
that d i f fe r in l inear dimensions by a factor of two. Since its weight var ies as the cube

Page 12 Programming Systems Study. Guide 2 - F e b - 7 6

of the s i ze and the strength of its bones only with the square of their diameter, the
d iameter of the bones of the larger animal must more than double that of the smaller.
So also the s t ruc tures used in building large data bases must be careful ly chosen, lest
the data base collapse. T w o families of differences are given here.

Due to v e r y large size, a data base can seldom be kept within pr imary memory.
R e p r e s e n t a t i o n and accessing techniques must take the nature of the memory
h i e r a r c h y available into account to minimize accessing delays such as the seek time on
a m o v i n g - h e a d disc. The performance of searching and updating depends heavi ly on
h o w wel l the physical layout of data reflects the pattern of accesses. Also, since many
search ing techniques become much slower as the data base g rows [Knuth 73] ,
redundant s t ructur ing may be used to expedite anticipated searches.

Due to v e r y long duration, several problems must be faced. First , as data nodes
a r e i n s e r t e d and deleted, the physical layout designed to expedite accessing may be
compromised . This causes slower accessing and greater storage fragmentation. T h e s e
p rob lems necessitate either periodic restructuring of the data base or sophist icated
updat ing rout ines that dynamically restructure the data. Second, the permanence of
the data base increases the chance of e r ro r in the data or in the s t ructure . These
s t r u c t u r e s t h e r e f o r e motivate serious use of backups, checksums, and other rel iabi l i ty
measures . [Le fkov i t z 69] and [Madnick 69] are suggested references.

2 - F e b ~ 7 6 2. Programming Languages Page 13

2. Programming Languages

2.1 Introduction

T h e sy l labus approaches languages from three orthogonal directions: application
a rea , intr insic issues of language features, and the effect of language on p rogram
d e s i g n . T h e f irst of these needs no explanation — it's there for reference. To c o v e r
the s e c o n d w e shall attempt a short definition of each issue. To introduce y o u to the
t h i r d , r e a d [Wulf 76].

2.2 Data Accessing Issues

T y p e is the cur rent b u z z w o r d for a language construct which only permits
access ing a data s t ructure b y employing the operations defined on it. The leading
languages based on t ypes are Alphard [Wulf 74a] and Clu [Schaffert 7 5 } For a o n c e ­
o v e r , t h o r o u g h theoretical treatment of types, read [Hoare 72]. To fol low the recent
d e v e l o p m e n t s , start wi th Flon's s u r v e y [Flon 74] and use its references.

Scope , extent , name binding, memory management, procedure mechanism* and
r e f e r e n c e var iables are all issues which interact strongly with type implementations.
Name bindinn is the process b y which an occurrence of an identifier in a p rogram
becomes associated w i lh a storage location. Scope rules govern these name bindings.
A l g o l , fo r instance, has static scope rules: a name is bound to the declaration fn the
b lock w h e r e the name is used. If no declaration is found in that block, the next
s u r r o u n d i n g block is checked, and the next, and the next, until a declaration for the
name is found. In contrast to Algol, APL's scope rules are dynamic: just as n e w
s t o r a g e is allocated each time a routine with declarations is entered, so each name is
b o u n d to the storage most recent ly (in time) allocated under that name. The APL s t y l e
is v e r y h a r d to fol low; the Algol style is insufficient, and still prone to certain kinds of
e r r o r s . Ex tent re fers to the period of time over which the value of a variable pers i s t s :
the e x t e n t of For t ran variables is forever ; the extent of the Algol local var iable is the
p e r i o d w h e n the block immediately surrounding the declaration is being executed .
Note that scope of an Algol own variable is the block surrounding it, but its extent is
f o r e v e r .

M e m o r y management is an eff iciency^flexibi l i ty tradeoff. FORTRAN typ i f ies a
g r o u p of languages which allocate memory at load time, once and for all. This limits
the amount of logically distinct data the program can use (excepting bulk s torage) .
A l g o l - l i k e languages have some such static allocation, but also allocate local s torage on
a "last in(to use), f irst out (of use)" basis. This lets the free and in -use space be
s e p a r a t e d b y a single pointer. Languages like LISP and SNOBOL, which cannot limit
themse lves to such a LIFO discipline, must use garbage collection schemes, w h i c h ,
t h o u g h wel l understood and v e r y f lexible, are expensive in time and memory.

R e f e r e n c e variables are variables which contain pointers to other var iab les .
T h e y w r e a k havoc with conventional scope and extent rules. If a routine wi th access

Page 14 Programming Systems Study Guide 2 -Feb~76

to an o w n var iab le puts a reference to it in a global reference variable, the p r i v a c y of
the o w n is v io lated . A local re fer red to by a reference variable will either leak pr ivate
in format ion o r invalidate the contents of the reference variable when the local
d i s a p p e a r s .

beg in
r e f e r e n c e R;
real leak;
beg in

o w n A;

R <- reference to A;

e n d

leak f- value of object re fer red to by R;
e n d

2.3 Procedure Mechanisms

P r o c e d u r e mechanisms v a r y among languages in a var ie ty of ways :

1) What constitutes a procedure? Most languages have fixed beginning and
ending points for procedures. But BASIC and SNOBOL have procedure calls
w h i c h , like assembly language instructions, can "jump to subrout ine" to any
statement, and have returns which simply happen w h e r e v e r they are
e n c o u n t e r e d in normal execution. Cobol , furthermore, lets the procedure call ,
i tself , def ine what group of statements constitutes the procedure. In most
languages, a procedure call leaves no context behind when it re turns , except
o w n values and the values it re tu rns . But co-rout ines, such as those available In
Bliss and Simula, allow a procedure to be stopped and restarted at var ious e n t r y
points dur ing its lifetime.

2) How do scope and extent rules apply to procedures? In static allocation
languages w e general ly find no problems with names and procedures, except in
re lat ion to parameters. Algol's static scope rules apply to procedures in the
same w a y they do to blocks. A Bliss routine inherits global and own s t ruc tures ,
but not local ones, from its static context. APL and Lisp routines have access to
the s t r u c t u r e most recently bound to each name in the universe.

3) How are parameters passed? Passing them by. value means evaluating each
one once , g iv ing the value to the routine, and never again refer r ing to them in
the cal ler 's context . Call by, reference implies a once only computation of the
locat ion of the structure, which is then used to hold the corresponding formal
parameter . Call b ^ name requires that the parameter location and value be
recomputed , in the caller's context (in contextu vocatoris) , each time the formal
parameter is used inside the procedure. The overhead is v e r y high. Call b y
resul t evaluates the parameter location, executes the procedure body , then

2 - F e b - 7 6 2. Programming Languages Page 15

cop ies the formal parameter value into the actual parameter's location. Call b y
v a l u e - r e s u l t copies the value out of the actual parameter into the formal one ,
does the computation, then copies the formal back to the actual.

2.4 Control Mechanisms

W h e n Dijkstra first asserted that the goto statement was harmful to p rogram
unders tandab i l i t y , he unleashed a torrent of creativity which produced new cont ro l
c o n s t r u c t s to replace it, and a host of critics to reject the new constructs. Even g o o d
p r o g r a m m e r s , when writ ing in a language with no other constructs for control but
g o t o ' s and do loops, too often find themselves writing unreadable programs. Most of
the th ings done b y goto's can be done more easily and readably using do whi le
s ta tements , i± then else clauses, and other iterative statements. One common use for
g o t o ' s has been to break out of the order l y flow of control when some unusual
cond i t ion occurs . To satisfy this need, Bliss offers four constructs which let the
e x e c u t i o n of a complex statement (in Bliss, an expression) terminate, w h e r e u p o n
e x e c u t i o n resumes at the next statement.

Except ions are unusual events which must be handled by unusual mechanisms.
Some such mechanisms are monitors, which let the user provide his o w n response to
e v e n t s that the system can monitor continuously [Beech 70] (e.g. wr i tes to cer ta in
m e m o r y locations, e r ro r flags). Others are facilities which let the programmer
p r e m a t u r e l y terminate processing in a dynamically defined context. Be sure to look at
Bl iss 's signal and enable constructs. Tfie enable statement says, "I know something
about these special events. As long as I'm on the call stack, I'm available to process
them." T h e signal statement says, "A special event has just occurred. Return control to
an e n a b l e block which knows something about it, popping all intervening subrout ine
cai ls ."

2.5 Concurrency and Protection

T h e s e t w o topics have recently found their way into programming languages,
p r imar i l y because of the overal l trend to wr i te bigger systems with complex scheduling
p r o b l e m s and multiple, fallible authors. For an introduction to these areas, see the
d i scuss ion under the same headings in the Operating Systems section.

2.6 Compilation vs. Interpretation: consequences

M a n y language features require non-tr iv ia l bookkeeping during execut ion (e.g.
a r r a y bounds -check ing , stack management, storage allocation). These features can
o f t e n be more easi ly implemented b y an interpreter than b y a compiler. More o n this
in s e c t i o n 4.1

Page 16 Programming Systems Study Guide 2 - F e b - 7 6

3. Software Engineering

3.1 Introduction

WulPs discussion [Wulf 76] of the software crisis, though or iented t o w a r d
language des ign , also provides a good introduction to program design. The field has
f ina l ly come to recognize that large programs

a) are too complex to be completely understood b y one mind at one

time,

b) wil l be modified b y people who didn't design them, as often as they
are used, and

c) can never be proved to be free of bugs by execution.

W h e n the government lets a contract for software, both the government and the
v e n d o r know that the product wjN take longer and cost more than specif ied in the
cont rac t . T h e except ions to this statement can be counted on y o u r thumbs.

All this has come about because the size of the programs we want to build has
e x c e e d e d the capacity of our minds to understand them. In order to master this
c o m p l e x i t y , w e need tools which give the programs a framework which aids
unders tand ing . Several disciplines have arisen to meet this problem:

1) a col lection of principles for good programming,

2) methods for specifying the behavior of programs,

3) techniques for proving things about programs (e.g. that they meet
their behavioral specs), and

4) c r i te r ia for measuring the performance of the system p r o d u c e d

3*2 Proposed Methodologies

M a n y of the emerging principles have propert ies in common. Stepwise

re f inement is a method that says:

a) w r i t e out the complete algorithm in a short sequence of steps y o u
understand.

b) take up each step in succession and expand it b y the same rule.

c) keep refining the steps until they can be written understandably in a
convent ional programming language.

2 - F e b ~ 7 6 3. Software Engineering Page 17

Th i s method has two attributes that recommend it. First , it permits the des igner
to see the ef fects his decisions have on program structure, and uncovers issues he
might not have considered. ([Dijkstra 72a] is required reading, an elegant example of
this.) S e c o n d , many of these decisions will only affect one or two of the steps; in such
cases the des igner can then isolate the implementation of the decision from the s teps
it d o e s n ' t affect . This second p roper t y conveniently introduces modularity. Programs
get modif ied because either bugs are discovered or design decisions are changed. If a
dec is ion is changed, years after the program is written, the person who changes the
p r o g r a m must track down e v e r y piece of code which depends on the decision. If the
dec is ion has to be made ear ly in the initial design (when the resolution of the program
is stil l v e r y coarse) , e v e r y part of the program potentially relies on that decision. Fo r
example , the RSX11D Fortran compiler (1974) uses PDP-11 TRAP instructions to signal
all except iona l conditions. This decision must have been well known throughout the
s y s t e m , fo r there w e r e TRAP instructions in about ten of the eighty source f i les.
W h e n one of the authors (R.S.) t ransported the compiler to Hydra, an operat ing sys tem
w h i c h does not support user TRAPs, he had to search all eighty files to get the T R A P s
out .

On the other hand, if the designer can decompose his problem such that each
des ign decis ion is important to at most two or three "steps", he great ly simplifies the
s t r u c t u r e of his program, and consequently its debugging and modification. Much of
the c u r r e n t research in language design seeks convenient tools to enforce the
b o u n d a r i e s of these program modules.

Hierarchical Design denotes another principle which promotes s t ructure in
p r o g r a m s : that the dependency relationships between modules must form a part ial
o r d e r i n g . Not only does this make it possible to debug one module at a time, but it
also permits the lower modules to be finished before the higher ones are des igned,
and eases replacement of old modules with redesigned ones. The Family of Operat ing
S y s t e m s p r o j e c t at C M U is an attempt for one group to design a large collection of
o p e r a t i n g systems in a short per iod of time, by defining their modules cleanly enough
that is simple to, say, replace the BATCH module with a TIMESHARING module
[Habermann 75a].

T h e Chief Programmer Team is a management concept which states that the best
w a y to p r o d u c e software is to hire one really good programmer to do the actual
p rogramming , and support him with whatever specialists and assistants (e.g. m a n -
machine in ter face exper t , program librarian, secretary) he needs. Only one major
s y s t e m p r o d u c e d this way has met its deadline and budget line: the New York Times
M o r g u e s y s t e m , chiefed by Harlan Mills [Baker 72],

Egoless Programming is a reaction to the programmer who v iews his code as his
o w n p r i v a t e domain, not subject to viewing, much less critique, b y others. The egoless
p r o g r a m m e r must explain his code to at least one of his co -workers , on the premise
that g o o d s t r u c t u r e and readabil ity go hand in hand. Both the structure and the actual
e x p l a n a t i o n wil l help unearth programming and design e r ro rs [Weinburg 7 1 }

Page 18 Programming Systems Study Guide 2 - F e b - 7 6

3.3 Program Specification

Program specification is the complement of data structure specif ication: w e
s p e c i f y the behav ior of programs in terms of how they affect variables. We still need
a p r e c i s e language for expressing these changes; [Liskov 75] prov ides cr i ter ia for
eva luat ing language proposals, with emphasis on veriflabil ity.

3.4 Verification

[London 75] prov ides a good description of the state of this art. Ver i f icat ion
n o w o rd ina r i l y means an attempt to demonstrate consistency between the specif ication
and the implementation of a program. Inductive assertion is the most wide ly used
technique . It consists of inserting in the program assertions about program var iables ,
and v e r i f y i n g them, then stringing them together into a proof of some p r o p e r t y of the
w h o l e p rogram. Also see Formal Specifications, under Data Structures.

3.5 Program Analysis

T h e performance of a program can be discerned in two w a y s : b y analysis, as
Knuth does w i t h almost e v e r y algorithm he presents, and by testing [Goodenough 75] ,
A n a l y s i s of algorithms [Aho 74] is a blossoming field. Its general goal is to predict the
e x e c u t i o n time and/or the space required by a program, as a function of the amount of
data it is manipulating. It gives little attention to constant factors and terms In the
func t ion , s ince these are quickly overshadowed by exponential and high o r d e r
po lynomia l terms.

2 - F e b ~ 7 6 4. Translators Page 19

4. Translators

4.1 Introduction

Compi lers , in terpreters , assemblers, linkers, and loaders are all programming
s y s t e m s wh ich help translate an abstract program into a sequence of machine
o p e r a t i o n s which implement it. They fall into the core of Programming Systems
b e c a u s e

1) they implement programs,

2) they are ubiquitous examples of large programming systems, wi th all
the concomitant problems, and

3) some day , y o u too may get to wr i te one.

T o o o f ten w e draw a sharp line between compilers and interpreters , saying that
compi led code is a list of machine instructions, whereas code to be in terpreted is a
data s t r u c t u r e c losely resembling the source program, to be fed into a h a r d w a r e -
s o f t w a r e sys tem which carr ies out the programmer's instructions. T w o examples s e r v e
to b lu r the dist inct ion:

1) Most For t ran systems, no matter how highly optimized they are, have
an in terpreter to handle I/O. The format statement is the program to
be in terpreted , the keyword of the I/O statement (e.g. read, pr int)
d i rects the source and destination hookups, and the list of var iables
is the data the program acts on.

2) T h e ear l y For t ran compilers for PDP-11 operating systems produced
what is termed "threaded code". It consists of a list of p rocedure
names, each one fol lowed by its parameters. Each procedure called
implements a For t ran construct, using the return address as a pointer
to its parameters. Furthermore, each routine knows that the w o r d
fol lowing its last parameter is the address of the next routine.
T h e r e f o r e , instead of doing a return from subroutine when its
f in ished, it branches to the beginning of the next routine, and
advances the parameter pointer, all in one machine instruction. The
reader may decide for himself whether this code is compiled o r
in te rp re ted .

So , instead of t ry ing to classify a translator as either a compiler or an
i n t e r p r e t e r , w e can speak of the extent to which it compiles the code.

T h e choice between compilation and interpretation, even within the same sys tem,
must b e made on the basis of f ixed versus variable costs. The cost of a t ranslator
cons i s t s of (1) a cost " f i xed" b y the length of the source text , and (2) a cost that
v a r i e s w i t h the number of times each statement will be executed. Compilation has a

Page 20 Programming Systems Study Guide 2 - F e b - 7 6 '

h igh f i xed cost and a relat ively low variable cost; interpretation costs less p r io r to
e x e c u t i o n , but more during execution.

T o see that one real ly can get the best of both worlds, read [Hansen 74] , wh ich
d e s c r i b e s a F o r t r a n system which interprets the program at f irst, then incremental ly
compi les and optimizes the heavily used parts, automatically. It was super io r , in C P U
time u s e d , to e v e r y other Fortran compiler to which Hansen compared it. Such
s e l e c t i v e compilation has been done manually for years , in interactive systems like Lisp
and L*, w h i c h let the user request that pieces of his system be compiled. Note that
i n t e r p r e t a t i o n is primari ly used on code that will not be executed often. This c a t e g o r y
includes any code which isn't fully debugged yet , and includes par t ia l l y -bu i l t
p rogramming systems. Most interactive systems are designed to permit the
p r o g r a m m e r to stop the program at certain points, change or augment the program,
and cont inue w h e r e he left off. Thus interactive, interpret ive translators are s t r o n g l y
c o n d u c i v e to program development.

Assemblers , once considered an art unto themselves, have become somewhat
h a r d to d ist inguish from compilers. Their basic function is translation from assembly
language to machine language, which in most cases is almost a o n e - t o - o n e mapping.
M a c r o facil it ies used to be available only in assemblers; now many compilers have them
as we l l . If y o u want to read more about assemblers, [Barron 69] is reasonably
complete . Similarly, a good v/ay to learn about linkers and loaders is to read
[P r e s s e r 72] , Br ief ly , a linker takes a set of machine language modules as input,
implements intermodule references, (e.g. global names, common blocks), and puts
e v e r y t h i n g into a format the loader can read. A loader is a program which makes a
l inked col lect ion of b inary modules executable. For a bare machine, this just means
w r i t i n g them into core. For a page-or iented system like HYDRA, it means taking a list
of b i n a r y page objects and putting together the various data structures to keep track
of them dur ing execut ion. Linking and loading are often done b y the same program.

4.2 Components

Di f fe rent translators do a lot of the same kinds of things w h i l e . achieving
d i f f e r e n t goals. Lexical analysis (converting a string of characters into a str ing of
language symbols) is done by all translators except loaders. All t ranslators have
s y m b o l tables. And so on. Read [Gries 71] to learn about these common parts , then
skim [H o p g o o d 69] to fill in the gaps. In order to study translators one must star t w i th
an unders tand ing of languages. [Gries 71, Chap 2] gives an excellent foundation here .
T h e t rans lator ' s job can then be defined to be to parse the program, der i ve its intent
f rom its syntact ic s t ructure , and then generate a program for a target machine, which
c a r r i e s out the intent of the original program.

2 - F e b - 7 6 4. Translators Page 21

4.2.1 Parsing

Parsing techniques are usually classified as either t o p - d o w n or bot tom-up . One
parr .es t o p - d o w n b y starting with the distinguished symbol of the grammar and
a p p l y i n g product ions of the grammar to it, until he finds a sequence of product ions
w h i c h y i e l d the input string. Bottom-up parsing involves searching for a set of
(p r o d u c t i o n s , except reversed , so they ' re) reductions which reduce the input st r ing to
the d is t inguished symbol . Read [Gries 71] selectively, learning to do these to methods
b y hand , and learning how LR[K] grammars aid bottom-up parsing, and how r e c u r s i v e
d e s c e n t implements t o p - d o w n parsing.

Lexical analysis is the simplest, ye t most time consuming, part of parsing. It is
actua l l y on l y a s u b - p a r t of syntax analysis, but it is handling a port ion of the grammar
of the language which is v e r y regular and v e r y easy to process. That is, whi le the
grammar for the ent i re language may be phrase-structured, the set of product ions
w h i c h actual ly have terminal symbols on the right hand side may form a regu lar
grammar, wh ich is known to be parseable by a finite state automaton
[G r i e s 71, C h a p 3] .

4.2.2 Symbol Tables

Compi lers and interpreters must have a mechanism for storing and re t r iev ing
in format ion about the identifiers the program uses, such as t ype of var iable , location in
c o r e , dimension of ar ray . This mechanism is called a symbol table. The accessing
mechanism for this table must allow intermingled stores and retr ievals , making it a
potent ia l bott leneck in the compiler. Be sure to study the section on data s t ruc tu re
access ing mechanisms (I.C in the syllabus). Then study [Gries 71, Chap 9 & 10] to see
h o w symbo l tables are organized and used. The complexity of the symbol table va r ies
w i t h the intel l igence of the compiler as well : [Wulf 75] describes the optimizing
Bl iss/11 compi ler , whose symbol table is an elaborate general list s t ructure .

4.2.3 Code Generation

C o d e generat ion is the phase of translation which starts to depend s t rong l y on
the part icu lar id iosyncracies of the target machine. Read [Gries 71, Chap 17] to see
the g e n e r a l methods, then look in [Wulf 75] to see a good example.

4.2.4 Macro9

Macro process ing [Wegner 68] permeates translation systems, ye t little has b e e n
w r i t t e n about it. One should be aware of what sorts of macro processors are
avai lab le , lest he be satisfied with the first one he uses. A macro facil ity allows the
p r o g r a m m e r to associate a name with a string of characters. Then e v e r y place in the
tex t w h e r e that name occurs, the macro processor replaces the name wi th the st r ing .
Most sys tems allow the macro to have parameters. Each actual parameter is i nse r ted
in the replacement str ing wherever the formal parameter occurs. If the actual
p a r a m e t e r is itself the name of a macro, there is an issue of which to expand f i rst .

http://parr.es

Page 22 Programming Systems Study Guide 2 - F e b - 7 6

Some systems allow recursive macros. To do this they must have a w a y of
dec id ing that part of the replacement string will never be executed, so that it need not
be e x p a n d e d . Otherwise a macro which called itself would expand fo rever .

A few macro processors allow a variable number of parameters on the macro.
Th is tu rns out to be a shorthand way of representing a sequence of calls to the same
macro w i th d i f ferent parameters. Bliss/11 has a v e r y elaborate macro faci l i ty ,
exh ib i t ing most of the above features.

4*3 Optimization

T h e b iggest argument given for assembly language programming is that the code
is morn compact and more efficient. This claim has begun to crumble at C M U in the
face of the Bliss/11 compiler, which regularly produces shorter programs than
assembly language programmers attempting the same task. The current shortcoming in
this compi ler , h o w e v e r , is its inability to optimize the innermost loops of programs,
thus its sho r te r programs still run more s lowly than their longer, hand coded
c o u n t e r p a r t s . Read [Gr ies 71, Chap 18] and skim [Wulf 75] to discover the wide
v a r i e t y of optimization techniques available. One important subtopic Is reg is te r
al location on mult i - register machines, which can dramatically affect per formance
[J o h n s s o n 73] .

4.4 Runtime Issues

T o acquire a feeling for where your program is spending its time, y o u need to
look at the insides of a runtime system for a compiler for a common language like Algol
[Randel l 64] . [Gr ies 71] will also give some feel for the problems invo lved (see
spec i f ic r e f e r e n c e s in syl labus), but remains theoretic because it never shows a who le
compi ler sys tem.

4.5 Compiler-Compilers

T h e r e are wel l known algorithms for generating a syntax analyzer fo r a
language, g i v e n a prec ise definition of its grammar. Programs which do this are cal led
compi le r - compi le rs . The next breakthrough will be the d iscovery of both a p rec ise
notat ion for completely describing computers, and an algorithm which uses that
d e s c r i p t i o n to generate optimizing code generators. Until then, compiler -compilers will
o n l y be useful in the ear ly stages of language development, because the compilers
t h e y p r o d u c e are not t ransportable, and produce v e r y poor code [Feldman 6 8 }

2 - F e b - 7 6 5. Operating Systems Page 23

5. Operating Systems

5.1 Introduction

M o d e r n programming systems generally find it essential to map a physical
c o n v e n t i o n a l computer onto a higher level machine and to present this machine to
p r o g r a m m e r s . One reason for this is to allow the physical resources of the hardware
f a i r l y and safe ly to be shared among many processes. This motivation is technological
and w o u l d d isappear if many copies of v e r y large computers were available. A second
r e a s o n is to implement a programming environment even more attractive than a p r i vate
la rge computer , an environment that allows information to be shared among processes .
Th is mot ivat ion is intrinsic and is steadily increasing as the sophistication of appl ication
r o u t i n e s g r o w s . This section discusses several areas in which operating systems have
t rad i t iona l l y per fo rmed this mapping; many of the techniques discussed are being used
n o w b y appl icat ions -or iented software as well as by operating software. It concludes
w i t h a list of severa l examples of actual operating systems, for many systems are
n o t e w o r t h y , not in their solution of any particular problem, but in the approach taken
in s y s t e m design. The reader is then re fer red to the COSINE Report [COSINE 72] for
f u r t h e r s tudy .

5.2 Concurrency and Synchronization

C o n c u r r e n t execut ion of processes within a computer system opens the door
b o t h to increased performance and also to several interesting problems. In a b r o a d
s e n s e , c o n c u r r e n c y includes over lap of i/o with computation and t ime-sharing of a C P U
among s e v e r a l independent jobs, as well as the cooperation of computing processes in
a s ing le task. Thus concurrency is more the rule than the exception, and the real
cha l lenge becomes to find an example of a truly sequential p rocess ! As
mul t ip rocess ing becomes more common, however , and explicit parallelism wi th in a
s ing le appl ications task becomes more attractive, a solid grasp of the concepts ,
p r o b l e m s , and techniques associated with concurrency becomes essential for all
c o m p u t e r sc ient ists , not only for operating systems specialists.

One e a r l y e f fo r t to understand concurrency took place during the e a r l y '60*5 at
M I T ' s P r o j e c t M A C [Dennis 66, Saltzer 66]. In developing a time-sharing system on a
7094 and in their ear l y design work on the more ambitious MULTICS system, t h e y
d e v e l o p e d the techniques of 'block', 'wake', and 'context swap' essential to
mult iprogramming, but not without also inventing deadlock bugs [Rappaport 68] ,

A t about the same time, Dijkstra and others began a study of the problem of
'mutual exc lus ion ' . This problem arises whenever two or more concurrent processes
s h a r e modifiable data. Each process may need to perform computations on the shared
data that d e p e n d on the data not being modified by the other processes dur ing the
computat ion . Such a computation must appear indivisible relative to the o ther
p r o c e s s e s . Ear l y contr ibutions b y Dekker [Dijkstra 68c, p 58] , Dijkstra [Di jkstra 65] ,
and Knuth [Knuth 66] presumed only the load and store memory operations. A l though

Page 24 Programming Systems Study Guide 2 - F e b - 7 6

ingenious , these solutions were v e r y difficult to construct, p rove , or even understand;
in Di jkstra 's w o r d s [Dijkstra 68c, p 66], they were "tremendous mystif icationfs]".

Out of dissatisfaction with the early solutions, the notion of a 'semaphore' was
d e v e l o p e d [Di jkstra 68c; read it!]. The semaphore concept was a crucial s tep in the
deve lopment of a classical school of concurrency. While solving the mutual exc lus ion
p r o b l e m handi ly , it also afforded natural solution of the 'producer -consumer ' problem
and o t h e r s . [Habermann 71b] exemplifies work within this school to s t rengthen
mathematical understanding of synchronization; this work is related to program
ve r i f i ca t ion . [Br inch Hansen 72] similarly exemplifies work in strengthening the
programming and linguistic tools in this area.

S e v e r a l other distinct synchronization concepts have also been proposed. In the
d e s i g n of the Danish RC4000 system [Brinch Hansen 70], the concept of a 'message
s y s t e m ' was adopted to accomplish both interprocess communication and
s y n c h r o n i z a t i o n , thus making the use of shared memory and semaphores unnecessary .
T h e re la ted concept of a 'pipe' in the UNIX system [Ritchie 73] unifies the notions of
i n t e r p r o c e s s communication and i/o. A second concept, due to Brinch Hansen and
H o a r e , is that of a 'monitor 1 [Hoare 73, 74]. As a Parnas module or a Simula class, a
monitor consists, of a set of procedures with exclusive access to a data s t ructure . T h e
monitor concept , however , also facilitates proper synchronization of processes calling
these p r o c e d u r e s . A recent concept due to Habermann and Campbell [Campbell 74]
g i v e s the programmer a powerful tool for specifying the synchronization of p rocesses
b y 'path express ions ' . All these concepts focus on making synchronizat ion less e r r o r -
p r o n e and more programmable.

One of the more persistent problems with concurrency is that of 'deadlock* or
' d e a d l y embrace ' [Habermann 69, Holt 72]. A deadlock is said to occur w h e n e v e r a
p r o c e s s is wait ing for an event that never happens. This can certainly happen due to
a simple synchron izat ion e r ro r on the part of the programmer. More subtle, h o w e v e r ,
a re the deadlocks due to an optimistic resource allocator that overcommits and is
unable to sat is fy the needs of any of its users. While the occurrence of a deadlock
can a lways be v i e w e d as an e r ro r , deadlock prevention is sometimes possible on l y w i th
an undu ly conservat i ve resource allocator. Many serious systems are w r i t t e n that
al low the poss ib i l i ty of deadlock, the hope being that actual deadlock will occur r a r e l y .
Hence, techniques of deadlock prevention and deadlock detection and r e c o v e r y are
b o t h important .

In summary, w e repeat that the importance of concurrency to many areas of
comput ing is spreading. One significant example at CMU is the Hearsay I I System
[Fenne l l 75] , in which concurrency is used within a single A I task.

2 - F e b - 7 6 5. Operating Systems Page 25

5.3 Address Space Issues

One increasingly important goal of operating systems is to facilitate the
c o n t r o l l e d sharing of data across several environments or domains [Spier 73]. One
o b s t a c l e to this sharing is the monolithic address space of conventional computer
a r c h i t e c t u r e , wh ich gives each process a single contiguous block of address space.
T h e s t ruc tu r ing of address space has been one of the central themes of operat ing
s y s t e m r e s e a r c h . Most influential in this area has been the 'segmentation' concept
d e v e l o p e d at Project MAG [Dennis 65, Daley 68]. Under this concept, logically distinct
data ent i t ies (e.g. programs, data bases, communication areas) comprise distinct
segments . Each process ' address space consists of several of these segments; the
p r o c e s s may have different access rights (e.g. read, wr i te , execute on ly) to each
segment . Within the MULTICS system, data is addressed with a 36-bit address: an 1 8 -
bit segment number and an 18-bit word offset. MULTICS segmentation was not Only
an ambitious design in 1965, but is still more advanced than most cur rent systems?
t h o r o u g h s t u d y of it is well wor th the effort . The most crucial and accepted idea is
the abst ract data entity or segment, whose controlled sharing is enforced b y the
s y s t e m . More controvers ia l , however , is the issue of how these segments should be
a d d r e s s e d . T h e structur ing of addresses as

<segment , offset>
pa i rs in M U L T I C S solved several problems, but created several o thers , e.g. w h o
al locates segment numbers? One important reason for studying MULTICS in detail is to
a p p r e c i a t e the complexity required to make this approach work.

One significant family of alternatives stems from work done during the e a r l y
'60's at Rice Un ivers i ty and at Burroughs. Within this family, certain addresses are
t a g g e d as ' codewords ' [l l i ffe 62] or 'descriptors' [Organick 73]; possession of a
c o d e w o r d ipso facto confers rights to access the addressed data. These techniques,
d e s i g n e d to so lve the problems of dynamic storage allocation and efficient subscr ipt
check ing on a r r a y accesses, have also been applied to solve the problems of shared
p r o g r a m and data. Their importance in making computers more programmable has
b e e n p o i n t e d out in [McKeeman 67]. Modern development of these concepts have led
to the capabi l i ty concept which not only facilitates data and program sharing [F a b r y
7 3] , but also contro ls access of all objects in the system, as in Hydra [Wulf 74].

5.4 Memory Management

High s p e e d random access memory has always been at a premium in modern
c o m p u t e r s . E v e n with steady improvements in memory technology, the re lat ive cost of
p r i m a r y memory remains v e r y high. The efficient multiplexing of this memory is a
p e r s i s t e n t technological problem one that continues to receive wide attention.

A n o ld solution to the problem involves the overlaying of a process 's allocated
m e m o r y b y d i f ferent programs or data sets dynamically during execution [Lanzano 69] ,
T h e s e o v e r l a y techniques tended to be ad hoc and were seldom ef fec t i ve l y
mechan ized . T h e y required some skill on the part of the programmer and made
p r o g r a m modification cumbersome. T h e y also failed to allow sharing of memory among
d i f f e r e n t p rocesses .

Page 26 Programming Systems Study. Guide 2 -Feb~76

T h e most pervas ive modern technique for memory management stems from w o r k
d o n e on the Atlas computer at the Universi ty of Manchester [Kilburn 62] . This
techn ique , now called 'demand paging', divides a memory space into fixed length pages,
t h e n loads some of the pages into blocks of main memory termed page frames.
W h e n e v e r the process tries to access a page not in main memory, the operat ing
s y s t e m loads the needed page for the process. This technique makes memory
management invisible to the programmer. This does ease the crucial sof tware burden
felt on o v e r l a y systems, but has kept operating systems workers busy t ry ing to f ind
paging policies that are even reasonably efficient. The precarious performance of
paging systems was a major concern during the mid~'60's [Naur 65, Belady 69, Randell
6 8] . While the mechanism of paging is comparatively simple, the policies requ i red for
e f f i c i e n c y w e r e slow in coming. For an excellent survey of these issues, see [Denning
70] . Whi le the memory management problem is indeed technological, the basic 'one
l e v e l s t o r e ' concept of demand paging has proven quite robust and shows up in
cacheing and related memory management techniques at several levels of memory
h i e r a r c h y [Matt ison 70].

5.5 Resource Allocation and Scheduling

The allocation of the physical resources of a computer to its p rocesses
r e p r e s e n t s a family of technological issues that has always been more important in real
s y s t e m s than in the l i terature. The only unifying goal is the correct multiplexing of a
r e s o u r c e under control of an efficient policy such that chance of deadlock is minimized.

Mult iplexing of the central processor(s) is fundamental to multiprogramming.
T w o basic techniques are involved. The first is that of context swap, or switching of
the p r o c e s s o r from one process to another. The MULTICS implementation in [Sal tzer
6 6] , the Bur roughs implementation in [Organick 73], and the s u r v e y paper in [Lampson
6 8] all descr ibe some of the more elegant approaches. The second technique is that of
basic in te rp rocess communication, where 'processor ' includes i/o devices. The
convent iona l scheme involves one processor being interrupted b y another p rocessor
w h e n communication is desired, e.g. upon the completion of an i/o. At best , these
i n t e r r u p t s appear as 'unexpected procedure calls' that can cleanly field the event .
M o r e o f t e n , h o w e v e r , these interrupts put the system through a precarious and e r r o r -
p r o n e p iece of code that handles the interrupt in an ad hoc fashion. One newer
a p p r o a c h t reats an interrupt as a V semaphore operation, which unblocks a h i g h -
p r i o r i t y p rocess . This approach was first taken in the 'THE' system [Dijkstra 6 8 b] and
later p r e s s e d into the hardware of the Venus system [Liskov 71]. This unif ied
t reatment of in ter rupts and more normal synchronization primitives allows a cleaner
s t r u c t u r i n g of the system. Brinch Hansen's paper [Brinch Hansen 71] is also useful in
s h o w i n g h o w semaphore sty led synchronization can be unified with p rocessor
mult ip lex ing.

[Kfeinrock 70] and [Habermann 75b, Ch 6] should be studied for the l o n g e r - t e r m
schedul ing decisions required to make processor multiplexing efficient. Long term
s c h e d u l e r s must take the memory, processor, and i/o requirements of each process
in to account in choosing a reasonable policy. The conflict between response time and
t h r o u g h p u t as goals for such a scheduler must also be resolved.

£ - F e b - 7 6 5. Operating Systems Page 27

T h e area of resource allocation above the memory and processor levels
g e n e r a l l y has been neglected in the l iterature, since it has few important common
themes and e v e n fewer neat solutions. Many of these resources, e.g. line pr inters , are
not e a s i l y preemptable. T h e y tend to be allocated in unpredictable amounts, e.g. w h e n
a compi le r keeps lengthening an object file on disc. The allocation of one per iphera l
may also influence the allocation of another. In short, general solution tends to be
e l u s i v e and the task is a potential source of deadlocks. [Habermann 75b, Ch 7] is
s u g g e s t e d for background in this area.

5.6 Protection Concepts

T h e basic theme of protect ion is the controlled access to objects b y programs in
a c o m p u t e r system. Protection concepts are, therefore, mechanisms designed to so l ve
int r ins ic problems. While solutions to the problems vary , some common vocabulary has
d e v e l o p e d . The things to be protected are called 'objects'; traditionally, objects have
b e e n data files, but modern systems often t r y to treat other objects uniformly. T h e
accessors of these objects are called 'domains' or 'environments'; traditionally, domains
h a v e b e e n identical to user- identif ications, but modern systems sometimes allow the
c o n t r o l l e d change of domain, as upon certain kinds of procedure calls; [Lampson 7 1]
g i v e s an excel lent s u r v e y of the basic issues involved.

One mechanism important to any protection scheme is the basic domain crossing.
Th is c ross ing , usually in the form of a procedure call, must perform a sophist icated
c h a n g e of envi ronment, yet be absolutely reliable and efficient enough to allow for
h e a v y use without prohibi t ive overhead. See [Spier 73] for an excellent treatment of
the importance of these domain crossings.

O n e important family of protection concepts, called 'authority based protect ion ' ,
is the ru le wi th conventional systems and was brought to a high level of sophist ication
in the M U L T I C S system [Daley 65, Graham 72]. Here a list of authorized domains that
may access an object is associated with the object. Each domain may attempt access
of a n y o b j e c t , but the mechanism checks the domain against the authorization list and
p r o h i b i t s illegal access.

Whi le author i ty based protection does solve many protection problems, severa l
o t h e r s of special importance to controlled sharing elude it. One such problem is the
' conf inement prob lem' [Lampson 73], in which a domain wishes to call a p rocedure and
i n s u r e that it passes no information to anyone but the caller. Another related problem,
that of the cooperat ion of mutually suspicious subsystems, is discussed in [Schroeder
721

A second family of protect ion concepts, called 'capability based protect ion ' , may
o f f e r the solutions to these problems. The Hydra [Wulf 74, Jones 73, 74] system at
C M U is one of the few implementations at the present. Under a capabil ity system, a
list o f accessing r ights for various objects is associated with each domain. A n access
to an o b j e c t may only real ly be attempted when a domain has a capabil i ty for the
o b j e c t and , e v e n then, the access rights on the capability can be checked. The p o w e r

Page 28 Programming Systems Study Guide 2 - F e b - 7 6

of capabi l i ty systems comes from their ability dynamically to construct new domains,
w h o s e r ights are determined by its list of capabilities — capabilities designed to meet
the part icu lar needs of the domain. Refer to [Graham 72] for a comparison of the t w o
p r o t e c t i o n concepts .

5.7 Examples of Real Systems

Many systems should be studied, not for their solution to any single prob lem,
but for their approach to system design and implementation. MULTICS is cer ta in ly an
example of both . Their approaches to several issues have already been mentioned.
E v e n more important, however , may be the concept of a computer util ity, their use of a
h i g h - l e v e l language and formal specifications in system implementation, and their bo ld
a p p r o a c h to an ambitious project, t ruly baroque in e v e r y sense. A comparison of
[Dennis 6 5] and [Corbato ' 72] should serve to illustrate this.

T w o European systems of the late '60's are especially important examples of
s y s t e m des ign in the pos t -MULT ICS era. The 'THE' system [Dijkstra 68b, read!] at the
Techno log ica l Un i ve rs i t y of Eindhoven was remarkable primarily (1) in its hierarchical
s y s t e m des ign and (2) in the carefulness of its implementation. Similarly the RC4000
s y s t e m [B r i n c h Hansen 70] contributed (1) the 'kernel ' approach to operating sys tem
d e s i g n and (2) messages as an interprocess communications primitive. These w e r e
b o t h small sys tems, compared to the MULTICS, but promised to be equally influential
d u e to their e legance and careful structuring.

While operat ing systems are generally regarded as software which must 'cope*
w i t h g i v e n h a r d w a r e , the Venus system [Liskov 71] demonstrates the value of select ing
the p r o p e r pr imit ives, then implementing them in a coherent hardware/sof tware
s y s t e m .

T h e UNIX system [Ritchie 73] is remarkable for two reasons: f i rst , its uni f ied
a p p r o a c h to file i/o, physical i/o, and interprocess communication; second, for its
except iona l command language and user interface.

One v e r y dist inctive approach to system design was taken b y IBM's Cambr idge
r e s e a r c h g r o u p in the 'virtual machine' concept [Meyer 70]. Here a virtual machine
e x e c u t i v e , running on a real 360, presents a virtual 360 to each of its users. T h e s e
u s e r s see what appears to be a real 360 and may indeed be a conventional 360
o p e r a t i n g s y s t e m or a recurs ive copy of the virtual machine executive. This approach
has special advantages for the research environment, where many copies of
exper imenta l systems can be running simultaneously.

2 - F e b - 7 6 Programming Systems Bibliography

PROGRAMMING SYSTEMS BIBLIOGRAPHY ~ 1975

Page 29

T h e fol lowing abbreviations are used:
AFIPS — American Federation of Information Processing Societies
A C M — Association for Computing Machinery
IRE — Institute of Radio Engineers
B I T — Nordisk Tidskrift for Informations-Behandling
C A C M — Communications of the ACM
J A C M — Journal of the A C M
CompSurv — Computing Surveys (ACM)
F J C C — Fall Joint Computer Conference (AFIPS)
S J C C — Spring Joint Computer Conference (AFIPS)
NCC — National Computer Conference (AFIPS)
SOSP — Symposium on Operating System Principles (ACM)
CompJ — Computer Journal (Brit ish Computer Society)

A h o , A l f r e d , Hopcroft , John, and Ullman, Jeffrey, The Design and Analyses of
Computer Algorithms, Addison-Wesley, 1974.

Baker , F. T., "Chief Programmer Team Management of Production Programming",
IBM S v s J . No. 1. 1972.

B a r r o n , David, Assemblers and Loaders, American Elsevier, 1969.

B e e c h , D., "A Structural V iew of PL/1", CompSurv, Mar 70.

A complete rev iew of the PL/1 language is presented. The goal is to
answer (b y the affirmative) the question: "Is the structural
knowledge of PL/1 of manageable proportions?" Both the static and
dynamic aspects of the language are examined.

Be lady , L. A., and Kuehner, C J . , "Dynamic Space Sharing in Computer Systems*',
C A C M , May 69.

Bel l , James, "Threaded Code", CACM, Jun 73.

Ber l ine r , Hans, "A Representation and Some Mechanisms for a Problem Solving
Chess Program", (PhD Thesis) , CMU-TR, May 75.

B ranquar t , P., Lewi , J . , Sintzoff, M., and Wodon, Pierre, "The Composition of
Semantics in Algol 68", CACM, Nov 71.

B r inch Hansen, Per, (ed.), RC4000 Software Multiprogramming System, A/S
Regnecentralen, Copenhagen, Denmark, 1969.

B r inch Hansen, Per, "The Nucleus of a Multiprogramming System", C A C M , A p r 70.

Page 30 The Core of Programming Systems 2 - F e b - 7 6

F i rs t , the concept of process is introduced precisely. Then , the
system nucleus is presented as the minimum requirements for a
multiprogramming system, providing an efficient environment for
processes (communication, control, hierarchy).

B r inch Hansen, Per, "Short Term Scheduling in Multiprogramming Systems", 3 r d
SOSP, 1971.

Br inch Hansen, Per, "Structured Multiprogramming", CACM. Jul 72.

"Event queues" are new features (data structures and operations to
per fo rm on them) that are proposed to be added to a high level
language in order to describe the operations encountered in a
multiprogramming system (process communication, synchronizat ion,
etc.) .

B r inch Hansen, Per , Operating System Principles, Prentice Hall, 1973.

B r i n c h Hansen, Per , "Concurrent Programming Concepts", CompSurv , Dec 73.

Language features for multiprogramming (event queues, semaphores,
crit ical regions, monitors) are rev iewed. Two principles for the
choice of equivalent features are proposed: concurrent programs
should be easy to understand, and assumptions about invariant
relat ionships among program components should be checked
automatically.

B rooks , Freder ick , The Mythical Man-Month, Addison-Wesley, 1975,

B u x t o n , J . N., and Randell, Brian, (eds.) Software Engineering Techniques, Report
on a Conference Sponsored by the NATO Science Committee, Rome. I ta ly ,
27th to 31st October 1969, NATO, Apr 70.

Campbel l , Roy, and Habermann, A. Nico, "Specification of Process Synchronizat ion
b y Path Expressions", International Symposium on Operating System
T h e o r y and Practice, IRIA, Apr 74, also Lecture Notes in Computer
Science, Spr inger Verlag, 1974.

Cof fman, Edward , and Denning, Peter, Operating Systems T h e o r y , Prent ice -Hal l ,
1973.

C o h e n , Ellis, § i a], Hydra User's Manual, CMU, Feb 75.

C o r b a t o ' , F. J . , C l ingen, C. T., and Saltzer, Jerome, "Multics — the First S e v e n
Years" , SJCC, 1972.

T h e goals of the Multics project are rev iewed and a h is tory of the
pro ject including a description of its (then) current status and
appearance to users is presented. Then experiences gained from the
pro ject are mentioned.

2 - F e b - 7 6 Programming Systems Bibliography Page 31

C O S I N E Committee, "An Undergraduate Course on Operating Systems Principles" ,
Committee on Education, National Academy on Engineering, 1972.

C o u r t o i s , P. J . , Heymans, R., and Parnas, David, "Concurrent Control w i th
'Readers ' and 'Writers'" , CACM, Oct 71.

T w o examples illustrate the problem of the exclusive acces to a
resource shared by concurrent processes. A programmed solution
using P and V operations is g iven for those two examples.

Dahl , 0 . - 1 , and Nygaard, K.,"Simula - An Algol -based Simulation Language", C A C M ,
Sep 66.

Dahl , O . - J . , "Discrete Event Simulation Languages", in (Genuys, ed.), Programming
Languages, Academic Press, 1968.

Dahl , O . - J . , and Hoare, C. A. R., "Hierarchical Program Structures", in (Dahl,
Di jkstra, and Hoare) Structured Programming, Academic Press, 1972.

Da ley , R. C., and Neumann, P. G., "A General Purpose File System for Secondary
Storage" , FJCC, 1965.

Da ley , R. C , and Dennis, Jack, "Virtual Memory, Processes, and Sharing in
MULT ICS" , CACM, May 68.

Denning, Peter , "Virtual Memory", CompSurv, Sep 70.

V i r tual memory is introduced as a solution to the problem of dynamic
s torage allocation. Virtual memory is then defined and its possible
implementations (segmentation, paging, segmentation-paging) are
p resented , compared and the problems they pose are mentioned.
The pr inciple of replacement algorithms is introduced and optimal
paging algorithms are presented.

Dennis , Jack, "Segmentation and the Design of Multiprogrammed Computations",
J A C M , Oct 65.

Dennis , Jack and van Horn, Earl, "Programming Semantics for Multiprogrammed
Computations", CACM, Mar 66.

Digital Equipment Corporat ion, P D P U / 2 0 Processor Handbook. Maynard ,
Massachusetts, 1971.

D i jkst ra , Edsger , "Solution to a Problem in Concurrent Programming Cont ro l " ,
C A C M . Sep 65.

D i jkst ra , Edsger , "GOTO Statement Considered Harmful", C A C M , Mar 68. .

D i jkst ra , Edsger , "The Structure of 'THE' Multiprogramming System", C A C M . May
68.

Page 32 The Core of Programming Systems 2 - F e b - 7 6

Di jkst ra , Edsger , "Cooperating Sequential Processes", in (Genuys, ed.),
Programming Languages. Academic Press, 1968.

Di jkst ra , Edsger , "A Construct ive Approach of the Problem of Program
Cor rectness" , BIT, Jul 68.

D i jkst ra , Edsger , "Notes on Structured Programming", in (Dahl, Dijkstra, and
Hoare) Structured Programming. Academic Press, 1972.

Di jkst ra , Edsger , "Hierarchical Ordering of Sequential Processes", in (Hoare and
Per ro t t , ed.), Operating System Techniques, Academic Press, 1972.

E lson, Mark, Concepts of Programming Languages. SRA, 1973.

E lson , Mark, Data Structures. SRA, 1975.

F a b r y , R. S., "Capabil i ty Based Addressing", 4th SOSP, 1973, also C A C M , Jul 74.

Capab i l i t y -based computers are discussed (in particular the Plessey
machine) and, in general, advantages of protection systems based on
the concept of capability are presented.

Feldman, Jerome, and Gries, David, "Translator Writing Systems", C A C M . Feb 68.

Feldman, Jerome, and Rovner, Paul, "An Algol -Based Associative Language",
C A C M , Aug 69.

Fennel l , Richard, "Multiprocess Software Architecture for A I Problem Solving",
(PhD Thesis) , C M U- TR , May 75.

F lon , L a r r y , "A S u r v e y of Some Issues Concerning Abstract Data T y p e s " , C M U -

F lon , L a r r y , "Program Design with Abstract Data Types" , C M U - T R . 1975.

F reeman, Peter , Software Systems Principles; A Survey , SRA, 1975.

G o l d b e r g , J . , ed. , Proceedings of a Symposium on the High Cost of Sof tware . SRI ,
1973.

G o l d b e r g , R. P., "Architecture of Virtual Machines", NCC, 1973.

Goodenough , John, and Gerhart, Susan, "Toward a Theory of Test Data
Select ion", International Conference on Reliable Software. A p r 75, also
SIGPLan, Jun 75.

Graham, Robert , "Protection in an Information Processing Uti l i ty", C A C M . May 68.

Graham, Robert , and Dennis, Jack, "Protection Principles and Practice", S J C C ,
1972.

2 - F e b - 7 6 Programming Systems Bibliography Page

Seven levels of protection systems are distinguished from the
simplest (complete isolation of the programs) to the most
sophist icated (complete cooperation and shared access to
information). The paper gives a comprehensive treatment of one of
these levels : protect ion systems allowing the cooperation of mutually
suspicious subsystems.

G r ies , David, Compiler Construction for Digital Computers, Wiley, 1971.

G r i s w o l d , R. E., Poage, J . F., and Polonsky, J . P., The Snobol4 Programming
Language, Prentice-Hall , 1971.

Gut tag , John, ed., "An Annotated Bibliography on Computer Program
Engineering", Univ Toronto TR, Apr 75.

Habermann, A. Nico, "Prevention of System Deadlocks", CACM, Jul 69.

Algorithms for the prevention of deadlock are presented. With the
knowledge of the maximum claims in resources by the different
p rocesses , the algorithms determine whether the next allocation
leaves the system in a safe state (i. e., a state guaranteeing that the •
system can eventual ly grant any request).

Habermann, A. Nico, "Introduction to Algol 60 for those who have used other
Programming Languages", C M U - T R , Sep 71.

Habermann, A. Nico, "Synchronization of Communicating Processes", 3 r d SOSP.
1971, also C A C M , Mar 72,

A formalization of the synchronization primitives is introduced and
permits to der ive an invariant p roper ty of the synchronizat ion
mechanisms. This p roper t y can be used to prove the program •
cor rectness of concurrent processes. This is applied to two forms of
programmed mechanisms: the programming of critical sections and the
programming'of communication between asynchronous sequential
processes .

Habermann, A. Nico, "Critical Comments on the Programming Language Pascal",
C M U - T R , Oct 73.

Habermann, A. Nico, Coopr ider , Lee, and Flon, Larry , "Modularization and
Hierarchy in a Family of Operating Systems", 5th SOSP, 1975.

Habermann, A. Nico, Operating Systems, SRA, 1975.

Hansen, Gi lbert , "Adaptive Systems for the Dynamic Run-Time Optimization of
Programs", (PhD Thesis), C M U - T R , Mar 74.

H o a r e , C. A. R., "Record Handling", in (Genuys, ed.), Programming Languages.
Academic Press, 1968.

34 The Core of Programming Systems 2 - F e b - 7 6

Hoare , C. A. R., "An Axiomatic Basis for Computer Programming", C A C M , Oct 69.

Axioms are introduced with each statement of a programming
language (assignment, composition, iteration) along with a rule of
inference. The axioms and the deduction rule are used to p r o v e
formally the correctness of a small program.

Hoare , C. A. R., "Proof of a Program: FIND", CACM, Jan 71.

B y determining invariant relations, the proofs of both the correctness
and the termination of the program "Find" are given. It is concluded
that the methods presented in this example can be applied, in
genera l , to a systematic programming.

Hoare , C. A, R., "Notes on Data Structuring", in (Dahl, Dijkstra, and Hoare)
S t ructured Programming, Academic Press, 1972.

Hoare , C. A. R., "A Structured Paging System", CompJ, Aug 73.

Hoare , C. A. R., "Hints on Programming Language Design", S IGAct -S IGPLan
Conference , Oct 73.

Hoare , C. A. R., "Monitors: an Operating System Structuring Concept", C A C M , Oct
74.

T h e concept of monitor is developed. The notion is similar to that of
"class" in Simula 67 and can be used to replace critical sections. This
is i l lustrated by several examples.

Hoare , C. A. R., "Data Reliability", SIGPLan, Jun 75.

Holt, Richard, "Some Deadlock Properties of Computer Systems", CompSurv . Sep
72.

Examples of deadlocks and solutions to the problem are first
mentioned. Then, a model (based on a graph representation) is
introduced. The model takes into account "reusable resources" (to
descr ibe objects shared among processes) and "consumable
r e s o u r c e s " (to describe signals or messages). Efficient detection and
p revent ion algorithms are deduced from the model.

H o p g o o d , F. R. A., Compiling Techniques, American Elsevier, 1969.

Horn ing, J . J . , and Randell, Brian, "Process Structuring", CompSurv. Mar 73.

Precise definitions are first given of the terminology in use in
operat ing systems (process, processor, computation, etc.). Then, t w o
methods for structuring complex systems are presented: "process
combination" and "process structuring," and they are applied to

F e b - 7 6 Programming Systems Bibliography Page 35

var ious topics of computer systems (concurrency, synchronizat ion,
multiprogramming, etc.).

I B M , I B M Svstem/360 Operating System Report Program Generator Language.
IBM Systems Reference Library .

I l i f fe , John , and Jodeit , Jane, "A Dynamic Storage Allocation Scheme", Comp J , Oct
62.

I l i f fe , John , Basic Machine Principles, American Elsevier, 1968.

J e n s e n , Douglas, "A Distributed Function Computer for Real-Time Cont ro l " ,
Symposium on Computer Architecture, Jan 75.

J o h n s s o n , Richard, "A Survey of Register Allocation", C M U - T R , May 73.

J o n e s , Anita , "Protection in Programmed Systems", (PhD Thesis), C M U - T R , 1973.

J o n e s , Anita, and Wulf, William, "Towards the Design of Secure Systems",

International Workshop on Protection in Operating Systems, IRIA, Aug 74.

K i lburn , T., e i a], "One-Leve l Storage System", IRE Trans on Elec Comp. A p r 62.

Kleinrock, Leonard, "A Continuum of Scheduling Policies", SJCC, 1970.

A family of scheduling algorithms are presented that takes into
account both the service time received by a user and the time spent
awaiting for serv ice. The family of algorithms includes all classical
scheduling policies (RR, FCFS, LCFS) and, in addition, a continuum
ser ies of algorithms that can be tuned by an appropriate selection of
the parameters of this family.

Knuth , Donald, and Merner , Jack, "ALGOL 60 Confidential", CACM, Jun 61.

Knuth , Donald, "Letter to the Editor", CACM. May 66.

K n u t h , Donald, "The Remaining Trouble Spots in ALGOL 60", CACM, Oct 67.

Knuth , Donald, The Art of Computer Programming: Vol . 1, Fundamental
Algorithms, Addison-Wesley , 1968, also 2d Edition, 1973.

K n u t h , Donald, The Ar t of Computer Programming: Vol . 3. Sorting and Searching.
Add ison -Wes ley , 1973.

K n u t h , Donald, "Structured Programming with go to Statements", CompSurv , Dec
74.

F i rst , a h istory of the "goto cont roversy" is s u r v e y e d . Arguments
and examples in favor of both pro and con are presented. T h e n ,

Page 36 The Core of Programming Systems 2 - F e b - 7 6

s t ruc tu red programming is discussed. An extensive bibl iography both
on the goto cont roversy and on structured programming is also
included.

Lampson, Butler , "Scheduling Philosophy for Multiprocessing Systems", C A C M .
May 68.

Lampson, Butler, "Protection", 5th Princeton Conference on Information Sciences
and Systems. 1971.

A model of a protection system is presented. The model uses an
access matrix to describe the process rights and takes into account
the mechanisms to control access to information and to insure the
protect ion . Certain techniques for the implementation of the model
are discussed.

Lampson, Butler , "A Note on the Confinement Problem", C A C M . Oct 73.

Lanzano , B. C , "Loader Standardization for Over lay Programs", CACM. Oct 69.

Lecarme, C , and Desjardins, P., "More Comments on the Programming Language
Pascal", Acta Informatica. 1975.

L e f k o v i t z , David, File Structure for On-Line Systems. Hayden, 1969.

L i n d s e y , C. K, and van der Muellen, S. G., Informal Introduction to Algol 68,
North-Hol land, 1971.

L i n d s e y , C. H., "Algol 68 with Fewer Tears", CompJ, May 72.

L iskov , Barbara , "The Design of the Venus Operating System", 3rd SOSP. 1971,
also C A C M . Mar 72.

Implemented on the Venus machine (a microprogrammed computer) ,
the Venus operating system was produced to test the influence of
the machine architecture on the complexity of the software produced
for this machine. The development of the system is repor ted and
s h o w s how the design, following Dijkstra's concept of levels of
abstract ion, is influenced by the machine architecture.

L iskov , Barbara , and Zilles, Stephen, "Programming with Abstract Data T y p e s " ,
SIGPLan. Apr 74.

A facil ity is proposed to allow the user of a high level language to
descr ibe his own data types : "Abstract data types" are defined b y a
user b y means of the operations that can be performed on them.
Implications for the programming language are discussed and
examples show the definition and use of abstract data types .

2 - F e b - 7 6 Programming Systems Bibliography Page 37

L iskov , Barbara , and Zilles, Stephen, "Specification Techniques for Data
Abstract ions" , SIGPLan. Jun 75.

L o n d o n , Ralph, "A View of Program Verification", SIGPLan. Jun 75.

McKeeman, W. M., "Language Directed Computer Design", F X C , 1967.

Madnick, Stuart , and Alsop, Joseph, "A Modular Approach to File System Design" ,
SJCC , 1969, also (Freeman) Software Systems Principles, SRA, 1975.

A file system, designed on the principle of hierarchical modularity, is
p resented . The file system is intended to be implemented in the
environment of a computer network and to handle files kept on
removable volume.

Matt ison , R. L., et. aT, "Evaluation Techniques for Storage Hierarchies", IBM S y s J ,
No. 2, 1970.

M a u r e r , W. D., and Lewis, T. G., "Hash Table Methods", CompSurv, Mar 75.

M e y e r , R. A., and Seawright, L. K, "A Virtual Machine Time-Sharing System", I B M
S v s J , No. 3, 1970.

Mitchel l , James, "The Design and Construction of Flexible and Efficient In teract i ve
Programming Systems", (PhD/Thesis), CMU-TR , Jun 70.

M o s e s , Joe l , "The Function of Function in LISP; or Why the FunArg Problem
should be called the Environment Problem", M A C - T R , Jun 70.

Naur , Peter , et. a\, "Revised Report on the Algorithmic Language ALGOL 60",
C A C M . Jan 63.

Naur , Peter , "The Performance of a System for Automatic Segmentation of
Programs within an Algol Compiler", CACM. Nov 65.

Naur , Peter , and Randell, Brian, Software Engineering, Report on a Conference
Sponsored by the NATO Science Committee, Garmisch, Germany, 7th to
11th October 1968. NATO, Jan 69.

Needham, R. M., "Protection Systems and Protection Practices", F X C , 1972.

Organ ick , Ell iott, and C leary , J . G., "Data Structure Model of the B6700 Computer
System", SIGPLan. Feb 71.

Organ ick , Elliott, Computer System Organization: the B5700/B6700 Ser ies .
Academic Press, 1973.

Pakin , Sandra, APL 360 Reference Manual. SRA, 1968.

38 The Core of Programming Systems 2 - F e b - 7 6

Parnas, David, "Information Distribution Aspects of Design Methodology", C M U -
IB, 1971.

Parnas , David, "A Technique for Software Module Specification with Examples",
C A C M , May 72.

Using examples, it is shown how to write a large program by
decomposing it into subprograms each with a well defined function
and specification.

Parnas, David, "On the Criteria to be Used in Decomposing Systems into
Modules", CACM, Dec 72.

T h e decomposition of a system into modules may have different
results depending on the criteria used for the decomposition.
C r i te r ia are discussed to achieve an efficient implementation.

Parnas , David, "On a 'Buzzword 1 : Hierarchical Structure", IFIP Congress, 1974,
Vo l . 2.

P r e s s e r , Leon, and White, John, "Linkers and Loaders", CompSurv, Oct 72.

Using examples from the IBM system 360, the linking and loading
functions are presented in detail. Implementation of linkers and
relocating loaders is also mentioned.

Prat t , T e r e n c e , Programming Languages: Design and Implementation, P r e n t i c e -
Hall, 1975.

Quam, L H., and Diffie, W., "Stanford Lisp 1.6 Manual", SAIL -ON-28.7 , 1973.

Randel l , Br ian, and Russell, Lawford, Algol 60 Implementation, Academic Press ,
1964.

Randel l , Br ian, and Kuehner, C. J . , "Dynamic Storage Allocation Systems", C A C M ,
May 68.

Randel l , Br ian, "A Note on Storage Fragmentation and Program Segmentation",
C A C M , Jul 69.

Results of a simulation to measure storage fragmentation are
r e p o r t e d . Both internal and external fragmentation are taken into
considerat ion and it is pointed out that in trying to decrease the
externa l fragmentation (by reducing the number of block sizes), the
internal fragmentation increases and leads to a worse utilization of
the total storage.

Rappapor t , Robert , "Implementing Multi -Process Primitives in a Multiplexed
Computer System", MAC-TR , Nov 68.

Pro*™** S y S l e m s B i b l i o e r , p h y IIIKlHIlllllllllll
3 A M A E D D 5 f l 5 E E

Ritchie, Dennis, and Thompson, Ken, "The UNIX Time-Sharing System", 4th SOSP.
1973, also C A C M . Jul 74.

A comprehensive description of the file system of UNIX, a large time
sharing system, is presented along with the user facility to handle his
fi les.

R o b e r t s o n , George , "L*(D Reference Manual", CMU-TR . Oct 75.

Sa l t ze r , Jerome, "Traffic Control in a Multiplexed Computer System", (PhD
Thesis) , M A C - T R - 3 0 . MIT, 1966.

S a y r e , D., "Is Automatic 'Folding' of Programs Efficient Enough to Replace
Manual?", CACM. Dec 69.

Schaf fe r t , Craig, Snyder , Alan, and Atkinson, Russ, "The C L U Reference Manual",
M A C - T R . MIT, Jun 75.

S c h r o e d e r , M. D., "Cooperation of Mutually Suspicious Subsystems in a Computer
Uti l i ty" , (PhD Thesis), MAC-TR -104 , 1972.

S i tes , Richard, Algol W Reference Manual. Stanford Computer Science Department
Report S T A N - C S - 7 1 - 2 3 0 , 1972.

S p i e r , Michael, Hastings, Thomas, and Cutler , David, "An Experimental
Implementation of the Kernel/Domain Architecture", 4th SOSP. 1973.

The implementation of a "protective operating system framework" is
r e p o r t e d . The implementation of this system (on a PDP-11/45) is
descr ibed as being modular and uses the concepts of "kernel" (the
heart of the operating system) and of "domain" (the memory space
dedicated to a procedure) .

SR I , "On the Design of a Provable Operating System", International Workshop on
Protect ion in Operating Systems. IRIA, Aug 74.

S tee le , Guy , "Multiprocessing Compactifying Garbage Collection", C A C M . Sep 75.

Ts i ch r i t z i s , Dionysios, and Bernstein, Philip, Operating Systems. Academic Press ,
1974.

W a t s o n , Richard, Timesharing System Design Concepts. McGraw-Hi l l , 1970.

W e g n e r , Peter , Programming Languages. Information Structures, and Machine
Organizat ions. McGraw-Hi l l , 1968.

W e i n b u r g , G., Psychology of Computer Programming, van Nostrand Rheinhold,
1971.

Weinstock , Chuck, "A S u r v e y of Protection Systems", C M U - T R . Jul 73.

Page 40 The Core of Programming Systems 2~Feb-76

Weissman, Clark, LISP 1.5 Primer, Dickenson, 1967.

W i r t h , Niklaus, "Program Development by Stepwise Refinement", C A C M , A p r 71.

Using an example, it is shown both how to decompose a program and
how to structure the corresponding data by successive
approximations.

Wi r th , Niklaus, "The Programming Language Pascal", Acta Informatica, 1971.

Wi r th , Niklaus, Systematic Programming: An Introduction, Prentice Hall, 1973.

Wi r th , Niklaus, "An Assesment of the Programming Language Pascal", SIGPLan,
1975.

W o d o n , P ie r re , "Still Another Tool for Synchronizing Cooperating Processes" ,
C M U - T R , Aug 72.

Wulf , William, Russell, D. B., and Habermann, A. Nico, "Bliss: a Language for
Systems Programming", CACM, Dec 71.

Bliss, superf icial ly an Algol or a P L / H i k e language, is a system
implementation language. It provides an efficient access to the
hardware features of the machine (initially a PDP-10) along with the
possibi l i ty to define complex data structures, to wr i te coroutines and,
in addition, produces efficient code.

Wulf , William, and Shaw, Mary, "Global Variables Considered Harmful", C M U - T R ,
Aug 72.

A case against the use of global variable is presented. It is argued
that "non local" variables lead to obscure programs and can be •
misused. The.scope of variable in Algol is a contributing factor in
this diff iculty.

Wulf , William, "ALPHARD: Towards a Language to Support St ructured Programs",
C M U - T R , A p r 74.

Wulf , William, et al, "HYDRA: The Kernel of a Multiprocessor Operating System",
C A C M , Jun 74.

T h e design philosophy of HYDRA, the kernel of C.mmp, is presented.
HYDRA prov ides mechanisms to handle "objects" efficiently and in a
secure way .

Wulf , William, et. ai, Design of an Optimizing Compiler, American Elsivier, 1975.

Wulf , William, "Languages and Structured Programs", to be published in 1976.

