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1. Petri Nets

1.1 Introduction
Petri Nets[Pet62), [Hoi70] are directed graphs with two types of vertices, places
(or conditions) and transitions {or events). An arc in a Petri Net can connect only

dissimilar vertices, that is, a place to a transition or a transition to a place. Places are
usually denoted by circles, transitions by bars or dots.
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Figure 1: Petri Net Graph
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In addition, the places of a Petri Net are occupied by zero or more tokens; any
allocation of tokens to the places of a Petri Net is called a marking. Ofien the
description of a Petri Net includes its initial marking,.

An arc from a place to a transition designates an input place to that transition; an
arc from a transition to a place designates an output place from a transition. When _
there is a token on every input place to a transition, it is enabled and may fire,
otherwise it is disabled. If a 4ransition fires, it takes one token from every input place
and places one token on every output place,

Petri Nets are interpreted by selecting sequences of firings. Any enabled transition
is selected and the marking of the Petri Net altered by the rule stated above. Another
enabled transition is then selected and the net marking altered again. This process is
repeated indefinitely as long as there remains an enabled transition, Any marking
which can be obtained in this manner is reachable from the initial marking.

Note that the firing of one transition may disable another transition which was
previously enabied. This can happen when two transitions share an input place; this
configuration in a Petri Net is called conflict,

In the example in Figure 2, transitions "a" and "b* are enabled, but are in conflict

so only one can fire. Jf "a" fires, transition "¢" is the only enabled transition in the net
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(see Figure 3). When it fires, tokens are placed on places 5 and 6, enabling both

transitions "e" and "{" (Figure 4). If "e" fires next, and then ™" fires before "a" or
"b" fires, the net returns to its initial marking.
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Figure 2: Initial Marking
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Figure 3: After firing transition “a"
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Figure 4: After firing transition “¢”
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1.2 Other varieties

Petri Nets have been defined with various restrictions or generalizations in attempts
to provide more tractable mathematical properties or to represent systems more
conveniently. These are a few of the most frequent forms of Petri Net varieties,

1) A place may not be both an input place and an output place of the same
transition. This restriction established by the original definitions seems trivial but
often corresponds to timing conditions in real systems.

2) A place may have only one token at a time. In some cases the firing rule is
modified to prevent the firing of a transition if it would place two tokens on any
place.

3) A transition has exactly one input place and oulput place. These concurrency -
free graphs generaily have only one token placed on them and are called siate
machines. More discussion of state machines is available in [Hol70} and [HolG&].

4) Each place has exactly one input transition and one output transition. These
conflict-free graphs are called marked graphs and are discussed in [Com71].

5) Each arc from a place is either the only output from the place or the only input
to seme transition. These free choice nets include marked graphs and state
-machines and are discussed in [Hac72].

6) Every transition has at most one shared input place. These simple nets properly
inciude free choice nets. This class is not fully understood.

7Y An arc may specify that it removes or places more than one token, These
generalized Petri Nets [Hac74] are abbreviations for standard Petri Nets. We will
use these occasionally in this paper,

8) An arc may specify that it enables a transition only if the place af its origin
contains no tokens, See section 5.1 for more on zero-testing nets.

9) Conditions can combine in or-condilions as well as the and-conditions of regular
Petri Nets. This is an additional feature of the graph model of computation
developed independently at UCLA and described in [Gos71] and {Cer72].

10) Coloring of tokens, assigning priority to transitions, forcing simuitaneous firing
of enabled transitions, associating time with transitions or places, and other bells
and whistles have been explored for special application areas,
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1.3 Representation of Processes

When used to represent the synchronization of concurrent computatiohs, the
features of a Petri Net usually correspond to specific aspects of the compttation.
Places describe states of processes, such as "Process A is in the critical region” or “a
reader is reading”. The behavior of other places closely rescmbles that of
semaphores. Occasionally, places reflect generat conditions of the system, such as "at

least one process has entered the system”.

Tokens often denote processes, SO that the “flow" of a token through the net can
reflect the "progress” of a particular process. (The Petri Net does not, however,
actually distinguish one token from another, so the correspondence is entirety that of
the user of the net). Other tokens represent counters or values in semaphores Or
messages.

Synchronizafion problems ‘often specify the behavior of cyclic processes such as
producers, readers, dining philosophers, etc. Since Petri Net places represent states of
processes, the places in a net for such a problem are linked in cycles mirroring those
of the processes.

1.4 Common Subgraphs

Many programming devices have direct representations in Petri Nets, as shown in

T 000

Figure 5: Sequential Flow

0O

Figure 6: Process Fork
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Figure 11: Bit
2. Proof of Properties of Petri Nets

C el

2.1 Introduction

Proofs of synchronization problems generally consist of two parts. First, it must be
shown that the restrictions on process concurrency are provided. For example, in the
mutual exlusion problem, the solution must guarantee that only one process cai be in
the critical section (i.e. access the shared variables) at any one time. Second, the
solution must be free of unpleasant properties such as the possibility of deadlock,
indefinite delay, inordinate expense, Or unnecessary constraints on concurrency.

2.2 Concurrency Restrictions

Many problem specifications can be reformulated in terms of invariants on the token
loads. of places in the Petri Net representation. [n some cases, the invariant is directly
derived by representing aspects of the problem statement. For example, the number
of buffers in a buffer pool problem is generaily a constant and is reflected in the Petri
Net by an invariant number of tokens on a portion of the net {such that a token
"represents” a buffer). In olher cases, the invariant is dependent on the pariicular
features of the net used to represent the synchronization. For example, the
"semaphore” place in the mutual exclusion example in section 3.2 participates
in the invariant but does not reflect any structure defined in the problem statement.

2.3 General Properties

2.3.1 Freedom from Deadlock

There are two tools for addressing deadlock questions in Petri Nets: proof of
liveness and identification of subnets called siphons and {raps.
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A transition A is live if it is possible to enable it (eventually) by a sequence of
firings from every reachable marking. This assures that the net can never reach a
state such that transilion A will never fire again. A Petri Net is live if every transition

in it is live,

In order to determine if a transition is live, one must be able to characterize all
reachable markings. In some cases, the markings are easily enumerated. Qften,
liveness can be deduced from the information available in the invariants on the token
lcads in the nef.

If a Petri Net is live, every transition can be made to fire, that is, every cvent in the
system can occur. Since events correspond to "progress” of "processes” in these nets,
liveness implies that it is always possible for the system to reach a state which allows
any process {o continue. Hence, liveness does indeed correspond to freedom from
deadiock.

For some classes of Petri Nets, there are necessary and sufficient conditions for
liveness which rely only on the structure of the net (see section 4.1).
Unfortunately, there are none known for the broader classes of Petri Nets.

2.4 Siphons and Traps

A siphon (or deadlock, in a special Petri Net sense) is a subset of piaces in a Petri
Net such that every transition which places a token on a member of the subse! aiso
removes one from a member of the subset. This implies that if it should ever become
blank, it will remain blank forever. In Figure 12, places A and B form a siphon.

/ -
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Figure 12: A Siphon

A trap is a subset of places such that every transilion which takes a token from a
member of the subset also places one on a member of the subset. Hence, once
marked, a trap is always marked. In Figure 13, places A and B form a trap.

The definitions for siphons and traps overiap; for example, every strongly connected
Petri Net is both a siphon and a trap. If a siphon contains a marked trap, it will never
become blank.

If a Petri Net contains a siphon which can become blank, liveness cannot be
obtained. Conversely, for some types of nets (see section 4.1}, showing that
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Figure 13: A Trap

each siphon contains a marked trap is sufficient for proof of liveness. An introduction
1o these structures is available in {Hac72] and a theoretical treatment is in [Sch75].

2.5 Busy Wailing

Busy wailing occurs when one process cannot proceed until notified by anolher
process, but rather than blocking, it 1oops until notified. In some cases, the loop is a
test on a memory cell which will be modified by the posting process.

Since blocking of processes is a feature of our interpretation of Petri Nets, and
conditional branching is not, busy waiting does not often arise in the normal course of
events. If one attempls to represent such a structure in a straightforward manner, the
resuiting net can proceed after the posting process places a token on the place in
question, but the loop which was possible before is still possible and nothing
guarantees that the process will ever leave it. '

Busy waiting can, however, be represented using the "wit" net fragment of Figure
11, as shown in Figure 14.
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Post Wait Read 0 done

Write done

O Read 1 done

\L Wrile | Read

Figure 14; Busy waiting communication

2.6 Indefinite Dealay

Second, there is no interpretation on the tokens of a Petri Net; the continuous “flow’
of tokens across transitions is a figment of the user's imagination. If some of the
tokens in that flow are identified with various processes in the sysiem being
represented, free token flow implies that no process is indefinilely delayed only if
there is a fair scheduler in the underlying system,

2.7 Unnecessary Constraint

Argument for freedom from unnecessary constraint on processes use the same
mechanisms as proofs of adequate constraint, Specifically, one shows that each
transition s disabled only by conditions which reflect original probiem constraints.
One implicit problem constraint which myst be made explicit in these proofs is that the
sequence of events must foliow the ordering established by the processes,
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3, Examples of Petri Net Synchronizations

3.1 Introduciion

The representation in Petri Nets of several standard synchronizations are presenied
in the next few pages. In some cases, only the portion of the system which provides
the synchronization is presented. Processes in the system interact with the displayed
portion by placing tokens on places designaled by ingoing arrows. The displayed net
indicates that the process in the system may resume by placing a token on place wilh
an outgoing arrow, which iz assumed fo be a shared input place to appropriate
transitions in the various processes.

For example, the net for mutual exclusion is displayed in Figure 15.

QI ERC At I o8

Figure 15: Mulual Exclusion

A process which is ready to execute its critical section places a token on R, When
the critical section has been executed, this net places a token on E. (If desired, the
critical sections could also be included in the net by the addition of several places and
transitions, For our purposes, the critica! section can be considered a parameier to
the synchronization). A process which uses this net might be constructed as in Figure

16, . ) OR E t F
[’*@’éﬂj—e %QP% %

Figure 16: Use of Mutex Net
The place P preserves the identity of the process during use of the shared porlion
of the net by causing only transition t (of all such transitions sharing E) to be enabled
when the mutual exclusion net places a token on E.

In the foliowing examples, the net is presented with an interpretation of the places
in the net with respect to the language of the problem. An alternative description of
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the transitions is given by a set of formulas (after [Lie74)). In those formulas, a
transition is defined by the effect it has on the token load of places. If transilion t
removes a token from place S and adds tokens to places Q and R, then t is described
by

t=-5S+Q+R

Note that -R+R does not coliapse to zero since the firing rule requires that fokens be
present on the input places and then removed before tokens are placed on the oulput
places. Olherwise, the implied arithmetic operations correspond to the changes in the
token load on places due to the firing of a transition.

Also, each example contains a list of useful invariants of the net. The nolation R’
designates the token load of the place R. Al values in invariants are non-negalive
integers,

Some of the nets use weights on arcs or places. On an arc, a weight n indicates that
n tokens must be present to fire the transition or that n tokens are put on a place by
the firing of the transition. On a place, a weight n indicates that n tokens are put on
that place by the initial marking,

Finally, notes on each solution provide justification of the solution with proofs for
some properties and discussions of others, The subtle behavior of the system is
occasionally compared with that of other representations for the same synchronization.
3.2 Mutual Exclusion
3.2.1 Problem Statement

Only one process may execute a section of code calied a “critical section” at a time.
If no other process is in a critical section, any may execute it. (Refer back lo Figure

15 for the Petri Net diagram),

3.2.2 Definitfons

Token on indicates
R a process is ready to execule critical section
C a process is executing a critical section
E a process has exitied the critical section
S semaphore = no process is in a critical section

Transition descriptions

tl=-R-85+¢
t2=-C+S+E
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Transition invariants
C+ §=1
3.2.3 Notes

The exclusion is accomplisiied by providing an extra place with the inverse meaning
of the place denoting a process in the critical section. This place corresponds 1o a
semaphore [Dij68] Note that the invariant insures that only one token exisis on the
pair (C,S), and therefore no two tokens can be an C at one time. Hence, no two
processes execule their critical sections at one time.

If no token is on C, then the invariant insures that a token is on §, and therefore, if
a token arrives on R, transition t1 is enabled and a process c¢an enter the critical
section.

3.3 Dining Philosophers
3.3.1 Problem Gtatement

A number of Philosophers (processes) are at dinner at a round table; each one
alternately eats and meditates. A fork is placed petween each adjacent pair of
Philosophers (hence, there are n forks). Philosopher i needs both fork i and fork i+l
(where n+l=1) in order ‘to eat. Provide a synchronization which allows each
Philosopher equal access to food and does not deadlock.

: l/ til
by

s

Figure 17: Dining Philosopher i
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3.3.2 Definitions

Token on indicates
Mi philosopher i is meditating
Ei philosopher i is eating
Fi fork i is available

Transition descriptions

til
ti2

=Fi - F(i+1) - Mi + Ei
“Fi +Fi + Mt + F(i+1)

mom

Transition invariants

Vil Ei + Mi=1)
Vi(Fi + E(i-1) = F(i+1) + EGi+1) = 1 ~ Ei

3.3.3 Notes

Equal opportunity is provided by symmetry; if all forks are available, any
Philosopher may switch from meditating to eating, while if a fork is missing, its
replacement immediately enables the waiting Philosopher.

The first invariant insures that there is always one taken on Mi or Ei. If token is on
Ei, then transition ti2 is enabled. If a token is on Mi lhen if tokens are present on Fi
and F(i+1), transition til is enabled. If a token is not present on Fi or F(i+1), invariani
2 guarantees that transitions #(i-1)2 or {(i+1)2 is enabled and by firing all such
transitions tokens are returned to Fi and F(i+1) and til is enabled. Since all transitions
can be enabled in all reachable markings, the net is live and therefore deadlock is not
possible.

It is possible that two Philosophers could coliude to starve a third by a firing
seguence such as ..122,t21,142,141,122,t21... In this case, Philosopher 3 is unable fo get
both forks simultaneously. The speeds of the processes is unknown, and no
communication between processes is possible, so situations such as this must resull
from external conditions. Remedies for this fealure are discussed with respect to
other representations in [Cou74] The net in Figure 18 impiements one of these
improvements.

HUNT LIBRARY
PARMEGIE-MELLON GNIVERSITY
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Figure 18: Dining Philosopher who cannot starve

3.4 Cigaratle Addicts
3.4.1 Problem Statement{Pat71]

A system contains an agent and three cigarette addicts. The agent provides two of
three types of resources on each cycle of the system. Each addict needs a diffevent
pair of the three resources to make and smoke a cigarette. The agent does not start
the next cycle until the appropriate addict has completed the previous cycle. Provide
a synchronization which maintains the identity of the processes and does not deadiock.
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£10
.

Figure 19: Three cigarette addicts

3.4.2 Definitions

Token on indicates
A agent ready o provide resources
Bi resource i available
Ci addict § processing resources
D addict has completed processing

Transition descriptions

tl = -A +Bl + B2
t2=-A+Bl +B3

13 =z-A+8B2+B3
t4=-Bl-B2+Cl}
t5=-81-83 +C2

t6 = -B2 - B3 + C3
We+i) = -Ci + D, i=1,2,3
t10=-D+ A

Transition invariants

2(a +sum( Ci) + D) + sum( Bi}) =2
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3.4.3 Notes

Places A and Bi along with transitions t1-t3 comprise the agent as required by the
problem definition. The subnet consisting of Ci, t3+i and 16+ is one cigaretie addicl.

Note that the invariant assures {hat at least one transition is enabled at any time,
and, in fact, that if there s no token on A, that exactly one transition is enabled. Since
only one cycle exists in the net, the various tases arc easily enumerated and it js
evident tha! any transition tan be enabled. Furthermore, at any time, the invariant
assures that a token cannot be placed on A except by the termination of an addicl,
Therefore, the net is live and deadlock is not possible.

3.5 Reader/Writer 1
3.5.1 Problem Statement[Cou71]

In this bounded version of the problem, up to n reader processes may read a file
simullaneously but writer processes must write the file excluding both readers and
other wrilers. Provide 3 synchronization which excludes the appropriate processaes
but does not deadlock or otherwise cause processes to wait if they are not violating
the above resiriction.

\L \LWI
) %L ¢
92?. o }/% ng
iy I

Y Y

Figure 20: Bounded Reader /Writer |
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3.5.2 Definitions

Token on indicates
R1 a reader is ready to read
R2 a reader is reading
R3 a reader has finished reading
Wi a writer is ready to write
w2 a writer has blocked readers
w3 a writer has finished writing
N a reader may proceed

Transition descriptions

tl1 =-RI -N-R2
t2=-R2 +N+R3
t3 = -W1 - nN + W2
t4 & -W2 + nN + W3

Transition invariants
n{l - W2)= N+ R2
3.5.3 Notes

Transition t1 can fire at most n times before t2 fires, since the invariant reslricts
the number of tokens on N and R2 to n. Hence, at most n readers will access the iile
simultaneously,

If there is a token on W2, then n tokens must have been present on N when {3
fired. Hence, the invariant insures that there are no tokens on RZ, so a wriler
excludes readers, Furthermore, since there is a token on W2, there are no tokens on
N (again from the invariant), so t3 cannot become enabled and it is impossible for a
second token to be placed on W2 until the first on leaves by firing t4. Hence writers

exclude one another.

When t4 fires, either t1 or {3 might become enabled and fire .

3.6 Reader/Writer 2
3.6.1 Problem Statement [Cou71]

Same as reader/writer 1 except that if writer is ready to write, no reader may starl
to read until ali {up to m) waiting writers have finished writing,.
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Figure 21: Bounded Reader /Writer 11

3.6.2 Definitions

Token on indicates
R1 a reader is ready to read
R2 a reader is reading
R3 a reader has finished reading
W1 a writer is ready to write
w2 a writer has blocked readers
W3 a writer is writing
w4 a writer has finished writing
NR a reader may proceed

NW a writer may proceed

Page 18
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Transition descriptions

t1 = ~R1 - NR - nwhNW + nwiNW + R2
t2 = -R2 + NR + R3

t3 = -WI1 - NW + W2

t4 & -W2 - nrNR + W3

t5 = -W3 + nriNR + NW + W4

Transition invarianis

W3 + W2+ NW=nw
R2 + NR =nr{l - W3)

3.6.3 Notes

Transition 13 is always enabled when a token arrives at W1 {(unless nw tokens are
present on W2 and W3), since transition t1 is instantaneous. Hence, a writer can
always place a token on W2. The first invariant assures that no new token can arrive
on R2 since tl is now disabled until all tokens from W2 and W3 return to NW.
Therefore, writers prevent readers from starting.

A token on W3 guarantees that the number of tokens on R2 is zero via the second
invariant, so writers exclude readers. Similarly, the number of tokens on NR is also
zero, so t4 cannot be enabled, and therefore the number of tokens on W3 is restricled
to one; i.e. writers exclude one another.

Transition t1 is enabled if a token is on Rl when no lokens are on W2 and W3 {and
fewer than nr are present on R2). If tokens are present on W3, transition t5 is
enabled; when it fires, either t4 or tl is enabled. Successive firings of 15 and 14 will
clear any tokens from W2 and W3 eventually enabling t1. When t1 fires, t2 is enabled.
Transition t3 is disabled only if nw tokens are on W2 and W3, so clearing one by the
sequence above enables t3. Again, {4 is disabled only when tokens are on R2 or W3.
In that case, t2 and t5 are enabled, so firing them as needed will enable t4. T5 is
always enabled if a token is present on W3. Since every transition is live, the entire
net is live, assuming that tokens will be placed on Rl and W1 by other transitions in
the net.

" If this net were modified to accomodate the restriction that a place cannot be both
the input place and output place of a transition, the arc from {1 to NW would be
repiaced by a place and another transition. In general, the behavior would be the
same, except that the guarantee that {3 is always enabled when a token arives at Wl
would not be strictly true, The result is similar o the behavior of the solution
proposed by Brinch-Hansen [Bri72]: heavy activity by readers can prevent a wriler
from announcing its presence and therefore be delayed indefinitely [Cou72}

This solution can be extended to hierarchies of readers and writers as in [Cer72]).
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3.7 Producer/Consumer Boundea Buffer
3.7.1 Problem Statement [Dij68]

Producers send messages to consumers by allocating buifers from a common pool of
_n buffers and placing them in a common stream. Producers wait only when the pootl is
" emply; consumers wait only when the stream is empty. Provide a synchronization
which does not otherwise restrict processes and does not deadlock.

oy
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Figure 22: Producer/Consumer |

3.7.2 Definitions

Token on indicates
P1 a producer is ready to send a message
P2 a producer has allocated a buffer
P3 a producer has placed the buffer into the stream
cL . a consumer is ready {0 process a message
c2 a consumer has removed a buffer from the stream
Cc3 a consumer has returned the buffer to the pool
B a buffer is available from the pool

S a buffer is in the stream
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Transition descriptions

t1=-P1-8B+P2
tz2=-P2+5S +P3
t3=-Cl-S+C2
t4=-C2+B+C3

Transition invariants
B+ S+ P2+ C2=n

3.7.3 Notes

If the buffer is empty, B is zero, and therefore t! cannot become enabled.
Likewise, if S is zero, t3 canfot become enabled. Hence processes wail appropriately.
No other conditions affect the progress of processes.

The invariant insures that there are always n tokens distributed upon this subnet.
If there are tokens on B, then Pl can be enabled. If there are tokens on C2, 14 is
enabled and tokens will be placed on B. If there are tokens on §, {3 can become
enabled and will place tokens on C2. Finally, if there are tokens on P2, 12 is enabled

and tokens will appear on S. Hence all iransitions are can eventually be enabled, the
net is live and therefore deadlock-free.

3.8 Producer/Consumer Multiple Streams

3.8.1 Problem Statement[Dij72]

Same as Producer/Consumer Bounded Buffer except that several information
streams share the common buffer pool, Each stream has a reservation for a number of
buffers which it may use even if the pool is heavily used. Provide a synchronization
which controls both the pool and the sireams (i.e. consumers wait only if the
corresponding stream is emply, and producers wait only if no buffers are available
from the reservation or the shared-group) and does not deadiock.
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Figure 23: Producer/Consumer Il -- stream i

3.8.2 Definitions

Token on

Pil
Pi2
Pi3

Cil
Ci2
Ci3

F
F
Ni
NP
Si

indicates

producer i is ready to send a message
producer i has allocated a buffer
producer i placed a buffer into stream i

~ consumer i is ready {0 process a message

consumer i has removed a buffer from stream i
consumer i has returned a buffer to the pool

a non-reserved buffer is available

a non-reserved buffer has been allocated
a reserved buffer is available

a reserved buffer has been allocated
abuffer is in stream i

Transition descriptions

tl = -Pil + Pi2 + Ni’ - Nt
te = -Pil +Pi2+F -F
t3 =z -Pi2 + Si + Pi3
td = -Cil - Si + Ci2
t5=-Ci2-F+F +Ci3
t6 = -Ci2 - Ni + Ni + Ci3
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Transition invariants

F+ FPet

Vi( Ni + N’ = ni) )

Yi( Pi2 + Ci2 + Si s F’ + Ni"

F+sum(Ni+ 5i+ Pi2 + Ci2) = sum{ni} + f

3.8.3 Notes

A producer i waits at Pil only if both t] and t2 are disabled. This occurrs only
when Ni and F both contain no tokens, that is, there are no buffers available.
Consumer i waits at t4 only if Si contains no tokens, that is, the stream is empty.

The argument for freedom from deadlock is parallel to that for the simpler
producer fconsumer problem; the places F and F* do not enter into the proof, for the
system will nol deadlock even if no tokens are ever placed on F.

In other solutions lo this problem, the decision to select buffers from the free or
reserved sections of the pool is made in the solution [Dij72), [Coo74) In this
representation, it is nol determined whether a producer will select a buffer from its
reserved section before a shared buffer. The behavior of the system under load will
vary due to different strategies of selection.

4. Petri Net Theorems

The following statements are a sampie of the theorems known about Petri Nets
which might be relevant {0 proofs of synchronization systems.

4.1 Liveness Conditions

1) If a state machine is strongly connected, any marking which places only one token
on the net is a live, safe marking [Hol70] Na other marking is live and safe.

2) A free choice net is live if and only if every siphon contains a marked trap
{Hac72].

.3) A marked graph is live if and only if every elementary cycle contains a token
[Com71].
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4.2 Markings .

1) In a live marked graph, there is a firing sequence from the initial marking which
returns to the inilial marking after firing each transition once [Com71].

2) In a live marked graph with marking M, M leads to marking M which contains goal
marking T if and only if M places as many tokens as T on each circuit [Hai70].

3) The maximum marking reachable from a marked graph with a given initial marking
can be determined from the initial marking {Hol70}.

43 Decidability

1) 1t is decidable whether a Petri Net can reach a marking which includes a given
marking [Hac75a]

2) It is undecidable whether every marking reachable in one Petri Net.is reachable
in another Petri Net with the same number of places [Hac75a].

3) Reachability and liveness are recursively equivalent problems [Hac74] 1t is not
known whether they are decidable or not.

5. Discussion

5.1 Adequacy of Petri Nets for Synchronization

The Petri Net is capable of representing some behaviors of concurrent systems, It
has been hypothesized that Petri Nets are adequate for representing all such syslems
{Pat70] and that they are nol adequate [Bel73] Subsequently, it has been shown
[Age75] that Petri Nets cannot be used to represent the interaction of readers and
writers [Cou71] if the number of processes is not bounded. This problem results from
the inability to test for absence of tokens on a place.

This facility (which arises often in practical net construction) can be simulated in
those cases in which a bound, (perhaps ridiculously high) can be established for the
maximum number of tokens on each place. A new place is created which gains a token
every time the place under consideration loses one, and vice versa. If the two places
initially contain k tokens, testing for k tokens on the new place (wiih a k-weighted arc)
is equivalent to testing for no tokens on the original place. :

It the ability to condition a transition on the dearth of tokens on a place is added to
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the Petri Net scheme, much additional power results. An arc written ---0--> indicates
that the place at the origin of the arc must contain no tokens for the transition to fire.

In Figure 24, A and B represent parallel execution, as cdo C and D. However, C
musl start before D. -This is insured because tl is enabled only when a token is on S,
and 12 is enabled only if thal token has been removed.

b 5
=

>

t1 C
t2 D

O g
Iy

Figure 24: Zero testing net

Zero-testing can be accomplished also by establishing a partial ordering of transition
priorities [Hac75b]. In such a scheme, if t1 and t2 are in conflict and
priorily({t1)>priority{t2), then t1 will fire. The two nets in Figure 25 are lhercfore

equivalent,
M t2 Tl tl

Figure 25: Equivaient nels

Petri Nets with zero-testing are adequate for representing all synchronizalions of
systems which can be considered to have a central clocked controiler, Let S be a
system of conditions and events. Between clock puises, the conditions effectively
determine which events can occur. The broadest class of such systems requires the
full power of a Turing machine to determine which events are possible given the
conditions obtaining. One such event is now allowed lo occur and the effective
procedure is invoked to determine the current class of passible events. Agerwala has
shown [Age75] that there is a Petri Net {with zero-testing) for any such system.

Petri Nets can potentially represent systems in which no such central controller is
possible and are therefore not limited 1o such clocked systems. No definition of
completeness or adequacy for distributed control, asynchronous systems has yet been
established.
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5.2 Suitability

Petri Nels are convenient for representation of interactions is system slructures
with fixed numbers of processes and fixed relationships between processes. The
cigarelle addicts problem is prolotypical of such rigid relationships. A variely of
difficulties arise when applying Petri Nets to more dynamic systems.

1) When adding a process to a system (for example, reader/writer or
producer /consumer), the Petri Net must be modified to reflect the new process.
The addition of the subnet must be done so as ta not violate the invariants of the
net. No study has been done on modification of Petri Nets, although Gostelow has
started work on how to represent modifiable Petri Nets, using a Petri Net
Interpreting Petri Net [Gos75].

2) There is no structure in a Petri Net which corresponds to local environment.
Hence, when tokens from two different processes arrive at the same place, it is
not possible to delermine which leaves tirst. This results in a proliferalion of
places for keeping track of process identifications.

3) The number of tokens which is placed on a place cannot be parameterized by the
process. Hence, an event which is conditioned by a variable number of
occurences of another event cannot be represented. For example, a process
wishes to resume afier k ticks of an external clock {Hoa74]. The event "lick™ can
be associated with the process computation of k only if an arc can be given a
parameter which denctes the number of tokens to be placed on a place.

4) Many synchronizations are easily constructed in terms of condilional expressions
on variables evaluated when events occur. Some of these are easily converted to
conditions in Petri Nets. In others, however, where the expression is a complex
combination of variables, the complexity of the corresponding Petri Net far -
exceeds the compiaxity of the problem. Some improvement can be realized by
providing subnets for computational structures (such as that in Figure 11), but
such subnels are not generally available.

5.3 Other Approaches

Three other approaches to the use of Petri Nets in the representation of
synchronization should be mentioned. Petri Net theory, in these cases, applies to
classes of synchronization systems rather than specific coordination probliems.

Lauer and Campbeil [Lau74) show that some paih expressions [Hab75] can be
simulated by Petri Nets and that there exist algorithms for constructing the simulating
Petri Nets. By proving properlies of such nets, they are able to derive properties of
the path expressions which generated the nets.
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Hack [Hac75b] and others have characterized the classes of languages which can be
generated by various interpretations of Petri Nets. (One such interpretation parallels
the language interpretation of a finite stale machine). The combination of lhis theory
with that of language generating expressions such as path expressions should
contribute to understanding the relationship between these methods,

Karp and Miller [Kar67] and Keller[Kel72] have devcloped vector syslems for
modeling parallel asynchronous processes. These formal systems have been shown to
be equivaient to Petri Nets and some theoretical exchange has resulted [Hac74].
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