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PROGRAMMING SYSTEMS SYLLABUS -- 1975

I. Data Structures
A. Linear [Knuth 68, pp 234-304]
I. Vectors and Arrays
[Knuth 68, pp 295-302]
[Hopgood 69, pp 12-15]
2. Strings [Gries 71, pp 180-81] [Elson 75, Chap 6]
3. Queues and Stacks [Knuth 68, pp 234-239]
4, Representation [Knuth 68, pp 240-294]

B. Non-Linear
1. Trees [Knuth 68, pp 305-405]
2. General list structures (Graphs) [Knuth 68, pp 423-434]
3. Directed acyclic graphs
4. Discrimination nets

C. Accessing Techniques

1. Associative schemes
[Griswold 71, pp 118-120]
{Feldman 69]

2. Hashing functions
[Maurer and Lewis 75]
[Gries 71, pp 216-23]
[Knuth 73, pp 506-549)

3. Memo functions {Berliner 75]

D. Records - unordered structures
{Hoare 68]
[Sites 72]
fHoare 72}
[Dahl 68]
(Elson 75, pp 21-27)

E. Formal specificalions
[Liskov 75]
{Parnas 71, 72a}

F. Free Space Management
(Elson 75, pp 163-181]
[Knuth 68, pp 406-22]
[Steele 75)

G. Data Bases
[Habermann 75b, Chap 9]
[Madnick 69]
[Lefkovitz 69].
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11, PROGRAMMING LANGUAGES
A, By application area
1. Numeric/scientific
Algol [Naur 63] [Habermann 71] (Knuth 61,67]

Fortran

PL/1 [Beech 70]

APL [Pakin 68]

Algol 68 [Lindsey 71,72]

PASCAL
(Wirth 71b, 78]
[Habermann 73]
(Lecarme 75]

Algol W [Sites 72]
* BASIC

2. String
Snobol {Griswold 71] [Elson 75, Chap 7] [Pratt 75, Chap 15]

3. List Processing
L# [Robertson 75]
Lisp [Quam 73] [Weissman 67]

4, Simulation
Simula [Dahl 66]
Simula 67 [Dahl 72]

5. System Implementation
Bliss [Wulf 71]
L* [Robertson 75}

6. Abstraction languages
Alphard [Wulf 74a]
CLU [Schaffert 75]
ELI

7. Misc:
Cobo! [Pratt 75, Chap 12]
RPG [IBM]
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B. Issues
1. Type
[Hoare 72, 73b]
[Flon 74]
[Liskov 74]
[Wulf 74a]

8.

9. Compilation vs, Interprefation: consequences [Mitchell 70]

[Wirth 73, Chap 8]

Scope and Extent
[Moses 70)
[Eison 73]
[Wult 72, 74a]

Name Binding
[Cosine 72, Mod 5)
{Elson 73, Chap 5]

Control Constructs
[Wulf 74a]
[Knuth 66,74]
[Dahl 72]
[Dijkstra 68a]

Storage Management
[Gries 71, Chap 8] °
[Knuth 68, pp 435-455]

Procedure mechanism
[Wirth 73, Chap 12]
[Gries 71, Chap 8]
[Pratt 75, Chap 6]

Exception handiing
(Gries 71, Chap 14]
{Beech 70]

Reference Variables [Hoare 75]

10. Concurrency

[Dennis 66]
[Campbeil 74]
[Hoare 74]

11.. Protection

[Wulf 74b]
[Jones 73]

Page 3



Page 4 The Core of Programming Systems . 2-Feb-76

C. Methodology related to tanguage [Wult 76]
1, Control mechanisms
[Knuth 74]

2. -Abstraction mechanism
[Flon 75]
[Dah 72]
{Wulf 74a]
CLU [Schatfert 75}

3. Modularity [Parnas 71, 72a, 72b]
4, Verification [Hoare 72]
il Software Engineering [Guttag 75]

A. Motivation and Perspective
[Weinburg 71]
[Naur 69]
[Buxton 70}
[Goidberg 73a}

B. Proposed Methodologies
1. Stepwise Refinement [Wirth 71a)
2. Structured Programming (1he original) [Dijkstra 72a]
3. Modularity [Parnas 71, 72a, 72b])
4. Hierarchical Design [Dijkstra 68b] [Parnas 74]
[SR! 74] {Habermann 75a]}
Chief Programmer Team [Baker 72] [Brooks 75]
Egoless Programming {Weinburg 71] '

I

C. Specification [Parnas 72a] [Liskov 75}
D. Verification [Hoare 71] [Dijkstra 72a} [London 75]
E. Algorithmic anatysis [Knuth 68, pp 94-103] [Aho 74]
F. Tesiing'[Goodenough 751
G. Software Construction Tools

Editors

Conversational Systems

Job Control Languages
[Weinburg 71]
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IV. TRANSLATORS
A. Introduction .
L. Compilers vs. Interpreters [Gries 71, pp 2-10] [Hansen 74]
2. Assemblers [Barron 69)
3. Loaders [Presser 72]

8. Components [Gries 71] {Hopgood 69]

I. lexical analysis [Gries 71, Chap 3]}

2. syntax analysis [Gries 71, Chaps 4-7, 12-13]

3. symbol and name tables [Gries 71, Chaps 9 & 10]
a. data structures
b. search algorithms
c. insertion/deletion {Knuth 73b]
d. interaction with language properties

4. code generation [Gries 71, Chap 17] [(Wulf 75b]
5. macros and their processing [Gries 71, Chap 19] [Wegner 68]

C. Global optimization, flow analysis, and register allocation
(Wulf 75b]
[Gries 71]
[Johnsson 73}

D. Runtime issues [Randell and Russell 64]
1. Display and stack management [Gries 71, Chap 8]
2. Dynamic storage allocation & garbage collection

[Knuth 68, pp 435-455}

Overlay issues

Exception recovery[Gries 71, pp 314-320]

Debugging

I/0 and system interaction

recursion

Co-routines

N AW

E. Compiler—combilers [Feldman 68}
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V. Operating Systems
A, Concurrency and Synchronization
1. Concept of Multiprogramming and context swaps

[Dennis 66] [Saltzer 66]

2. Implementation of Multiprogramming
Interrupts [Digital 71, pp 117-120]
Semaphores [Liskov 71]

Procedure Calls {Organick 73, pp 31-32]
Messages [Jensen 75] -

3. Mutual Exclusion
MULTICS Biock/Wait [Lampson 68] [Saltzer 66]
Semaphores P/V [Dijkstra 68b]
Up/Down [Wodon 72]
Critical Regions [Brinch Hansen 72]

4. Message Syslems
RCA4000 {Brinch Hansen 70]
As a basic primitive [Jensen 75]
Hydra [Cohen 75, Section 8]

5. Monitors [Hoare 73b,74]
6. Path Expressions [Campbell 74]

7. Deadlocks: concepl, prevention, avoidance, recovery
[Hal>ermann 69] [Holt 72]

8. Classical Problems [Courtois 71]

B. Addressing
1. Segmentation Concepts
Survey [Randell 68]
MULTICS [Dennis 65]

2. Capability Concepls
Codeword [liiffe 62,68]
Descriptor {Organick 71] [Organick 73]
Capability {Fabry 74]

3. Multiprogramming Problems [Needham 72]
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C. Memory Management [Habermann 75b, Chap 7]
1. Relocation/Qveriaying [Lanzano 69] [Sayre 69]
(Watson 70, pp 40-45] '

2. Paging [Denning 70] {Watson 70, pp 45-52] [Naur 65]
[Kilburn 62]

3. General Memory Hierarchies [Mattison 70]

D. Resource Allocation and Scheduling
1. Processor Scheduling
Short term [Lampson 68] [Brinch Hansen 71] [Kleinrock 70]
Long term {Habermann 75b, Chap 6]

2. General Allocation [Habermann 75b, Chap 7]
3. Deadlocks [Habermann 69] [Holt 72]

E. Protection Concepts [Weinstock 73]
1. Implementation of Domains,
Priviteged Instructions and Address Space Restriction
[Graham 72] [Spier 73]

2. Authority Based Protection
MULTICS [Graham 68} [Daley 65]

3. Capability Based Protection [Lampson 71] {Fabry 73]
{Jones 73] [Jones 74)

4, Classical Problems
Confinement [Lampson 73]
Mutually Suspicious Subsystems [Schroeder 72]

F. Examples of Real Systems
(Learn some of these)
THE [Dijkstra 68a)
RCA000 [Brinch Hansen 70]
Kernel/Domain Experiment [Spier 73]
VENUS {Liskov 71]
Hydra [Cohen 74)
Cambridge Monitor [Meyer 70]
UNIX [Ritchie 74]
MULTICS [Corbato 73]

PNOADWN -
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1. DataStructures

1.1 Introduction

Data structures play several roles in programming systems. First, they are
major building blocks from which systems are built. Second, controlling the
manipulation of data structures is a major theme in the development of structured
programs and type-oriented languages. Third, most programming systems must handle
enormous quantities of data; therefore the structure of the data largely- determines the
performance for the program. In this section we will deal with the basic anatomy,
manipulation, and performance of some common data structures. We will not cover the
full debate surrounding data structure manipulation until we discuss types and
abstraction in programming languages, nor will we attempt guantitative measures of

_performance,

Every data structure has two aspects: its specification and its impiementation.
The two can and should be compietely separable. For example, consider a structure S,
a value x, and two operations a(S,x) and b(S). Operation b returns a value of the same

kind as x. Suppose we assert thal
(Yx)( [ alSx); c+b(S)] = c equals x }
and, further, suppose we detine a recursive sequence d

d{S,x) = [ alSx) [; d(S,y) J¢; b(S}]
and assert that

(¥x) x equals d{S,x} )

where % denotes zero or mdm occurrences of the bracketed sequence, and the value
of a sequence is the value of the last expression in the sequence. Then we can see
that the net effect of d on the structure S is null, with respect to the operations a and

b.

Now consider a vector V and a pointer P into it. The operations
e(Vx) = [ V[P]ex ; pep+l ]
f(V) = [ pep-1; return Vpl]
gV} = [ eV [ g(Vyy) ¢ (V)]

quickly reveal that g leaves V undisturbed relative to e and f. But now we see that S,
a, and b describe a stack, and V, e, and { implement one. Another implementation might
use a linked list instead of a vector. For a more complete treatment of this exercise

see [Parnas 72al

Note 1he distinction between the operational specification ot a structure and its
implementation. A stack is a stack is a stack, whether it’s imptemented as & vector and

pointer, a linked list, or a tht_'eaded tree.
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Most common data structures are thoroughly described in the literature; perhaps
the following map will help. :

1.2 Linear structures

These include: stacks, queues, vectors, and strings. Multi-dimensional arrays are
also included here because they can be mapped in a straightforward way onto simple
vectors.,  Knuth’s coverage of linear structures is nearly comprehensive
[Knulh 68, pp 234-304); one topic he doesn’t discuss, is dope vector, or lliffe vector,
representation of arrays, found in [Hopgood 69, pp 12-15] Strings make their claim to
prominence by (a) being necessary for If0 and useful in compilers, business data
processing, and user inferfaces to most large systems, and {b) being the most common
domain for the praclice of pattern matching, a powerful tool. String representation
depends heavily on the operations it must support. If sorting is all that’s involved,
fixed length vectors of characters are sufficient. But if the representation must
support frequent insertion and cdeletion, linked lists would be more appropriate.
[Elson 75, Chaps 6 and 7] give a fine survey of the area, and describe SNOBOL, the
best known string processing language today.

1.3 Non-linear structures

(Knulh 68, pp 305-305] treals trees and their relatives exhaustively and well.
Binary trees are important because the algorithms that manipulate them are simple,
and well suited for binary compulers. Lists (wherein an element of a list can itsalf be
a list) are a convenient linear representation of trees[Weismann 67, pp 5-24]. Knuth
shows that binary trees can easily be used to implement any other kind of tree, as
well as lists, and gives several accessing algorithms and representations.

Trees happen to be a special case of the class of structures called graphs. A
graph is a set of nodes with connections between some of them. A connected graph Is
a graph where one can follow an unbroken sequence of connections from any node to-
any other node. A directed graph is one where the connections are asymmetric
(usually represented on paper as single headed arrows, and on computers as pointers).
Acyclic graphs are ones for which there is no sequence of connections which
(a) includes no connection more than once, and (b) leads from a node to that same
node. Directed acyclic graphs (dags) are fhe same, with the added copdition that
(¢} the -sequence follows the directionality of the -connections.. An . acytHc graph is.
isomorphie 1o a free tree:.. A dag having not more than one path .from ope.-node to-
another is isomorphic to an oriented tree [Knuth 68, pp 362-380] [Elson 75, pp 10B- -
1171 : | B
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1.4 Accessing Techniques

Having acquired a collection of alternalive representations for one’s data, the
programmer must choose among them. One usually finds that the most compact
representations are fairly expensive to access, and that those forms most readily
accessed take up an inordinate amount of space. The overall quantity of data involved
also affects the choice of representation. For instance, finding a given item in a list of
ten items is most easily done by a linear scan of the list. Finding one item in a list of
100,000 is a task of considerably more complexity. If time is at all important, the
programmer might be willing to use twice the disk space if doing so would permit a-
much faster accessing algorithm. Hashing functions were developed to locate items In
long lists based on standardized keys. Memo functions arose to lessen the effort
required to traverse large trees,

1.4.1 Haghing functions

Table maintenance is an area where machines have inspired a truly new way of
doing something that men thought they knew how to do.. Tables which will be
searched often must be ordered in a way that lels any item in it be found efficiently.
For small tables, any order will do, since one can afford to examine every element.
For moderate sized tables, if the table is totally ordered (e.g. alphabetically)
reasonable algorithms exist (e.g. binary search) for finding any element. But for large
tables, both sorting and searching are too time consuming to be done frequently. A
hashing function is a function which tells you’where an item is, or belongs, in a table,
by some simple, but not necessarily obvious, computation. It is a mapping from a
(large) set of possible table element tags into a (small) set of slot locations. Being a
many-to-one mapping, it is usually accompanied by a secondary function telling where
to ook next if the slot named by the hashing function contains a different element.
{Knuth 73, pp B06-549] details a variety of search techniques and hashing functions,
and gives relevant performance figures.

1.4.2 Memo functions

Trees turn out to be such useful tools that program designers have often been
willing to traverse very large trees lo avoid complicatinig their programs. A memo
function is a tag on a subtree, or a way of recognizing subtrees, which permits one to
avoid traversing that sublree. For instance, chess move trees have many congruent
sublrees, because the same board pesition can be reached by several different move
sequences. Recently, Hans Berliner has found a way to use memo functions to help
search move trees. He has designed a system which, having evaluated a move and
found it wanting, catalogues the move and the relevant context of it. Then as the tres
search continues, when the move comes up again in a similar context, it can be
rejected without reevaluation. Optimizing compilers, such as the Bliss/11 compiler
[Wulf 75], treat common subexpressions in a similar way. The code generation routine
finds tags on some subtrees saying "my code has already been generated; skip me",
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1.5 Records

So far, all the structures discussed have been homogeneous, l.e. all nodes In a
given structure had the same formal, But in order to permit understandable programs,
many applications require combining different kinds of information (i.e. different fields
have different formats) into a single node such that nodes with different formats can
be handled in a uniform way. A data base tor keeping track of vehicles for United
airlines might have different sizes of nodes for baggage carts, tank trucks, and DC-
10, but each of these nodes would have a field for the manufacturer and a field for
its next scheduled maintenance. A record is a node whose fields are accessed by name
rather than by index. [Hoare 68) is one excellent description of them Algol W
[Sites 72] has one clean implementation. Also read [Gries 71, pp 182-187].

1.6 Formal Specitications

When creating new, sophisticaled data structures out of old simpie ones, one
often loses his grasp of how the structure behaves, especially whan more than one
program{mer} uses it. This has sparked a drive by some to hide all data structures
inside precisely defined procedures. David Parnas was a pioneer in this work
[Parnas 71, 72a]. He developed a number of principles for module design and
specification, but was frustrated by the absence of languages which would enforce his
boundaries. No completely satisfactory languages have been implemented yet, but
several (cf. Clu, Alphard) are being designed to both enforce the boundaries and to
permit formal specifications to be integrated inlo the program text. [Liskov 75] gives
some criteria for selecting specification languages.

1.7 Free Space Management

When wusing a data structure which creates and deletes nodes in an
unpredictable fashion, we need a facility for allocating in which to put nodes, nodes in,
and reclaining abandoned nodes for re-use. Such allocation schemes fall into two
categories: (1) Reference counts, maintained for each node, reflect the number of
pointers to that node. When count falls to zero the space occupied by the node Is
reclaimed. (2) Garbage collection: when free storage runs low, the system traces down
every node in use and marks it. Any nodes remaining unmarked are recycled. Read
[Efson 75, pp 163-181] for a fuller exposition.

1.8 Data Bases

A growing class of data structures, the so-called ‘data bases’, are characterized
by very large size and by a permanence that often exceeds that of any programs that
access them. When approaching the design of these large quasi-permanent data
structures, care must be taken lo use robust structures that can support the added
weight. To borrow an example from comparative zoology, consider two similar animals
that differ in linear dimensions by a factor of two. Since its weight varies as the cube.
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of the size and the strengih of its bones only with the square of their dlameter, the
diameter of the hones of the larger animal must more than double that of the smaller.
So also the structures used in building large data bases must be carefully chosen, lest
the data base collapse. Two families of differences are given here.

Due to very large size, a data base can seldom be kept within primary memory.
Representation and accessing lechnigues must take the nature of the memory
hierarchy available into account to minimize accessing delays such as the seek time on
a moving-head disc. The performance of searching and updating depends heavily on
how well the physical layout of data reflects the pattern of accesses. Also, since many
searching techniques become much slower as the data base grows [Knuth 73],
redundant structuring may be used to expedite anticipated searches.

Due to very long duration, several problems must be faced. First, as data nodes
are inserted and deleted, the physical layout designed to expedite accessing may be
compromised. This causes slower accessing and greater storage fragmentation. These
problems necessitate either periodic restructuring of the data base or sophisticated
updating routines that dynamically restructure the data. Second, the permanence of
the data base increases the chance of error in the data or in the structure. These
structures therefore molivale serious use of backups, checksums, and other reiiability
measures. [Lefkovitz 69] and {Madnick 69] are suggested references. :
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2. Programming Languages

2.1 Introduction

The syllabus approaches languages trom three orthogonal directions: application
area, intrinsic issues of language features, and the effect of language on program
design. The first of these needs no explanation -- it’s there for reference. To cover
the second we shall attempt a short definition of each issue. To introduce you to the
third, read [Wulf 76),

2.2 Data Accessing Issues

Type is the current buzzword for a language construct which only permits
accessing a data structure by employing the operations defined on it. The leading
languages based on types are Alphard (Wulf 74a] and Clu [Schaffert 75} For a once-
over, thorough theoretical trealment of types, read [Hoare 72]. To follow the recent
developments, start with Flon’s survey [Flon 74] and use its references..

Scope, extent, pame binding, memory managentent, procedure mechanism, and
reference variables are all issues which interact strongly with type implementations.
Name binding is the process by which an occurrence of an identifier in a program
becomes associated with a storage location. Scope rules govern these name bindings.
Algol, for instance, has static scope rules: a name is bound to the declaration in the
block where the name is used. If no declaration is found in that block, the next
surrounding block is checked, and the next, and the -next, until a declaration for the
name is found. In contrast to Algol, APL’s scope rules are dynamic: just as new
storage is allocated each time a routine with declarations is entered, so each name is
bound to the storage most recently (in time) allocated under that name, The APL style
is very hard to follow; the Algol style is insufficient, and still prone to certain kinds of
errors. Extent refers to the period of time over which the value of a variable persists:
the extent of Fortran variables is forever; the extent of the Algol local variable is the
period when the block immediately surrounding the declaration js being executed.
Note that scope of an Algol own variable is the block surrounding it, but its extent is
forever.

Memory management is an efficiencyeflexibility tradeoff. FORTRAN typifies a
group of languages which allocate memory at load time, once and for all. This limits
the amount of logically distinct data the program can use (excepting bulk storage).
Algol-like languages have some such static allocation, but also allocate local storage on
a "last in(to use), first out {of use)" basis. This fets the free and in-use space be
separated by a singie pointer. Languages like LISP and SNOBOL, which cannot limit
themselves to such a LIFO discipline, must use garbage coliection schemes, which,
though well understood and very flexible, are expensive in time and memory,

Reference variables are variables which contain pointers to other variables.
They wreak havoc with conventional scope and extent rules. If a routine with access
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to an own variable puts a reference to it in a global reference variable, the privacy of
the own is violated. A local referred to by a reference variable will either leak private
information or invalidate the contents of the reference variable when the local

disappears.

begin
reference R;
real leak;
begin
own A;
R « reference to A;
end

leak « value of object referred to by R;
end

2.3 Procedure Mechanisms

Procedure mechanisms vary among languages in a variety of ways:

1) What constitutes a procedure? Most languages have fixed beginning and
ending points for procedures. But BASIC and SNOBOL have procedure calls
which, like assembly language instructions, can “jump to subroutine” to any
statement, and have returns which simply happen wherever they are
encountered in normal execution. Cobol, furthermore, lets the procedure call,
itself, define what group of statements constitutes the procedure. In most
languages, a procedure call leaves no context behind when it returns, except
own values and the values it returns. But co-routines, such as those available in
Bliss and Simula, allow a procedure to be stopped and restarted at various entry

points during its lifetime.

2) How do scope and extent rules apply to procedures? In static allocation
languages we generally find no probiems with names and procedures, except in
relation to parameters, Algol’s static scope rules apply to procedures in the
same way they do 1o blocks. A Bliss routine inherits global and gwn structures,
but not local ones, from its static context. APL and Lisp routines have access to
the structure most recently bound to each name in the universe,

3) How are parameters passed? Passing them by value means evaluating sach
one once, giving the value to the routine, and never again referring to them in
the caller’s context. Call by reference implies a once only computation of the
location of the structure, which is then used to hoid the corresponding formal
parameter, Call by name requires that the parameter location and value he
recomputed, in the cailer’s context (in contextu vocatoris), each time the formal
parameter is used inside the procedure. The overhead is very high. Call by,
result evaluates the parameter location, executes the procedure body, then
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copies the formal parameter value into the actual parameter’s location. Call by
value-result copies the value out of the actual parameter into the formal one,
does the computation, then copies the formal back to the actual.

2.4 Control Mechanisms

When Dijkstra first asserted that the goto statement was harmful to program
understandability, he unieashed a torrent of creativity which produced new control
constructs to replace it, and a host of critics to reject the new constructs, Even good
programmers, when writing in a language with no other constructs for control but
goto’s and do loops, too often find themselves writing unreadable programs. Most of
the things done by goto's can be done more easily and readably using do while
statements, if then else clauses, and other iterative statements. One common use for
goto’s has been to break out of the orderly flow of control when some unusual
condition occurs. To satisfy this need, Bliss offers four constructs which let the
execution of a complex statement (in Bliss, an expression) terminate, whereupon
execution resumes at the next statement.

Exceplions are unusual events which must be handled by unusual mechanisms.
Some such mechanisms are monitors, which let the user provide his own response to
events thal the system can monitor continuously [Beech 70] (e.g. writes to certain
memory locations, error flags). Others are facilities which let the programmer
prematurely terminale processing in a dynamically defined context. Be sure to look at
Blisss signal and enable constructs, The enable statement says, "I know something
about these special events. As long as I'm on the call stack, I'm available to procecs
them.” The signal statement says, "A special event has just octurred. Return control to
an enable block which knows something about it, popping ail intervening subroutine .
calls," :

2.5 Concurrency and Protection

These two topics have recently found their way into programming languages,
primarily because of the overail trend to write bigger systems with complex scheduling
problems and muitiple, fallible authors. For an introduction to these areas, see the
discussion under the same headings in the Operating Systems section.

2.6 Compilation vs. Interpretation: consequences

Many language features require non-trivial bookkeeping during execution (e.g.
array bounds-checking, stack management, storage allocation). These features can
often be more easily implemented by an interpreter than by a compiler. More on this
in section 4.1
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3. Sottware Engineering

3.1 Introduction

Wulf's discussion [Wulf 76] of the software crisis, though oriented towerd
language design, also provides a good introduction o program design. The field has
finally come to recognize that targe programs

a) are too complex to be completely understood by one mind at one
time, - .

b} will be modified by people who didn't design them, as often as they
are used, and

¢) can never be proved to be free of bugs by execution,

When the government lets a contract for software, both the government and the
vendor know thal the product will lake longer and cost more than specified in the
contract. The exceptions to this statement can be counted on your thumbs,

All this has come about because the size of the programs we want to build has
exceeded the capacity of our minds to understand them. in order to master this
complexity, we need tools which give the programs a framework which aids
understanding. Several disciplines have arisen to meet this problem;

1} a coilection of principles for good programming,
2) methods for specifying the behavior of programs,

3) techniques for proving things about programs {e.g. that they meet
their behavioral specs), and

4) criteria for measuring the performance of the system produced.

3.2 Proposed Methodologies

Many of the emerging principles have properties in common. Stepwise
refinement is a method that says: :

a) write out the complete algorithm in a short sequence of steps you
understand.

b) take up each step in succession and expand it by the same rule.

¢) keep refining the steps until they can be written understandably in a
conventiona! programming language.
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This method has two atiributes that recommend it. First, it permits the designer
to see the effects his decisions have on program structure, and uncovers issues he
might not have considered. ([Dijkstra 72a] is required reading, an elegant example of
this.) Second, many of these decisions will only affect one or two of the steps; in such
cases the designer tan then isolate the impiementation ot the deéision from the steps
it doesn’t affect. This second property conveniently introduces modularity, Programs
get modified because either bugs are discovered or design decisions are changed. If a
decision is changed, years after the program is written, the person who changes the
program must track down every piece of code which depends on the decision. [f the
decision has to be made early in the initial design (when the resolution of the program
is still very coarse), every part of the program potentially relies on that decision. For
example, the RSX11D Fortran compiler (1974) uses PDP-11 TRAP instructions to signal
all exceptional conditions. This decision must have been well known throughout the
system, for there were TRAP instructions in about ten of the eighty source files.
When one of the authors (R.5.) transported the compiler to Hydra, an operating system
which does not support user TRAPs, be had fo search all eighty files to get the TRAPs
out.

"On the other hand, if the desigher can decompose his problem such that each
design decision is important to at most two or three "steps”, he greatly simplifies the
structure of his program, and consequently its debugging and modification. Much of
the current research in language design seeks convenient tools to enforce the
boundaries of these program modules, ‘

Hicrarchical Design denotes another principle which promotes structure in
programs: thal the dependency relationships between modules must form a partial
ordering. Not only does this make it possible to debug one module at a time, but it
also permits the lower modules to be finished before the higher ones are designed,
and eases replacement of old modules with redesigned ones. The Family of QOperating
Systems project at CMU is an atlempt for one group to design a large coilection of
operating systems in a short period of lime, by defining their modules cleanly enough
that is simple to, say, repiace the BATCH module with a TIMESHARING module
[Habbermann 75a].

The Chief Programmer Team is a management concept which states that the best
way to produce software is to hire one really good programmer to do the actual
programming, and support him with whatever specialists and assistants {e.g. man-
machine interface expert, program librarian, secretary) he needs. Only one major
system produced this way has met its deadline and budget line: the New York Times
Morgue system, chiefed by Harlan Mills [Baker 72].

Egoless Programming is a reaction to the programmer who views his code as his
own private domain, not subject to viewing, much less critique, by others. The egoless
programmer must explain his code to at least one of his co-workers, on the premise
that good structure and readability go hand in hand. Both the structure and the actual
explanation will help unearth programming and design errors [Weinburg 71}
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3.3 Program Specification

Program specification is the complement of data structure spacification: we
specify the behavior of programs in terms of how they affect variables. We still need
a .precise language for expressing these changes; [Liskov 75] provides criteria for
evaluating language proposals, with emphasis on verifiability.

3.4 Verification

[London 75] provides a good description of the state of this art. Verification
now ordinarily means an altempt to demonstrate consistency between the specification .
and the implementation of a program. Induclive assertion is the most widely used
technique. It consists of inserting in the program assertions about program variables,
and verifying them, then stringing them together into a proot of some property of the
whole program. Also see Formal Specifications, under Data Structures.

3.5 Program Analysis

The performance of a program can be discerned in two ways: by analysis, as
Knuth does with almost every algorithm he presents, and by testing [Goodenough 75].
Analysis of algorithms [Aho 74] is a blossoming field. Its general goal Is to predict the
execution time and/or the space required by a program, as a function of the amount of
data it is manipulating. It gives little attention to constant factors and terms In the
function, since these are quickly overshadowed by exponential and high order

polynomial terms,
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4, Translators

4.1 Introduction

Compilers, interpreters, assemblers, linkers, and loaders are all programming
systems which help translate an abstract program into a sequence of machine
operations which implement it. They fall into the core of Programming Systems
because

1) they implement programs,

2) they are ubiguitous examples of large programming systems, with all
the concomitant problems, and

3) some day, you too may get to write one.

Too often we draw a sharp line between compilers and interpreters, saying that
compiled code is a list of machine instructions, whereas code to be interpreted iz a
data structure closely resembling the source program, to be fed into a hardware-
software system which carries out the programmer’s instructions. Two examples serve
to blur the distinction:

1) Most Fortran systems, no malter how highly optimized they are, have
an interpreter o handle 1/0. The format statement is the program to
be interpreted, the keyword of the 1/0 statement (e.g. read, print)
directs the source and destination hookups, and the list of variables
is the data the program acts on. '

2)  The early Fortran compilers for POP-11 operating systems produced
what is termed "threaded code”. It consists of a list of procedure
names, each one followed by its parameters. Each .procedure called
implements a Fortran construct, using the return address as a pointer
to its parameters. Furthermore, each routine knows that the word
following its last parameter is the address of the next routine.
Therefore, instead of doing a return from subroutine when its
finished, it branches to the beginning of the next routine, and
advances the parameter pointer, all in one machine instruction. The
reader may decide for himself whether this code is compiled or
inlerpretled.

So, instead of trying to classify a translator as either a compiler or an
interpreter, we can speak of the extent to which it compiles the code.

The choice between compilation and interpretation, even within the same system,
must .be made on the basis of fixed versus variable costs. The cost of a translator
consists of (1} a cost "fixed" by the length of the source text, and (2) a cost that
varies with the number of times each statement will be executed. Compilation has a
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high fixed cost and a relatively low variable cost; interpretation costs less prior to
execution, but more during execution,

To see that one really can get the best of both worlds, read [Hansen 74}, which
describes a Fortran system which interprets the program at first, then incrementally
compiles and optimizes the heavily used parts, automatically, It was superior, in CPU
time used, to every other Fortran compiler to which Hansen compared it. Such
selective compilation has been done manually for years, in interactive systems lihe Lisp
and Ls, which let the user request that pieces of his system be compiled. Note that
interpretation is primarily used on code that will not be executed often. This category
includes any code which isn't fully debugged yet, and includes partially-built
programming systems. Most inferactive systems are designed to permit the
programmer to stop the program at certain points, change or augment the program,
and continue where he left off. Thus interactive, interpretive translators are strongly
conducive to program development.

Assembiers, once considered an art unto themselves, have become somewhat
hard to distinguish from compilers. Their basic function is translation from assembly
language to machine language, which in most cases is almost a one-to-one mapping.
Macro facilities used to be available only in assemblers; now many compilers have them
as well. If you want to read more about assemblers, [Barron 69] is reasonably
complete. Similarly, a good way to learn about linkers and loaders is to read
[Presser 72} Briefly, a linker takes a set of machine language modules as input,
implements intermodule references, (e.g. global names, common blacks), and puts
everything into a formal the loader can read. A loader is a program which makes a
linked collection of binary modules execuiable. For a bare machine, this just means
writing them into core. For a page-oriented system like HYDRA, it means taking a fist
of binary page objects and putting together the various data structures to keep track
of them during execution. Linking and loading are often done by the same program.

4.2 Components

Different transiators do a lot of the same kinds of things while . achieving
different goals. Lexical analysis (converting a string of characters into a string of
language symbols) is done by ail translators except loaders. All translators have
symbol tables. And so on. Read [Gries 71] to learn about these common parts, then.
skim [Hopgood 69] to fill in the gaps. In order to study translators one must start with
an understanding of languages. [Gries 71, Chap 2] gives an excellent foundation here.
The translator’s job can then be defined to be to parse the program, derive its intent
from its syntactic structure, and then generate a program for a target machine, which

carries out the intent of the original program.
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4.2.1 Parsing

Parsing techniques are usually classified as either top-down or bottom-up. One
parses top-down by starting with the distinguished symboi of the grammar and
applying productions of the grammar to it, until he finds a sequence of productions
which yieid the input string. Bottom-up parsing involves searching for a set of
(productions, except reversed, so they’re) reductions which reduce the input string to
the distinguished symbol. Read {Gries 71] selectively, learning to do these to methods
by hand, and learning how LR[K] grammars aid bottom-up parsing, and how recursive
descent implements top-down parsing,

Lexical analysis is the simplest, yet most time consuming, part of parsing. It is
actually only a sub-part of syntax analysis, but it is handling a portion of the grammar
of the language which is very regular and very easy to process. That is, while the
grammar for the entire language may be phrase-structured, the set of productions
which actually have terminal symbols on the right hand side may form a reguiar
grammar, which is known to be parseable by a finite state automaton

[Gries 71, Chap 3],

4.2.2 Symbol Tables

Compilers and interprefers must have a mechanism for storing and retrieving
informalion about the identifiers the program uses, such as type of variable, location in
core, dimension of array. This mechanism is called a symbol table. The accessing
mechanism for this table must allow intermingled stores and retrievals, making it a
potential bottieneck in the compiler. Be sure to study the section on data structure
accessing mechanisms (LC in the syllabus). Then study (Gries 71, Chap 9 & 10] to see
how symbol tables are organized and used. The complexity of the symbol table varies
with the intelligence of the compiler as well: [Wulf 75] describes the optimizing
Bliss/11 compiler, whose symbol table is an elaborate general list structure.

4.2.3 Code Generation

Code generation is the phase of translation which starts to depend strongly on
the particular idiosyncracies of the target machine. Read {Gries 71, Chap 17] to see
lhe general methods, then look in [Wulf 75] to see a good example.

4,24 Macros

Macro processing [Wegner 68] permeates translation systems, yet little has heen
writlen about it. One should be aware of what sorts of macro processors are
available, lest he be satisfied with the first one he uses. A macro facility allows the
programmer to associate a name with a string of characters. Then every place in the
text where that name occurs, the macro processor replaces the name with the string.
Most systems allow the macro to have parameters. Each actual parameter is inserted
in the replacement string wherever the formal parameter occurs. If the actual
parameter is itself the name of a macro, there is an issue of which to expand first.
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Some systems allow recursive macros. To do this they must have a way of
deciding that part of the replacement string will never be executed, so that it need not
be expanded. Otherwise a macro which cailed itself would expand forever. '

A few macro processors allow a variable number of parameters on the macro.
This turns out to be a shorthand way of representing a sequence of calls to the same
macro with different parameters. Bliss{ll has a very elaborate macro facility,
exhibiting most of the above features.

4,3 QOptimization

The biggest argument given for assembly language programming is that the code
is more compact and more efficient. This claim has begun to crumble at CMU in the
face of the Bliss/11 compiler, which regularly produces shorter programs than
assembly language programmers attempting the same task. The current shortcoming in
this compiler, however, is its inability to optimize the innermost loops of programs,
thus its shorter programs still run more slowly than their fonger, hand coded
counterparts. Read [Gries 71, Chap 18] and skim [Wulf 75] to discover . the wide
variety of optimization techniques available. One important subtopic Is register
allocation on multi-register machines, which can dramatically affect performance
[Johnsson 73] ) '

4,4 Runtime Issues

To acguire a feeling for where your program is spending its time, you need to
look at the insides of a runtime system for a compiler for a commen language like Algo!
[Randell 64]. [Gries 71] will also give some feel for the problems involved (see
specific references in syllabus), but remains theoretic because it never shows a whole

compiler system.

4.5 Compiler-Compilers

There are well known algorithms for generating a syntax analyzer for a
language, given a precise definition of its grammar. Programs which do this are called
compiler-compilers. The next breakthrough will be the discovery of both a precise
notation for completely describing computers, and an algorithm which uses that
description to generate oplimizing code generators. Until then, compiter-compilers will
only be useful in the early stages of language development, because the compilers
they produce are not transportable, and produce very poor code [Feldman 681
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5. Operating Systems

5.1 Introduction

Modern programming systems generally find it essential to map a physical
conventional computer onto a higher level machine and to present this machine to
programmers. One reason for this is to allow the physical resources of the hardware
fairly and safely fo be shared among many processes. This motivation is technological
and would disappear if many copies of very large computers were available. A second
reason is to impiement a programming environment even more attractive than a private
large computer, an environment that allows information to be shared among processes.
This motivation is intrinsic and is steadily increasing as the sophistication of application
routines grows. This section discusses several areas in which operating systems have
traditionally performed this mapping; many of the techniques discussed are being used
now by applicalions-oriented software as well as by operating software. It concludes
with a list of several examples of actual operating systems, for many systems are
noteworthy, not in their solulion of any particular problem, but in the approach taken
in system design. The reader is then referred to the COSINE Report [COSINE 72] for

further study.

5.2 Concurrency and Synchronization

Concurrent execution of processes within a computer system opens the door
both 1o increased performance and also to several interesting problems. In a broad
sense, concurrency includes overlap of ifo with computation and time-sharing of a CPU
among several independent jobs, as well as the cooperation of computing processes in
a single task. Thus concurrency is more the rule than the exception, and the real
chalienge becomes to find an example of a truly sequential process! As
multiprocessing becomes more common, however, and explicit parallefism within a
single applicalions task becomes more attractive, a solid grasp of the conceptls,
problems, and techniques associated with concurrency becomes essential for all
computer scientists, not only for operating systems specialists.

One early effort 1o understand concurrency took place during the early '60’s at
MIT’s Project MAC [Dennis 66, Saltzer 66]. In developing a time-sharing system on a
7094 and in their early design work on the more ambilious MULTICS system, they
developed the techniques of ‘block’, ‘wake', and ‘context swap’ essential to
multiprogramming, but not without also inventing deadlock bugs (Rappaport 681

At about the same time, Dijkstra and others began a study of the problem of
‘mutual exclusion’. This problem arises whenever two or more concurrent processes
share modifiable data. Each process may need to perform computations on the shared
data that depend on the data not being modified by the other processes during the
computation. Such a computation must appear indivisible relative to the other
processes. Early contributions by Dekker [Dijkstra 68¢c, p 58), Dijkstra (Dijkstra 65],
and Knuth [Knuth 66] presumed only the load and store memory operations. Although
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ingenious, these solutions were very difficult to construct, prove, or even understand;-
in Dijkstra’s words [Dijkstra 68c, p 66], they were "tremendous mystification[s]"

Out of dissatisfaction with the early solulions, the notion of a ‘semaphore’ was
developed [Dijkstra 68¢; read it!]. The semaphore concept was a crucial step in the
development of a classical school of concurrency. While solving the mutual exclusion
problem handily, it also afforded natural sclution of the ‘producer-consumer’ problem
and others, [Habermann 71h] exemplifies work within this schoo! to strengthen
mathemalical understanding of synchronization; this work is related to program
verification. [Brinch Hansen 72] similarly exemplifies work in strengthening the
programming and linguistic tools in this area,

Several other distinct synchronization concepts have also been proposed. In the
desipn of the Danish RC4000 system [Brinch Hansen 70]), the concept of a '‘message
system was adopled lo accomplish both inlerprocess communication and
synchronization, thus making the use of shared memory and semaphores unnecessary.
The related concept of a "pipe’ in the UNIX system [Ritchie 73] unifies the notions of
interprocess communication and ifo. A second concept, due to Brinch Hansen and
Hoare, is that of a ‘monitor’ [Hoare 73, 74]. As a Parnas module or a Simula class, a
monitor consists. of a set of procedures with exclusive access to a data structure. The
monitor concept, however, aiso facilitates proper synchronization of processes calling
these procedures, A recent concept due to Habermann and Campbell [Campbell 74]
gives the programmer a powerful tool for specifying the synchronization of processes
by ‘path expressions’. All these concepts focus on making synchronization less error-
prone and more programmable.

One of the more persistent problems with concurrency is that of ‘deadlock’ or
‘deadly embrace’ [Habermann 69, Holt 72]. A deadiock is said to occur whenever a
process is waiting for an event that never happens. This can certainly happen due to
a simple synchronization error on the part of the programmer. More subtle, however,
are the deadiocks due to an optimistic resource allocator that overcommits and is
unable to satisfy the needs of any of its users. While the occurrence of a deadlock
can always be viewed as an error, deadlock prevention is sometimes possible only with
an unduly conservative resource allocator. Many serious systems are written that
allow the possibility of deadlock, the hope being that actual deadlock will occur rarely.
Hence, techniques of deadlock prevention and deadiock detection and recovery are

both important,

In summary, we repeat thal the importance of concurrency to many areas of
computing is spreading. One significant example atl CMU is the Hearsay Il System
{Fennell 78], in which concurrency is used within a single Al task.
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5.3 Address Space Issues

One increasingly important goal of operating systems is to facilitate the
controlied sharing of dala across several environments or domains [Spier 73] One
obstacle to this sharing is the monolithic address space of conventional computer
architecture, which gives each process a single contiguous block of address space.
The structuring of address space has been one of the central themes of operating
sysiem research. Most influential in this area has been the ‘segmentation’ concept
developed at Project MAC [Dennis 65, Daley 68] Under this concept, logically distinct
data entities (e.g. programs, data bases, communication areas) comprise distinct
segments. Each process’ address space consists of several of these segments; the
process may have different access rights (e.g. read, write, execute only) to each
segment. Within the MULTICS system, data is addressed with a 36-bit address: an 18-
bit segment number and an 18-bit word offset. MULTICS segmentation was not only
an ambitious design in 1965, but is still more advanced than most current systems;
thorough study of it is well worth the effort. The most crucial and accepted idea is
the abstract data entity or segment, whose controlled sharing is enforced by the
system, More controversial, however, is the issue of how these segments should be
addressed. The structuring of addresses as

' <segment , offset>
pairs in MULTICS solved several problems, but created several others, eg. who
allocates segment numbers? One important reason for studying MULTICS in detail is to
appreciate the complexity required to make this approach work.

One significant family of alternalives stems from work done during the early
’60’s at Rice University and at Burroughs. Within this family, certain addresses are
tagged as ‘codewords’ [lliffe 62] or ‘descriptors’ [Organick 73); possession of a
codeword ipso facto confers rights to access the addressed data. These techniques,
designed to soive the problems of dynamic storape allocation and efficient subscript
checking on array accesses, have also been applied to solve the problems of shared
program and data. Their importance in making computers more programmable has
been pointed out in [McKeeman 67] Modern development of these concepts have led
to the capability concept which not only facilitates data and program sharing [Fabry
73], but also controls access of all objects in the system, as in Hydra [Wulf 74].

5.4 Memory Management

High speed random access memory has always been at a premium in modern
computers. Even with steady improvements in memory technology, the relative cost of
primary memory remains very high. The efficient muitipiexing of this memory is a
persistent technological problem -- one that continues to receive wide attention.

An old solution to the problem involves the overlaying of a process’s allocated
memory by different programs or data sets dynamically during execution [Lanzano 69].
These overlay techniques tended to be ad hoc and were seldom effectively
mechanized. They required some skill on the part of the programmer and made
program modification cumbersome. They also failed to allow sharing of memory among
different processes.
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The most pervasive modern technique for memory management stems from work
done on the Atlas computer at the University of Manchester [Kilburn 62] This
technique, now called ‘demand paging’, divides a memory space into fixed length pages,
then loads some of the pages into blocks of main memory termed page frames.
Whenever the process tries fo access a page not in main memory, the operating
system loads the needed page for the process. This technique makes memory
management invisible to the programmer. This does ease the crucial software burden
fell on overiay systems, but has kept operating systems workers busy trying to find
paging policies that are even reasonably elficient. The precarious performance of
paging systems was a major concern during the mid-'60"s [Naur 65, Bolady 69, Randell
68]. While the mechanism of paging is comparatively simple, the policies required for
efficiency were slow in coming. For an excellent survey of these issues, see [Denning
70]. While the memory management problem is indeed technological, the basic ‘one
level store’ concept of demand paging has proven quite robust and shows up in
cacheing and related memory management techniques at several levels of memory
hierarchy [Mattison 70}

5.5 Resource Allocation and Scheduling

The allocation of the physical resources of a computer to its processes
represents a family of technologicai issues that has always been more important in reael
systems than in the literature. The only unifying goal is the correct multiplexing of a
resource under control of an efficient policy such that chance of deadlock is minimized.

Muitiplexing of the central processor(s) is fundamental to multiprogramming.
Two basic techniques are involved. The first is that of context swap, or switching of
the processor from one process to another. The MULTICS implementation in [Saltzer
66], the Burroughs implementation in [Organick 73], and the survey paper in [Lampaon
68] all describe some of the more elegant approaches. The second technique is that of
basic ihterprocess communication, where ‘processor’ includes ifo devices. The
conventional scheme involves one processor being interrupted by another ‘processor
when communication is desired, e.g. upon the completion of an i/o. At best, these
interrupts appear as ‘unexpecled procedure calls’ that can cleanly field the event.
More often, however, these interrupts put the system through a precarious and error-
prone piece of code that handles the interrupt in an ad hoc fashion. One newer
approach treats an interrupt as a V semaphore operation, which unblocks a high-
priority process. This approach was first taken in the ‘'THE’ system [Dijkstra 68b] and
later pressed into the hardware of the Venus system [Liskov 71] This unified
treatment of interrupts and more normal synchronization primitives allows a cleaner
structuring of the system. Brinch Hansen's paper {Brinch Hansen 71] Is also useful in
showing how semaphore styled synchronization can be unified with processor

multiplexing.

[Kteinrock 70] and [Habermann 75b, Ch 6] should be studied for the longer-term
scheduling decisions required to make processor multiplexing efficient. Long term
schedulers must take the memory, processor, and ifo requirements of each process
into account in choosing a reasonable policy. The contlict between response time and

throughput as goals for such a scheduler must also be resolved.
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The area of resource allocation above the memory and processor levels
generally has been neglected in the literature, since it has few important common
themes and even fewer neat solufions. Many of these resources, e.g. line printers, are
not easilty preempliable. They tend to be allocated in unpredictable amounts, e.g. when
a compiler keeps lengthening an object file on disc. The allocation of one peripheral
may also influence the aliocation of another. In short, general solution tends to be
elusive and the task is a potential source of deadlocks. [Habermann 75b, Ch 7] is

suggested for background in this area.

5.6 Protection Concepls

The basic theme of protection is the controlled access to objects by programs in
a compuler system, Protection concepls are, therefore, mechanisms designed te solve
infrinsic problems, While solutions to the problems vary, some common vocabulary has
developed. The things to be protecled are called ‘objects’; traditionally, objects have
heen data files, but modern systems often try to treat other objects uniformiy. The
accessors of these objects are called ‘domains’ or ‘environments’; traditionally, domains
have been identical to user-identifications, but modern systems sometimes allow the
controlled change of domain, as upon certain kinds of procedure calls; [Lampson 71]
gives an exceilent survey of the basic issues involved.

One mechanism important to any protection scheme is the basic domain crossing.
This crossing, usually in the form of a procedure call, must perform a sophisticated
change of environment, yet be absolutély reliable and efficient enough to allow for
heavy use without prohibitive overhead. See [Spier 73] for an excellent treatment of
the importance of these domain crossings.

One important family of proteclion concepts, called ‘authority based protection’,
is the rule with conventional systems and was brought to a high leve! of sophistication
in the MULTICS system {Daley 65, Graham 72]. Here a list of authorized domains that
may access an object is associated with the object. Each domain may attempt access
of any object, but the mechanism checks the domain against the authorization list and
prohibits illegal access.

While authority based proteclion does solve many protection problems, several
others of special importance to controlled sharing elude it. One such problem is the
‘confinement problem’ [Lampson 73], in which a domain wishes to call @ procedure and
insure thatl it passes no information to anyone but the caller. Another related problem,
;ha]t of the cooperation of mutually suspicious subsystems, is discussed in [Schroeder

2] :

A second family of protection concepts, called ‘capability based protection’, may
offer the solutions to these problems. The Hydra [Wulf 74, Jones 73, 74] system at
CMU is one of the few implementations at the present. Under a capability system, a
list of accessing rights for various objects is associated with each domain. An access
to an object may only really be attempled when a domain has a capability for the
object and, even then, the access rights on the capabiiity can be checked. The power
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of capability systems comes from their ability dynamically to construct new domains,
whose rights are determined by its list of capabilities -~ capabilities designed to meet
the particular needs of the domain. Refer to [Graham 72] for a comparison of the two

protection concepls.

5.7 Examples of Real Systems

Many systems should be studied, not for their solution to any single problem,
but for their approach to system design and implementation. MULTICS is certainly an
example of both., Their approaches to several issues have already been mentioned.
Even more important, however, may be the concept of a computer utility, their use of
high-leve} language and formal specifications in system implementation, and their bold
approach to an ambitious project, truly baroque in every sense. A comparison of
[Dennis 65] and [Corbata® 72] should serve to iltustrate this.

Two European systems of the late '60’s are especially important examples of
system design in the post-MULTICS era. The ‘THE’ system [Dijkstra 68b, read!] at the
Technological University of Eindhoven was remarkable primarily (1) in its hierarchical
system design and (2) in the carefulness of its implementation. Similarly the RC4000
system [Brinch Hansen 70] contributed (1) the ‘kernei’ approach to operating system
design and (2) messages as an interprocess communications primitive. These were
both small systems, compared to the MULTICS, but promised to be equally influential
due to their elegance and careful structuring.

While operating systems are generally regarded as software which must ‘cope’
with given hardware, the Venus system [Liskov 71] demonstrates the value of selecting
the proper primitives, then implementing them in a coherent hardware/software

system,

The UNIX system [Ritchie 73] is remarkable for lwo reasons: first, its unified
approach to file ifo, physical ifo, and inferprocess communication; second, for its
excéptional command language and user intertace.

One very distinctive approach to system design was taken by IBM’s Cambridge
research group in the ‘virtual machine’ concept [Meyer 701 Here a virtual machine
executive, running on a real 360, presents a virtual 360 to each of its users. These
users see what appears to be a real 360 and may indeed be a conventional 360
operating system or a recursive copy of the virtual machine executive. This approach
has special advantages for the research environment, where many copies of

experimental systems can be running simultaneously.
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The following abbreviations are used:
AFIPS -- American Federation of Informalion Processing Societies
ACM -- Associalion for Computing Machinery
IRE -- Institute of Radio Engineers
BIT -~ Nordisk Tidskrift for Informations-Behandling
CACM -- Communications of the ACM
JACM -- Journal of the ACM
CompSurv -- Computing Surveys (ACM)
FJCC -- Fall Joint Computer Conference (AFIPS)
SJCC -~ Spring Joint Computer Conference (AFIPS)
NCC -- National Compuler Conference (AFIPS)
SOSP -- Symposium on Operating System Principles (ACM)
CompJ -- Computer Journal (British Computer Society)

Aho, Alfred, Hopcroft, John, and Ullman, Jeffrey, The Design and Analysijs ot
Computer Algorithms, Addison-Wesley, 1974.

Baker, F. T., "Chief Programmer Team Management of Production Programming",
IBM SysJ, No. 1, 1972. '

Barron, David, Assemblers and Loaders, American Elsevier, 1969,

Beech, D., "A Structural View of PL/1", CompSurv, Mar 70.

A complele review of the PL/1 language is presented. The goal is to
answer {by the affirmative) the question: "Is the structural
knowledge of PL/1 of manageable proportions?" Both the static and
dynamic aspects of the language are examined.

Belady, L. A, and Kuehner, C. J, “Dynamic Space Sharing in Computer Systems",
CACM, May 69.

Bell, James, "Threaded Code”, CACM, Jun 73.

Berliner, Hans, "A Representation and Some Mechanisms for a Problem Solving
Chess Program”, (PhD Thesis), CMU-TR, May 75.

Branquart, P., Lewi, J, Sintzoff, M, and Wodon, Pierre, "The Composition of
Semantics in Algol 68", CACM, Nov 71. '

Brinch Hansen, Per, (ed.), RC4000 Software Multiprogramming System, A/S
Regnecentralen, Copenhagen, Denmark, 1969,

Brinch Hansen, Per, "The Nucleus of a Multiprogramming System™, CACM, Apr 70.
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First, the concep! of process is introduced precisely. Then, the
system nucleus is presented as the minimum requirements for a
multiprogramming system, providing an efficient environment for
processes (communication, control, hierarchy).

Brinch Hansen, Per, "Short Term Scheduling in Muttiprogramming Systems", 3rd
SQSP, 1971,

Brinch Hansen, Per, "Structured Multiprogramming”, CACM, Jul 72.

"Event queues” are new features {data structures and operations to
perform on them) that are proposed to be added to a high level
language in order to describe the operations encountered in a
multiprogramming system (process communication, synchronization,
etc.).

Brinch Hansen, Per, Qperating System Principles, Prentice Hall, 1973.

Brinch Hansen, Per, "Concurrent Programming Concepls”, CompSury, Dec 73.

Language features for multiprogramming (event queues, semaphares,
critical regions, monitors) are reviewed. Two principles for the -
choice of equivalent features are proposed: concurrent programs
should be easy to understand, and assumptions about invariant
relationships among program components should be checked

automalicatly.

Brooks, Frederick, The Mythical Man-Month, Addison-Wesley, 1975.

Buxton, J. N, and Randell, Brian, (eds.) Sottware Engineering Techniques, Report
on a Conference Sponsored by the NATQ Science Committee, Rome, Italy,
271h 1o 31st October 1969, NATO, Apr 70.

Campbell, Roy, and Habermann, A. Nico, "Specification of Process Synchronization
by Path Expressions”, International Symposium on Operating System
Theory and Practice, IRIA, Apr 74, also Lecture Notes in Computer

Science, Springer Verlag, 1974,

Coffman, Edward, and Denning, Peter, Operating Systems Theory, Prentice-Hall,
1973.

Cohen, Ellis, et al, Hydra User’s Manual, CMU, Feb 75.

Corbato’, F. J, Clingen, C. T., and Saltzer, Jerome, "Multics -~ the First $even
Years”, SJCC, 1972,

The goals of the Multics project are reviewed and a history of the
project including a description of its (then) current status and
appearance to users is presented. Then experiences gained from the
project are mentioned. '
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COSINE Committee, "An Undergraduate Course on Operating Systems Principles”,
Committee on Education, National Academy on Engineering, 1972,

Courtais, P. J,, Heymans, R, and Parnas, David, "Concurrent Control with
'Readers and 'eriers"', CACM, Oct 71.

Two examples illustrate the problem of the exclusive acces to a
resource shared by concurrent processes. A programmed solution
using P and V operations is given for those two examples.

Dahl, O.-J., and Nygaard K.,"Simula - An Algol -based Simulation Language", CACM,
Sep 66.

Dalhl, 0.-J., "Discrete Event Simulation Languages”, in {Genuys, ed.), Programming
Languages, Academic Press, 1968,

Dahl, O.-J,, and Hoare, C. A. R, "Hierarchical Program Structures”, in (Dahi,
Dijkstra, and Hoare) Structured Programming, Academic Press, 1972,

Daley, R. C., and Neumann, P. G, "A General Purpose File System for Secondary
Storage”, FJCC, 1965,

Daley, R. C., and Dennis, Jack, "Virtual Memory, Processes, and Sharing in
MULTICS", CACM, May 68.

Denning, Peter, "Virtual Memory", CompSury, Sep 70.

Virtual memory is introduced as a solution to the problem of dynamic
storage allocation. Virtual memory is then defined and its possible
implementations {segmentation, paging, segmentation-paging) are
presented, compared and the problems they pose are mentioned.
The principle of replacement algorithms is introduced and optimal
paging algorithms are presented.

Dennis, Jack, "Segmentation and the Design of Multlpfogrammed Computations”,
JACM, Oct 65. :

Dennis, Jack and van Horn, Earl, "Programming Semaﬁtics for Multiprogrammed
Computations", CACM, Mar 66.

Digital Equipment Corporation, PDP11/20 Processor Handbook, Maynard,
Massachusetls, 1971.

Dijkstra, Edsger, "Solulion to a Problem in Concurrent Programming Control"
CACM, Sep 65.

Dijkstra, Ed;sger, "GOTO Statement Considered Harmful", CACM, Mar 68..

Dijkstra, Edsger, “"The Structure of ‘THE® Multiprogramming System", CACM, May
68,
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Dijkstra, Edsger, "Cooperating Sequential Processes”, in (Genuys, ed.),
Propramming Languages, Academic Press, 1968,

Dijkstra, Edsger, "A Constructive Approach of the Problem of Program
Correctness”, BIT, Jul 68.

Dijkstra, Edsger, "Notes on Structured Programming”, in (Dahl, Dijkstra, and
Hoare) Structured Programming, Academic Press, 1972.

Dijkstra, Edsger, "Hierarchical Ordering of Sequential Processes", in (Hoare and

Perrott, ed.), Operating System Technigues, Academic Press, 1972.
Elson, Mark, Concepts of Programming Languages, SRA, 1973.

Efson, Mark, Data Structures, SRA, 1975.

Fabry, R. S., "Capability Based Addressing”, 4th SOSP, 1973, also CACM, Jul 74,

Capability-based computers are discussed (in particutar the Plessey
machine} and, in general, advantages of protection systems based on
the concept of capability are presented.

Feldman, Jerome, and Gries, David, "Translator Writing Systems", CACM, Feb 68.

Feldman, Jerome, and Rovner, Paul, "An Algol-Based Associative Language",
CACM, Aug 69.

Fennell, Richard, "Multiprocess Software Architecture for Al Problem Solving”,
(PhD Thesis), CMU-TR, May 75.

Flon, Larry, "A Survey of Some lssues Concerning Abstract Data Types", CMU-
TR, 1974,

Flon, Larry, "Program Design with Abstract Data Types", CMU-TR, 1975,

Freeman, Peter, Software Systems Principles: A Survey, SRA, 1975.

Goldberg, J, ed., Proceedings of a Symposium on the High Cost of Software, SR,
1973

Goldberg, R. P., "Architecture of Virtual Machines", NCC, 1973.

Goodenough, John, and Gerhart, Susan, "Toward a Theory of Test Data
Selection”, International Conference on Reliable Software, Apr 75, also

SIGPLan, Jun 75.

Graham, Robert, "Protection in an Information Processing Utility", CACM, May 68.

Graham, Robert, and Dennis, Jack, "Protection -~ Principles and Practice", $JCC,
1972,
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Seven levels of prolection systems are distinguished from the
simples! (complete isoialion of the programs) to the most
sophisticated (compirte cooperation and shared access to
information). The paper gives a comprehensive treatment of one of
these levels: protection systems allowing the cooperation of mutually
suspicious subsyslems.

Gries, David, Compiler Construction for Digita! Computers, Wiley, 1971.

Griswold, R. E, Poage, J. F,, and Polonsky, J. P,, The Snobol4 Programming
Languape, Prentice-Hail, 1971,

Guttag, John, ed,, "An Annotated Bilbliography on Computer Program
Engineering”, Univ Toronto TR, Apr 75.

Habermann, A. Nico, "Prevention of System Deadlocks”, CACM, Jul 69,

Algorithms for the prevention of deadlock are presented. With the
knowledge of the maximum claims in resources by the different
processes, the algorilhms delermine whather the next allocation
leaves the sysiem in a safe state (i. e, a state guaranteeing that the .
system can eventually grant any request).

Halbermann, A, Nico, "Introduction to Algot 60 far those who have used other
Programming Languages"”, CMU-TR, Sep 71.

Habermann, A, Nico, "Synchronization of Communicating Processes”, 3rd SQSP,
1971, also CACM, Mar 72.

A formalization of the synchronization primitives is introduced and
permits to derive an invariant property of the synchronization
mechanisms, This property can be used to prove the program
correctness of concurrent processes. This is applied to two forms of
programmed mechanisms: the programming of critical sections and the
programming of communication between asynchronous sequential
processes,

Habermann, A. Nico, "Critical Comments on the Programming Language Pascal®,
CMU-TR, Oct 73.

Habermann, A. Nico, Cooprider, Lee, and Flon, Larry, "Madularization and
Hierarchy in a Family of Operating Systems", 5th SQSP, 1975,

Habermann, A. Nico, Qperating Systems, SRA, 1975.

Hansen, Gilbert, "Adaptive Systems for the Dynamic Run-Time Ophm:zation of
Programs", (PhD Thesis), CMU-TR, Mar 74,

Hoare, C. A. R, "Record Handling”, in (Genuys, ed.), Programming Languages,
Academic Press, 1968,
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Hoare, C. A. R, "An Axiomatic Basis for Computer Programming”, CACM, Oct 69.

Axioms are introduced with each statement of a programming
fanguage {assignment, composition, iteration) along with a rule of
inference. The axioms and the deduction ruie are used to prove
formally the correctness ot a small program.

Hoare, C. A, R, "Proof of a Program; FIND", CACM, Jan 71.

By determining invariant relations, the proofs of both the correctness
and the termination of the program "Find" are given. It is concluded
thal the methods presented in this example can be applied, in
general, to a systematic programming.

Hoare, C. A. R, "Notes on Data Structuring”, in (Dahl, Dijkstra, and Hoare)
Structured Programming, Academic Press, 1972,

Hoare, C. A. R, "A Structured Paging System”, ComplJ, Aug 73.

Hoare, C. A. R, "Hints on Programming Language Design®, SIGAct-SIGPLan
Conterence, Oct 73.

Hoare, C. A. R, "Monitors: an Operating System Structuring Concept"”, CACM, Oct
74,

The concept of monitor is developed. The notion is similar to that of
“class" in Simula 67 and can be used to replace critical sections. This
is illustrated by several examples.

Hoare, C. A. R., "Data Reliability", SIGPLan, Jun 75.

Hoit, Richard, "Soma Deadiock Properties of Computer Systems", CompSurv, Sep
72.

Exampies of deadlocks and solulions to the problem are first
mentioned. Then, a model (based on a graph representation) is
introduced. The mode! takes into account “reusable resources” (to
describe objects shared among processes) and “"consumable
resources” (to describe signals or messages). Efficient detection and
prevention algorithms are deduced from the model.

Hopgood, F. R. A.', Compiling_Techniques, American Elsevier, 1969.

Hornmg, J. J, and Randell, Brian, "Process Structuring”, CompSurv, Mar 73.

Precise definitions are first given of the terminology In use in
operating systems (process, processor, computation, etc) Then, two
methods for structuring complex systems are presented: "process
combination” and "process structuring," and they are applied to
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various topics of compuler systems {concurrency, synchronization,
multiprogramming, etc.),

iBM, IBM System /360 Operating System Report Program Generator Language,

IBM Systems Reference Library,

liiffe, John, and Jodeit, Jane, "A Dynamic Storage Allocation Scheme", Comp J, Oct
62.

Hiffe, John, Basic Machine Principles, American Elsevier, 1968,

Jensen, Douglas, "A Distributed Function Computer for Real-Time Control",
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account hoth the service time received by a user and the time spent
awaiting for service. The family of algorithms includes all classical
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the parameters of this family,

Knuth, Donald, and Merner, Jack, "ALGOL 60 Confidential",. CACM, Jun 61.
Knuth, Denald, "Letter to the Editor”, CACM, May 66.
Knuth, Donald, "The Remaining Trouble Spots in ALGOL 60", CACM, Oct 67,

Knuth, Donald, The Art of Computer Programming: Vol. 1, Fundamental
Algorithms, Addison-Wesley, 1968, also 2d Edition, 1973,

Knuth, Donald, The Art of Compuler Programming: Vol. 3, Sorting and Searching,
Addison-Wesley, 1973.

Knuth, Donald, "Structured Programming with go to Statements”, CompSury, Dec
74,

First, a history of the "goto controversy" is surveyed. Arguments
and examples in favor of both pro and con are presented. Then,
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structured programming is discussed. An extensive bibliography both
on the goto controversy and on structured programming is also
included.

Lampson, Butler, "Scheduling Phitosophy for Multiprocessing Systems”, CACM,
May 68,

Lampson, Butler, "Protection”, Bth Princeton Conference on Information Sciences
and Systems, 1971,

A model of a protection system is presented. The model uses an
access matrix to describe the process rights and takes into account
the mechanisms to controt access to information and to insure the
protection. Certain technigues for the implementation of the model
are discussed.

Lampson, Butler, "A Nole on the Confinement Problem”, CACM, Oct 73.
Lanzano, B. C., "Loader Standardization for Qverlay Programs”, CACM, Oct 69,
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Liskov, Barbara, and Zilles, Stephen, "Programming with Abstract Data Types®,
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Thesis), MAC-TR-30, MIT, 1966.

Sayre, D., "Is Aulomatic ‘Folding’ of Programs Efficient Enough to Replace
Manual?", CACM, Dec 68.

Schaffert, Craig, Snyder, Alan, and Atkinson, Russ, "The CLU Reference Manual”,
MAC-TR, MIT, Jun 75,

Schroeder, M. D., "Cooperation of Mutually Suspicious Subsystems in a Computer
Wtility", (PhD Thesis}, MAC-TR-104, 1972.

Sites, Richard, Algo! W Reference Manual, Stanford Computer Science Department
Report STAN-CS-71-230, 1972.

Spier, Michael, Hastings, Thomas, and €utler, David, “"An Experimental
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heart of the operating system) and of “"domain” (the memory space
dedicated fo a procedure).

SRI, "On the Design of a Provable Operaling System", International Workshop on
Protection in Qperating Systems, IRIA, Aug 74,

Steele, Guy, "Multiprocessing Compactifying Garbage Collection”, CACM, Sep 75.

Tsichritzis, Dionysios, and Bernstein, Philip, Qperating Systems, Academic Press,
1974,

Watson, Richard, Timesharing System Design Conceplts, McGraw-Hill, 1970,

" Wegner, Peter, Programming Languages, Information Structures, and Machine
Orpanizations, McGraw-Hill, 1968. :

Weinburg, G, Psychology of Computer Programming, van Nostrand Rheinhold,
1971.

Weinstock, Chuck, "A Survey of Protection Systems", CMU-TR, Jul 73.



Page 40 The Core of Programming Systems 2-Feb~76

Weissman, Clark, LISP 1.5 Primer, Dickenson, 1967,

Wirth, Niklaus, "Program Development by Stepwise Refinement”, CACM, Apr 71.

Using an example, it is shown both how to decompose a program and
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