
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

Petri Nets and the Representation
of Standard Synchronizations

Lee W. Cooprider

Department of Computer Science
Carnegie-Mellon University

Pittsburgh, Pa. 15213
ARPAnet address : Cooprider£>CMUA

January 1976

A b s t r a c t : This paper discusses the use of Petri Nets [Hol70] in r ep resen t ing
synchron iza t ions commonly found in operating systems and other multiple p roces s
p r o g r a m s . Severa l examples are presented and analysed with respect to verification
and p r o p e r t i e s . The suitability of Petri Nets for this purpose is commented upon.

Coopr ide r - Petr i Nets
Page i

1. Pe t r i Nets 1
1.1. Introduct ion 1
1.2. Other var ie t ies 3
1.3. Represen ta t ion of Processes 4
1.4. Common Subgraphs 4
2. Proof of P roper t i e s of Petri Nets 6
2.1. Introduct ion 6
2.2. Concur rency Restrictions 6
2.3. General P roper t i e s 6
2 .3 .1 . Freedom from Deadlock 6
2.4. Siphons and Traps 7
2.5. Busy Waiting 8
2.6. Indefinite Delay 9
2.7. Unnecessa ry Constraint 9
3. Examples of Petri Net Synchronizations 10
3.1. Introduct ion 10
3.2. Mutual Exclusion 11
3 .2 .1 . Problem Statement 11
3.2.2. Definitions 11
3 .2 .3 . Notes 12
3.3. Dining Philosophers 12
3 .3 .1 . Problem Statement 12
3.3.2. Definitions 13
3 .3 .3 . Notes 13
3.4. C iga re t t e Addicts 14
3 .4 .1 : Problem Sta tement [Pa t71] 14
3.4.2. Definitions 15
3 .4 .3 . Notes 16
3.5. Reader /Wr i te r 1 16
3 .5 .1 . Problem Statement[Cou71] 16
3.5.2. Definitions 16
3.5.3. Notes 17
3.6. Reader /Wr i te r 2 17
3 .6 .1 . Problem Statement [Cou71] 17
3.6.2. Definitions 18
3 .6 .3 . Notes 19
3.7. P roducer /Consumer Bounded Buffer 2 0
3 .7 .1 . Problem Statement [Dij68] 2 0
3.7.2. Definitions 2 0
3.7.3. Notes 21
3.8. P roducer /Consumer Multiple Streams 21
3 .8 .1 . Problem Statement[Dij72] 21
3.8.2. Definitions 2 2
3 .8 .3 . Notes 2 3
4. Pe t r i Net Theorems 2 3
4.1. Liveness Conditions 2 3
4.2. Markings 24
4.3. Decidability 24
5. Discussion 24
5.1. Adequacy of Petri Nets for Synchronization 24
5.2. Suitability 26

HUNT UBRARY
CARNEGIE-MELLON UNIVERSITY

Page ii
Coopr ide r - Petri Nets

26
5.3. Other Approaches

Coopr ide r - Petri Nets
Page 1

1. Petri Nets

1.1 Introduction

Pet r i IStets[Pet62], [Hol70J are directed graphs with two types of ver t ices , p laces
(or condit ions) and transit ions (or events). An arc in a Petri Net can connect only
dissimilar ve r t i ces , that is, a place to a transition or a transition to a place. Places a re
usual ly d e n o t e d by circles, transitions by bars or dots .

Figure 1: Petri Net Graph

In addition, the places of a Petri Net are occupied by zero or more tokens ; any
allocation of tokens to the places of a Petri Net is called a marking. Often the
desc r ip t ion of a Petri Net includes its initial marking.

An arc from a place to a transition designates an input place to that t ransi t ion; an
a rc from a transit ion to a place designates an output place from a transition. When
t h e r e is a token on e v e r y input place to a transition, it is enabled and may fire,
o t h e r w i s e it is disabled. If a 4ransition fires, it takes one token from e v e r y input place
and p laces one token on e v e r y output place.

Pe t r i Nets a re in te rp re ted by selecting sequences of firings. Any enabled t ransi t ion
is s e l e c t e d and the marking of the Petri Net altered by the rule s ta ted above. Another
e n a b l e d transi t ion is then selected and the net marking al tered again. This p r o c e s s is
r e p e a t e d indefinitely as long as there remains an enabled transition. Any marking
which can be obta ined in this manner is reachable from the initial marking.

Note that the firing of one transition may disable another transition which w a s
p rev ious ly enabled. This can happen when two transitions share an input place; this
configurat ion in a Petri Net is called conflict.

In t he example in Figure 2, transitions "a" and M b " are enabled, but are in conflict
s o only one can fire. If "a" fires, transition V is the only enabled transition in the net

Coopr ide r - Petri Nets
Pape 2

"b" f i res , t he net r e tu rns to its initial marking.

Figure 2: Initial Marking

Figure 3 : After firing transition "a"

Figure 4: After firing transition V

Coopr ide r - Petri Nets
Page 3

1.2 Other variet ies

Pet r i Nets have been defined with various restrictions or generalizations in a t t empt s
t o p rov ide more t ractable mathematical proper t ies or to represen t sys t ems more
conven ien t ly . These a re a few of the most frequent forms of Petri Net var ie t ies .

1) A p lace may not be both an input place and an output place of the same
t ransi t ion. This restrict ion established by the original definitions seems trivial but
often c o r r e s p o n d s to timing conditions in real systems.

2) A place may have only one token at a time. In some cases the firing rule is
modified to p reven t the firing of a transition if it would place two tokens on any
place.

3) A t ransi t ion has exactly one input place and output place. These c o n c u r r e n c y -
free g r a p h s general ly have only one token placed on them and a re called s t a t e
machines. More discussion of s ta te machines is available in [Hol70] and [H0I68] .

4) Each place has exactly one input transition and one output transition. These
confl ic t-free g raphs are called marked graphs and are discussed in [Com71].

5) Each arc from a place is ei ther the only output from the place or the only input
to some transit ion. These free choice nets include marked graphs and s t a t e
machines and a re discussed in [Hac72].

6) Every t ransi t ion has at most one shared input place. These simple ne ts p rope r ly
include f ree choice nets . This class is not fully understood.

7) An arc may specify that it removes or places more than one token. These
genera l i zed Petri Nets [Hac74] are abbreviations for s tandard Petri Nets. We will
u s e t h e s e occasionally in this paper .

8) An arc may specify that it enables a transition only if the place at its origin
conta ins no tokens . See section 5.1 for more on zero- tes t ing nets .

9) Condit ions can combine in or-conditions as well as the and-conditions of regular
Petr i Nets. This is an additional feature of the graph model of computat ion
d e v e l o p e d independent ly at UCLA and described in [Gos71] and [Cer72] .

10) Coloring of tokens , assigning priority to transitions, forcing simultaneous firing
of enab led transi t ions, associating time with transitions or places, and o ther bells
and whis t les have been explored for special application areas .

Coopr ide r - Petri Nets
Pape 4

1.3 Representat ion of Processes
* . w | -

When used to r ep re sen t the synchronization of concurrent computat ions, the
f e a t u r e s of a Petri Net usually correspond to specific aspec ts of the computation.
P l aces desc r ibe s t a t e s of p rocesses , such as "Process A is in the critical region" or "a
r e a d e r is reading". The behavior of other places closely resembles that of
s e m a p h o r e s . Occasionally, places reflect general conditions of the system, such as "at
leas t o n e p r o c e s s has en t e red the system".

Tokens often deno te p rocesses , so that the "flow" of a token through the net can
ref lect t h e " p r o g r e s s " of a particular process. (The Petri Net does not, however ,
ac tual ly distinguish one token from another, so the correspondence is entirely that of
t h e u s e r of the net) . Other tokens represent counters or values in s emaphores or
m e s s a g e s .

Synchronizat ion problems 'often specify the behavior of cyclic p roces ses such as
p r o d u c e r s , r e a d e r s , dining philosophers, etc. Since Petri Net places r e p r e s e n t s t a t e s of
p r o c e s s e s , the places in a net for such a problem are linked in cycles mirroring those
of t h e p r o c e s s e s .

1.4 Common Subgraphs

Many programming devices have direct representat ions in Petri Nets, as shown in

Figure 5 : Sequential Flow

F igures 5 - 1 1 .

Figure 6: Process Fork

Coopr ide r - Petri Nets

•O
Figure 7: Process Join

a
—0

o
Figure 8: Dijkstra P-operation

•o
Figure 9: Dijkstra V-operation

Figure 10: Toggle

Coopr ide r - Petri Nets
Page 6

Write 0

Write done <£-

Bit-0

>̂ ŷ̂ Read 0 done

Write >

Read 1 done

Figure 11 : Bit

2. Proof of Properties of Petri Nets

2.1 Introduction

Proofs of synchronizat ion problems generally consist of two par t s . First, it must be
s h o w n that the restr ic t ions on process concurrency are provided. For example, in the
mutual exlusion problem, the solution must guarantee that only one p rocess can be in
t h e critical sect ion (i.e. access the shared variables) at any one time. Second, the
solut ion must be free of unpleasant proper t ies such as the possibility of deadlock,
indefinite de lay , inordinate expense , or unnecessary constraints on concurrency.

2.2 Concurrency Restrictions

Many problem specifications can be reformulated in terms of invariants on the token
loads of p laces in the Petri Net representat ion. In some cases , the invariant is directly
d e r i v e d by r ep re sen t ing aspects of the problem statement. For example, the number
of buf fers in a buffer pool problem is generally a constant and is reflected in the Petri
Net b y an invariant number of tokens on a portion of the net (such that a token
" r e p r e s e n t s " a buffer). In other cases , the invariant is dependent on the part icular
f e a t u r e s of the net used to represen t the synchronization. For example, the
" s e m a p h o r e " place in the mutual exclusion example in section 3.2 par t ic ipa tes
in t h e invariant but does not reflect any s t ructure defined in the problem s ta tement .

2.3 Général Proper t ies

2.3.1 F reedom from Deadlock

T h e r e a r e two tools for addressing deadlock questions in Petri Nets: proof of
l iveness and identification of subnets called siphons and t raps .

Coopr ide r - Petr i Nets Pape 7

A t ransi t ion A is live if it is possible to enable it (eventually) by a s e q u e n c e of
firings from e v e r y reachable marking. This assures that the net can never reach a
s t a t e such that t ransi t ion A will never fire again. A Petri Net is live if e v e r y t ransi t ion
in it is live.

In o r d e r to de termine if a transition is live, one must be able to charac te r i ze all
r e a c h a b l e markings. In some cases , the markings are easily enumera ted . Often,
l i veness can be deduced from the information available in the invariants on the token
loads in the net .

If a Petr i Net is live, eve ry transition can be made to fire, that is, e v e r y event in the
s y s t e m can occur. Since even t s correspond to "progress" of "p rocesses" in t h e s e ne t s ,
l i veness implies that it is always possible for the system to reach a s t a t e which allows
any p r o c e s s to continue. Hence, liveness does indeed correspond to freedom from
deadlock .

For some c lasses of Petri Nets, there are necessary and sufficient conditions for
l iveness which rely only on the s t ructure of the net (see sect ion 4.1).
Unfor tunate ly , t h e r e are none known for the broader classes of Petri Nets.

2 .4 Siphons and Traps

A s iphon . (o r deadlock, in a special Petri Net sense) is a subset of places in a Petri
Net such that e v e r y transition which places a token on a member of the subse t also
r e m o v e s one from a member of the subset . This implies that if it should e v e r become
blank, it will remain blank forever. In Figure 12, places A and B form a siphon.

A t r a p is a s u b s e t of places such that every transition which takes a token from a
member of the subse t also places one on a member of the subse t . Hence, once
marked , a t r a p is always marked. In Figure 13, places A and B form a t rap .

The definitions for siphons and t raps overlap; for example, eve ry s t rongly connec ted
Pe t r i Net is both a siphon and a t rap. If a siphon contains a marked t rap , it will neve r
b e c o m e blank.

Figure 12: A Siphon

If a Petr i Net contains a siphon which can become blank, l iveness cannot be
ob t a ined . Converse ly , for some types of nets (see section 4.1), showing that

Coopr ide r - Petr i Nets
Page 8

Figure 13: A Trap

2.5 Busy Waiting

Busy waiting occurs when one process cannot proceed until notified by ano ther
p r o c e s s , but r a t h e r than blocking, it loops until notified. In some cases , the loop is a
t e s t on a memory cell which will be modified by the posting process .

Since blocking of p rocesses is a feature of our interpretat ion of Petri Nets, and
conditional branching is not, busy waiting does not often arise in the normal course of
e v e n t s . If one a t t empt s to represen t such a s t ructure in a straightforward manner, the
resul t ing net can p roceed after the posting process places a token on the place in
ques t ion , but t h e loop which was possible before is still possible and nothing
g u a r a n t e e s that the p rocess will ever leave it.

Busy waiting can, however , be represen ted using the "bit" net fragment of Figure

1 1 , as shown in Figure 14,

Coopr ide r - Petri Nets
Page 9

Write done

Write 1

Read 0 done

Read 1 done

Figure 14: Busy waiting communication

2.6 Indefinite Delay

First , nothing gua ran tees that any transition in a net must fire. However, it is useful
t o a s s u m e that an enabled transition will eventually fire. This assumption t r ans l a t e s
in to t h e requi rement that eve ry process which is not blocked will be scheduled at
s o m e time and will p rogress .

Second, t h e r e is no interpretat ion on the tokens of a Petri Net; the cont inuous "flow"
of t o k e n s across transit ions is a figment of the user ' s imagination. If some of the
t o k e n s in that flow are identified with various processes in the sys tem being
r e p r e s e n t e d , f ree token flow implies that no process is indefinitely de layed only if
t h e r e is a fair scheduler in the underlying system.

2.7 Unnecessary Constraint

Argument for freedom from unnecessary constraint on p roces ses use the same
mechanisms as proofs of adequate constraint. Specifically, one shows that e a c h
t r ans i t i on is disabled only by conditions which reflect original problem cons t ra in t s .
One implicit problem constraint which must be made explicit in these proofs is that the
s e q u e n c e of e v e n t s must follow the ordering established by the p roces ses .

Coopr ide r - Petri Nets
Page 10

3. Examples of Petri Net Synchronizations

3.1 Introduction

The r ep re sen ta t i on in Petri Nets of several standard synchronizations are p r e s e n t e d
in t h e next few pages . In some cases , only the portion of the system which provides
t h e synchroniza t ion is p re sen ted . Processes in the system interact with the displayed
po r t ion by placing tokens on places designated by ingoing arrows. The displayed net
ind ica tes that the process in the system may resume by placing a token on place with
an outgoing arrow, which is assumed to be a shared input place to app rop r i a t e
t r ans i t i ons in the various p roces ses .

For example , the net for mutual exclusion is displayed in Figure 15

Figure 15: Mutual Exclusion

A p r o c e s s which is r eady to execute its critical section places a token on R; When
t h e critical sect ion has been executed, this net places a token on E. (If des i red , t he
crit ical sec t ions could also be included in the net by the addition of several places and
t r ans i t ions . For our purposes , the critical section can be considered a pa ramete r to
t h e synchronizat ion) . A process which uses this net might be constructed as in Figure

16.

Figure 16: Use of Mutex Net

The place P p r e s e r v e s the identity of the process during use of the sha red port ion
of t h e net by causing only transition t (of all such transitions sharing E) to be enab led
w h e n t h e mutual exclusion net places a token on E.

In t h e following examples, the net is presented with an interpretat ion of the p laces
in t h e ne t with respec t to thfe language of the problem. An alternative descr ipt ion of

Coopr ide r - Petri Nets
Page 11

t h e t rans i t ions is given by a set of formulas (after [Lie74D In t h o - - f n r m . , i a ,
t r ans . t . on is defined by the effect it has on the token b a d of p aces ff r . nHUon t
r e m o v e s a token from p.ace S and adds tokens to p.aces Q and R, then H s ^ c r ^ d

t s -S + Q + R

Note tha t -R+R d o e s not collapse to zero since the firing rule requires that t okens b e
p r e s e n t on the input places and then removed before tokens are placed on the ou tpu t
p l aces . Otherwise , the implied arithmetic operations correspond to the changes in t h e
t o k e n load on places due to the firing of a transition.

Also, each example contains a list of useful invariants of the net. The notat ion R'
d e s i g n a t e s the token load of the place R. All values in invariants are non-nega t ive
i n t e g e r s .

Some of the ne t s use weights on arcs or places. On an arc, a weight n indicates tha t
n t okens must be p r e sen t to fire the transition or that n tokens are put on a place by
t h e firing of the transition. On a place, a weight n indicates that n tokens are put on
t ha t place by the initial marking.

Finally, no te s on each solution provide justification of the solution with proofs for
s o m e p r o p e r t i e s and discussions of others . The subtle behavior of the s y s t e m is
occasional ly compared with that of other representa t ions for the same synchronizat ion.

3.2 Mutual Exclusion

3.2.1 Problem Statement

Only one p r o c e s s may execute a section of code called a "critical section" at * w

15 for the Petri Net diagram).

3.2.2 Definitions

Token on indicates

a process is ready to execute critical section
a process is executing a critical section
a process has exitted the critical section
semaphore s no process is in a critical section

Transit ion descriptions

t l f i - R - S + C
t2 s -C + S + E

R
C
E
S

Page 12
Coopr ide r - Petri Nets

Transition invariants

C + S - 1

3.2.3 Notes

The exclusion is accomplished by providing an extra place with the inverse meaning
of t h e place denoting a p rocess in the critical section. This place co r re sponds to a
s e m a p h o r e [Dij68]. Note that the invariant insures that only one token exis ts on the
pa i r <C,S), and the re fo re no two tokens can be on C at one time. Hence, no t w o
p r o c e s s e s execu te their critical sections at one time.

If no token is on C, then the invariant insures that a token is on S, and t he r e fo re , if

a t o k e n a r r ives on R, transition t l is enabled and a process can en te r the critical

s ec t ion .

3 .3 Dining Philosophers

3.3.1 Problem Statement

A number of Philosophers (processes) are at dinner at a round table; each one
a l t e rna t e ly e a t s and meditates. A fork is placed be tween each adjacent pair of
Ph i losophers (hence, t h e r e are n forks). Philosopher i needs both fork i and fork i+1
(w h e r e n + l = l) in o rder to eat . Provide a synchronization which allows each
Phi losopher equal access to food and does not deadlock.

Figure 17: Dining Philosopher i

Coopr ide r - Petri Nets Page 13

3.3.2 Definitions

Token on indicates

Mi
Ei
Fi

philosopher i is meditating
philosopher i is eating
fork i is available

Transition descript ions

t i l s -Fi - F(i+1) - Mi + Ei
ti2 5 -Ei + Fi + Mi + F(i+1)

Transition invariants

Vi(Ei + Mi « 1)
Vi(Fi + E(i- l) « F(i+1) + E(i+1) « 1 - Ei

Equal oppor tun i ty is provided by symmetry; if all forks are available, any
Ph i losopher may switch from meditating to eating, while if a fork is missing, its
r e p l a c e m e n t immediately enables the waiting Philosopher.

The first invariant insures that there is always one token on Mi or Ei. If token is on
Ei, t hen transi t ion ti2 is enabled. If a token is on Mi then if tokens are p resen t on Fi
and F(i+1), t ransit ion t i l is enabled. If a token is not present on Fi or F(i+1), invariant
2 g u a r a n t e e s that transit ions t (i - l)2 or t(i+l)2 is enabled and by firing all such
t r ans i t ions tokens are re tu rned to Fi and F(i+1) and t i l is enabled. Since all t ransi t ions
can b e enab led in all reachable markings, the net is live and therefore deadlock is not
poss ib le .

It is possible that two Philosophers could collude to s ta rve a third by a firing
s e q u e n c e such as . . . t22,t21,t42,t41,t22,t21... In this case, Philosopher 3 is unable to get
bo th forks simultaneously. The speeds of the processes is unknown, and no
communication be tween p rocesses is possible, so situations such as this must result
from ex te rna l conditions. Remedies for this feature are discussed with r e spec t to
o t h e r r e p r e s e n t a t i o n s in [Cou74], The net in Figure 18 implements one of t h e s e
improvement s .

3.3.3 Notes

HUNT UBRARY
CARNEGIE-MELLON UNIVERSITY

Coopr ide r - Petri Nets Page 14

Figure 18: Dining Philosopher who cannot s ta rve

3.4 Cigare t te Addicts

3.4 A Problem Sta tement [Pa t71]

A sys t em contains an agent and three cigarette addicts. The agent provides two of
t h r e e t y p e s of r e sou rces on each cycle of the system. Each addict needs a different
pair of the t h r ee r e sources to make and smoke a cigarette. The agent does not s t a r t
t h e next cycle until the appropr ia te addict has completed the previous cycle. Provide
a synchroniza t ion which maintains the identity of the processes and does not deadlock.

Coopr ide r - Petri Nets Page 15

Figure 19: Three cigarette addicts

3.4.2 Definitions

Token on indicates

A agent ready to provide resources
Bi resource i available
Ci addict i processing resources
D addict has completed processing

Transition descriptions

t l • -A + Bl + B2
t2 s -A + Bl + B3
t 3 s -A + B2 + B3
t4 s -B l - B2 + CI
t 5 s -Bl - B3 + C2
t6 s -B2 - B3 + C3
t(6+i) s -Ci + D, ¡«1,2,3
t lO s -D + A

Transit ion invariants

2(a + sum(Ci) + D) + sum(Bi) « 2

Coopr ide r - Petri Nets

3.4.3 Notes

Page 16

P laces A and Bi along with transitions t l - t 3 comprise the agent as requ i red by the
p r o b l e m definition. The subnet consisting of Ci, t3+i and t6+i is one c igare t te addict.

Note tha t the invariant assures that at least one transition is enabled at any time,
and, in fact, that if t he re is no token on A, that exactly one transition is enabled . Since
only o n e cycle exists in the net, the various cases are easily enumera ted and it is
e v i d e n t that any transition can be enabled. Furthermore, at any time, the invariant
a s s u r e s that a token cannot be placed on A except by the termination of an addict.
T h e r e f o r e , the net is live and deadlock is not possible.

3 .5 Reader /Wri te r 1

3.5.1 Problem Statement[Cou71]

In this bounded version of the problem, up to n reader p rocesses may r ead a file
s imul taneous ly but wri ter p rocesses must write the file excluding both r e a d e r s and
o t h e r wr i t e r s . Provide a synchronization which excludes the appropr ia te p r o c e s s e s
b u t d o e s not deadlock or otherwise cause processes to wait if they a re not violating
t h e a b o v e restr ict ion.

N

Figure 20: Bounded Reader/Writer I

W3

Coopr ide r - Petr i Nets Page 17

3.5.2 Definitions

Token on indicates

Rl
R2
R3

a reader is ready to read
a reader is reading
a reader has finished reading

W l
W2
W3

a writer is ready to write
a writer has blocked readers
a writer has finished writing

N a reader may proceed

Transi t ion descriptions

t l 5 -R l - N - R 2
t 2 s -R2 + N + R3
t 3 s -Wl - nN + W2
t4 s -W2 + nN + W3

Transit ion invariants

n (l - W2) - .N + R2

Transi t ion t l can fire at most n times before t2 fires, since the invariant r e s t r i c t s
t h e number of tokens on N and R2 to n. Hence, at most n readers will access the file
s imul taneously .

If t h e r e is a token on W2, then n tokens must have been present on N when t 3
fired. Hence, the invariant insures that there are no tokens on R2, so a wr i te r
exc ludes r e a d e r s . Fur thermore, since there is a token on W2, there are no tokens on
N (again from the invariant), so t3 cannot become enabled and it is impossible for a
s e c o n d token to be placed on W2 until the first on leaves by firing t4. Hence wr i t e r s
exc lude one another .

When t4 fires, e i ther t l or t3 might become enabled and fire .

3.6 Reader /Wr i te r 2

3.6.1 Problem Sta tement [Cou71]

3.5.3 Notes

Same as r e a d e r / w r i t e r 1 except that if writer is ready to write, no r eade r may s tar t
to r ead until all (up to m) waiting wri ters have finished writing.

Coopr ide r - Petr i Nets Page 18

o
Figure 2 1 : Bounded Reader/Writer II

3.6.2 Definitions

Token on indicates

Rl a reader is ready to read
R2 a reader is reading
R3 a reader has finished reading

Wl a writer is ready to write
W2 a writer has blocked readers
W3 a writer is writing
W4 a writer has finished writing

NR a reader may proceed
NW a writer may proceed

Coopr ide r - Petr i Nets Page 19

Transi t ion descriptions

t l 5 -Rl - NR - nwNW + nwNW + R2
t2 s -R2 + NR + R3
t 3 H -Wl - NW + W2
t 4 s -W2 - nrNR + W3
t 5 s -W3 + nrNR + NW + W4

Transit ion invariants

W3 + W2 + NW - nw
R2 + NR = nr(l - W3)

3.6.3 Notes

Trans i t ion t 3 is always enabled when a token arrives at Wl (unless nw tokens are
p r e s e n t on W2 and W3), since transition t l is instantaneous. Hence, a wri ter can
a lways place a token on W2. The first invariant assures that no new token can arr ive
on R2 s ince t l is now disabled until all tokens from W2 and W3 re tu rn to NW.
T h e r e f o r e , wr i t e r s p revent r eaders from starting.

A token on W3 gua ran tees that the number of tokens on R2 is ze ro via the second
invar iant , so wr i t e r s exclude readers . Similarly, the number of tokens on NR is also
z e r o , so t 4 cannot be enabled, and therefore the number of tokens on W3 is res t r i c ted
to o n e ; i.e. wr i t e r s exclude one another.

Transi t ion t l is enabled if a token is on Rl when no tokens are on W2 and W3 (and
f e w e r than nr a re p resen t on R2). If tokens are present on W3, transit ion t5 is
enab led ; when it fires, either t4 or t l is enabled. Successive firings of t5 and t4 will
c lear any tokens from W2 and W3 eventually enabling t l . When t l fires, t2 is enabled.
Transi t ion t 3 is disabled only if nw tokens are on W2 and W3, so clearing one by the
s e q u e n c e above enab les t3 . Again, t4 is disabled only when tokens are on R2 or W3.
In that c a s e , t2 and t5 are enabled, so firing them as needed will enable t4. T5 is
a lways enab l ed if a token is present on W3. Since every transition is live, the en t i re
net is live, assuming that tokens will be placed on Rl and Wl by o ther t ransi t ions in
t h e ne t .

If this net w e r e modified to accomodate the restriction that a place cannot be both
t h e input place and output place of a transition, the arc from t l to NW would be
r ep l aced by a place and another transition. In general, the behavior would be the
same , excep t that the guarantee that t3 is always enabled when a token ar ives at Wl
would not be strictly t rue. The result is similar to the behavior of the solution
p r o p o s e d by Brinch-Hansen [Bri72]: heavy activity by readers can p reven t a wri ter
from announcing its p resence and therefore be delayed indefinitely [Cou72].

This solution can be extended to hierarchies of readers and wri ters as in [Cer72] .

Coopr ider - Petri Nets Page 20

3.7 Producer /Consumer Bounded Buffer

3.7.1 Problem Statement [Dij68]

P r o d u c e r s send messages to consumers by allocating buffers from a common pool of
n buffers and placing them in a common stream. Producers wait only when the pool is
emp ty ; consumers wait only when the stream is empty. Provide a synchronizat ion
which d o e s not o the rwise restr ict processes and does not deadlock.

"O o
Figure 22: Producer/Consumer I

3.7.2 Definitions

Token on indicates

P I a producer is ready to send a message
P2 a producer has allocated a buffer
P3 a producer has placed the buffer into the s t ream

CI a consumer is ready to process a message
C2 a consumer has removed a buffer from the s t ream
C3 a consumer has returned the buffer to the pool

B a buffer is available from the pool
S a buffer is in the stream

Coopr idc r - Petri Nets Page 21

Transition descript ions

t l s - P I - B + P2
t2 5 -P2 + S + P3
t 3 s -CI - S + C2
t 4 s -C2 + B + C3

Transition invariants

B + S + P 2 + C 2 * n

3.7.3 Notes

If t h e buffer is empty, B is zero , and therefore t l cannot become enabled .
Likewise, if S is zero , t 3 canAot become enabled. Hence processes wait appropr ia te ly .
No o t h e r conditions affect the p rogress of processes.

The invariant insures that t he re are always n tokens distributed upon this subne t .
If t h e r e a re tokens on B, then PI can be enabled. If there are tokens on C2, t4 is
e n a b l e d and tokens will be placed on B. If there are tokens on S, t 3 can become
e n a b l e d and will place tokens on C2. Finally, if there are tokens on P2, t2 is enab led
and tokens will appear on S. Hence all transitions are can eventually be enabled, the
ne t is live and there fore deadlock-free.

3.8 Producer /Consumer Multiple Streams

3.8.1 Problem Statement[Dij72]

Same as Producer /Consumer Bounded Buffer except that several information
s t r e a m s sha re the common buffer pool. Each stream has a reservat ion for a number of
buf fe rs which it may use even if the pool is heavily used. Provide a synchronizat ion
which controls both the pool and the streams (i.e. consumers wait only if the
c o r r e s p o n d i n g s t ream is empty, and producers wait only if no buffers are available
from the rese rva t ion or the shared group) and does not deadlock.

Coopr ide r - Petri Nets Page 22

Figure 2 3 : Producer/Consumer II — stream i

3.8.2 Definitions

Token on indicates

Pil producer i is ready to send a message
Pi 2 producer i has allocated a buffer
Pi3 producer i placed a buffer into stream i

Cil consumer i is ready to process a message
Ci 2 consumer i has removed a buffer from stream
Ci3 consumer i has re turned a buffer to the pool

F a non-reserved buffer is available
P a non-reserved buffer has been allocated
Ni a reserved buffer is available
Ni' a reserved buffer has been allocated
Si a*buffer is in stream i

Transition descriptions

t i s -P i l + Pi2 + Ni' - Ni
t2 « -Pi l + Pi2 + F' - F
t 3 s -Pi2 + Si + Pi3
t4 s -Cil - Si + Ci2
t 5 5 -CJ2 - F + F + Ci3
t6 s -Ci2 - Ni' + Ni + Ci3

Coopr ide r - Petri Nets Page 2 3

Transition invariants

F + P « f
Vi(Ni • Ni' « ni)
Vi(Pi2 + Ci2 + Si < P + NP)
F + sum(Ni + Si + Pi2 + Ci2) - sum(ni) + f

3.8.3 Notes

A p roduce r i waits at Pil only if both t l and t2 are disabled. This occur rs only
w h e n Ni and F both contain no tokens, that is, there are no buffers available.
C o n s u m e r i wai ts at t4 only if Si contains no tokens, that is, the stream is empty.

The argument for freedom from deadlock is parallel to that for the simpler
p r o d u c e r / c o n s u m e r problem; the places F and F' do not enter into the proof, for the
s y s t e m will not deadlock even if no tokens are ever placed on F.

In o t h e r solutions to this problem, the decision to select buffers from the free or
r e s e r v e d sec t ions of the pool is made in the solution [Dij72], [Coo74J. In this
r e p r e s e n t a t i o n , it is not determined whether a producer will select a buffer from its
r e s e r v e d sect ion before a shared buffer. The behavior of the system under load will
v a r y due to different s t ra teg ies of selection.

4. Petri Net Theorems

The following s ta tements are a sample of the theorems known about Petri Nets
which might be relevant to proofs of synchronization systems.

4.1 Livoness Conditions

1) If a s t a t e machine is s trongly connected, any marking which places only one token
on the net is a live, safe marking [Hoi70]. No other marking is live and safe.

2) A f ree choice net is live if and only if every siphon contains a marked t r a p
[Hac72].

3) A marked graph is live if and only if every elementary cycle contains a token
[Com71l

Coopr ide r - Petri Nets Page 24

4.2 Markings •

1) In a live marked graph, there is a firing sequence from the initial marking which
r e t u r n s to the initial marking after firing each transition once [Com71],

2) In a live marked graph with marking M, M leads to marking M' which contains goal
marking T if and only if M places as many tokens as T on each circuit [Hol70].

3) The maximum marking reachable from a marked graph with a given initial marking
can b e de te rmined from the initial marking [Hol70].

4 .3 Decidability

1) It is decidable whe ther a Petri Net can reach a marking which includes a given
marking [Hac75a].

2) It is undecidable whether every marking reachable in one Petri Net is reachable
in ano the r Petri Net with the same number of places [Hac75a].

3) Reachabili ty and liveness are recursively equivalent problems [Hac74]. It is not
known w h e t h e r they are decidable or not.

5. Discussion

5.1 Adequacy of Petri Nets for Synchronization

The Petr i Net is capable of represent ing some behaviors of concurrent sys t ems . It
ha s b e e n hypo thes i zed that Petri Nets are adequate for represent ing all such sys t ems
[P a t 7 0] and that t hey are not adequate [Be\73\ Subsequently, it has been shown
[A g e 7 5] that Petr i Nets cannot be used to represent the interaction of r e a d e r s and
w r i t e r s [Cou71] if the number of processes is not bounded. This problem resu l t s from
t h e inability to tes t for absence of tokens on a place.

This facility (which ar ises often in practical net construction) can be simulated in
t h o s e c a s e s in which a bound, (perhaps ridiculously high) can be es tabl ished for the
maximum number of tokens on each place. A new place is created which gains a token
e v e r y time the place under consideration loses one, and vice versa . If the two places
initially contain k tokens , testing for k tokens on the new place (with a k-weighted arc)
is equiva len t to test ing for no tokens on the original place.

If t he ability to condition a transition on the dearth of tokens on a place is added to

Coopr ide r - Petr i Nets Page 2 5

t h e Petr i Net scheme, much additional power results. An arc written — 0 — > indicates
tha t the place at the origin of the arc must contain no tokens for the transit ion to fire.

In Figure 24 , A and B rep resen t parallel execution, as do C and D. However, C
must s t a r t be fo re D. This is insured because t l is enabled only when a token is on S,
and t 2 is enab led only if that token has been removed.

Figure 24: Zero testing net

Ze ro - t e s t i ng can be accomplished also by establishing a partial ordering of t ransi t ion
pr ior i t i es [Hac75b]. In such a scheme, if t l and t2 are in conflict and
pr ior i ty (t l)>pr ior i ty (t2) , then t l will fire. The two nets in Figure 25 arc t he re fo re
equiva len t .

Figure 25: Equivalent nets

Petr i Nets with ze ro - t e s t ing are adequate for represent ing all synchronizat ions of
s y s t e m s which can be considered to have a central clocked controller. Let S be a
s y s t e m of conditions and events . Between clock pulses, the conditions effectively
de t e rmine which e v e n t s can occur. The broadest class of such sys tems r equ i re s the
full p o w e r of a Turing machine to determine which events are possible given the
condi t ions obtaining. One such event is now allowed to occur and the effective
p r o c e d u r e is invoked to determine the current class of possible events . Agcrwaln has
s h o w n [Age75] that t he re is a Petri Net (with zero- tes t ing) for any such sys tem.

Petr i Nets can potentially represen t systems in which no such central control ler is
poss ib le and a re the re fore not limited to such clocked systems. No definition of
c o m p l e t e n e s s or adequacy for distributed control, asynchronous sys tems has yet b e e n
e s t ab l i shed .

Coopr ide r - Petri Nets Page 2 6

5.2 Suitability

Pe t r i Nets a re convenient for representat ion of interactions is sys tem s t r u c t u r e s
wi th fixed numbers of p rocesses and fixed relationships be tween p rocesses . The
c i g a r e t t e addicts problem is prototypical of such rigid relationships. A var ie ty of
diff icult ies .ar ise when applying Petri Nets to more dynamic sys tems.

1) When adding a process to a system (for example, r e a d e r / w r i t e r or
p roduce r / consumer) , the Petri Net must be modified to reflect the new p roces s .
The addition of the subnet must be done so as to not violate the invariants of the
net . No s tudy has been done on modification of Petri Nets, although Gostelow has
s t a r t e d work on how to represen t modifiable Petri Nets, using a Petri Net
In te rp re t ing Petri Net [Gos75].

2) T h e r e is no s t ruc ture in a Petri Net which corresponds to local environment .
Hence, when tokens from two different processes arr ive at the same place, it is
not possible to determine which leaves first. This resul ts in a proliferation of
p laces for keeping track of process identifications.

3) The number of tokens which is placed on a place cannot be parameter ized by the
p r o c e s s . Hence, an event which is conditioned by a variable number of
occu rences of another event cannot be represented . For example, a p r o c e s s
w i shes to resume after k ticks of an external clock [Hoa74]. The event "tick" can
b e associa ted with the process computation of k only if an arc can be given a
p a r a m e t e r which deno tes the number of tokens to be placed on a place.

4) Many synchronizat ions are easily constructed in terms of conditional express ions
on var iab les evaluated when events occur. Some of these are easily conver ted to
condit ions in Petri Nets. In others , however, where the express ion is a complex
combination of variables, the complexity of the corresponding Petri Net far
e x c e e d s the complexity of the problem. Some improvement can be realized by
providing subne t s for computational s t ructures (such as that in Figure 11), but
such s u b n e t s are not generally available.

5.3 Other Approaches

T h r e e o the r approaches to the use of Petri Nets in the represen ta t ion of
synchron iza t ion should be mentioned. Petri Net theory, in these cases , applies to
c l a s s e s of synchronizat ion sys tems rather than specific coordination problems.

Lauer and Campbell [Lau74] show that some path express ions [Hab75] can be
s imula ted by Petri Nets and that there exist algorithms for constructing the simulating
Pe t r i Nets. By proving proper t ies of such nets, they are able to derive p rope r t i e s of
t h e p a t h express ions which genera ted the nets.

Coopr ide r - Petr i Nets Page 27

Hack [Hac75b] and o the r s have characterized the classes of languages which can b e
g e n e r a t e d by var ious interpretat ions of Petri Nets. (One such interpretat ion parallels
t h e language in te rpre ta t ion of a finite s ta te machine). The combination of this t heo ry
with that of language generating expressions such as path express ions should
c o n t r i b u t e to unders tanding the relationship be tween these methods.

Karp and Miller [Kar67] and Keller[Kel72] have developed vector sys tems for
modeling parallel asynchronous processes . These formal systems have been shown to
b e equiva len t to Petri Nets and some theoretical exchange has resulted [Hac74].

Coopr ide r - Petr i Nets Pago 2 8

R e f e r e n c e s

A g e 7 5 T. Agerwala, "A Complete Model for Representing the Coordination of
Asynchronous Processes". Proceedings of the Project Mac Conference on
Petri Nets and Related Methods (1975).

Be l73 G. Belpaire and J.P. Wilmotte, "A Semantic Approach to the Theory of Parallel
Processes'*. Proceedings of the International Computing Symposium 7 3
(1973) .

Br i72 Per Brinch-Hansen, "Structured Multiprogramming". Communications o [the
ACM 15,7 (September 1972).

C e r 7 2 V.G. Cerf, "Multiprocessors, Semaphores, and a Graph Model of Computation".
UCLA-ENG-7223 (1972).

Com71 F. Commoner, A.W. Holt, S. Even and A. Pnueli, "Marked Directed Graphs" .
Journal of Computer and System Science 5 (October 1971).

C o o 7 4 Lee W. Cooprider, P.J. Courtois, F. Heymans and David L. Parnas, "Information
S t reams Sharing a Finite Buffer: Other Solutions". Information Process ing
Let te rs 3 (1974).

Cou71 P.J. Courtois , F. Heymans and David L. Parnas, "Concurrent Control with
Readers and Writers". Communications of the ACM 14,10 (October 1971).

C o u 7 4 M. Braun, P J . Courtois, and J. Georges, "On Starvation". Report R249, MBLE
Brussels (1974).

C o u 7 2 P J . Courtois , F. Heymans and David L. Parnas, "Comments on "A Comparison
of Two Synchronizing Concepts by P.B. Hansen"". Acta Informatica 1 (1972) .

Dij72 Edsger W. Dijksfra, "Information Streams Sharing a Finite Buffer". Information
Process ing Letters 1 (1972).

Dij68 Edsger W. Dijkstra, "The Structure of the MTHE"-Multiprogramming System".
Communications of the ACM 11,5 (May 1968), 341-346 .

Gos71 K.P. Gostelow, Flow of Control, Resource Allocation, and the P rope r
Termination of Programs, UCLA-ENG-7179, 1971.

G o s 7 5 K.P. Gostelow, "A Model of Processes Based on Petri Nets". Proceedings of
the Project Mac Conference on Petri Nets and Related Methods (1975) .

Hab75 A. Nico Habermann, Path Expressions, Computer Science Depar tment ,
Carnegie-Mellon University, 1975.

Coopr ide r - Petri Nets Page 29

Hac72 Michael H. Hack, Analysis of Production Schemata by Petri Nets, TR-94,
Project MAC, Massachusetts Institute of Technology, 1972.

Hac74 Michael H. Hack, T h e Recursive Equivalence pf the Reachability Problem and
t he Liveness Problem for Petri Nets and Vector Addition Systems" .
Proceedings of the 15th Annual IEEE Symposium on Switching and Automata
Theory (October 1974).

Hac75a Michael H. Hack, Decision Problems for Petri Nets and Vector Addition
Sys tems , TM-59, Project MAC, Massachusetts Institute of Technology, 1975 .

Hac75b Michael К Hack, Petri Net Languages, CSGM-124, Massachuset ts Inst i tute of
Technology, 1975.

Hoa74 CA.R. Hoare, "Monitors: An Operating System Structuring Concept" .
Communications of the ACM 17,10 (October 1974), 549-557 .

Hol70 A.W. Holt and F. Commoner, "Events and Conditions", (in t h ree par ts) , Applied
Data Research, New York. [Chapters I, II, IV and VI appear in Record of the
Project MAC Conference on Concurrent Systems and Parallel Computation,
ACM, New York] (1970).

H0I6S A.W. Holt, "Final Report of the Information Systems Theory Project".
Technical Report RADC-TR-68-305, Rome Air Development Center , Griffiss
Air Force Base, New York (1968).

Kar67 R.M. Karp and R.E. Miller, "Parallel Program Schemata: A Mathematical Model
for Parallel Computation". Proceedings of the 8th Annual IEEE Symposium on
Switching and Automata Theory (October 1967).

Kel72 R.M. Keller, Vector Replacement Systems: A Formalism for Modelling
Asynchronous Systems, TR 117, Computer Science Laboratory, Princeton
University, 1972.

Lau74 Pe te r E. Lauer and Roy К Campbell, A Description of Path Expressions by
Petri Nets, University of Newcastle upon Tyne, 1974.

Lie74 Y.E. Lien, Termination and Finiteness Properties of Transition Sys tems ,
Report TR-74-4, Dept. of Computer Science, University of Kansas , 1974.

P a t 7 1 S.S. Patil, Limitations and Capabilities of Dijkstras Semaphore Primitives for
Coordination among Processes , CSGM 57, Project MAC, Massachuse t t s
Inst i tute of Technology, 1971.

P a t 7 0 S.S. Patil, Coordination of Asynchronous Events, TR-72, Project MAC,
Massachuset t s Institute of Technology, 1970.

Coopr ide r - Petri Nets Page 3 0

P e t 6 2 Carl Adam Petri , "Communication with Automata". Supplement to Technical
Report RADC-TR-65-377, Vol. 1, Rome Air Development Center, Griffiss Air
Force Base, New York 1966. [Originally published in German: Kommunikation
mit Automaten, University of Bonn] (1962).

S c h 7 5 Hans Schmid, "Towards a Constructive Liveness Proof". Proceedings of the
Project Mac Conference on Petri Nets and Related Methods (1975).

