
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

PDP-11/40E
Microprogramming Reference

Manual *

S. K Fuller, G. T. Almes, W. H. Broadley, C. L Forgy,
P. L Karlton, V. R. Lesser, J . R. Teter

16-Jan-76

Department of Computer Science
Carnegie-Mellon University

Pittsburgh, Pennsylvania 15213

* This work was supported by the Advanced Research Projects Agency of the
Department of Defense under contract no. F44620-73-C-0074 and monitored by the
Air Force Office of Scientific Research.

l o - j a r W b PDP-11/40E Microprogramming Reference Manual Page

ma L ! S B A B Y

CASKEGIE-MELLOS U N I V E R S I T Y

TABLE OF CONTENTS

1. Introduction 1

1.1 Design Objectives and Constraints 1
1.2 Synopsis 2
1.3 Acknowledgements 4

2. Hardware Description 5
2.1 The Basic PDP-11/40 5

2.2 The Extensions to the PDP-11/40 17

3. MICRO/40 Assembler 38
3.1 Introduction 38
3.2 Field Assignments 40
3.3 Pseudo Operators 41

3.4 The Assignment Statement 43
3.5 Examples 45
3.6 Using MICRO 48

4. Microprocessor Simulator 49
4.1 Summary 49
4.2 Commands 49
4.3 Inconsistencies 53

5. Programming Techniques 54

5.1 Timing 54
5.2 B Constants 55
5.3 Unibus Control 55
5.4 Flow of Control 57
5.5 RD Bus Details 60
5.6 The Last Word 61

Appendices

A, Microinstruction Format 62
A.1 The Word 62
A.2 Address Space 75

A.3 DEST/MSC Functions 77

3. Standard ROM in MICRO/40 78

J . The Bootstrap PROM 88

I. Vector Instruction Set 90

1

16-Jan-76 Introduction Page 1

1. Introduction

The PDP-11/40E was developed at Carnegie-Mellon University because no
commercially available machine could meet pressing needs for a processor that could
both support user microprogramming for specialized applications and effectively
emulate the standard PDP-11 instruction set and I/O structure. The PDP-11/40 was
available, however; it was implemented on a microprogrammable processor and, in
addition to its read-only control store, had room in the processor for an extended
control store. The PDP-11/40E is a standard PDP-11/40 processor that has been
extended to include the following features:

1. 1024 words of writable microprogram control storage. This is in addition to
the 256 words of read-only storage in the basic PDP-11/40 processor. Each word is
80 bits wide in the writable control store.

2. A general purpose mask-shift unit. It can be used either to assist the PDP-
11/40's basic ALU in the manipulation of data or to extract arbitrary fields from words
for branch control in the microprogram,

3. A subroutine facility at the microprogram level,

4. A 16-bit literal field to assist in the generation of masks and constants.

5. A 16 word stack for temporary variables and microsubroutine return addresses.

1.1 Design Objectives and Constraints

There were several major design considerations that influenced the design of
the writable control store option for the PDP-11/40:

A) Compatibility Requirement with the Basic PDP-11/40 Processor

1. Fit all additional hardware into the basic PDP-11/40 hardware
cabinet with minimum of modification to the basic processor, its
power supply, and cooling; limit added hardware to approximately
120 integrated circuit packages.

2. Ability to run the standard PDP-11 emulator in the writable
control store.

3. Retain the basic cycle times of the standard processor.

B) Writable Control Store Requirements

1. Must easily be read and written under microprogram control.

16-Jan-76 PDP-11/40E Microprogramming Reference Manual Page 2

2. Should be addressable as 16-bit memory9 usable as a scratchpad

memory.

3. The size of the control store should be large enough to hold the
entire emulator of a sophisticated machine architecture.

C) General Emulation Requirements

1. General field extraction rather than built in extraction of fields
peculiar to the PDP-11 instruction set.

2. General branch table jumping based on arithmetic rather than
built in combinatorial logic peculiar to the PDP-11 instruction set.

3. Subroutine linkage mechanism for convenient coding of large

microprograms.

4. Arbitrary constants for arithmetic and addressing.

5. Convenient implementation of multiple precision arithmetic.

These features have been added to the PDP-11/40 with an absolute minimum
modification to the PDP-11/40 and $re included in the processor by preempting the
space that had been reserved in the processor for the extended instruction set (EIS)
and floating point instruction set (FIS) options. Both EIS and FIS options have been
reprogrammed for the writable control store and hence are still available on the PDP-
11/40E by ioading their microcode into the control store. The only other modifications
to a standard PDP-11/40 are minor and are detailed in the PDP-11/40E Engineering
Documentation [CMU75]. The writable control store has no effect on the other options
available on the PDP-11/40; i.e. memory management stack limit register, maintenance
console, and the line frequency interrupt clock.

1.2 Synopsis

This reference manual begins in the next section with a complete description of
the PDP-11/40E microprocessor. All the registers, multiplexors, data paths and control
lines available to the microprogrammer are described. For details of the
microprocessor concerning implementation, installation, and maintenance questions see
[CMU75]. Section 3 describes MICRO/40, a cross-assembler for the PDP-11/40E
microprocessor, which runs on a DECsystemlO. It includes a macro facility, compound
statements, and assignment statements. Although these features have been added to
assist the programmer, an important principle of MICRO/40 is that it allows a
programmer to construct any. microinstruction (however baroque). This is an essential
feature in 'horizontal* microprocessors such as the PDP-11/40E if we are to write
efficient emulators for varying machine architectures. Section 4 discusses the
simulator of the PDP-11/40E microprocessor which is also available on the
DECsystemlO. The simulator's primary purpose is to provide a reasonable debugging

16-Jan-76 Introduction Page 3

environment for microprogram development. Section 5 discusses the
microprogramming techniques used at CMU and describes some of the idiosyncracies
that characterize the PDP-11/40E. The final section includes a number of examples to
illustrate the various features of the PDP-11/40E and MICRO/40. Appendix A gives a
definitive description of the microinstruction fields and their use. Following this comes
Appendix B: the MICRO/40 version of the standard PDP-11 emulator residing in the
250 words of read-only memory in the standard microprocessor. The MICRO/40
version of the PDP-11 emulator is a good starting point for alterations, as opposed to
extensions, of the PDP-11 instruction set. version of the PDP-11 emulator as a
starting point. Appendix C lists the bootstrap PROM used at CMU during the summer
of 1975.

The following DEC documentation may be of assistance in the use of the PDP-
11/40E:

KD11-A Processor Maintainence Manual. DEC-11-HKDAA-A-D (1972). This
manual describes the standard PDP-11/40 (i.e. the KD11-A) at the same level of detail
that the PDP-11/40E is described in this manual, It also includes a detailed discussion
of the 256 word PDP-11 emulation program. The KD11 Processor Engineering
Drawings are frequently referenced by the KD11-A Processor Maintainence Manual
and should be available when using this manual.

POP-11/40 Processor Handbook, (1972). This is the general reference manual
for the PDP-11/40 system as seen by the PDP-11 programmer. Although it has no
information on the PDP-11/40 microprocessor, it is the definitive document on the
PDP-11 architecture as it has been implemented on the PDP-11/40. The handbook
also contains an introduction to the Unibus and describes the functions of all the
standard internal processor options of the PDP-11/40.

PDP-11 Peripherals Handbook. (1975). This is the best source of information on
the theory and operation of the Unibus.

KE11-E and KE11-F Instruction get Options Manual. DEC-11-HKEFA-A-D (1973).
Describes the standard EIS and FIS option. Chapter 4 provides a concise summary of
the basic KD11-A processor and may be of use to the PDP-11/40E microprogrammer
for this reason.

PDP-11/40, 11/35 System Manual. DEC-11-H40SA-B-D (1974). A general
introduction to the standard PDP-11/40 system, including the installation, operation,
and programming of the PDP-11. It is of limited use to the microprogrammer.

In addition to these DEC publications, we refer interested readers to a recent
book by Andrew Tanenbaum, Structured Computer Organization, Prentice-Hall, 1976,
which discusses the standard PDP-11/40 microprocessor.

16-Jan-76 PDP-11/40E Microprogramming Reference Manual Page 4

L 3 Acknowledgements

The PDP-11/40E project began in July, 1973, has spanned several years, and
has benefitted from many individuals. The original PDP-11/40 was donated to CMU by
Digital Equipment Corporation and G. Bell, J . Levy, and C. Kaman (all from Digital)
provided helpful technical review of the project. W. Broadley, S. Fuller, V. Lesser, B.
Rosen, and J . Teter designed the writable control store extension for the PDP-11/40
during the fall of 1973. The first PDP-11/40E became operational in October 1974. L
Forgy wrote the simulator described in section 4. P. Karlton wrote the MICRO/40
assembler described in section 3. G. Almes, P. Drongowski, N. Jain, and R. Modi, as the
first serious users of the PDP-11/40E, endured many hardware difficulties during the
first year of its operation and were very helpful in locating and correcting several

design flaws.

16-Jan-76 Hardware Description Page 5

2. Hardware Description

2.1 The Basic PDP-11/40

The basic PDP-11/40 * consists of a horizontal microprocessor with a
microinstruction 56 bits wide ** . Almost 256 instructions are necessary to implement
the standard PDP-11 instruction set. Some of the internal register and data paths are
general in nature and would be used in any 16 bit processor. But some areas,
particularly instruction decoding, were implemented specifically for the PDP-11
instruction set and are not of a general purpose nature.

The register-transfer block diagram of Figure 2.1 (see the end of section 2) is
discussed below in three major functional groupings: interface, data paths, and
microprogram control. All of the components in each of these segments are covered in
detail in sections 2.1.1 through 2.1.3. In addition, Table 2.1 contains a listing of all
components on the block diagram and includes a brief physical description as well as
related inputs and outputs. This abbreviated summary can be used as a quick
reference once the more detailed description of the block diagram is understood, or it
can be used for a quick overview of the KD11-A processor by those who are already
familiar with PDP-11 processors and microprogramming techniques.

2.1.1 Interface Logic

loeic J w r h f l - r S t

 SeClT °! t H e p r o c e s s o r s h o w " ^ e block diagram is the interface

e r u r i i / W bystem such as the programmer's console, Unibus etc Each « f th«,

* Much of section 2.1 of this reference manual was adapted from the K D U - A
Processor Maintainence Manuairi9721 a publication of Digital Equipment Corporation.
The material in this section is the sole responsibility of Carnegie-Mellon University. For
more complete information on the basic PDP-11/40 microprocessor, refer directly to
the KD11-A Processor Maintenence Manual.

** Throughout this manual, the term microprocessor denotes any microprogrammable
processor. We do not imply the use of LSI microcomputer technology as in the LSI-11
processor

16-Jan-76 PDP-11/40E Microprogramming Reference Manual Page 6

2.1.1.1 KY I 1-D Programmer's Console

The KYI 1-D Programmer's Console is an integral part of the PDP-11/40 system
and provides the programmer with a direct system interface. The console allows the
user to start, stop, load, modify, or continue a program. Console displays indicate data
and address flow for monitoring processor operations. The console logic that is
considered to be a part of the processor interface section includes the switch register,
the data display, the address display, and the console control. All functions of the
K Y I 1-D console are implemented with microcode routines.

The switch register is located on the KYI 1-D console and consists of the
manually-operated switches gated through drivers to the Unibus. The microprogram
addresses the switch register during console operation and, decoding the address,
enables the driver gates, which place the value set in the switch register onto the
Unibus.

The data display indicates the output of the processor data multiplexer which
gates information from a variety of sources within the processor, and also gates data
from the Unibus. The display consists of indicator lights, mounted in the programmer's
console, that are connected to the processor by cables. The output line of the data
multiplexer (D MUX <15:0>) always controls the display. However, since the
multiplexer can select multiple inputs onto the output line, information can be displayed
from a variety of sources.

The address display indicates the contents of the processor bus address
register (BA register). Note that there is no multiplexing involved with the address
display which was the case with the data display. Although it is possible to load
specific data into the bus address register for different situations arising in the logic
flow, the contents of the bus address register is always shown by the address display.

The console control logic is associated with the programmer's console
operational switches that provide such manual functions as START, HALT, LOAD
ADDRESS, EXAMINE, DEPOSIT, and CONTINUE. Primary console control is handled by
the processor by means of both the microprogram and combinational logic flag f l ip-
flops. The microprogram senses switch activation and branches to the specific routine
required, depending on which switch has been used. The flags accommodate the
special needs of the START and CONTINUE switch sequences as well as the
incrementation requirements of consecutive EXAMINE or DEPOSIT sequences.

2.1.1.2 Unibus Timing and Control

The Unibus timing and control logic provides the required processor regulation
of the Unibus, controls data transfer functions, bus ownership functions, and other
miscellaneous functions. The control logic includes drivers and receivers for Unibus
signal lines as well as timing and priority logic Combinational logic, pulse circuits, and
discrete flip-flops provide control for data transfers (DATI, DATIP, DATO, DATOB)
between the processor and the bus with associated error checking (odd address, stack
overf low) and correction (data time-out). The logic also provides the gates and signals
needed for the processor to respond once it has been addressed from the bus.

16-Jan-76 Hardware Description Page 7

In addition to the data transfer function, the Unibus timing and control logic
provides the necessary control for bus ownership, transfer of bus ownership for non-
processor requests (NPRs) and bus requests (BRs), and the time-out function for non-
response conditions. The logic also provides power fail timing related to BUS AC LO,
BUS DC LO, and BUS INIT signals. Combinational logic, which includes a number of one -
shot timing circuits, sequences these signals for power on and power off conditions.

The microprogram control interfaces directly with the Unibus timing and control
logic. The start or error checking flip-flops are loaded, either directly or conditionally,
from the microinstruction. Acceptance of bus data and the deactivation of MSYN occur
as a function of the next microinstruction after a DATI or DATIP transfer operation.
The processor transmits address and data information to the bus under control of the
microprogram. Note, however, that bus ownership, as well as the power fail logic,
operates asynchronously and is independent from the microprogram.

The interface portion of the processor contains both bus transmitters and bus
receivers so that processor and Unibus signals are compatible. The outputs of the bus
address (BA> register, and the D register, the processor status (PS) register, and the
switch register all have individual sets of transmitters (drivers) to place their contents
on the Unibus. Inputs to the processor from the bus are gated through the bus
receiver to the D multiplexer which then routes the signals to the proper component
within the data paths.

2.1.2 Datapaths

The data paths portion of the KD11-A Processor manipulates, stores, and routes
data within the processor. The prime element of the data path logic is the arithmetic
logic unit (ALU) which operates, both logically and arithmetically, upon input data from
the interface portion of the processor. The ALU and all other components in the
processor data paths are described in the following paragraphs.

There are twenty-one major registers in the KD11-A processor. Sixteen of
these registers are implemented as an addressable Scratch pad' memory, used for
temporary storage and implementing macro-program visible registers. The five
remaining registers are the B register, (an ALU input), the D register (the ALU output),
the BA register (the bus address), the PS register (the macro-processor status), and
the IR register (the macro-program instruction register).

The scratch pad registers are the primary source of operands for the arithmetic
and logic unit (ALU). These operands either come directly from an instruction source
or destination mode operand, or they are stored in a scratch pad register during
address calculations. In either case, the ALU receives a direct input from the BUS RD
<15:0> line. This input is referred to as the MA input." The characteristics of the
scratch pad register affect the data path structures in that only one address may be
accessed at a time and simultaneous read and write operations are not permissible. In
order to provide the two ALU operands (when both operands come from the scratch
pad register), it is necessary to provide temporary storage. This storage is provided

16-Jan-76 PDP-11/40E Microprogramming Reference Manual Page 8

by the B register. The contents of the B register can be fed through the B multiplexer

into the B input of the ALU.

2.1.2.1 Data Paths, Multiplexers, and Registers

Since the A input to the ALU is from BUS RD<15:0>, it can supply operands from
the scratchpad registers, the PS word, or the processor extension. Further, since any
combination of these registers can be gated onto the BUS RD during execution of any
microinstruction, it is possible to OR the contents of several registers onto the BUS RD
lines, as shown by the dotted OR gates in Figure 2.1.

The B input comes from the B multiplexer (B MUX) which receives its input from
either the B constants or the B register. The B register, in turn, receives its input
from the D multiplexer which has four possible inputs. Therefore, the B input to the
ALU comes from a variety of sources with two levels of multiplexing. These various
inputs are discussed in the following paragraphs.

The four inputs to the D multiplexer are: Unibus data lines BUS D <15:0> (which
permits the processor to receive operands from other devices in the system), the BUS
RD <15:0> lines, the output of the D register (which permits the result of a previous
arithmetic operation to be used as an operand), and the right shifted output of the D
register.

The D multiplexer output can be stored in the B register which in turn can be
fed to the ALU by means of the B multiplexer. It should be noted that the BUS RD
signal can be fed through the D multiplexer into the B register. This data path is of
special interest in the machine instruction for the register-to-register operations
where the B input of the ALU must come from the scratch pad register. For example,
if both desired operands are stored in the scratch pad register, the first operand
passes through the D multiplexer into the B register for storage. Then the second
operand can be fed to the A input of the ALU while the first operand is fed to the B
input by means of the B multiplexer.

The B constants, which are applied through the B multiplexer to the ALU,
provide elementary values (such as 1 and 2 for incrementing or decrementing
scratchpad registers). They also provide other values such as the switch register
address, more complex constants such as trap vectors or masks for manipulating
instruction offsets, and the conditional constants which are a function of machine status
and jumper selection. Thus, they are not truly 'constant'.

The B input to the ALU can be either the B constants value or one of four

possible functions of the B register:

B register: the contents of the register are applied directly to the ALU.

B extend: the B register contents are gated so that B<7> (MSB of the low-
order byte) provides sign extension for the high-order byte. Note
that in this case the value in the high-order byte is either all I s or

16-Jan-76 Hardware Description Page 9

all Os depending upon B<7> of the B register. The low-order byte of
the B register is applied directly to the ALU.

Byte duplication: either the low-order byte or the high-order byte may be
duplicated. Therefore, the B input of the ALU equals either B <15:8>
concatenated with B <15:8> or B <7:0> concatenated with B <7:0>.

Byte swapping: the high-order and low-order bytes are exchanged.
Hence, the B input of the ALU equals B <7:0> concatenated with B
<15:8>.

2.1.2.2 Arithmetic Logic Unit

The arithmetic logic unit (ALU) is the heart of the data path logic It performs
16 Boolean operations and 16 arithmetic operations on two 16-bit words. The ALU is
controlled by six input signals. One signal (ALUM H) selects either the logic or
arithmetic mode of operation. Four signals (ALUSO through ALUS3) select the desired
function. The sixth signal is the output of the carry (CIN) logic Basically, the ALU
receives two 16-bit words as inputs (AIN and BIN) and performs the operation
selected by the six control signals. The output of the ALU is used for Unibus
addresses and data, and internal processor registers such as the scratch pad register
or the processor status register. The output of the ALU is stored in the D register
and/or the BA register for use in subsequent microinstructions.

Operation of the ALU is also determined by the carry-in (CIN logic) and ca r r y -
out (COUT MUX) signals. The carry-in signal does not come directly from the
microprogrammed word, but is a function of the microprogrammed word and the
conditions (usually the instruction register) that are enabled at specific locations in the
microprogram flow.

The carry-out multiplexer (COUT MUX) provides multiplexing of the specific
carry information normally used in the PDP-11. The signals that can be selected are:
COUT 15, COUT 07, ALU 15, and PS(C). The COUT 15 signal represents the carry from
a word operation and the COUT 07 signal represents the carry from a byte operation.
These signals are used for condition code inputs and rotate/shift operations. The ALU
15 signal is the bit 15 output of the ALU which is used for rotate/shift operations.
The PS(C) signal is the carry bit from the processor status register. The signal
selected by the COUT MUX is clocked into an extension of the D register which is
called D(C). This storage extension is used in rotate/shift operations and in certain
arithmetic operations.

16-Jan-76 PDP-11/40E Microprogramming Reference Manual Page 10

2.1.2.3 Decoding

The address and data decoding logic is a combinational logic network that
decodes the output of both the D and BA registers. When the D register output is
decoded, the decoder senses whether or not the output (for both byte and word
segments) is zero (D <15:0> » 0). The BA (bus address) register is decoded to
determine if a 'processor address' has occurred, or if the address is less than specified
values. It should be noted that the decoding logic decodes the BA register and not the
Unibus address. A 'processor address' is the Unibus address of the internal registers
of the processor. If the decoded address is the address of the PS register (Unibus
address 177776) or the console switch register (177570), then either PS ADRS H or SR
ADRS H is true. If the decoded address is less than the specified value when using the
macro stack pointer, then a stack overflow violation may occur and BOVFL signal is
true. Stack limit errors are either yellow zone (warning) or red zone (fatal)

indications.

2.1.2.4 PS Register

The processor status (PS) register is an 8-bit register that stores information of
the macro processor; it includes the current priority of the processor (bits <7:5>), the
'result of the previous operation (condition codes bits N,Z,V,C), and an indicator for
detecting the execution of an instruction to be trapped during program debugging (T
bit). The status register is located between the two primary data paths: D MUX <15:0>
and BUS RD <15:0>. The register is loaded from the D MUX. The condition codes
control logic provides other inputs to the N,Z,V, and C bits. The register output is
either gated directly onto the Unibus (in cases where the processor has addressed the
PS register as an absolute Unibus address) or is gated onto the BUS RD <15:0> line for
use by the processor data paths. This latter case is used, for example, by the
condition code instructions which alter the contents of the processor status register.

2.1.2.5 Register REG

The 16 internal processor registers are referred to as the "scratch pad
register". Eight of these are macro programmable general registers which include the
program counter (PC) and stack pointer (SP). In the KD11-A processor, the additional
eight registers (not accessible to the program) are used for a variety of functions.
Such functions include: intermediate address (TEMP), source and destination data
(SOURCE, DEST), a copy of the instruction register, (IR), the last interrupt vector
address (VECT), registers for console operation (TEMPC.ADRSC), and a stack pointer
for operation of the KT11-D Memory Management Option (SP USER).

In summation, the data path logic is the fundamental section of the processor
and performs data storage, modification, and routing functions. The other two sections
of the processor (interface and control) exist primarily to support the data path logic.

16-Jan-76 Hardware Description Page 11

2.1.3 Control Logic

The final section of Figure 2.1 is the microprogram control logic which provides
the required control signals for the data path logic and the interface logic. The
primary element of the control logic is the read-only memory (ROM) which provides the
various microinstructions. The bits in each microinstruction (U WORD), in turn, control
the basic machine operation. Other elements within the control section include address
and address modification logic that receives inputs from the ROM, the instruction
register with associated decoding logic, various processor flags, and basic machine
timing and flag control logic. The format of the microinstruction is shown in Figure 2,2.
See Appendix A for a more complete description of the microinstruction format.

When a macro instruction is fetched from an external data storage location, the
instruction enters the processor from the Unibus, passes through the D MUX, and is
loaded into the instruction register under control of the microprogram. The output of
the instruction register is decoded by combinational logic (IR DECODE) to provide
microbranching (basic microbranch code, BUBC) for several branch conditions and the
discrete auxiliary signals required by condition code and ALU control logic. The logic
associated with the instruction register and condition codes will be discussed first
because of its interaction with the data paths section. We will then proceed to the
discussion of the basic microcontrol unit.

2.1.3.1 Condition Codes Input

The condition codes are used to store information about the results of each
instruction so that this information can be used by subsequent instructions. The
information recorded in the condition code bits (N,Z,V,C) of the processor status
register differ for each instruction type and often differ for theVpa^^
being executed. Furthermore, the information to be recorded can 'Vary for different
classes of instructions. The condition codes logic is combinational logic that alters the
condition codes during the latter part of an instruction cycle. During this time,
condition codes are combinations of data register contents, overflow situations, e t c
The decoded output of the IR DECODE logic and the select processor status (SPS) code
of the microinstruction determine which conditions are to be presented as the data
input to the processor status register. In addition, the SPS code determines when the
processor status register should be loaded directly from the D MUX.

2.1.3.2 ALU Control

The ALU control combinational logic receives the DAD (discrete alteration of
data) code from the microinstruction as a function of the IR decode logic and combines
it with the explicit ALU control through the SALU field of the microinstruction. In
general, the DAD code directly alters operation of the ALU; however, during the latter
part of an instruction, where common instruction flow paths exist for several
instructions, the DAD code is combined with the instruction register to alter operation
of the ALU.

16-Jan-76 PDP-11/40E Microprogramming Reference Manual Page 12

2.1.3.3 Flag Control

The flag control logic is closely related to the IR decode logic because certain
instructions require specific flags such as WAIT and HALT. " ' P ^ 0 ^ ^ ^ ^
control logic interact directly with the microbranch logic to provide the required
branch conditions in the microprogram flow to provide flag service.

2.1.3.4 U Branch Control

The next control store address (next machine state) is dependent on a number
of previous conditions. The purpose of the microinstruction branch control (U BRANCH
CONTROL) logic and the branch microtest (BUT) multiplexer is to select the next proper
machine state. The microbranch control provides some of the inputs to the branch
microtest (BUT) decoding logic by combining the diverse instruction decoding of the
instruction register and encoding it into two, three, four, or five bits of a microaddress
alteration, called Basic MicroBranch Codes for specific BUTs (BUBC (BUT XX)). For
most of the complicated branches, such as the first instruction branch or some of the
subsequent source or destination instruction branches, these codes are fairly
extensive. On the other hand, they may be fairly simple, consisting of only three bits
or , in some cases, three bits of another BUT encoded with one special condition. This
is particularly true with the INSTR 2 BUBC and the (BYTE and INSTR 2) BUBC.

2.1.3.5 BUT MUX

The branch microtest multiplexer (BUT MUX) selects sets of address alterations
to alter data into the microprogram pointer (UPP) which points to the next ROM
address. The BUT MUX provides a 5-bit output with the number of possible inputs on
the lowest order bits being greater than the number of inputs that can be selected for
the higher order bits. This corresponds to the fact that few of the branches involve
all five or six bits of address alteration. There are a number of address alterations
that involve only one bit, usually the lowest order bit.

The microbranch control logic provides wide branch encoding situations for
instruction situations (INSTR1, INSTR 2, and INSTR 3). A 5-bit input is possible for the
BUBC signal. In other cases, the instruction register itself may be used for a single
BUBC bit code when a single bit chooses one of two different microaddresses. The
flag control logic also provided certain inputs which alter only one bit of the
microaddress.

The actual selection of which input (wide or narrow branch, branch on
instruction, branch on flag) is to be used is determined by the microprogram branch
field (UBF) of the microinstruction. The UBF field directly selects which inputs of the
multiplexers are applied to the microaddress alteration logic (the OR gate on the block
diagram). The UBF field is five bits wide and the 37g branch conditions are specified
in Appendix A.

16-Jan-76 Hardware Description Page 13

2.1.3.6 U Word Control ROM and U Word Reg

The heart of the control logic is the microinstruction control ROM which stores
256 56-bit words, each of which represents a different machine state of the
processor. The ROM provides a wired OR output to enable easy expansion of the
processor as required by the writable control store option.

The microinstruction output of the ROM is latched in a buffer register (U WORD
REG), This permits one microinstruction to be used for machine control and selection
of the next address while the ROM is obtaining the next microinstruction. Although this
results in a faster processor, this implementation increases the complexity of the
hardware and makes the processor somewhat more difficult to understand.

Each microinstruction from the ROM consists of a control portion and a next
address portion. At the beginning of the current machine state, a ROM output
microinstruction is clocked into the U WORD register. The bits in the control portion of
the microinstruction select addresses and multiplexers and enable clocking gates (these
gates enable clock pulses toward the end of the machine state). The bits in the
address portion of the microinstruction access the ROM to obtain the next ROM word.
At this point, the address is fixed in the microinstruction register and alteration for a
BUT has not occurred.

The delay in using the buffer (U WORD register) is fixed by the settling time of
the flip-flops (approximately 15-20 ns). This is significantly better than the 60-90 ns
required for addressing the ROM. For this reason, the buffer takes the delayed output
of the ROM, clocks it at the beginning of the machine state, and makes it almost
immediately available (in that machine state) to the rest of the processor (data path,
interface, and the microprogram control itself).

The clock for the U WORD register is taken directly from the basic processor
clocking and is related to the clock length selection bits in the microinstruction control.
The clock is a function of a machine cycle and is the last pulse edge of the previous
machine cycle.

Each microinstruction is divided into two segments: address and control. The
address portion of the word is represented by BUS U <8:0> which is the address of
the next ROM word. The control portion is represented by BUS U <56:9> which
includes the control bits for the microinstruction. The control bits are applied directly
to the U WORD while the address bits pass through an OR gate to the microprogram
pointer (UPP) portion of the U WORD.

The outputs of the U WORD register are diverse and are used throughout the
processor. Outputs control the basic processor clock, microcontrol branching, and
elements of the interface and data path. These outputs are indicated by the labels on
the U WORD REG outputs.

16-Jan-76 PDP-11/40E Microprogramming Reference Manual Page 14

2.L3.7 Microaddress Alteration

Each microinstruction contains the address of the next microinstruction to be
used by the processor. This address is referred to as the Microprogram Field (UPF) of
the ROM. If this address were always used unchanged, little attention would have to
be given to it here. However, alterations to this address are made for branching
purposes. Therefore, there must be a method of modifying and storing this address so
that the next specified word can be fetched while the current microinstruction
executes. As shown on the block diagram, the hardware used to perform these
functions consists of the OR gates on the UPF output (BUS U <8:0>), the output of the
BUT MUX, and the UPP register. The base address of the UPF can be altered by the
BUT MUX inputs resulting in a different next ROM word address in the UPP register.

In discussing the addresses in the microaddress loop, it is important to realize
that an altered next address has been stored in the UPP register and that alterations
for the subsequent next address are fed to the OR gate. Both of these addresses are
clocked simultaneously; therefore, the address fed through the OR gate is clocked into
the UPP and the address that had been stored in the UPP is clocked out.
Consequently, in any given microinstruction, the control portion of the U WORD is
performing manipulations while the UPP address portion of that word is addressing the
next ROM word. The last UPP contents address of the above present U WORD are
stored in the Past Microprogram Pointer (PUPP) for diagnostic purposes.

Another address in the address loop is the output of the ROM which has been
selected by the next address in the UPP register. This address does not appear
immediately in the machine cycle (as is the case for the UPP next address) because
ROM access time is greater than flip-flop settling time. However, it is present about
midway through the U WORD state. This ROM output address, which appears on BUS
<8:0>, is a subsequent next address and is applied through the OR gate to the UPP
register. The next microinstruction is becoming available across the entire ROM and is
to be clocked in after the current machine state ends. If the subsequent next address
is fixed (i.e., no branches are required), then there is no real difference between the
address and control portion of the ROM/U WORD interface. If a microbranch is to
occur, it must occur at this point before the subsequent next address is clocked into
the fixed UPP register. The branch requires a subsequent next address with some Os
in it. It also requires the BUT MUX logic to input alterations to this address. Both of
these occurrences require that the current microinstruction has enabled appropriate
control bits in the address and control sections. Note that the microbranch test in a
current word cannot alter the next word. However, it can alter the following word (the
subsequent next word).

Consider, for example, the portion of microcode for the MOV instruction
beginning at microinstruction MOV00 (see page 4 of the Flow Diagrams in the KD11
Processor Engineering Drawings or Appendix D, page 69, of this document). MOVOO is
executed on any MOV or MOVB instruction with destination mode one, i.e. of the form
MOV(B) src, @Rn. Since the destination mode is one, the BA register is set to R[DF],
Further action, however, depends on (1) whether the instruction is MOV or MOVB and,
independently, (2) whether the source mode is zero or not. To determine this, a
special microbranch, the BUT 22, is invoked. The instruction register is examined; if

16-Jan-76 Hardware Description
Page 15

the source mode is zero, a 1 is ORed into the BUT MUX; independently, if the
instruction is MOVB, a 2 is ORed into the BUT MUX. As MOV00 and its BUT 22 are
being executed, microinstruction MOV07 is being fetched unconditionally. MOV07 is
then clocked into the U WORD register and executed. In the MOV00 sequence, it is
essentially a noop; it is necessary, however, so the needed four-way branch can occur.
The UPF field of MOV07 contains the address of MOV16, which is divisible by four (the
address is 200g, as it happens); as MOV07 is clocked into the U WORD register, the
UPF field is ORed with the BUT MUX and clocked into the UPP register. Once MOV07
completes, the desired four-way branch is taken to either MOV16, MOV17, MOV14, or
MOV13 (locations 200g, 201g, 202g, or 203g). The reader is encouraged to trace
several examples in the standard ROM microcode; as he gains familiarity with it, the
trickiness of the technique will diminish, but its subtle charm will persist.

2.1.3.8 JAMUPP Logic

The microprogramming address loop is also affected by the Jam Microprogram
Pointer (JAMUPP) logic which alters the sequential nature of the address loop. The
JAMUPP logic provides a means of jamming an address into the microprogram pointer
to modify the microprogram for certain conditions such as bus errors, stack overflow,
auto restart, e tc This logic provides the next microinstruction address directly as a
function of previous start or error conditions in the machine. The output of the
JAMUPP logic directly sets or clears the UPP register flip-flops to establish the
required address. This method differs from the normal NOT/OR inputs which are
clocked into the UPP register flip-flops.

2.1.3.9 PUPP Register

P o i n t e r ? ^ V ' e s y e ^ ; 'vfSj? '° <P".

previous mLoprogram po7n , „ o s p l l y j ^coZis"SZ "° .* « ^
Note that , h . previous poin.e, ^ Z Z ^ T ^ Z ^ C ' Z l T ^
2.1.3.10 B U P P & S R Match

The output of the UPP register is also fed to the BUPP & SR MATCH logic which
is used for maintenance purposes. This logic compares the contents of the UPP
register (UPP <8:0>) with the low-order bits of the switch register (SR <8:0>) and
generates a match signal when UPP <8:0> equals SR <8:0>. This match signal can be
used as a sync signal to trigger an oscilloscope or can be used to stop the clock (halt
the machine). For example, to obtain a strobe signal upon entering ROM address 234,
this address would first be set in the switch register on the programmer's console.
When the contents of the UPP register matched the switch register value, the clocking
pulse ending that machine state would be enabled as a strobe signal. Because the UPP
register contains the next ROM address, the pulse would occur at the end of the
machine state just prior to the state of the address in the switch register.

16-Jan-76 PDP-11/40E Microprogramming Reference Manual Page 16

2.1.3.11 Clock Control

The clock logic and related timing signals are basic to any processor. The clock
signals that are generated are either used directly or are gated with enabling signals.
These enabling signals are derived directly from either the microinstruction or from
machine states (flags, flip-flops, Unibus states, etc.). Data transfers and processor
initializations within the processor itself are synchronous; they occur at specific times
within machine states. Three different clock cycles are provided by the logic: 140 ns,
200 ns, and 300 ns. This synchronous operation is designed for continuous running of
the processor as the ROM sequences one microinstruction after another. The
processor should, however, be considered as a combination of both synchronous
operation and asynchronous operation. The asynchronous nature of the processor is
due to the fact that, upon certain conditions, the clock is turned off and waits for a
restart. An obvious turn-off situation is during Unibus data or bus ownership
operations which are specified as asynchronous functions.

There are three functional elements that comprise the processor clock logic: the
clock pulse generator, the clock control, and the clock enable gates.

2.1.3,12 Clock Pulse Generator

The clock pulse generator produces the system clock pulses when triggered by
the clock control logic. These clock pulses are used throughout the processor and are
combined with the enable signals of the ROM to act upon the three major segments of
the processor (interface, data path, and microprogram control). There are three cycle
lengthes generated by the clock pulse logic: CL1 (140 ns) cycle which generates a P I
pulse; CL2 (200 ns) cycle which generates a P2 pulse; and CL3 (300 ns) cycle which
essentially combines the CL1 and CL2 cycles and consists of P2 and P3 pulses. The
primary purpose of the CL3 cycle is to allow a scratch pad register to be used as the
A- input in an ALU funtion and then loaded from the result of this ALU function. The
specific cycle length (CL1, CL2, or CL3) for a microinstruction is determined by the
clock control bits (CLK field).

2.1.3.13 Clock Control

The clock control logic consists of a clock (CLK) and an idle (IDLE) flip-flop. The
CLK fl ip-f lop provides a pulse, while the IDLE flip-flop drives the RUN console light and
indicates when the processor is actively processing microinstructions.

2.1.3.14 Clock Enable Gates

The clock enable gates receive the pulses generated by the clock pulse
generator. During each machine state, microcontrol bits control the passage of these
clock pulses to specific registers. When it is desired to clock a register, the
microcontrol word has the appropriate bit enabled and the clock pulse passes through
the enable gate to the clock input of the specified register.

16-Jan-76 Hardware Description Page 17

The flag control logic recognizes a variety of asynchronous conditions and
changes the sequence of processor operations in response to these conditions. The
logic consists of discrete flip-flops and combinational logic that determines sequencing
of trap elements, trap instructions, and error traps. When any of these conditions
occur, the processor enters a trap service sequence of microprogram states and the
logic generates a trap vector that is used to transfer system control to a specific trap
service oroeram.

2*L4 Interface of Extension to the Basic PDP-11/40

A basic constraint in the design of the PDP-11/40 extension was the set of
processor signals that is readily available. All the inputs to the microinstruction
register are available as well as the inputs and outputs of the microinstruction address
register so that the extension can supply its own 56 bit microinstruction to control the
basic data paths and registers. Additional registers and data paths are controlled by
additional bits on the microinstruction. In fact, the extension supplies another 24 bits
to control its functions to make a microinstruction of 80 bits. Besides the
microinstruction lines, there are two data busses: the DMUX bus which supplies data
from the processor and the Bus RD which supplies data to the processor. In a normal
PDP-11/40, these lines provide an interface to the EIS/FIS options. The writable
control store pre-empts these physical and logical positions. In addition, some twelve
additional wires must be added to the backplane.

2.2 The Extensions to the PDP-11/40

As shown in Figure 2.1, central to the PDP-11/40E is the writable control store.
It consists of 80 1024-bit bipolar random access bipolar memory integrated circuits
(Fairchild's 93415). The memory has a dual mode organization: when supplying
microinstructions it is a 1024 x 80 bit memory; when data is being written into or read
from it it is organized as a 5120 x 16 bit memory. In the 1024 x 80 bit mode, the
writable random access memory (RAM) feeds both the 56 bit microinstruction buffer
(U<56:0>) in the basic processor and the 24 bit extended microinstruction buffer
contained in the extension. The address multiplexor (UPP MUX) selects the •
microinstruction address from the processor (EUPP<8:0>) as well as three additional
address bits in the XUPF register (added to expand the control address space from
512 words to 2048 words). In the 5120 x 16 bit mode, the UPP MUX selects the stack
output for the address of the 16 bit word to be written or read. In a write operation,
the data comes from the DMUX bus; in a read operation, the data goes to the BUS RD
to the D register. Although upon examination of the flow chart, other paths and
destinations seem possible, the tight timing considerations make the D register the only
source and destination of RAM data.

Since the RAM consists of active elements, the writable control store loses its
contents whenever power is removed. In order to have some basic code to be able to
read, write and execute the code in the microinstruction RAM, a 32 word non-volatile
programmable-read-only-memory (PROM) is included in the extension.

16-Jan-76 PDP-11/40E Microprogramming Reference Manual Page 18

XUPF<10:0> «XU<58:48>

The first 256 words of the control store address space is the original ROM of
the PDP-11/40. The next 32 words are the extension PROM. The next 736 words are
not implemented and the upper 1024 words are the RAM control store.

The DEST/MSC field supplies a 5 bit operand which is decoded into a number of
operations described in Appendix A. It can specify that the high order 16 bits of the
microinstruction, the EMIT field, be treated as a 16 bit data word. When this happens,
the logical functions of the high order 16 bits are disabled. The data path is from the
XU Buffer through the SMUX and then either through the EMUX to the stack or through
the mask/shifter to the BUS RD or the EUBC lines. The path to be taken depends on
the particular DEST/MSC code.

When the EMIT field is not being used, the low order 12 bits (XU<75:64>) are
divided into three 4-bit fields: one to specify the left mask limit, one to specify the
right mask limit, and one to specify the shift count.

XU<76> is the carry propagate control. When it is on, it applies the output of
the COUT MUX from the last time it was enabled to the carry input of the ALU, and, at
the end of the instruction, stores the new value of the COUT MUX. This function is
particularly useful for multiple precision arithmetic.

The stack, a 16 word x 16 bit memory, is either used as a push-pop stack for
data or, in the case of reading or writing the RAM, as an address. The push/pop
operation is under direct control of the microprogrammer. The data input is selected
by the EMUX to be either the DMUX bus or the output of the SMUX. The stack output
can be placed via the SMUX, shifter, and mask unit either on the BUS RD, or on the
EUBC lines to modify the microinstruction address of the next microcycle. Directing the
SMUX to select the EMIT field (the high order 16 bits of the XU Buffer) and writing the
output of the SMUX onto the stack and then placing the output of the stack on the
EUBC lines implements microsubroutine return addresses.

The shifter, operating on the output of the SMUX, implements a 0 to 15 position
right rotate. The right/left mask unit allows the programmer to specify how many bits
from the left and how many bits from the right will be masked off (made zero). The
combination of the shifter and right/left mask allows the extraction of any contiguous
n-bit field located anywhere in the result. The result can be placed either on the BUS
RD as data or on the EUBC bus for multi-way branching.

2.2.1 The Extended Micro Instruction

The logical bit position assignments have been changed from the original DEC
numbering scheme to improve the ease of programming. In particular, the next
microinstruction address field (UPF) has been moved from U<7:0> to XU<55:48>. This
field concatenated with the extended address field makes a new 11 bit address field

16-Jan-76 Hardware Description Page 19

« t . r k n ^ 7 ? 1 5

 St3lk
 p u s h / p o p e n a b l e - W h e " ^ e value is a one and a write into t°hCr;- P°inter " flrSt

 de«*™^d> « ™ < h* word is written, n a read operation, the pointer is incremented at the end of the instruction.

m u l t i p l I x o r C a r r y ° U t m U ' t i p , e X e r < X U < 7 9 ; 7 8 >) allows direct control of the ALU carry out

2.2.2 RAM READ-WRITE Operations

The timing on a READ/WRITE operation on the RAM is such that the
microinstruction following the instruction with the RAM operation must be located in
the extension PROM unit. This is primarily because the PROM address lines do not go
through the UPPMUX. It also means that the PROM cannot be read as data. The
address for read/write RAM operations is on the top of the stack. The address
contained on the stack is a byte address to be consistent with other PDP-11 addresses
even though RAM can only be accessed as 16-bit words. The 1024 word x 80 bit
memory is divided up to provide a 5120 x 16 bit memory that has contiguous
addresses. This is accomplished by taking STACK<14,2:1> and using the results as a
group select. Thus the first 4096 words contain the low order 64 bits of each
microinstruction and the next 1024 words contain the high order 16 bits from each
microinstruction. STACK<12:3> specify which of the 1024 microinstructions is being
addressed.

As soon as the microinstruction is decoded for a RAM operation, and the PROM is
deselected, the UPPMUX selects the stack as the address source. On a write operation,
the data is written after a delay of 100 nanoseconds from the start of the instruction.
On a read, the data is presented to the BUS RD after the specified shifting and masking
occur, and the D register is clocked at P2 time. At P2 time, the PROM is selected and
the UPPMUX switches back to the UPP lines. Since P2 time marks the beginning of the
read cycle for the next instruction, all RAM operation instructions must be CL3 cycles.

2.2.3 Entry into the Writable Control Store

Whenever the microprocessor decodes an unused operation code, it transfers
control to location 0 of the extension PROM. (The PROM is actually enabled whenever
the microinstruction address falls in the range 256:512.) At that time the instruction
that caused the transfer is located in general register 13, the B register, and in the
instruction register.

16-Jan-76 PDP-11/40E Microprogramming Reference Manual Page 20

2.2.4 Unibus Control

The data for UNIBUS write operations is contained in the D register and the
address is contained in the BA register. Data from READ operations goes through the
DMUX. One of the consequences of this is that UNIBUS data cannot be read directly
into the D register. Normal operation is to set C I BUS, CO BUS and BG BUS for the
appropriate operations and set CLKOFF. The system will automatically delay bus
operations until the bus is free. The clock is turned on at the end of the Unibus cycle
or when CLKOFF is executed, whichever occurs last. MSYN is turned off at the next P I
or P3 cycle so the instruction following a CLKOFF operation should be either a P I or
P3 cycle.

Turning the clock off can also be used to await the end of the peripheral cycle
on the UNIBUS (C I BUS, CO BUS, BG BUS = 010). The clocking of non-processor
requests (NPR's) and interrupts are influenced by the microprogram. In particular,
NPR's are clocked either by MSYN, BGBUS, SETCLK when the clock is off waiting for
the end of a peripheral cycle, or clocking the instruction register. Break Requests, i.e.
bus requests at priority levels 7, 6, 5, or 4, are strobed on BUT26, MSYN, and CLK IR.
If youVe. in a long sequence of microinstructions without UNIBUS traffic, care must be
taken to allow NPR's to occur. Break Requests are normally not as important and
would require interrupt handing microcode in the writable control store or a return to
the basic 11/40 microcode.

PDP -11/40E

COMPONENT Description

ADDRESS Display

Arithmetic Logic
Unit (ALU)

Arithmetic Logic
Unit Control
(ALU CONTROL)

Indicator lights located
on the KYI 1-D Program
mer's Console.

Four 74181 IC chips
and one 74182 IC chip
provide a 16-bit arith
metic logic unit with a
lookahead carry.

Dependent on mode
selected, can perform
up to 16 logic functions
and up to 16 arithmetic
functions. (See ALU
TABLE, print
D-BD-KD11-A-BD.)

One 8233 IC (dual
2-line to 1 -line multi
plexer) and combina
tional logic.

Generates control signals
that are used to specify
the ALU function.

Contents of the Bus Address
(BA) Register.

Data: AIN- 16-bit wide
input from buffered
BUS RD bus

BIN-16-bit wide
input from B MUX

CIN-carry insert to
LSB of ALU from
CIN logic

Control: SALUM, SALU
(03:00) 5-bit
wide control that
specifies ALU
function.

ALU control signals from:
microword bits, IR decode
logic, and external control
(KE11-E).

Displays contents of the BA
Register on console ADDRESS
display.

Data: Provides 16-bit
output to either the
D Register or to the
BA Register through
the BA MUX.

Status: COUT 7, COUT 15,
ALU 15 to input of
COUT multiplexer.

Five control signals, SALUM,
SALU (03:00) that select the
ALU function to be performed.

T a b l e 2 . 1 (C o n t)
PDP-11/40E F u n c t i o n a l Components

Component Description Input Output

B Constants Combinational logic net
work providing elemental
values for incrementation
and decrementation. Also
provides more complex
constants such as trap vec
tors and masks.

Constants generated are a
function of the following
inputs:

SBC (03:00) from the
microword.

STPM (04:02) from the
trap sensing logic.

Selected constants applied to
the B MUX.

B Multiplexer (B MUX) Eight 74153 multiplexer
IC chips.

Provides the means of
selecting the data input
to the B input (BIN) of
the ALU.

Control of the high and low
bytes are independent sig
nals from the microword.

Any one of the following
inputs can be selected:

a. BC (15:00) (B con
stants)

b. B (15:00) (direct)

Provides 16-bit wide input
to the B input of the ALU.

c. B (15:08, 15:08)
(duplicate upper byte
of B Register)

d. B (07:00,07:00)
(duplicate lower byte
of B Register)

e. B (07:00, 15:08)
(swap bytes of B Register)

f. B (15:08=7,07:00)
(sign extend lower byte
of B Register)

T a b l e 2 . 1 (C o n t)
PDP-11/4OE F u n c t i o n a l Components

Component Description Input Output
B Register

Bus Address
Multiplexer
(BA MUX)

Four 74174 IC chips
provide a 16-bit tem
porary storage register
for the B input of the
ALU.

Four 8233 multiplexer
IC chips. The BA MUX
loads the BA Register.

Input is loaded from the output
of the D MUX and is therefore
dependent on the D MUX selec
tion.

Receives 16-bit wide input from
either the Register Data bus (BUS
RD) or the output of the ALU.

Provides a data input to the
B MUX. This input (which is
the B Register output) is par
titioned into a high (15:08)
and low (07:00) byte.

A 16-bit wide output that is
loaded into the Bus Address
(BA) Register.

ro

Bus Address Register
(BA Register)

Four 74174 IC chips
that form a 16-bit
temporary storage
register.

A single microword control sig
nal selects one of the two possible
inputs. A high signal selects the
ALU.

Receives a 16-bit wide input
from the BA MUX.

Transmits a 16-bit address to
the Unibus. This address is
applied through bus drivers
to bus address lines BUS BA
(17:00).The address is also
applied to the address display
and is decoded for processor
address response.

Component

Bus Register Data
(BUS RD)

Branch Microtest
Decode
(BUT DECODE)

Branch Microtest
Multiplexer
(BUT MUX)

T a b l e 2 . 1 (C o n t)
P D P - 1 1 / 4 0 E F u n c t i o n a l Components

Description Input Output

Four 74H04 IC chips
that provide 16 inver
ters to establish proper
input polarity for the A
Input (AIN) of the ALU.

Receives input from three
sources by means of a
wired-OR bus:

a. Scratch Pad Register
data (16 bits)

Output provides 16-bit data
to either the A input (AIN)
of the ALU or to the bus
address (BA) multiplexer.

b. Processor Status
Register (8 bits)

c. External options
(16 bits)

Network of combina
tional logic circuits that
decodes the Microbranch
Field (UBF) in each
microword and generates
auxiliary control signals.

UBF (04:00) from the
microword.

Control signals, especially to
the flag control logic.

Six multiplexer IC chips:

a. three 16-line to 1-
line type 74150
multiplexers

b. two 8-line to 1-line
type 74151 multi
plexers

c. one dual 4-line to
1-line type 74153
multiplexer

Any one of the following are
selected by microword UBF
(04:00) field:

a. IR Register bits

b. branch microbranch
control signals

c. IR decode signals

d. machine status and
flags

Control signals that allow modi
fication of the microprogram
field, UPF (07:00), prior to
clocking the address into the
UPP of the Microword Buffer
(UWORD).

Buffered Microprogram
Pointer and Switch
Register MATCH (BUPP
& SR MATCH)

Clock Control

Clock Pulse Generator

T a b l e 2 . 1 (C o n t)
P D P - n / 4 0 E F u n c t i o n a l Components

Description Input Output

Nine exclusive-OR gates
connected as an equiva
lence detector.

Compares the contents of
the Microprogram Pointer
Register (UPP) with the
Switch Register (SR) to
generate a MATCH signal.

The MATCH signal can be
used to stop the clock during
maintenance operation or to
generate a scope synchronizing
signal.

Comparing the two registers
permits stopping operation
or monitoring operation at
a specific ROM word.

Network of combinational
logic circuits and delay line
controls the CLK and IDLE
flip-flops.

Three delay lines selected
by combinational logic
circuits to generate the
clock pulses specified by
the current microword.

BUPP (08:00) and SR (08:00)

CLKOFF from the microword
as well as various restart and
continue signals.

Pulse signal from clock con
trol and the clock length sig
nals CLKL0 and CLKL1 from
the microword.

UPP MATCH signals

Control signals to the clock
pulse generator.

Timing pulses Pi , P2, and
P3.The RECLK signal which
provides for continuous
microword operation.

T a b l e 2 . 1 (C o n t)
PDP-1 l /4OE F u n c t i o n a l Components

Component Description Input Output

Clock Enable Gates Combinational logic net
work that routes clock
outputs to the INTERFACE,
DATA PATHS, and MICRO-
CONTROL portions of the
processor.

Timing pulse PI, P2, or P3
from the clock pulse generator.

Various clock enable signals:
CLKIR, CLKBA, CLKB, CLKD,
WRH, WRL bits from the current
microword.

Various clock signals. (CLK
IR, CLKD, CLK BA,etc) .

D Multiplexer (D MUX) Eight 74153 multiplexer
IC chips.

A 2-bit microcontrol field
selects one of the following
four inputs:

The D MUX distributes 16-bit
data word to:

a. BUS RD (including
the Scratch Pad
Register)

a.

b.

Instruction Register

Scratch Pad Register

b. D Register c. B Register

c. D Register shifted
right

d.

e.

PS Register

DATA display
d. Unibus data

f. Internal data bus (DMUX)
for basic machine and
options

D Register Four 74174 IC chips
form a 16-bit temporary
storage register.

Output of ALU. Provides a 16-bit output to the
D Multiplexer (D MUX) and to
the Unibus data lines [BUS D
(15:00)1

T a b l e 2 . 1 (C o n t)
P D P -1 1 /4 0 E F u n c t i o n a l Components

Component Description Input Output

DATA Display Four 7380 IC chips that
invert the output of the
D MUX for display on
the console.

16-bit output of the D MUX. 16-bit data to the console DATA
indicators.

Decoding
(ADRS & DATA)

Combinational logic net
work that decodes the Bus
Address Register and generates
internal control signals for
addressing processor registers.
Sensing is provided for stack
overflow situations and zero
data in the D Register.

18-bit inputs from Bus Address
(BA) Register and the D Register.

Processor status (PS) Address

Stack Limit Register (SLR)
address (KJ11-A Option)

Scratch Pad Register (REG)
address

Switch Register (SR) address
BOVFL STOP and BOVFL
signals D Register zero data.

Drivers Three 74H04 driver IC
chips provide 18 buffer
gates transmitting the
UPP address to the PUPP
Register and to an expan
sion ROM.

Microprogram Pointer (UPP)
output of UPP Register.

Basic Microprogram Pointer
(BUPP) for application to
PUPP register.

Expansion Microprogram
Pointer (EUPP) for an expan
sion ROM (KE11-E,KE11-F).

Instruction Register
(INSTR REG)

Four 74175 IC chips
forming a 16-bit storage
register that holds the
instruction.

Output of D MUX clocked
the instruction fetch sequence.

Output applied to IR decode
logic where it is decoded and
used to control the micro
program sequence. Some bits
used directly for microbranching
and Scratch Pad Register selec
tion.

T a b l e 2 . 1 (C o n t)
P D P - 1 1 / 4 0 E F u n c t i o n a l Components

Component Description Input Output

Instruction Register
(IR) Decode

Large network of com
binational logic circuits
that decodes the Instruc
tion Register instruction
and generates appropriate
control signals to perform
the specified function.

16-bit instruction from the
Instruction Register.

Generates control signals that are
a function of: the operation code,
instruction format, and specified
register.

Primary control signals are sent
to the: ALU, microbranch
control logic, and the BUT MUX.

JAM Microprogram
Pointer (JAMUPP)

Sequential logic network
consisting of flip-flops,
one-shots, and decoders.
This logic permits jamming
an address into the UPP
to modify the microprogram
if certain conditions are
present.

Internal control signals dependent
on existing condition. Conditions
causing JAMUPP are:

a. bus errors

b. stack overflow (red zone)

c. auto restart (PWR UP)

d. console switches (INIT)

Set and clear signals to UPP por
tion of the U WORD. Timing
signals to load newly selected
ROM word into the Microword
Buffer (U WORD).

Processor Status (PS)
Register

Four 7474 IC chips
providing eight storage
flip-flops to hold the
processor status word.
This word contains
condition codes and
processor priority.

Input may be either from D
MUX (07:00) or may be from
condition code logic.

Output may be gated onto
Unibus on lines BUS D (07:00)
or may be gated for processor
use on lines BUS RD (07:00).
Individual bits used from
branch instruction decode and
for microbranching.

t

T a b l e 2 . 1 (C o n t)
P D P - 1 1 / 4 0 E F u n c t i o n a l Components

Component Description Input Output

Past Microprogramming
Pointer (PUPP) Register

Two 74174 IC chips
providing a 9-bit
storage register for
keeping a history of
the previous UPP
address, which is the
present microword
address.

Loaded with the contents of
the UPP Register at each sys
tem clock.

Register contents display on
KM 11 -A Maintenance Console
option when used during
maintenance operation.

Register (REG)
(Scratch Pad Register)

Four 3101 IC chips
providing a 16 x 16
read/write facility.
Basically, this repre
sents the 16 general-
purpose processor
registers (referred to
as the Scratch Pad
Register).

Data: 16-bit input from
the D MUX

Control: 4-bit address
input from REG
ADRS input
logic

2-bit read/write
control from
microword

Provides 16-bit data word to BUS
RD buffer for transfer to one of
the following:

a. AIN of ALU

b. BA Multiplexer

c. D Multiplexer

Register Address
(REG ADRS) Input

Combinational logic
network used as an
address multiplexer to
select one of the 16
general-purpose Scratch
Pad Registers for reading
or writing.

There arc four possible sets of
inputs. One of the four is selected
by the microword signals:

a. IR (02:00) - 3-bit destina
tion field from instruction
register

b. IR (08:06) -3-b i t source
field from instruction regis
ter.

Provides address selection to the
register (REG).

T a b l e 2 . 1 (C o n t)
P D P - 1 1 / 4 0 E F u n c t i o n a l Components

Component Description Input Output

Register Address c. RIF (03:00) -4-b i t field
(REG ADRS) from microword directly
Input (Cont)

d. BA (03:00) -4-b i t field
from Bus Address Register

Microword signals arc:

SRD - Selects Register
Destination, IR (02:00)

SRS - Selects Register
Source, IR (08:06)

SRI - Selects Register
Immediate, RIF (03:00)

SRBA - Selects Register
Bus Address, BA (03:00)

Microbranch Control Large network of com Instruction Register bits Data signals to the BUT MUX.
(U BRANCH CONTROL) binational logic circuits These signals are used to modify

that provide data signals IR decode signals the basic ROM address as a func
for modifying the base tion of BUT MUX selection from
ROM address. Machine status (i.e., switches, the microword.

Unibus, control flip-flops,
etc.).

T a b l e 2 . 1 (C o n t)
PDP-11/40E F u n c t i o n a l Components

Component | Description Input Output

Microword Control
(ROM)

A read-only memory
storing the KD11 -A
microprogram. The ROM
stores 256 56-bit words.

Fourteen ROM IC chips
providing storage for the
256 words. Each chip
stores 4 bits of the 56-bit
word.

Contents of UPP Register
selects the next control
word to be retrieved from
the ROM.

56-bit microword divided into
address bits BUS U (08:00),
and control bits BUS U (56:09).

Microword WORD
Register
(U WORD)

A 56-bit storage register
consisting of type 74H74
and 74174 IC chips. This
register is used to buffer
the output of the ROM
which provides the signals
defining the operation of
the KD11-A data path
and control.

Output of the NOT/OR gate
that receives inputs from the
ROM, the BUT MUX, and the
EUBC for U (08:00); output
of the ROM directly for
U (59:09).

UPP (08:00) are the nine low-
order bits of the U word which
arc used to select the next U
word.

U WORD for U (56:09) have a
variety of mnemonics related
to their control functions.

Table 2 .1 (Cont)
PDP-11/40E F u n c t i o n a l Components

Component Description Input Output

Microprogram Pointer
(UPP) Register

Five 74H74 IC chips
forming an 8-bit address
register. The UPP register
points to the address of
the next microword to
be read.

Address of ROM location to
be read during current machine
cycle. The address loaded is
a function of:

a. UPF (07:00) of ROM
word presently being
addressed by the UPP
Register.

UPP (08:00) - selects one of
256 control words stored in
the ROM.

It is the address portion of the
U WORD Buffer noted above.

or

Basic Microbranch
Control (BUBC)
signals for microaddress
modification (basic
machine).

c. Expansion Microbranch
Control (EUBC) signals
for microaddress modi
fication (optional
expansion).

Table 2.1 (Cont)
PDP-11/4QE F u n c t i o n a l Components

Component D e s c r i p t i o n Input Output

CPFF One 74S74 D f l i p - f l o p
t h a t s t o r e s a carry b i t
a c r o s s mul t i -word a r i t h
m e t i c o p e r a t i o n s .

Upon c o n t r o l of the CP
b i t of the XU word, i s
c locked from the COUT
MUX o u t p u t .

Upon c o n t r o l of the CP
b i t of the XU word,
s u p p l i e s the ALU CIN.

EMUX Four 74158 m u l t i p l e x e r
c h i p s supply input to
the s tack and the RAM.

Upon c o n t r o l of the
DEST f i e l d of the
XU word, i s c locked
from e i t h e r the DMUX
or the SMUX o u t p u t .

S u p p l i e s 1 6 - b i t data
to both the s tack and
the RAM.

EUBC Drivers Four 7412 c h i p s supply
inpuc to the EUBC.

Open c o n t r o l of the
DEST and MSC f i e l d s
of the XU word, the
1 6 - b i t Mask and the
1 6 - b i t S h i f t ou tput s
are r e c e i v e d .

S u p p l i e s an 1 1 - b i t
va lue to the EUBC.

Mask Four IM5600 PROM c h i p s
supply a 1 6 - b i t mask
for f i e l d e x t r a c t i o n .

The RML and LML f i e l d s
of the XU word.

S u p p l i e s a 1 6 - b i t mask
to the RD BUS and EUBC
d r i v e r s .

PROM Control S tore Four IM5600 PROM ch ips
supply microwords to
the XU word b u f f e r .

Address r e c e i v e d from
the UPP l i n e s .

An 8 0 - b i t m i c r o i n s t r u c
t i o n i s s t o r e d i n the
XU word r e g i s t e r and
the U word r e g i s t e r .

RAM Control S tore 8 0 93415 RAM ch ips s u p
p ly microwords to both
the XU word b u f f e r and
to the SMUX.

1 1 - b i t address r e
c e i v e d from the UPP
MUX. 1 6 - b i t data
r e c e i v e d from the
EMUX.

8 0 - b i t data i s d i s t r i b
u ted to both the XU
word b u f f e r and to the
SMUX.

Table 2 .1 (Cont)
PDP-11/4QE F u n c t i o n a l Components

Component D e s c r i p t i o n Input Output

RD BUS Drivers S i x 7412 ch ips supply
input to the RD Bus.

Upon c o n t r o l of the
DEST and MSC f i e l d s
of the XU word, the
1 6 - b i t Mask and the
1 6 - b i t S h i f t o u t
puts are r e c e i v e d .

S u p p l i e s a 1 6 - b i t o u t
put to the RD BUS l i n e s .

S h i f t e r Four 8243 and four
74158 c h i p s comprise
a b a r r e l s h i f t u n i t .

Upon c o n t r o l of the SC
f i e l d of the XU word,
r e c e i v e s the 1 6 - b i t data
from the SMUX o u t p u t .

S u p p l i e s 1 6 - b i t d a t a ,
proper ly r o t a t e d , to
the EUBC and RD BUS
d r i v e r s .

SMUX 16 74151 m u l t i p l e x e r
ch ips s e l e c t the
source of the e x t e n s i o n
o u t p u t .

Under c o n t r o l of the
DEST and MSC f i e l d s
of the XU word, 16-
b i t input i s s e l e c t e d
from the S tack , the
Stack P o i n t e r , the
EMIT f i e l d of the XU
word, and the f i v e
1 6 - b i t f i e l d s of the
8 0 - b i t RAM o u t p u t .

The s e l e c t e d 1 6 - b i t va lue
i s s e n t to both the S h i f t e r
and to the EMUX.

Stack Four 74S189 RAM chips
provide 16 words of
working memory.

Under c o n t r o l of the
DEST and MSC f i e l d s
of the XU word, a 4 -
b i t address i s r e
c e i v e d from the Stack
P o i n t e r and 1 6 - b i t
data i s r e c e i v e d from
the EMUX.

1 6 - b i t output i s provided
to both the SMUX and to the
UPP MUX.

Stack Po in ter One 74191 chip p r o
v i d e s an address for
the S tack .

Under c o n t r o l of the
DEST and MSC f i e l d s
of the XU word, the
4 - b i t SC f i e l d of
the XU word i s r e
c e i v e d .

F o u r - b i t output i s s u p p l i e d
to the Stack address l i n e s .

Table 2 .1 (Cont)
PDP-11/40E F u n c t i o n a l Components

Component D e s c r i p t i o n Input Output

UPP MUX Three 74157 m u l t i p l e x e r
ch ips s e l e c t the proper
RAM a d d r e s s .

T e n - b i t input i s r e c e i v e d
from both the Stack and
from the UPP l i n e s .

T e n - b i t address output i s
supp l i ed to the RAM.

XU Word R e g i s t e r Four 74174 ch ips hold
the 2 4 - b i t XU word as
i t i s e x e c u t e d .

2 4 - b i t input from both
the PROM and RAM c o n t r o l
s t o r e s and 3 - b i t input
from the EUBC Dr ivers
are r e c e i v e d .

T h r e e - b i t output to the
SMUX, and v a r i o u s c o n t r o l
l i n e s are s u p p l i e d .

RAM
CONTROL STORE

Mc[1024:2047] (7 9 : 0 0)

ST^(12:03)'

UPP
MUX

M5C/DEST
DECODE

PROM CONTROL STORE
Mc[_25(p:d87] 0 9 : 0 0)

UPP<\0-00)s

EU&C<10 08>
XU<79:59)-

VE.MIT<15:00>

4 ^ XU<,58:5(b)

XU3UF XUPP XU WORD REGISTER

XUPP<10:08>

EXTENSION

5ASIC PROCESSOR
EXTENSION

BASIC PROCESSOR

INSTR REGISTER k}— CLK IR

0) CONDITIONAL
CODES
INPUT

ALU CONTROL

INSTR DECODING
£ U WORD CONTROL

kh-DAD(3:0>(i)

s UPP (08-00)

ROM
CONTROL STORE

Mc[000 :255] <56:00>

BUBC<05:00>

E>C<07:00>

U WORD REGISTER

CLK U<5fc'.17) J
CLK U<16:09)-J-C4

| ^ U (5 6 : 0 9 , 0 7 : 0 0)

BUS U(5<b:09>

- BUS U<08:00)

JAMUPP LOGIC

U BUPFER<5G09> UPP<07:00)

U WORD OUTPUTS
TO INTERFACE, DATA
PATHS, AND CONTROL PUPP REGISTER

SR (08:00> - d B U P P * S W » T C H bK\v»o.̂ W-H>| REGISTER MATCH
• UPP MATCH

-P MATCH

16-Jan-76 PDP-11/40E Microprogramming Reference Manual Page 38

3. MICRO/40 Assembler

3.1 Introduction

MICRO/40 is an assembler for the PDP-11/40E developed at Carnegie-Mellon
University. It was written in SAIL on the PDP-10 and hence runs as a cross-assembler
on the PDP-10.

3.L1 Reserved Symbols

Since MICRO/40 is meant to be used with a particular microprocessor in mind, all
of the registers and fields have predeclared names. All symbols in MICRO/40 are
global and names cannot be redefined. The predeclared symbols fall into several
classes.

Registers: R, D, S, TOS, B, D/2, DSHIFT, C, BA, IR, SF, DF, EUBC, SP,
UNIBUS, RAM, PS

Operators: PLUS, +, MINUS, - , SHIFT, T, <-(Ascii 137), NOT, -(5), - (32) ,
-(176), OR, v(37), AND, A(4), XOR, *(26)

Pseudo Operators: FINIS, START, END, SET, TES, CLKOFF, NOOP, TABLE, PRELOAD,
LOWLIM, C , N.Z.V., N.LV.C.

Fields: ALU, BUS, CLK, CLKB, CLKBA, CLKD, CLKIR, CP, DAD, DEST,
EMIT, LML, MSC, PPE, RIF, RML, SBAM, SBC, SBM, SC, SCOM,
SDM, SPS, SRX, UBF, WR, XUPF

3.1.2 Input Format

It is important for the user of MICRO/40 to remember that it is an assembler and
has many of the limitations of an assembler. For the most part, each line of input will
cause only one word of microcode to be generated. There are a two exceptions to
this rule (TABLE and PRELOAD); They will be discussed in the section on pseudo
operators.

A line is defined as the characters between line-feeds. Each line is read and
processed individually. No distinction is made between lower case and upper case
letters. Anything following an exclamation point on a line is considered a comment and
it is ignored. Any line that ends with a hyphen (-) will have the next line concatenated
onto it, even if this hyphen is within a comment. (The hyphen is the line continuation
symbol.) Thus the following five examples are equivalent:

16-Jan-76 MICRO/40 Assembler Page 39

CLK « 2; RIF = 7; WR - 3; SRX « 1; SDM « 2

CLK « 2; RIF « 7; WR = 3; SRX - 1; SDM - 2;! D register to R[7]

CLK - 2; RIF = 7; -
WR « 3; SRX « 1; SDM - 2 ! D register to R[7]

CLK - 2; RIF « 7; . ! P I is a sufficient clock time -
WR - 3; SRX - 1; SDM - 2;

R[7]<-D

3.1.3 Identifiers

An identifier is a sequence of characters starting with an alphabetic and
followed by an arbitrary number of alphabetics (A-Z, a-z), digits (0-9), a dot (.), or a
slash (/).

3.1.4 Numbers

All numeric constants on input are considered to be octal (base 8) unless the
number contains an eight, a nine, or a decimal point. Thus 402' is equal to '66.' and

is equal to *9\ The one exception to the rule of octal input is in field selection.
See the subsection on Field Selection, in the section on Assignment Statement for more
information.

3.1.5 Labels

A label is an identifier followed by a colon. A line may have an arbitrary
number of labels on it, and they may appear anywhere on the line.

3.1.6 Macros

Macros are defined by giving an identifier followed by : « and any string not
containing a dollar sign ($) or an exclamation point (!) and are followed by a dollar sign.
Macros take no parameters and do strict text substitution. After a macro is expanded,
the text is checked once again to see if any other macros are referenced. No delimiter
is placed at the end of the expanded text, so it's possible to concatenate strings across
the macro expansion.

16-Jan-76 PDP-11/40E Microprogramming Reference Manual Page 40

3.1.7 When are ft needed

Semi-colons are normally used to separate statements within each line of
microcode. The only time that they must be present is at the end of an assignment
statement which is not the last statement on a line.

3.1.8 Using Common Source Files

It is often the case that the same source code should be included in more than
one assembly. This is especially true for macros. (The file DEFS.MIC[N200MU00]/A is
one such file that contains a number of "standard" macros.) In order to facilitate this
the Require statement can be used. If the first symbol on an input line is REQUIRE
(Macros cannot be used to generate this symbol), then the rest of the line is taken to
be the name of a source file to replace the REQUIRE statement After the REQUIREd
file has been read, the input resumes in the original file. REQUIRES can be nested up
to a depth of 12, It is not legal to have SETs and NSETs open across files.

3.2 Field Assignments

The simplest use of MICRO/40 is to turn on selected bits in each microinstruction
by assigning values to each of the fields in the microword.

The syntax for this is

<field name> - <value> {;}

where the semi-colon is optional. The field names and the extend
microinstruction bits they are associated with are as follows:

19:16 ALU 28:24 DEST 63:62 SBM 19:16

BUS 38:36 EMIT 79:64 SC 75:72
CLK 47:45 LML 67:64 SCOM 79:78
CLKB 41 MSC 61:59 SDM 15:14
CLKBA 39 PPE 77 SPS 31:29
CLKD 40 RIF 3:0 SRX 7:4
CLKIR 44 RML 71:68 UBF 12:8
CP 76 SBAM 13 WR 43:42

DAD 35:32 SBC 23:20 XUPF 58:48

As each field name is encountered, that field is cleared of anything that might be
stored in it, and the new value is stored. No checking is done to prevent the field
from being stored into twice. The fields are processed from left to right for each
microinstruction.

With two exceptions the <value> is expected to be a constant. Only the EMIT
and XUPF fields can get other values.

16-Jan-76 MICRO/40 Assembler Page 41

The EMIT field may store the value of a label, the address of some element in a
table, or If the choice is a label, then the 11-bit address of the microinstruction
that contains that label will be put into the EMIT field. For a table reference the
15-bit address used to access the particular table item is put into the EMIT field. For
".M, the 11-bit address of the current microinstruction goes into the EMIT field. A table
reference is of the form <table id>[<n>].

The XUPF field holds the base address of the next microinstruction. If no
assignment is made to the XUPF field, then a default assignment of the next
microinstruction is made. It is important to remember in this context, that the XUPF
field is the goto to the next microinstruction. There is no program counter for picking
up the next microinstruction. A constant assigned to the XUPF field will generate a
goto to that absolute location. It is usually the case that whenever the user makes an
explicit assignment to the XUPF field, it is to a label.

3.3 Pseudo Operators

A number of pseudo operators have been implemented in order to relieve the
programmer of some of the more mundane tasks.

3.3.1 CLKOFF

pseudo op has the e ec of The CLKOFF

3.3.2 NOOP
does ^ I Z T e Z T ^ : : ' "k"™>™"°"< * " n « d . d sine. . b l l n k , i n e

3.3.3 TABLE <table name> <size>

This pseudo op makes part of the RAM a scratch pad memory. The entries in
the table are considered to be 16 bits wide and are stored 4 entries to a microword.
(The fifth word is really available, but it is difficult to generate the bit pattern for
addressing it at run time.) The table is treated as a zero origin array. For example,
assuming the declaration TABLE A 13, A[0] would be the first element, A [l] would be
the second. Three microwords would be reserved for the table. (The 13 is in octal
which is 11 in decimal. Four entries are used per microword, and it all fits.) It is
important to use the []*s whenever a reference to a table is made.

16-Jan-76 PDP-11/40E Microprogramming Reference
Page 42

3.3.4 PRELOAD <table name> <value list>

This pseudo op is very much like the TABLE pseudo op. The sole difference is
that the items in <value list> are preloaded into the table. <value list> consists of a list
of compile time constants optionally separated by commas. Since table entries are
considered compile time constants, the user can put the addresses of table entries into
a table.

3.3.5 FINIS

Finis indicates the end of the input; any remaining text in the file will be ignored.
,f their is n i l M s t n the file, then a continuable error will be generated.

3.3.6 .«<va!ue>

The syntax for assigning to 7 is very much like that for Fields. <value> must lie
in the range 2000 to 3777. The function of this pseudo operator is to force MICRO/40
to locate the associated microinstruction at some particular word in the RAM. The
assignment to 7 may occur anywhere on the input line as in the assignment to Fields.

Lines that have no explicit address are assigned addresses by MICRO/40.
MICRO/40 handles the XUPF field to make sure that the XUPF field of any instruction
which is supposed to precede any particular instruction points to the correct location.

3.3.7 LOWLIM = <value>

This pseudo op sets the lowest address to which microcode will be assembled.
<value> must lie between 2000 and 3777. The default value of LOWLIM is 2000 and is
used if this operation is not specified.

3.3.8 SET.. . TES

A PDP11/40 has no program counter for the microcode. In order to do
conditional microbranching, the UBF field causes certain bits in the next address (of the
succeeding instruction) to be ORed in. In the 11/40E, one of the extensions enables
values out of the EMIT field or values from the Stack to be ORed into that same
address. It is important that the addresses to which the microbranches expect to go
be the same, except in those bits that might be turned on. It would be possible (by
using ".«<value>") to put these instructions where they could be used, but the
SET...TES combination usually obviates the need for explicit space allocation.

The syntax is to have SET on a line by itself, the "controlled" microinstructions ,
and then TES on a line by itself. MICRO/40 counts the number of controlled
microinstructions, finds contiguous words in the RAM on a 2 n word boundry and puts

• • :^„fn-.f ir.nc there. microinsirutuwMo, «
the controlled microinstructions there.

http://n-.fir.nc

16-Jan-76 MICRO/40 Assembler Page 43

It is illegal to assign a word controlled by a SET TES erouo to a c ^ i f i .

3.3.9 START ...END

It is often desired to do more than one microinstruction on a fork of a branch.
To do this, the user may utilize the START ... END construct. Inside the SET ... TES, put
START on a line by itself. The first instruction will be assembled into the block of
instructions associated with the SET ... TES. The following instruction will not be in
that same block, but the goto of that first instruction will be to the second instruction
as expected. The remaining instructions in the compound are treated similarly. The
last instruction of the compound has a default goto to the instruction after the
SET ... TES.

It is legal to nest SET ... TES groups. Because of the way the hardware is
constructed, it does not make sense to have a second SET start while in a top level
instruction of the first SET. A SET pseudo-op may appear anytime after the first
instruction in the START ... END pair.

3.3.10 C., N.Z.V., N.ZA/.C.

These pseudo operators set the SPS field so that the carry bit; the negative,
zero, and overflow bits; or the negative, zero, overflow, and carry bits of the
Processor Status Word will reflect the current conditions. The CLK field is also
modified to insure proper timing.

3.4 The Assignment Statement

3.4.1 Syntax

The basic form for the Assignment Statement is <register list> <~ <expression>

<register list> is a list of registers separated by commas.

<expression> is of the form
<A-op> | <A-op> or <B-op> | <A-op> or not <B-op> | minus 1 |
<A-op> plus <A-op> and not <B-op> |
(<A-op> or <B-op>) plus <A-op> and not <B~op> |
<A-op> minus <B-op> minus 1 | <A-op> and not <B-op> minus 1 |
<A-op> plus <A-op> and <B-op> | <A-op> plus <B-op> |
(<A-op> or not <B-op>) plus <A-op> and <B-op> |
<A-op> and <B-op> minus 1 |
<A-op> plus <A-op> | (<A-op> or <B-op>) plus <A-op> |
(<A-op> or not <B-op>) plus <A-op> |

16-Jan-76 PDP-11/40E Microprogramming Reference Manual Page 44

<A-op> minus 1 | <A-op> plus 1 | (<A-op> or <B-op>) plus 1 | 0 |
<A-op> plus <A-op> and not <B-op> plus 1 |
(<A-op> or <B-op>) plus <A-op> and not <B-op> plus 1 |
<A-op> minus <B-op> | <A-op> and not <B~op> |
<A-op> plus <A-op> and <B-op> plus 1 |
(<A-op> or not <B-op>) plus <A-op> and <B-op> plus 1 |
<A-op> and <B-op> | <A-op> plus <A-op> plus 1 |
(<A-op> or <B-op>) plus <A-op> plus 1 |
(<A-op> or not <B-op>) plus <A-op> plus 1 | not <A-op> |
not (<A-op> or <B-op>) |
not <A-op> and <B-op> | not (<A-op> and <B-op>) |
not <B-op> | <A-op> xor <B~op> |
<A-op> and not <B~op> | not <A-op> or <B-op> |
not (<A-op> xor <B-op>) |
<B-op> | <A-op> and <B-op> | <A-op> or not <B-op> |
<A-op> or <B~op> |
UNIBUS I D | D/2
<A-op> may be anything that can be placed on the RD lines. One possible

<A-op> is a general register of the form R[<number>], R[SF], R[DF], or R[BA], The
other standard <A-op> is PS, the processor status word. In addition, the extension can
gate the current top of stack, TOS (or S, if the stack is to be popped); the extension
stack pointer, SP; the emit field of the form <octal constants <label>, or <table
address>; or a 16-bit word from the RAM of the form RAM[TOS] or RAM[S]. If multiple
occurrences of an <A-op> are needed, they should all be identically specified within
the assignment statement. This somewhat arbitrary list of possible expressions is a
direct consequence of using the 74181 integrated circuit to implement the A L U
<A-op>*s can be optionally followed by <field specifier^ <shift factor>, or <field
specifier><shift factor>. A <field specified is of the form "<l:r>" or "<l>". A <shift
factor> is of the form "SHIFT n". T , "r M and M n M are decimal (not octal !!!) constants.

In any <expression> the following equivalences hold:
PLUS » +
MINUS « -
SHIFT

If one uses SOS and thinks in terms of the Stanford character set then the

following equivalences hold:
or « v « ?8
and «• A « ?$
xor «> & • ?1
not « ^ « ? 4 « - i - « ? % « ^ - ? 3

<B-op> is of the form B (meaning the B-register) or B.<high selector><low

selector> where <high selector> is one of H, E, L or C and <low selector> is one of L, H

~ B can also be one of the B-constants: 0, 1, 2, 177570, 17, 77, 250 or 4. or C

16-Jan-76 MICRO/40 Assembler Page 45

3.4.2 Semantics

The crucial piece of information to remember when writing assignment
statements is that each action that is desired must be specified explicitly. The user
might hope that

R[7]«-R[7] + 2

would increase the value of R[7] by 2 and as a side effect leave the new value in the
D register. Unfortunately, MICRO/40 is not that intelligent. It is necessary to write

D«-R[7] + 2; R[7]«-D
to accomplish the statement. Note that

R[7]<-D; D«-R[7] + 2
is identical in its affects to writing the statements in the other order.

The clock field has a bit set if necessary to accomplish the clocking of a register
in <register list>. For the previous example, a P3 clock cycle would be generated since
both the D-register (which takes a P2 pulse) and one of the general-registers (which
get clocked on either a P I or P3 pulse) are being clocked. A P3 clock cycle generates
both a P2 and P3 pulse.

Whenever the symbol S is used on the left hand side of an assignment
statement, the stack is pushed before the value is stored. When, TOS is used, the new
value is written over the current top of stack. On the right hand side of an assignment
statement, S results in the value being read out of the stack and the stack being
popped. TOS results in the value of the top of stack being read out.

Values that are coming onto the RD lines from the extension or into the EUBC
lines may be shifted or masked. The default mask is for the entire word to be put out
and the default shift is zero. Values that are only masked are shifted (by MICRO/40)
to the right so that they are right justified. Values that are only shifted are rotated to
the left by the number of bits specified. Values that are both masked and shifted act
as if the shift count is applied after the field has been right justified. It is illegal to
specify a shift-mask combination that results in the final value not being contiguous.
All shift and mask amounts are specified in decimal. For example, "D<-S<1 1:3>T2j h

would place into the D register 9 of the bits, shifted 1 to the right, from the result of
popping the top value off the stack.

3.5 Examples

The following are some macros that are defined in DEFS.MIC[N200MU00] and
have been found to be of general use.

standard definitions for micro — 11 October 1974
rev: 19 November 1974
rev: 7 December 1974
rev: 11 June 1975

rO 2- r[0]8; r l s- r [l]8; r2 r[2]8> r3 : - r[3]8
r4 2- r[4]8; r5 r[5]8; r6 : - r[6]8; r7 : - r[7]8
r l O : « r[10]8) r l 1 : « r [l 1]8; r l 2 : - r[12]8; r l 3 : - r[13]8
r l 4 : « r [1 4] « ; r l 5 : « r[15]8j r l 6 : - r [1 6] « ; r l 7 ; « r[17]8
rsp : « r[6]8; rpc r[7]8; rdf := r[df]«; rsf : - r[sf]8
temp : « r[10]8; rsrc r [U] 8 j rdst : « r[12]8

16-Jan-76 PDP-11/40E Microprogramming Reference Manual Page 46

3.5*1 Add the numbers from 1 to 10

entry : D<-0; B,R[0]<-D
D<-10; R[0]<-D

L: D<-R[0]+B; B<-D;
D<-177777+B; B<-D; skipzero
noop
set

goto L
noop

tes
<whatever comes next>

It is not difficult to optimize the above code, but it was written for clarity. An

optimized version could be

entry : D<-0; R[0]<-D ! clear R[0], our accumulator
• r\nrk n from the EMIT field B<-10

LOOP' D<-177777+B; B<-D; skipzero ! decrement B; note A op B format
0 0 Whatever comes next>; goto NEXT ! since B was zero, break the loop

t>R[0]+B; R[0]<-D; goto LOOP ' add B to R[0]
NEXT: <second instruction after loop>

rir := r[13]8j vect := r[14]«; temc := r[15]«
spus : « r[16]8; adrsc := r[17]8; rba := r[ba]8
dati : « bus=18; dato := bus=58
datip : « bus=38; datob := bus=78
p i :~ clk«28; p2 : « clk=48; p3 : « clk=68
exit := xupf = 168 ! return to rom
begin : « beg: .»2000;8
goto : « xupf =8; case : « eubc<-8; popst : « d«-s8
but := ubf =8; skipzero : « ubf « 128 ! skip on d « 0
return : « eubc*-s8; endproc := xupf»08
smod := 11:98; dmod : - 5:38; prop : « cp«18
! end of macros

The following examples assume that the prior macros have been defined.

16-Jan-76 MICRO/40 Assembler Page 47

3.5.2 360 instruction decoder

IC := R[10] $
BASE : - R [l l] 8
IREG R[12] 8

DECODE: BA<-IC; dati
D«-IC+2; IC<-D; clkoff
S,IREG<-unibus
case T0S<15:12>
B«-BASE
set

goto BRSTAT
start

BA<-T0S<7:4>T2 + B; dati
D<-2+B; B«-D; clkoff
R[0]<-unibus; BA*-T0S<7:4>T2+B

! 360 instruction counter
! base of register
! instruction register

! fetch 1st halfword of instruction
! increment 360 instruction counter
! get 1st halfword to IREG, STACK
! decode 1st hex digit of IREG

! Branch and Status Op-codes
! fixed-point RR in a little detail
! fetch 1st half of Rl

! fetch 2nd halfword of Rl

end
goto LONGRR
goto REALRR

goto BYTRX
goto WDRX
goto LONGRX
goto REALRX

goto RSS18
goto RSS19
goto ILLEGAL
goto ILLEGAL

! long real RR op-codes
I real RR op-codes

! byte RX branching
! word RX
!long RX
! real RX

! further decode if necessary
! further decode if necessary

goto ILLEGAL
goto LOGSS
goto ILLEGAL
goto DECSS

tes

! logical SS

! decimal SS

16-Jan-76 PDP-11/40E Microprogramming Reference Manual Page 48

3.6 Using MICRO

3.6.1 Running MICRO
To assemble a MICRO/40 routine, type R MICRO to the TOPS-10 monitor. It will

prompt with a "*". MICRO/40 accepts the standard DEC command string format.

<object file>,<list file><-<source file>/<switch>/<switch>

If there is no comma before the left-arrow, then no listing file will be generated.
If no file is specified before the comma, then the object file will not be generated. If
MICRO/40 is run at CMU, whenever an object file is created, MACX11 is run
automatically to generate an .OBJ file from the .PI 1 file that MICRO/40 writes. The
default extensions are .PI 1 for the <object file>, 1ST for the <list file> and .MIC for
the <source file>.

The legal switches are DIAGNOSTICS, SIMULATE, and NOMACX11. (Unique
abbreviations are accepted.) SIMULATE causes the simulator to be invoked after the
assembly is complete. DIAGNOSTICS writes out special <object file>s that can be
linked in with the hardware diagnostics for the PDP11/40E. N0MACX11 suppresses
the running of that program.

3.6.2 Errors
Errors are either continuable or non-continuable. Non-continuable errors are

indicated by having MICRO/40 output the text line in which it found the error followed
by the error message, a <crlf>, and finally a ?. These errors are such that any attempt
to continue would cause MICRO/40 to bomb out.

Continuable errors have the ? replaced with an T. (The entire user-error
interface is the one provided by SAIL in which MICRO/40 is written.) A carriage-return
to the error prompt will cause the assembler to continue. A bare line-feed will cause
MICRO/40 to continue automatically. This means that error messages will be typed
out, but the assembler will not stop.

If E is typed as a response to the error prompt, then LINED will be entered
(pointing to the error line if the file has line numbers on it).

16-Jan-76 Microprocessor Simulator Page 49

4. Microprocessor Simulator

4.1 Summary

The 11/40E simulator allows interactive testing on the PDP-10 of programs
written in MICRO/40. It provides facilities for tracing execution, setting breakpoints,
examining and changing the contents of registers during execution, and timing sections
of the program.

The simulator is invoked through the MICRO/40 assembler by use of the S
switch in the command line. After assembling the program, the assembler will call the
simulator, putting it in communication with the user.

When the simulator is first entered, it goes into command mode — indicated by
its prompting with ">". It also goes into command mode whenever execution is halted
(because of errors, breakpoints, etc.). The commands listed below are always legal,
regardless of why command mode is entered or what commands have been given
previously. If a command is given which conflicts with a previous command the
simulator obeys the more recent command.

The simulator leaves command mode and begins execution of the program as an
effect of the G or S command. It can return to command mode for any of several
reasons, including the encountering of certain errors, the actions implied by some of
the commands listed below, and the receipt of a halt command from the console (at any
time during execution, the user may type H or h which will cause the simulator to halt
after the current microinstruction).

4.2 Commands

Commands are written one per line in the format given below. The simulator
performs a very simple scan looking for and which delimit the strings
representing names, numbers, etc Some of these strings are processed by the
simulator, but most are sent back to the assembler which makes it possibie to have
anything which the assembler would interpret as a register name (say), including
macros defined in the program, appear in a command line where a register name is
needed.

In the commands below, four possibilities, <number>, <name>, <register>, and
<label>, are shown for the strings. <number> means an integer in the range -32768 to
65535 (numbers greater than 32767 make sense if the 16 bit words are assumed not
to contain a sign bit) and'which are assumed to be written in octal unless they contain
an 8, 9, or trailing decimal point in which case they are assumed to be decimal.
<name> means anything that will be recognized by the assembler as the name of a
register or label. <register> and <label> are similar except the simulator has some
expectation about what the string should represent. Whenever a <label> appears, a
<number> representing the instruction address may appear instead.

16-Jan-76 PDP-11 /40E Microprogramming Reference Manual Page 50

In showing the syntax of the command lines, two meta symbols have been used.
Things enclosed in " [] " are optional (they may appear one or zero times). Things
enclosed in " { } " may appear zero or more times.

G[<label>]

Go Continue execution of the program. If a label is given,
execution begins at that location; if not, execution begins where it
was last interrupted. Giving a G command without a label before
any instruction has been executed causes execution to begin at
location 2000 (octal).

<register> {, <register>}

Get. Print the contents of the registers. Values are printed in

octal.

T <name> {, <name>}

Trace. Registers are traced by printing the register's name, as
typed to the T command, and its new contents after each change.
Instructions are traced by printing the label, as typed to the T
command, each time that instruction is executed. Registers and
instructions with more than one name can be traced under only one
name at a time. If an attempt is made to trace one under two
different names, only the last name given will be used. There is a
limit to the total number of registers and instructions which may be
traced simultaneously, but this limit is large and unlikely to cause
any problems.

B <name> {, <name>}

Break. The B command is a variant of the T command which causes
a break (i.e., causes a halt and a return to command mode) after
printing the trace information. The instruction broken on (or in
which a register being broken on is changed) will be completed
before the break occurs. Since this is a variant of the T command
the same restrictions about names and number of registers or
instructions broken on apply. In addition, it is not possible to both
trace and break on a register or instruction simultaneously. If both
B and T commands have been issued for the same register or

16-Jan-76 Microprocessor Simulator Page 51

instruction, the last command issued will be the one obeyed (and if
different names were given, the last given will be used).

<register> « <number>

Set. Set the contents of the register to the given value. The
change is made immediately, causing the old contents to be lost.

R [<name> {, <name>}]

Remove. Stop tracing or breaking on the registers and instructions
listed. If no names are given, all tracing and breaking will be
stopped. It is not necessary that the same names be given for the
registers and instructions that were given in the T or B commands
to be removed — the simulator responds to the registers and
instructions, not their names.

S [<label>] [, <number>]

Step. Step through the program. If a label is given, the stepping
begins at that location; if not, stepping begins where the program
was last halted. If no label is given and no instructions have been
executed, stepping begins at location 2000. If a number is given,
the program is stepped that many times then halted. If no number
is given, 1 is assumed. While stepping, the address (not the label)
of each instruction will be printed out before the instruction is
executed.

c ? m ^ n d r i n T h t h r t 0 t a ' $ i m U , a t e d t i m e a n d t h e t i m e last C
f ^ r i h - • ' m e , S m n a n o s e c o n d s > Panted in decimal. The time
for each instruction is computed by:

T - Te + Tm + Tr

where

Te « execute time
Tm « memory access time
Tr - regenerate time.

16-Jan-76 PDP-11 /40E Microprogramming Reference Manual Page 52

L <file>

Execute time is: if the instruction is a P I , 140 nsec; if the
instruction is a P2, 200 nsec; if the instruction is a P3, 300 nsec.
Memory access time is: if the instruction performs a CLKOFF and it
is less than 500 nsec since the metrtory access began, sufficient
time to make the difference 500 nsec, otherwise 0. Regenerate
time is: if the instruction performs a CLKOFF and the time between
the last two memory accesses is less than 900 nsec, sufficient time
to make the difference 900 nsec, otherwise 0.

Exit. Return control to the assembler.

Load. Load the 11/40 core from the file named. Each line of the
file will contain the data to be loaded into one 16 bit word in the
format:

[<number> :] <number>

The second number is the datum to be loaded. The first number, if
present, is the word address in core to be loaded; this number must
be even (it is a word address) and in the range 0 to 1022, for a
total of 1024 bytes of simulated core. If no address is provided,
the address loaded is the last address plus 2; if no address is
provided for the first line of the file, that word is loaded into
location 0. Loading terminates on end of file. <file> may be any file
or device specification acceptable to Sail, including TTY:. If input is
through TTY:, everything typed after giving the command is treated
as input and should be in the above format; end of file (TZ on TTY:)
terminates input and returns to command mode.

DDT Call DDT. This command worKs only if DDT has been loaded
and the user is one of the system maintainors.

16-Jan-76 Microprocessor Simulator Page 53

4.3 Inconsistencies

The simulator doesn't attempt to model the entire processor. Omitted are some
things related to particular pieces of hardware (the console, peripherals, and memory
management) and the functions which are useful only in emulating a PDP-11.

The omissions are:

1. BUS-2 and BUS*6 are noops.

2. All DAD except DAD«10 (and the corresponding part of DAD-11) are
noops.

3. The SBC which test conditions always return zero for the condition.

4. All UBF except UBF=12 and UBF=17 always return zero.

16-Jan-76
PDP-11/40E Microprogramming Reference Manual Page 54

5. Programming Techniques

Since the 11/40E microprocessor is more difficult to program and use than a
conventional macroprocessor, the arguments by Dijkstra in [MA Constructive Approach
to the Problem of Program Correctness", BIT, Jul 68] apply even more strongly. The
programmer must not turn out sloppy code and then hope to debug it; he must rather
design his algorithm carefully and then code it with a solid understanding of both his
algorithm and the machine. There are two particular reasons for this caveat:

1 the 11/40E is a much more complex machine than that seen by the
machine language programmer on a conventional processor. It will
t r y to execute any bit pattern and will detect very few nonsensical
microinstructions. The variety of actions that may occur from
program errors is frightening. Just as the subspace of meaningful
programs is sparse in the space of valid assembly programs, so the
subspace of meaningful microinstructions is sparse in the space of
valid microinstructions. Many program errors will act in
unpredictable ways that may vary from day to day, depending on the
relative speeds of microprocessor components.

2 debugging aids on the 11/40E are very rare. A microroutine that
does jam or hang will not trap to a diagnostic routine that can save
the microprocessor state.

Having given this warning, we attempt to outline some programming styles we
wish to encourage and some of the more subtle features' of the machine that need to
be remembered when coding.

5.1 Timing

An 11/40E microinstruction takes one of three cycle times between 140 nsec
and 300 nsec While the MICRO/40 assembler attempts to set the proper timing for
each microinstruction, the programmer should be aware of the timing requirements of
each operation in his microinstruction, so that he can judge the performance of
alternative microcode sequences.

The shortest cycle is called ' p i ' and ends with a pulse, called the ' p i pulse', 140
nsec after the start of the microinstruction. This duration is sufficient for most
transfers that don't involve the ALU or pushing the extension stack pointer.

The second cycle time is called *p2' and ends with the *p2 pulse' at 200 nsec
This duration is required for the ALU output to become stable and for the extension
stack pointer to be incremented prior to a push onto the stack. It is also required for
simple transfers over a long distance, e.g. moving a general register to the stack.

The longest cycle is called <p3' and contains both a *p2 pulse' at 200 nsec and a
final <p3 pulse' at 300 nsec. This timing is used when the D register must be clocked
from the ALU, then sent up the DMUX bus.

16-Jan-76 Programming Techinques Page 55

All the standard registers on the DMUX bus, B, IR, PS, and R[0:17], may be
loaded only on a p i or p3 pulse. Hence a transfer from the EMIT field of the
extension to a register, which is too long for a p i cycle, must take the full 300 nsec of
a p3 cycle.

5.2 B Constants

In the standard 11/40 microprocessor, the only constants available to the
programmer were a handful of constants essential to PDP-11 emulation. The extended
11/40E provides the programmer with arbitrary constants via the EMIT field, but these
constants must be A inputs to the ALU. Careful use of the B-constants can expedite
many microroutines that would otherwise have to copy one operand to the B register
before using the ALU.

5.3 Unibus Control

As in the PDP-11 architecture, memory and peripheral registers are accessed in
a uniform fashion. For the microprogrammer, however, this accessing is more explicit;
the details of bus control and timing combine to present an increased opportunity for
both efficiency and error. As background for this subsection, see the description of
Unibus conventions in [Digital 73].

In order to read a Unibus device, the bus address must be clocked to the BA
register as, or before, the DATI bus control code is asserted. The microprocessor will
correctly handle the relative timing of the address and DATI assertions and will
proper ly wait if the bus is already busy. Succeeding microinstructions may continue
processing, provided they do not modify the BA register or assert a second bus
control code. Prior to the completion of the Unibus access, the microprocessor should
pause via the CLKOFF construct. Upon completion of the access, the data will be
present on the Unibus and the clock will be restarted. This Unibus data can then be
gated through the DMUX to the microprocessor registers. MSYN is dropped only upon
a p i or p3 cycle following this CLKOFF, so the instruction after the CLKOFF should be
a p i or p3, and should pull the data off the Unibus immediately. A second Unibus
request can then be made, but the cycle time of the memory may limit the actual rate
at which they are performed. The ability to overlap processing with Unibus access
provides the microprogrammer with a great opportunity for efficiency. With soma
care, he can keep the microprocessor totally Unibus-bound while doing some
processing in addition to Unibus control.

Writing onto the Unibus is done similarly. As before, the bus address must be
clocked to the BA register. The datum to be written must also be clocked to the D
register and the DATO bus control code must be asserted. As with the DATI access,
processing may be overlapped with Unibus access, but now both the BA register and
the D register must be kept constant. This makes the overlap feature less valuable
than with DATI access. As before the instruction following the CLKOFF should be p i
or p3 so that MSYN may be dropped.

16-Jan-76 PDP-11/40E Microprogramming Reference Manual Page 56

The DATIP Unibus cycle is used to implement a read-modify-write cycle on the
Unibus. Programming is as for a DATI; a normal DA TO follows. Examples of the three
cycles discussed above are shown below:

pop: BA«-R[6]; DATI ! pop the stack to r2
D<-R[6]+2; R[6]«-Dj CLKOFF
R[2]« - IMBUS

a. DATI Example

push: D,BA<-R[6]-2; R[6>-D ! push r2
D<-R[2]; DATO; CLKOFF
<... (p i or p3)>

b. DATO Example

incr: BA«-R[6]j DATIP; CLKOFF ! increment the
R[10]«-UNIBUS ! top of stack
D<-R[10]+l; DATO; CLKOFF
<... (p i or p3)>

c DATIP-DATO Example

Unibus control for byte addressing is similar to that for whole words. For
reading a byte, the DATI bus control is used as for words. The whole word returns
and can be brought through the DMUX lines. To select the proper byte, the address
must be tested; if even, the byte is in the lower half of the word — if odd then it's in
the upper half. The B register is useful for aligning the byte. Either the
EUBC<-TOS<0> construct, where the address is in the TOS, or the BUT 35 (see the ROM
microcode) are useful for detecting an odd address.

On writes, the DATOB bus control is used. Programming is similar to that with
DATO with words, but the datum being written must be in the proper byte of the D
register. Thus, if the address may be either even or odd, the datum must be
duplicated in both bytes of the D register. The B register facilitates this.

Finally, whenever an odd address is clocked into the BA register or whenever
the DATOB bus control is asserted, two conditions must be met: The IR must contain a
valid byte instruction (!) and bit 0 of the DAD field must be set. Otherwise, a jam will
occur and flow of control will be lost.

16-Jan-76 Programming Techinques Page 57

5.4 Flow of Control

5.4.1 Introduction

Understanding the flow of control mechanisms on the 11/40E requires review of
the basic fetch/execute cycle. Whenever a microinstruction is clocked from the control
store to the microinstruction buffer, the XUPF field is modified by ORing in the eleven
bits of the EUBC and the six bits of the BUT lines. This modified XUPF is used
immediately as the address of the next microinstruction; fetch of this next
microinstruction overlaps the execution of the current microinstruction. Since control
store access time is shorter than any microinstruction execution time, this scheme
eliminates any delay due to microinstruction fetch. It does, however, make it
impossible for a microinstruction to influence the address of its successor. Instead,
microbranching is performed by setting the EUBC/BUT lines so that the address of the
successor of the next microinstruction is altered.

Several points can now be made. First, the delayed branching of this mechanism
is unnatural for most programmers and requires great care. Even when the
programmer understands it, the feature makes a microprogram difficult to modify due
to the interdependence of the microinstructions in a branching sequence. Second,
since the branching is always due to ORing bits into the XUPF field, care must be taken
to leave the proper bits of the base address clear for this ORing to have the right
effect. This is accomplished in MICRO/40 via the SET...TES construct, which places a
set of 2Tn microinstructions in contiguous locations whose addresses begin at a
multiple of 2Tn. Finally, it should be noted that the mechanism offers a very wide
branch with the same speed as a two-way branch.

5.4.2 BUT

The 11/40E provides two mechanisms for setting the bits to be ORed into the
XUPF. The first is provided by the standard 11/40 and is called BUT, for Branch Micro
Test, This mechanism consists of about thirty different tests invoked by the different
codes in the UBF field of the microinstruction. These tests detect processor conditions
and set the appropriate bits on the BUT lines. Unfortunately, most of the conditions
detected are specifically oriented toward PDP-11 emulation, especially instruction
register and console conditions. Two of these deserve notice, however. The BUT 12
tests the D register and ORs a one into the BUT lines if the D register is identically
zero. If the microinstruction is p i or p2, then the value of the D register at the
beginning of the instruction is tested. If, however, the timing is p3, then the value
clocked into the D register at p2 is tested. The second important test is BUT 16, which
detects any conditions that would cause an interrupt at the next PDP-11 instruction
fetch (e.g. an I/O interrupt or the halt switch), and ORs in a one if such a condition is
detected. This BUT is normally used just prior to the last microinstruction executed in
the RAM. The last microinstruction has an XUPF field of 16. Control is then passed to
either 16 for the next PDP-11 instruction fetch or to 17 for the handling of the
interrupt.

16-Jan-76 PDP-11/40E Microprogramming Reference Manual Page 58

5.4.3 EUBO-. . .

The second branching mechanism centers on the field extraction unit of the
extension. Any value that can be brought down the RD bus from the extension can
instead be brought down the EUBC lines. In particular, an arbitrary contiguous field
can be pulled from the word at the top of the extension stack; the EMIT field can also
be brought down.

5.4.4 jf statements

The simplest use of these mechanisms is to implement a simple if statement. We
begin with two uses of the BUT 12, showing the timing quirk mentioned above.

D«-R[0]
D<-R[l]; BUT 12
B<-D
set

<...>
<,„>

! rO non-zero
! rO - 0

tes

a. Example of BUT 12 if on p2

D«-R[0]
D«-R[1J B<-D; BUT 12
NOOP
set

< ..> ! r
<...> ! r

tes

! r l non-zero
! r l = 0

b. Example of BUT 12 if on p3

TOS*-R[0]
EUBC*-TOS<15>
NOOP
set

<...>
<...>

tes

! rO non-negative
! rO negative

c. Example of EUBC*-... if

16-Jan-76 Programming Techinques Page 59

5.4.5 case statements

Multiway branches are vital to efficient emulation, yet they offer little
conceptual difficulty over that of the if construct. Refer to Appendix B for examples
of case constructs based on BUTs, especially for op-code and address-mode decoding.
Refer also to Appendix A for examples of address-mode decoding using the EUBC*-...
mechanism of the extension. We present here a three-way case construct, which
branches differently for positive, negative, and zero values of R[0].

D<-R[0]j T0S<-D
BUT 12; EUBOTOS<15>T1
NOOP
set

<...> ! positive (non-neg; non-zero)
<...> ! zero (non-neg; zero)
<.. > ! negative (neg; non-zero)
<...> ! impossible (neg; zero)

tes

d. Example of FORTRAN II style if construct

5.4.6 Subroutine Call/Return

Conventional recursive subroutines are easily implemented in the 11/40E. Upon
call, the return address is pushed onto the extension stack and the XUPF field is set to
the subroutine address. Just prior to return, this stack is popped onto the EUBC. The
final instruction has a clear XUPF field so that the popped value can form the effective
address of the next microinstruction.

caller: S<-retadd; goto subr
retadd: <„>

subr: <„.>

<.„>; EUBC<-S
<...>; XUPF-0

e. Sketch of Call/Return Mechanism

In experience at CMU, parameter passing has been ad hoc* but the style of
call/return shown above has been a very valuable model.

PDP-11/40E Microprogramming Reference Manual Page 60

5.4*7 Emulator Flow of Control

The most important exception to the conventional subroutine linkage occurs in
emulator writing, either in extending the PDP-11 instruction set or in emulating foreign
instruction sets. The technique is simple: keep a copy of the instruction being
emulated at the top of the extension stack. Then direct the flow of control from
instruction fetch to operand fetch to execution routines by pulling various fields from
the top of stack onto the EUBC.

5.5 RD Bus Details

The RD bus has three potential sources: the general registers, the processor
status word, and the extension. Each of the three can independently gate a word onto
the RD bus. Usually two sources gated onto the RD bus would be an error. Suppose,
for example, we are to set the stack pointer (R[6]) to 400(octal). A naive programmer
might write:

D<-400; R[6]<-D

Now the MICRO/40 assembler will allow this, but since R[6] is being clocked, its
old value will be gated onto the RD bus. Thus the new value of R[6] is its old value
with bit 8 set. To perform the intended task, the sequence would have to be split into
two instructions. This feature can, however, be used to produce a positive effect, as
when a table lookup is to be performed into a table of fixed location, indexed by a
register. The sequence is:

BA<-R[0J+R[0]j DEST=0j MSC- l j EMIT-tablebase; DATI

Here tablebase is the word address of the fixed table and has enough zeroes in
its low-order part that rO+tablebase=rOvtablebase. The effective value on the RD bus
is R[0]vtablebase, which gives the word address of the table entry, provided that
tablebase is properly chosen. The value clocked onto the BA register is double this
value, or the proper byte address. Were the ORing feature of the RD bus not used,
the sequence would be:

D«-R[0]+R[0]i B<-D
BA<-tablebase+B; DATI ! where tablebase is now the byte address

This would add 300 nsec and an instruction to the sequence and destroy the old
contents of the B register.

16-Jan-76 Programming Techinques Page 61

5.6 The Last Word

Whenever the XUPF field of a microinstruction buffer is less than 256, the
extension is turned off. Consequently, the last microinstruction executed in the RAM,
which exits to the ROM, may not use the extension hardware.

16-Jan-76 PDP-11/40E Microprogramming Reference Manual Page 62

Appendix A. Microinstruction Format

A . l The Word

U<56:09,07:00> - The location in the 11/40 56 bit microinstruction.
XU<79:00> - The location as rearranged in the 80 bit writable microinstruction.
G<4:0><15:00> - The 5 groups for writing into the writable microinstruction from the PDP 11.

Name
Location

Description

BUS<2:0>
U<47:45>
XU<38:36>
G2<6:4>

C I CO BG
0 0 0 -
0 0 1 - DATI
0 1 0 - AWBBY <-l (await BUS BUSY)
0 1 1 - DATIP
1 0 0 -
1 0 1 - DATO
1 1 0 - restart on perif release
•1 1 1 - DATOB

CLKB Allows clocking DMUX <15:00> into the B REGISTER.
U<50> 0 - NO-OP
XU<41> 1 - B REGISTER <- DMUX output
G2<9> Timing: P I v P3

CLKBA Allows clocking the BUS ADDRESS REGISTER.
U<48> 0 - NO-OP
XU<39> 1 - BA REGISTER *- BAMUX output
G2<7> Timing: P I v P2

CLKD Allows clocking the ALU into the D REGISTER
U<49> 0 - NO-OP
XU<40> 1 - D REGISTER *- ALU output
G2<8> Timing: P2

CLKIR Allows clocking the UNIBUS DATA into the INSTRUCTION REGISTER.
U<53> 0 - NO-OP
XU<44> 1 - INSTRUCTION REGISTER <- DMUX output
G2<12> Timing: PI v P3

CLKOFF
U<54>
XU<45>
G2<13>

0 - NO-OP
1 - turn off processor clock
(See DAD table for exceptions.)

16-Jan-76 Microinstruction Format Page 63

CLK<1:0>
U<56:55>
XU<47:46>
G2<15:14>

CP

XU<76>
G4<12>

DAD<3:0>
U<44:41>
XU<35:32>
G2<3:0>

DEST<1:0>

XU<63:62>
G3<15:14>

EMIT field

XU<79:64>
G4<15:0>

Processor clock length control
0 0 - P I 140 ns.
0 1 - P I 140 ns.
1 0 - P2 200 ns.
1 1 - P3 300 ns. (also gives P2 pulse)

Carry Propagate into and out of ALU. (See also SCOM)
0 - NO-OP
1 - ALU CINOO «- CPFFj
CPFF «- COUTMUX [SCOM]

CPFF is the Carry Propagate flip - flop.

Discrete Alteration of Data (See also SALU.)
Allows microprogram to alter operation of the data paths.

0 0 0 0 - NO-OP
1 - Allow odd adrs and DATOB for byte instr.

0 1 1 . - check stack overflow
1 0 0 . - generate CARRY IN to the ALU.
1 1 - ALU control f(IR) (can generate carry in to ALU)

CMP or INC or
ADC A PS(C) or
ROT(L) A PS(C)

1 . 1 . - inhibit DATO or DATOB
and CLOCKOFF for (BITvCMPvTST)

Above bit patterns occur in combinations with other DAD bits.

Destination (See also MSC, PPE and sections A.2 and A.3.)
The stack is loaded at the end of a cycle.

0 0 - OFF
0 1 - STACK <- DMUX
1 0 - RD «- Memory[Stack]
1 1 - Memory[Stack] «- DMUX

The EMIT field is a 16 bit field that can either be used as a constant
or to implement some of the extended features of the 11/40E.
The use of the field is determined by the DEST and MSC codes.
When used as a constant the other functions are disabled.
(See sections A.2 and A.3. for EMIT field usage.)
(See also SCOM, PPE, CP, SC, RML, and LML)

16-Jan-76 PDP-11/40E Microprogramming Reference Manual Page 64

LML<3:0> Left Mask Limit (See also RML)
Masks data for RD BUS or EUBC BUS.

XU<67:64> LML and RML are anded with the SMUX output.
G4<3:0> 15 0

0 0 0 0 0000000000000001
0 0 0 1 0000000000000011
0 0 1 0 0000000000000111

1 1 1 0 0111111111111111
1 1 1 1 1111111111111111

MSC<2:0> Mask-Shift Control (See also DEST, PPE and sections A.2 and A.3.)
Controls the state of the extension.

XU<61:59>
G3<13:11>

PPE

XU<77>
G4<13>

Push Pop Enable Allows stack operation.
(See also DEST, MSC, SC and section A.3.)
0 - PUSH/POP disabled
1 - PUSH/POP enabled

RIF<3:0>
U<12:9>
XU<3:0>
G0<3:0>

Register Immediate Field (See also SRI.)
Addresses general registers when enabled by SRI.
Console addresses for these registers are <777700:777717>.

Table of standard PDP-11 register designations:

0 0 0 0 - RO
0 0 0 1 - Rl
0 0 1 0 - R2
0 0 1 1 - R3
0 1 0 0 - R4
0 1 0 1 - R5
0 1 1 0 - R[SP]
0 1 1 1 - R[PC]
1 0 0 . 0 - R[TEMP]
1 0 0 1 - R[S0URCE]
1 0 1 0 - R[DEST]
1 0 1 1 - R[IR]
1 1 0 0 - R[VECT]
1 1 0 1 - RjTEMPC]
1 1 1 0 - R[SP USER]
1 1 1 1 - R[ADRSC]

16-Jan-76 Microinstruction Format Page

RML<3:0>

XU<71:68>
G4<7:4>

Right Mask Limit (See also LML)
Masks data for RD BUS or EUBC BUS.
A 0 in the mask will mask out that bit.

15 0
0 0 0 0 1000000000000000
0 0 0 1 1100000000000000
0 0 1 0 1110000000000000

SALUM
U<37>
XU<28>
Gl<12>

1 1 1 0 1111111111111110
1 1 1 1 1111111111111111

NOTE; For information to pass through the masker, the mask
bit must be one in the masks created by both LML and RML.

Selects ALU Mode of operation. (See also SALU.)
0 - Arithmetic mode
1 - Logical mode

SALU<3:0>
U<36:33>
XU<27:24>
G1<11:8>

Selects ALU function (See also SALUM and DAD.)

Arithmetic mode (SALUM - 0)

CO

2 1 0 CARRY IN - 0 CARRY IN - 1

0 0 0 0 F*-A F « - A + 1
0 0 0 1 F«-AvB F*-(AvB) + 1
0 0 1 0 F<-Av-B F«- (Av-B) + 1
0 0 1 1 F+ - - l(2's comp) F<-0
0 1 0 0 F<-A + AA--B F<-A + AA-<B + 1

0 1 0 1 F«-(AvB) + A A - B F<-(AvB) + A A - B + 1
0 1 1 0 F*-A - B - 1 F. -A - B
0 1 1 1 F*-AA->B - 1 F < - A A - B

1 0 0 0 F « - A + A A B F<-A + A A B + 1
1 0 0 1 F<-A + B F<-A + B + 1
1 0 i 0 F<-(Av-B) + A A B F« - (Av-B) + A A B + 1
1 0 l 1 F « - A A B - 1 F < - A A B

1 1 0 0 F<-A + A F. -A + A • 1
1 1 0 1 F«-(AvB) + A F H A v B) + A + 1
1 1 1 0 F<-(Av-B) + A F*-(Av-B) + A + 1
1 1 1 1 F. -A - 1 F<-A

16-Jan-76 PDP-11/40E Microprogramming Reference Manual Page 66

SALU<3:0> continued
Logical mode (SALUM « 1)
3 2 1 0
0 0 0 0 F « - A
0 0 0 1 F<-(AvB)
0 0 1 0 F « - - A A B
0 0 1 1 F*-0

0 1 0 0 F < - - (A A B)
0 1 0 1 F«->B
0 1 1 0 F*-A®B
0 1 1 1 F.-A-B
1 0 0 0 Ft- 'AvB
1 0 0 1 F « - (A « B)
1 0 1 0 F<-B
1 0 1 1 F ^ A A B
1 1 0 0 F«-all l's
1 1 0 1 F<-Av-B
1 1 1 0 F<-AvB
1 1 1 1 F«-A

SBAM Selects input to BUS ADDRESS MUX.
U<22> 0 - BAMUX «- ALU
XU<13> 1 - BAMUX <- RD BUS
G0<13>

SBC<3:0>
U<32:29>
XU<23:20>
Gl<7:4>

Allows selection
OCTAL NAME
00 TRAPS
01 CONST 1
02 CONST 2
03 CONST(l v2)
04 not used
05 not used
06 not used
07 CONS INC
10 SRADRS

11 PWRUP

12 CC MASK
13 SOB MASK
14 SINCLK

15 MM vector
16 MM const
17 STACK 04

of constants to the ALU through
VALUE
0 000 000 000 OTT TOO
0 000 000 000 000 001
0 000 000 000 000 010
0 000 000 000 000 001
0 000 000 000 000 000
0 000 000 000 000 000
0 000 000 000 000 000
0 000 000 000 000 ooc
1 111 111 101 111 000

7 777 077 076 543 200

0 000 000 000 001 111
0 000 000 000 111 111
0 000 boo 000 0S0 000

0 000 000 010 101 000
0 000 000 000 000 0M0
0 000 000 000 000 100

the BMUX.
USE
T =f(STPM<4:2>.
General use.
General use.
if word instr., sets CINOO

C - EXAMU) v DEP(l)
also displayed on a cons time

out.
prog address selected b y

jumpers W<7:2>.
Mask for condition code instrs.
Mask in SOB instr.
S«0 for SWITCHCOUNT if

SINCLK.
KT violation trap vector.
M - l if SMO in MFP instr.
Preemptive stack pointer.

16-Jan-76 Microinstruction Format Page 67

SBMH<1:0>
U<28:27>
XU<19:18>
Gl<3:2>

SBML<1:0>
U<26:25>
XU<17:16>
G1<1:0>

SC<3:0>

XU<75:72>
G4<11:8>

Selects input to BMUX<15:8>. (See also SBML)

0 0 - BMUX<15:8> <- B REGISTER<15:8>
0 1 - BMUX<15:8> <- B REGISTER<7>
1 0 - BMUX<15:8> B REGISTER<7:0>
1 1 - BMUX<15:8> <- CONSTANTS REGISTERS5:8>

Selects input to BMUX<7:0>. (See also SBMH.)

0 0 - BMUX<7:0> B REGISTER<7:0>
0 1 - BMUX<7:0> «- B REGISTER<7:0>
1 0 - BMUX<7:0> «- B REGISTER<15:8>
1 1 - BMUX<7:0> «- CONSTANTS REGISTER<7:0>

The Shift Count field is either the rotate count to the right
or it is a value to be loaded into the stack pointer.
Word rotation works as follows:

0 0 0 0 - P ONM LKJ IHG FED CBA
0 0 0 1 - A PON MLK JIH GFE DCB
0 0 1 0 - B APO NML KJ1 HGF EDC
0 0 1 1 - C BAP ONM LKJ IHG FED

1 1 1 1 - 0 NML KJI HGF EDC BAP

SC0M<1:0> Selects COUT MUX (See also CP)
0 0 - ALU CARRY OUT <15>

XU<79:78> 0 1 - ALU CARRY OUT <7>
G4<15:14> 1 0 - PS (C) - Bit 0 of processor status word

1 1 - ALU <15>

SDM<1:0> Selects DMUX
U<24:23>
XU<15:14> 0 0 - DMUX *- RD BUS
G0<15:14> 0 1 - DMUX <- UNIBUS DATA

1 0 - DMUX «- D REGISTER
1 1 - DMUX «- D REGISTER shifted right

with DMUX<15> <- D<C> (carry).

16-Jan-76 PDP-11/40E Microprogramming Reference Manual Page

Selects loading and clocking the PS word.
Timing: P I v P3

0 0 0 - DMUX gated to PS input allowing program loading.
0 0 1 - CLK (PS) C
0 1 0 - CLK PS(N,Z,V)
0 1 1 - CLK PS(N,Z,V,C)
1 0 0 - not used
1 0 1 - not used
1 1 0 - PS gated to BUS RD
1 1 1 - Load PS from DMUX

NOTE: (SPS«3) ANDed with CC instr also gates PS to BUS RD.
CC « Condition Code and is 0 000 000 010 1 in
the instruction register.

SRBA Allows BA<3:0> to be used as a source of general register
U<14> address. (See note SRX.)
XU<5> 0 - NO-OP
G0<5> 1 - GENERAL REGISTER ADDRESS<3:0> <- BA<3:0>

SRD Allows I.R<2:0> to be used as a source of general register
U<15> address. (See note SRX.)
XU<6> 0 - NO-OP
G0<6> 1 - GENERAL REGISTER ADDRESS<2:0> IR<2:0>

SRI Allows RIF<3:0> to be used as a source of general
U<13> register address. (See note SRX and RIF.)
XU<4> 0 - NO-OP
G0<4> 1 - GENERAL REGISTER ADDRESS<3:0> «- RIF<3:0>

SRS Allows IR<8:6> to be used as a source of general register
U<16> address. (See note SRX.)
XU<7> 0 - NO-OP
GO<7> 1 - GENERAL REGISTER ADDRESS<2:0> IR<8:6>

SRX Mnemonic for the concatenation of SRBA, SRD, SRI and SRS.
U<16:13>
XU<7:4>
G0<7:4>

UBF<4:0> Micro Branch Field. Allows microbranch condition to be
U<21:17> tested (BUT). A successful test ORs BUBC bits
XU<12:8> into UPP<5:0>.
G0<12:8> BUT MNEMONIC PRINT BUBC BITS

CONDITION

SPS<2:0>
U<40:38>
XU<31:29>
Gl<15:13>

00 NO-OP
01 CBR1 K5-7 1

-HALT SWITCH-

16-Jan-76 Microinstruction Format Page 69

UBF<4:0> continued
BUT MNEMONIC PRINT BUBC BITS

CONDITION

02 CBR2 K5-7
-HALT SWITCH

03 REG DEP K l - 7
REGISTER ADDRESS

04 REG EXAM K l - 7
-REGISTER ADDRESS

05 BEGIN K5-6
-BEGIN

06 SWITCH K5-6
SWITCH

07 INTR K4-4
B INTR

10 HALT K3-7
HALT SWITCH

11 MM FAULT KT-3
-MM FAULT

12 D-0 K l - 7
D<15:00>-0

13 not used
14 not used
15 JSR v JMP K3-5

JSR
16 SERVICEC v FETCHC K3-7

SERVICE
17 IR03 K3-3

IR03
20 BYTEvS ERVICEvFETCH K3-7

A) BYTE
B) SERVICE
C) FETCH

21 IR03/BYTE A SOURCE) K3-7
A) SMO A -BYTE A IR03
B) BYTE A -SMO A IR03
C) BYTE A SMO A IR03

22 BYTE A SOURCE K3-7
A) SMO A -BYTE
B) BYTE A -SMO
C) BYTE A SMO

23 not used
24 CBR v HALT K3-7

HALT SWITCH
25 BR.WAIT v FETCH K3-7

A) WAIT A -BR
B> WAIT A BR

16-Jan-76 PDP-11/40E Microprogramming Reference Manual Page 70

UBF<4:0> continued
BUT MNEMONIC PRINT BUBC BITS

CONDITION

26 REQUESTS K3-7
A) HALT SWT A -CONSL
A --ERROR 1

B) (BR v WAIT) A
-(HALT SWT A -CONSL)
A -ERROR 1-

C) -(BR v WAIT) A
-(HALT SWT A-CONSL)
A-ERROR 11

NOTE: ERROR - PERR v MM FAULT v
BERR v PS(T) A -RTT
v OVFLW v PWRON

27 SERVICE B v FETCH OVLAP v FETCH B
K3-7

A) OVLAP A-SERVICE 1
B) SERVICE 1-

30 SWITCHES K5-6
A) START A -(DEP v CONT v
EXAM v LOAD ADRS) 1-

B) DEP A -(START v CONT v
EXAM v LOAD ADRS) — 1 -

C) EXAM A -(START v DEP v
CONT v LOAD ADRS) — 1 - 1

D) CONT A -(START v DEP v
EXAM v LOAD ADRS) — 1 1 -

E) LOAD ADRS A -(START v DEP v
EXAM v CONT) — 1 1 1

31 NOWR v BYTEWR v WORDWR
A) BYTE A -(BIT v CMP v
TST) K3-7 1

B) (BIT v CMP v TST> A
-BYTE K5-8 1-

32 not used

16-Jan-76 Microinstruction Format Page 71

UBF<4:0> continued

BUT MNEMONIC PRINT BUBC BITS
CONDITION

33 OB v INSTR 4 K3-7
A) ODD BYTE - -1 111
B) NEG A -ODD BYTE 1
C) Ail single operand odd
byte instr except NEG and
SWAB. 1-

D) NEG odd byte 11
E) All double operands (except
MOV and SUB) with SMO and
NOT odd byte. — 1 - -

F) All double operands (except
MOV and SUB) with SMO and
NOT odd byte. — 1 - 1

G) SUB A SMO A -DMO A

- O D D BYTE — 1 1 -
H) SUB A -SMO A -DM0 — 111
I) All odd byte double operands
(except MOV and SUB)
with SMO. - 1 —

J) All odd byte double operands
(except MOV and SUB)
with -SMO. - 1 - 1

K> (ROR/ROL/ASR/ASL) A -DMO - 1 - 1 -
L) ROR(B)/ROL(B)/ASR(B)/ASL(B) A
-DMO - 1 - 1 1

M) SXT A -DMO - -1 1--
N) SWAB A -DMO - -1 11-

34 INSTR 4
BUT 34 is identical to BUT 33
without regard to the odd byte
condition.

35 OB v INSTR 3 K3-7
A) ODD BYTE - -1 11-
B) Identical to *'ed items
in BUT 37 A -ODD BYTE

C) SUB A -SMO A DMO A

-ODD BYTE 1
36 INSTR 3

BUT 36 is identical to BUT 35
without regard to the
ODD BYTE condition.

16-Jan-76 PDP-11/40E Microprogramming Reference Manual Page 72

UBF<4:0> continued
BUT MNEMONIC

CONDITION
PRINT BUBC BITS

37 INSTR 1

HALT
WAIT
RTI
BPT
IOT
RESET
RTT

- 1 - - 1 -
- -1 1 -

1
- 1 - 11-
- 1 - 11-
- 1 - 111

1

JSR/JMP (Rn) 1-1 - 1
JSR/JMP (Rn)+ 1 - 1 - 1 -
JSR/JMP @(Rn)+ 1-1-11
JSR/JMP -(Rn) 1-1 1 -
JSR/JMP @-(Rn) 1-1 1-1
JSR/JMP x(Rn) 1-1 11-
JSR/JMP @x(Rn) 1-1 111

RTS - 1 -
NOP " 1
CCC - 1
SEC - 1
SWAB RN -11
BRANCH INSTR. (cond. not met) - 1
BRANCH INSTR. (cond. met) - 1

1--
11-
11-
111
1--

- -1

* The following applies also to BUT 35 B
until a second * appears.

All single operand, SWAB A -Rn, ROTATES,
SHIFTS, all double ops. (except MOVE) with SOURCE MODE 0.

xx xx (Rn)
xx xx (Rn)+
xx xx @(Rn)+
xx xx -(Rn)
xx xx ©-(Rn)
xx xx x(Rn)
xx xx @x(Rn)

- -1
- 1 -
-11
1 -
1-1
11-
111

16-Jan-76 Microinstruction Format Page 73

UBF<4:0> continued
MNEMONIC

BUT 37 continued

MOV Rn,
MOV Rn,
MOV Rn,
MOV Rn,
MOV Rn,
MOV Rn,
MOV Rn,
MOV Rn,

Rn
(Rn)
(Rn)+
@(Rn)+
-(Rn)
©-(Rn)
x(Rn)
@x(Rn)

BUBC BITS

111 - - -
111 - 1
111 - 1 -
111 -11
111 1 "
111 1-1
111 11-
111 111

* Here ends the section relating to BUT 35.

ILLEGAL INSTR
MFPI, MTPI, MFPD, MTPD
SOB
SXT Rn
SUB Rn, Rn
NEG Rn

1-1 - -
-11 11-
-11 - - -
-11 - 1 -

11
. . . j - i

All double operand (except MOV and SUB)
with Dest mode and Source mode - 0:
xx OR OR 1-

All single operand (except MOV and SUB)
with Dest mode 0:

xx xx OR — 1—

All double operand with Source mode not 0: xx (Rn) xx
xx (Rn)+ xx
xx @(Rn)+ xx
xx -(Rn) xx
xx @-(Rn) xx
xx x(Rn) xx
aa @x(Rn) xx

1
„ _ i _
- - -11
„ i__
- - 1-1
- - 11-
- - 111

ROR/ROL/ASR/ASL Rn 11-

(ROR(B)/ROL(B)/
ASR(B)/ASL(B)) Rn — Ill

PDP-11/40E Microprogramming Reference Manual Page 74

The 8 bit next address field.
Used to specify address of next microinstruction to be
executed but may be modified as a result of a branch test.
(See also UBF and XUPF.)
NOTE: The UPF bits are complemented while XUPF bits are not.
UBC is MicroBranch Control.
The UPF field is ORed with BUBC from the BUT MUX (K3-2) in the processor
and the EUBC (K2-2,3) lines from the extension. This allows conditional
microbranches.

Allows writing DMUX<15:8> into the general registers.
0 - NO-OP
1 - GENERAL REGISTER<15:8> (as selected by SRX) <- DMUX<15:8>
Timing: PI v P3

Allows writing DMUX<7:0> into the general registers.
0 - NO-OP
1 - GENERAL REGISTER<7:0> (as selected by SRX) «- DMUX<7:0>
Timing: PI v P3

Extended UPF field. (See also UPF.)
XUPF<9:8> are concatenated with EUPP<7:0> for the RAM address.

0 0 0 - Enables Bootstrap PROM on first entering the extension
(an automatic hardware feature).
If already in the extension this combination will cause
a branch back to the 11/40 ROM.
NOTE: The last microinstruction before returning to the
11/40 ROM cannot use the extended features,
(an AUTOMATIC hardware clear)

0 0 1 - Enables bootstrap PROM. During a RAMread or RAMwrite
the PROM is only enabled after the P2 pulse of a P3 cycle.

0 1 0 - illegal
0 1 1 - illegal
1 , - Enables reading of the 80 bit RAM.
1 0 0 - XUPF<9:8> concatenated with EUPP<7:0>
1 0 1 to address the IK by 80 bit
1 1 0 microwords. (See section A.2.)
1 1 1

16-Jan-76 Microinstruction Format Page 75

A.2 Address Space

Addressing U Memory

U s i n g XUPF<10:8>,UPF<7:0> as address of next 88 b i t U word to e x e c u t e .

(A l l addresses a r e i n O c t a l .)
86 B i t s -»l

+

I 3777

I
I

1024 U o r d s I RAM

+- -+
2000

I / I
\ / \
I / I
I / I
+ _ +

I I 437
32 U o r d s I PROM I

I I 400
+ + +

1/ / / / / / I I 377
I / I / I I l\ I

256 U o r d s 1/ / / / / / I ROM I
I / / / / / / I I
1/ / / / / / I I 0
+ +

l<- 56 B i t s -+I

16-Jan-76 PDP-11/40E Microprogramming Reference Manual Page 76

U s i n g the c o n t e n t s of the stack to address a 1G b i t word i n the RAM.

Group

I f 2K
C h i p s
E x i s t

4 3 2 1 0 .4. U Word
S tack<13:3>

3777
3776

•

77778 1
777G8 1

37776 1
37766 1

1

37774 1
37764 1

1
I

37772 1
37762 1

37770
37760

U Word
S tack<13:3>

3777
3776

•

68828 1
68818 1
68880 1

I
1

20026 1
20016 1
20006 1

1
1

20024 1
20014 1
20804 1

20022 1
20012 1
20002 1

20028
20818
28800

-4*

•
2802
2001
2000

57770 :
57760 s

i

17776 t
17766 :

i

17774 j
17764 :

i

17772 i
17762 ; t •

17770
17760

I
: • •

1777
1776

•

» t
40000 :

• •
6 :

•
4 :

• •
2 : 0

• • • •
•

0

The group number is determined by STACK<14,2:1>.

0 0 0 - group 0
0 0 1 - group 1
0 1 0 - group 2
O i l - group 3
1 0 0 - group 4
1 0 1 - illegal
1 1 0 - illegal
1 1 1 - illegal

16-Jan-76 Microinstruction Format Page 77

A . 3 DEST/MSC F u n c t i o n s

Interaction of Dest (Destination) and MSC (Mask-Shift Control) fields. NOTE: Actions occur from left
to right. The stack is loaded at the end of a cycle. Some timings are indicated.
DEST MSC Action

00 000 OFF
00 001 RD <- EMIT
00 010 EUBC« - EMIT
00 O i l Push Stack; STACK «- EMIT (P2 or P3)
00 100 STACK <- EMIT (PI or P2 or P3)
00 101 RD <- Stack Pointer
00 110 RD Stack; Pop (if PPE-1)
00 111 EUBC «- Stack; Pop (if PPE-1)

01 000 Push (if PPE-1); Stack «- DMUX (if PPE-1 P2 or P3 only)
01 001 Push; RD <- EMIT; Stack «- DMUX (P2 or P3)
01 010 Push; EUBC <- EMIT; Stack <- DMUX (P2 or P3)
01 O i l Push; (PI or P2 or P3)
01 100 Pop
01 101 Push (if PPE-1); RD «- Stack Pointer; Stack <- DMUX (if PPE - 1 P2 or P3 only)
01 110 RD Stack; Stack «- DMUX
01 111 STACK POINTER <- SC<3:0>

10 000 OFF
10 001 OFF
10 010 OFF
10 O i l OFF
10 100 RD «- Memory[Stack]; Pop (if PPE-1)
10 101 OFF
10 110 OFF
10 111 OFF

000 Memory[Stack] <- DMUX; Pop (if PPE-1)
001 RD <- EMIT; Memory[Stack]«- DMUX; Pop
010 EUBC «- EMIT; Memory[Stack] <- DMUX; Pop
011 OFF
100 OFF
101 RD <- Stack Pointer; Memory[Stack] DMUX; Pop (if PPE-1)
110 RD «- Stack; Memory[Stack]<- DMUX; Pop (if PPE-1)
111 EUBC Stack; Memory[Stack] <- DMUX; Pop (if PPE-1)

Push: (pushes with writes to stack can be P2 or P3 only)
Stack Pointer *- Stack Pointer-1 (push) then
Action

Pop:
Action then
Stack Pointer <- Stack Pointer+1 (pop)

16-Jan-76 PDP-11/40E Microprogramming Reference Manual Page 78

Appendix B. Standard ROM in MICRO/40

T h i s i s a t r a n s c r i p t i o n of the standard PDP-11 emulator
i n MICRO/40. The sequence and labe ls of the m i c r o
i n s t r u c t i o n s c l o s e l y f o l l o w the f l o w c h a r t s in the KD11-A
P r o c e s s o r E n g i n e e r i n g Drawings.
T h i s microcode i s a v a i l a b l e on the CMU-10A as
ROM256.MIC[N200MU00] and can be used as a s t a r t i n g
p o i n t when c o n s t r u c t i n g a modi f ied PDP-11 i n s t r u c t i o n
s e t on the PDP-11/40E mic roprocessor .

O r i g i n a l V e r s i o n :
R e v i s i o n 1:

Summer 1975 Rajan Modi
Autumn 1375 Guy Almes

r e q u i r e defs.mic[n200mu00]

f / i r /
a I I o w . o d d
c h e c k . o v f I o
o v f I o / o d d
d a t o / d a t o b
i nh i b i t
c I k o f f / o v I a p
awbby

d i s p . r i r
d i s p . r p c
d i s p . v e c t
d i s p . a d r s c
d i s p . r d f
d i s p . d
d i s p . b u s

dad«148
dad«18
dad«G8
dad«78
dad«17;
dad=128
clk*08
bus=28

! a l u f u n c t i o n of i r
! a I low an odd address
! check stack o v e r f l o w

dato8

sdm«0?
sdm«0;
sdm«0;
sdm«0;
sdrn«0;
sdm«28
sdm«18

s r x = l ;
s r x = l ;
s r x = l ;
s r x » l ;
s r x »48

i n h i b i t d a t o / c l k o f f on TST or CMP
c l k o f f i f o v e r l a p f e t c h
awai t bus busy

r i f - 1 3 »
r i f « 7 8
r i f « 1 4 »
r i f - 1 7 8

set data to be d i s p l a y e d

b e g i n g o t o FET02

s e t ! but 25 $ SER07
s t a r t

SER09:
SER10:
S E R l l i

end
SER05:
FET02:

pi? d i 6 p . r i r ; c l k o f f
p3; b , v e c t n j n i b u s ; but 7
p i ; d i s p . v e c t ; goto SER04

p i ; d i s p . r i r ; goto TRP03
p i ; ba« - rpc; d a t i ; c l k o f f ; goto FET03

SER02: p3; d i s p . r i r ; but 2G; goto SER05
t e s

s e t ! but 20 ® M0V19
FET01: p i ; ba« - rpc; d a t i ; c l k o f f ; goto FET03
FET03: p i ; b, i r , r i r « - u n i b u s ; goto FET04

l G - J a n - 7 6 Standard ROM in MCRG748 Page 79

SER01: p3; d i s p . r i r ; but 2G; goto SER05
H0V21: p2; d « - b . e l ; but 27; d i s p . d ; goto J10V28

t e s

FET04 : p2; ba ,d « - rpc+2; but 37; da t i ! i f ov lap f e t c h
F E T 0 5 : p i ; rpc« -d
s e t ! but 37 @ FET84

FET07? p i ; d i s p . r i r ; goto TRP8B
s t a r t

R T I 8 8 : p3; ba« - rsp; d«-rsp+2; d a t i ; rsp<-d; c l k o f f
RT I01 : p i ; rpc<-unibus
R T I 0 2 : p3; ba<-rsp; d«-rsp+2; d a t i ; rsp« -d ; c l k o f f
R T I 0 3 : p i ; ps*-unibus; goto SER02

end
s t a r t

DOP02: pi? b « - r d f ; but 31
DOP03: p2; d<-rsf ; f / i r / ; but 27

s e t ! but 31 ® DOP02
D0P19: p i ; r d f « - d ; n . z . v . c ; c l k o f f / o v l a p ; go to FET01
D0P18: p i ; r [d f] . l « - d ; n . z . v . c ; c l k o f f / o v l a p ; g o t o FET01
D0P17: p i ; n . z . v . c ; d i s p . d ; c l k o f f / o v l a p ; goto FET01

t e s
end
s t a r t

DOP00: p i ; b w s f
DOP01: p2; d « - r d f - b ; but 27; goto D0P19

end
s t a r t

SSL02; p2; d<-rdf? f / i r / ; but 31
SSL03: p i ; c ; d i s p . d ; but 27; goto D0P19

end
s t a r t

SSL00: p i ; b « - r d f ; but 31
SSL01: p2; d<-0-b; d i s p . d ; but 27; goto D0P19

end
s t a r t

RSR00: p3; d « - r d f ; c ; b « -dsh i f t
RSR01: p3; d«-b; rdf<-d; but 27
RSR05: p i ; n . z . v . ; c l k o f f / o v l a p ; d i s p . r d f ; goto FET01

end
s t a r t

RSR02: p i ; b<-rdf
RSR03: p3; d«-b. I z ; c . ; b « -dsh i f t
RSR04: p2; d« -b .hh ; r [d f] . l « - d » but 27? goto RSR05

end
s t a r t

NBR00: pi? d i s p . r i r ? but 16
SOB06? p i t d i s p . r i r ? goto FET82

end
s t a r t

1 6 - J a n - 7 6 PDP-11/40E Microprogramming Reference Manual Page 80

BRA00:
BRA01:
BRA02:

end
s t a r t

MRK00:
MRKB1:
MRK02:
MRK03:
MRK04:
MRK05:

end
noop ! h o l e

SER00:
noop ! h o l e

s t a r t
CCC00:
CCC01:
CCC02:

end
s t a r t

SCC00:
SCC01:

end
s t a r t

D0P15:
D0P16;

end
s t a r t

D0P13:
DQP14;

end
CON00:
SER03:

s t a r t
RTS00:
RTSB1:
RTS02:
RTS03:

end
noop ! h o l e

TRP0B:
s t a r t

RST00:
RST01:
RST02:

s e t

p2; d*-rpc+b.el
p i ; rpc« -d ; but IB
p3; d « - r p c + b . e l ; rpc« -d ; goto FET02

p3; d « - r i r + b ; b«-d
p3; d , ba<-rpc+b» e I ; d a t i ; rpc*-d
p2; d«-rpc+2
p i ; rsp<-d; c l k o f f
p3; d<-r5? r5*-unibus; but 16
p i ; rpc«-d? goto FET02

p3; d i s p . r i r ; but 26; goto SER05

p3; d « - r i r and 17? b«-d
p3? d«-not b; b<-d; but 16
p3; d«-ps and b; n . z . v . c ; ps*-d; goto FET02

p3? d « - r i r and 17? b«-d? but 16
p3? d«-ps or b? d isp .d? goto FET02

pi? b « - rd f ; but 31
p2; d « - r s r c ; f / i r / ; but 27; goto D0P19

p i ; b « - r s rc
p2? d« - rdf -b? but 27; goto D0P19

p3? ba«-rpc; d i sp .d? goto C0N12
p3? d i s p . r i r ? but 26; goto SER05

p2; d« - rdf
pi? rpc*-d
p3; ba«-rsp? d<-rsp+2? dat i? rsp«-d? c l k o f f ? but 16
pi? rdf« -unibus? goto FET02

p3; d«-c[03? vect<-d? goto TRP08

pi? d«-r0? d i s p . d
p3; d i s p . d ? c l k o f f ; but 2
p i ; d i s p . d

! but 2 @ RST01
RST03: p i ; d i s p . d ; goto CON01
RST04: p i ; d i s p . d ; goto FET02

t e s

1 6 - J a n - 7 6 Standard ROM in MICRO/40 Page 81

end
s t a r t

SOB00: p2? d « - r s f - l
SOB01: p i ; r s f « - d ; but 12
SOB02: p2; d<-r i r and 77; b<-d

s e t ! but 12 @ SOB01
s t a r t

SOB03; p3; d « - rpc -b ; rpc« -d; but IB
SOB04} p3; d « - rpc -b ; rpc«-d? goto FET02

end
SOB05; pi? d isp .d? but IB? goto SOB06

t e s
end

noop ! h o l e
SXT00: p2? d«~ l? f / i r / ? d isp .d? but 27? goto D0P19

noop ! h o l e
s t a r t

SUB00: pi? b<-rdf
SWB01: p2? d«-b. I h ; d i sp .d? but 27? goto D0P19

end
noop ! h o l e
K T : noop !?

s t a r t
SRC16: p2? d«-b.hh? d i s p . r i r ? but 36
SRC17: pi? b,rsrc*-d? goto D0P15

end
noop ! h o l e

s t a r t
SRC00: pi? b a w s f ; dat i? a l l o w . o d d
SRC14: pi? c l k o f f ? d i s p . r i r ? but 35
SRC15: p i ; b , r s r c « - u n i b u s ; goto D0P15

end
s t a r t

SRC01: p2? ba«-rsf? dat i? a I low. odd; d«-rsf+c[33
SRC03: p i ; r s f « - d ; c l k o f f ? but 35? goto SRC 15

end
s t a r t

SRC04: p3? b a « - r s f ; d a t i ; d<-rsf+2? rsf<-d? c l k o f f
SRC12: pi? b, r s r c « -un ibus
SRC13: p i ; b a « - r s r c ; d a t i ; a l l o w . o d d ; goto SRC14

end
SRC02: p2; d , b a « - r s f - c [33 ? dat i? a l l o w . o d d ; goto SRC14
SRC05: p3? d ,ba« - r s f -2? dat i? r s f « - d ; c l k o f f ? goto SRC12

s t a r t
SRC0G: p3; d«-rpc+2? rpc<-d; c l k o f f
SRC07: p i ; b , r s r c « - u n i b u s
SRC08: p2 ; ba« - rs f+b ; d a t i ; a l l o w . o d d ; goto SRC14

end
s t a r t

SRC09: p3? d«-rpc+2? rpc«-d? c l k o f f

- J a n - 7 6 PDP-11/40E Microprogramming Reference Manual Page

SRC10: p i ; b , rs rc< -un ibus
SRC11: p2; b a ^ r s f + b ; d a t i ; c l k o f f ; goto SRC12

end
TRP07. p3; d«-c [0] ; vect«-d? goto TRP08

s t a r t
JMP00: p2; d « - r d f ; but 15
JMP04: p i ; b, temp<-d

s e t ! but 15 ® JMP00
s t a r t

JMP12: p2; d«-temp; but IB
JMP13: p i ; rpc<-d; goto FET02

end
s t a r t

JSR00: p3; d , ba« - r sp~ l - l ? rsp«-d? c h e c k . o v f l o
JSR01: p2; d«-rsf? dato? c l k o f f
JSR02: p2; d<-rpc
JSR03: pi? r s f « - d ; goto JMP12

end
t e s

end
s t a r t

JMP01: p3; d« - rdf+2; rdf<-d
JMP02: p2? d< - rd f -2 ; but 15; goto JMP04

end
s t a r t

JMP05: p3; ba<-rdf? d«-rdf+2? dat i? rdf<-d; c l k o f f ; but 15
JMP11; p i ; b, temp<-uni bus? goto JMP12

end
JMP03: p3; d « - r d f - 2 ; r d f « - d ; but 15; goto JMP04
JMP0G: p3; d , b a « - r d f - 2 ; d a t i ; r d f f - d ; c l k o f f ; but 15?-

goto JMP11
s t a r t

JMP08: p3; d«-rpc+2? rpc« -d ; c l k o f f
JMP14: p i ; b. temp<-unibus
JMP15; p2? d«-rdf+b? but 15? goto JMP04

end
s t a r t

JMP07: p3; d«-rpc+2? rpc*-d; c l k o f f
JMP09: p i ; b f temp«-unibus
JMP10: p2; d ,ba« - rd f+b ; dat i? c l k o f f ? but 15; goto JMP11

end
s t a r t

M0V19: p2? d<-rsrc ; but 20
MOV20? pi? rdf ,b« -d? n . z . v . c . ? c l k o f f/ovlap? goto FET01

end
s t a r t

DST00: p i
DST14: p i
DST15: p i

s e t

ba«-rdf? dat ip? ov f lo/odd
d i s p . r i r ? c l k o f f ? but 33
b. rds t « -un ibus

! but 33 © DST14

1 6 - J a n - 7 6 Standard ROM in I11CRO/40 Page 83

s t a r t
SSL06: p2; d « - rds t ; f / i r / ; dato/datob; d i s p . d
SSL10: p i ; c ; d i s p . d
D0P12: p i ; n . z . v . c ; c l k o f f ; i n h i b i t ? d i s p . d ; -

but 16
DOP20: p i ; d i s p . d ; goto FET02

end
SSL04: p2; d« -0-b; d a d « l l ; da to ; d i s p . d ; g o t o D0P12

s t a r t
SSL08: p2; d<-rdst; f / i r /
SSL12: p i ; c ; d i s p . d
SSL11: p i ; b<-d; n . z . v . c .
SSL09: p2; d«-b. I z ; datob; d i s p . d ; -

dad-13; c l k o f f ; but 16; goto DOP20
end

SSL07; p2; d« -0-b; d i s p . d ; goto SSL 12
DOP07: p2; d«-rsf? f / i r / ; dato/datob; go to D0P12
DOP08? p2; d«-rsrc? f / i r / ; dato/datob; goto D0P12

s t a r t
DOP04; p i ; b<-rsf
DOP06: p2; d « - r d s t - b ; dato ; goto D0P12

end
DOP05: p i ; b<-rsrc; goto DOP06

s t a r t
DOP09: p2; d « - r s f ; f / i r /
D0P22: p i ; b<-d; c .
D0P21: p i ; b«-d; n . z . v . c .
D0P11: p2; d«-b. I z ; datob? d i s p . d ; d a d - 1 3 ; -

c l k o f f ; but 16; goto DOP20
end

DOP10; p2; d « - r s r c ; f / i r / ; goto D0P22
s t a r t

RSR06: p3; d<-b; c ; b « -dsh i f t
RSR07; p2; d«-b; da to ; d i s p . d
RSR10; p i ; n . z . v . j c l k o f f ; d i s p . d ; but 16
RSR11: p i ; d i s p . d ; goto FET02

end
s t a r t

RSR08: p2; d«-b. I z ; c . ; b « -dsh i f t
RSR09: p2; d« -b .hh; datob; d i s p . d ; go to RSR18

end
SXT01: p2? d « ~ l ; f / i r / ; dato ; d i sp .d? goto D0P12

noop Iho le
SSL05: p2; d«-b. I h ; dato ; d i s p . d ; goto D0P12

s t a r t
0ST16: p2; d« -b .hh; d i s p . r i r ; but 34
DST17: p i ; b , rd3t<-d; goto SSL06

end
t e s

end

l G - J a n - 7 6 PDP-11/40E Microprogramming Reference Manual Page 84

s t a r t
DST01: p2? ba« - rd f ; d a t i p ; o v f l o / o d d ; d«-rdf+cC3)
DST03: pi? r d f « - d ; c l k o f f ? but 33; goto DST15

end
s t a r t

DST04: p3? ba«-rdf? dat i? d«-rdf+2? rdf«-d? c l k o f f
DST12: pi? b , rdst< -unibus
DST13? pi? ba« - rds t ; dat ip? al low.odd? goto DST14

end
DST02: p2? d , b a « - r d f - c [33 ? datip? o v f l o / o d d ; goto DSTB3
DST05: p3? d ,ba« - rd f -2? dat i? rdf<-d; c l k o f f

s t a r t
DST07: p3; d«-rpc+2? rpc<-d? c l k o f f ; but 17
DST09: p i ; b , rds t « - u n ibus

s e t ! but 17 © DST07
DST10: p2? ba«-rdf+b; datip? o v f l o / o d d ; goto DST14
DST11: p2; ba«-rdf+b; dat i? c l k o f f ? goto DST12

t e s
end

DST0G: p3; ba«-rpc? d a t i ; d*-rpc+2? rpc«-d? c l k o f f ? -
but 17? goto DST09

H0V18: p2? d«-rsf? but 20; goto MOV20
s t a r t

MOV00: p2? d , b a « - r d f ; o v f l o / o d d ; but 22
f1OV07: p i ; rdf*-d

s e t ! but 22 © MOV00
M0V16: p2; d«-rsrc? dato
M0V17: p2? d«-rsf? dato

s t a r t
M0V14; p i ; b<-rsrc
M0V15: p3; d« -b . lz? datob; r s rc « -d

end
M0V13: pi? b«-rsf? goto M0V15

t e s
MDV22: p3? n . z . v . c . ; d i s p . d ; i n h i b i t ; c l k o f f ; but 16?-

g o t o D0P28

end
MOV01: p2? ba<-rdf; d« - rdf+ct33; o v f l o / o d d ; but 22?-

goto MOV07

s t a r t
MOV03: p3? ba« - rd f ; d« -rdf+2; dat i? rdf<-d? c l k o f f
H0V11: p i? b , r d s t « - u n i b u s ; but 22
M0V12: pi? ba« - rds t ; a l low.odd? goto H0V16 .

end
MOV02: p2? d.ba<-rdf -ct33? ovf lo/odd? but 22? goto MOV07
MOV04: p3? d ,ba« - rd f -2? dat i? rdf<-d? c l k o f f ? goto M0V11

s t a r t
MOV06: p3? d«-rpc+2? rpc«-d? c l k o f f ? but 17
MOV08: pi? b . rdst « -un ibus? but 21

s e t ! but 17 e MOV06

l B - J a n - 7 6 Standard ROM in MICRO/48 Page 85

M0V89: p2; ba« -rdf+b; o v f l o / o d d ; goto M0V1B
M0V18: p2j ba«-rdf+b; d a t i ; c l k o f f ; a l low.odd? go to M0V11

te3
end

H0VB5; p3? ba« - rpc; d a t i ; d<-rpc+2; rpc« -d ; c l k o f f ? but 1 7 ; -
g o t o MOV08

t e s

s e t but 26 ® SER82
s t a r t

TRP83;
TRP02:

end
C0NB1:

s t a r t
SERBS:
SER87:
SER88;

end
FET08:

t e s

p3; d« -ct83; vect« -d
p2? ba«-vect+2? d a t i ; c l k o f f ; goto TRP89

p3; ba« - rpc ; d i s p . d ; goto C0N12

p i ; d i s p . r i r ; awbby, c l k o f f
p2; d i s p . r i r ; awbby; but 25
p i ; d i s p . r i r ; goto SER89

p i ; ba« - rpc ; dat i? c l k d f f ? goto FET83

s e t ! but 7
SER04? p3

s t a r t
TRP88: p2
TRP09: p i
TRP10: p3
TRP11: p2
TRP12: p i
TRP13: p3
TRP14: p2
TRP15: p i
TRP1B; p i
TRP20: pi?
TRP21: p i?

end
t e s

s SER18
d i s p . r i r ? but 2G? goto SER85

ba«-vect+2; dat i? c l k o f f
temp«-unibus
d , b a « - r s p - b ; check .ov f lo? rsp«-d
d«-ps; dato? c l k o f f

d,ba«-rsp~b? check .ov f lo? rsp«-d
d«-rpc? dato? c l k o f f
ps«-temp
ps*-temp; but 4
ba«-vect? dat i? c l k o f f ? but 1
rpc«-unibus? but 3? goto C0N88

s e t ! but 38 a C0N18
s t a r t

C0NB5: p3? d i s p . d
C0N13: p3; d i s p . d ? but G
CONBG: pi? d i s p . d ; goto C0NB4

1 B - J a n - 7 G PDP-11/40E Microprogramming Reference Manual Page 8B

CON08:
CON09:
CON10;
C0N11:

end
s t a r t

EXM06:
EXM07:
EXM08:

end
s t a r t

STA00:
STA01:

end
LAD03:

s t a r t
DEP00:
DEP01:
OEP02:

s e t

p3
p3
P3
P3

P2
P i
P2

Pi;
"Pll

temc<-d; but 12
d«-temc+l; temc«-d? goto CON08
di s p . r p c ; but 30
d« -adrsc; goto CON05

d<-177570? d a t i ; d i s p . d ; c l k o f f
b«-unibus
d«-b? d i s p . d ; goto CON05

rpc« -d ; but 10
d i s p . r p c ? goto FET02

pi? d<-0; d i s p . d ; goto CON05

p i ; ba<-adrsc
p3; d i s p . d ; but 3
p3; d , ba«-adrsc+c [73; adrsc«-d

! but 3 © DEP01
DEP03: p3? d,ba*-adrsc+c[73; a d r s o - d ; goto DEP04
DEP04: p2; ba<-177570; dat i? d i s p . a d r s c ? c l k o f f

t e s
DEP05:
DEP0B:
DEP07:
DEP08:

s e t

P i
P i
p3
P i

DEP09.
DEP105

b«-unibus
ba«-adrsc
d«-b; a l low.odd? d isp .d? but 3
d i s p . d

but 3 © DEP07
pi? dato? d isp .d? c l k o f f ? goto CON05
pi? rba«-d? goto CON05

t e s
end
s t a r t

EXf100:
EKH01:
EXM02:

s e t

pi? ba«-adrsc
p3? d i s p . d ; but 4
p3; d , ba«-adrsc+c [73; adrsc«-d

! but 4 © EXM01
EXM04: p3; d i s p . a d r s c ; a l low.odd? but 4
EXf103: p3? d , ba«-adrsc+c [73; adrsc« -d ; goto EXM04

t e s
EXM05:

end
CNT08:

s t a r t
LAD00:
LAD01:
LAO02:

end

p2; d« - rba; goto CON05

p i ; d i s p . r p c ? goto SER02

p2? ba<-177570; dat i? d isp .bus? c l k o f f
p3? adrsc« -un ibus ; but 5
p2; d ,ba« -adrsc ; d isp .d? goto STA00

tee

1 6 - J a n - 7 G Standard ROM in MICRO/48 Page 87

C0N12: p 3 ; d«-ps; awbby; but 24
CON02: p3 ; ps« -d ; awbby; c l k o f f

s e t ! but 24 ® C0N12
C0NB3: p2; d« - r8; d i s p . d ; goto C0NB4

noop; go to 8 ' h o l e
C0NB4; p3; d i s p . d ; but G; goto CONBG
CON07: p2; d«-b; sbm=17; sbc=14; d i s p . d ; goto CON08

t e s
f i n i s

1 6 - J a n - 7 6 PDP-11/40E Microprogramming Reference Manual Page 88

Appendix C. The Boots t rap PROM

Proposed PROM Code — 2 December 1974
rev 1 May 1975

— rev 9 June 1975

The use of a s i n g l e opcode, 000007. fo r s e l e c t i o n o f
PROM f u n c t i o n s o f f e r s three advantages:

a) I t uses the o n l y opcode w i t h no address b i t s ,
b) I t reduces the de lay in g e t t i n g to 2000 in normal c a s e s ,

and c) I t leaves more of the PROM open fo r u t i l i t y g o t o ' s .

r e q u i r e d e f s . m i c
I o w I i m«2400

push ps onto stack fo r addr space check
t e s t b i t 7 to detec t whether user or H y d r a
d « - r i r xor 000007

! execute user i n s t r u c t i o n
! in Hydra ; d e t e c t l o a d / s t o r e

! execute Hydra i n s t r u c t i o n
! l o a d / s t o r e , s i n c e i r «000007

! assume a RAM wr i te

! r2 0 RAM read

. - 2 4 0 0 ; tos*-ps
case tos<7>
d«-7 x o r b

s e t
t o s « - r i r ; goto 2000
s k i p z e r o

t e s
d«-r2

s e t
tos« - r i r ; goto 2001
t o s < - r l ; s k i p z e r o

t e s
d<-not r 0

s e t
s t a r t

d<-RAM[tos]; but 16
r0« -d ; goto 16

end
RAM[tos]«-d? goto e x i t t

t e s

r d r a m : d«-ramts]? goto r e t s u b
wrram: ramts]<-d; go to r e t s u b

eubc«-tos? goto e x x i t
r e t s u b : eubc«-s? goto e x x i t
e x x i t : g o t o 0

e x i t t : but 16? eubc«-16? goto e x x i t ! p r o v i d e an e x x i t to the ROM

. -2402? g o t o 2002 ! p r o v i d e some .«40x? g o t o ' s f o r RAM r e a d e r s

. - 2 4 0 3 ; g o t o 2003

. - 2 4 0 4 ; g o t o 2004

. - 2 4 0 5 ; g o t o 2005

. - 2 4 0 6 ; g o t o 2006

! r 2 - 0 RAM w r i t e

! read from the RAM
! wri te from the RAM
! p r o v i d e two k i n d s o f r e t u r n

- J a n - 7 6 The B o o t s t r a p PROM Page

=2407
=2410
=2411
=2412
=2413
-2414
•2415
•2416
•2417

g o t o
g o t o
g o t o
g o t o
g o t o
g o t o
g o t o
g o t o
g o t o

f i n i s

2007
2010
2011
2012
2013
2014
2015
2016
2017

1 6 - J a n - 7 B PDP-11/40E Microprogramming Reference Manual Page 98

Appendix D. Vector I n s t r u c t i o n Set

The f o l l o w i n g microcode implements a set of f o u r v e c t o r
i n s t r u c t i o n s : ' V e c t o r Move ' , ' Vec to r Compare'. ' B r o a d c a s t * , and
'Checksum*. Each i s i n t e r r u p t a b I e and has both a word and a b y t e
v a r i e n t . The i n s t r u c t i o n i s two words long. The f i r s t word must
have a f r e e 'DF ' f i e l d ; the i n d i c a t e d r e g i s t e r p r o v i d e s a c o u n t
r e g i s t e r , wh ich i s decremented fo r each item processed u n t i l i t
r e a c h e s z e r o . The second word is of the form 'bc0s0d*, where ' b * « l
i f f ' i t e m ' = b y t e ; ' c ' i n d i c a t e s the op -code ; and 's* and 'd* s p e c i f y
t h e s o u r c e and d e s t i n a t i o n r e g i s t e r s , r e s p e c t i v e l y .

V e c t o r Move r e p l a c e s the code sequence:
l o o p : MOV(B) (S) + , (D) +

DEC K
BNE Ioop

I o o p :

V e c t o r Compare r e p l a c e s the code sequence:
DEC K
CMP(B) (S) + , (D) +
BNE out
TST K
BNE Ioop

o u t J

B r o a d c a s t r e p l a c e s the code sequence:
l o o p : MOV(B) S , (D) +

DEC K
BNE Ioop

Checksum r e p l a c e s the code sequence:
l o o p : ADD (S)+ ,D

ADC D
DEC K
BNE Ioop

T h i s microcode i s not n a i v e ; understanding i t r e q u i r e s t h o r o u g h
a t t e n t i o n t o the d e t a i l s of BUT 35, by te h a n d l i n g , and f l o w o f
c o n t r o l c o n s t r u c t s . Note that the f i r s t i n s t r u c t i o n to be e x e c u t e d
i s an i n v o c a t i o n o f macro ' V e c t o r * ; t h i s macro would be invoked i n
t h e i n s t r u c t i o n decoding microcode of the RAM. Note a l s o t h a t the
m a c r o s o f "DEFS.MIC [N200MU003 " and a macro ' I l l e g a l * , which d i s p o s e s
o f i I l e g a l opcodes , a re used. .

! I n t e r r u p t i b l e V e c t o r I n s t r u c t i o n Set — 28 . IK .75
i
V e c t o r :«* ba« - rpc ; d a t i ; p rop ; goto Vec08
n e x t s r c : « b a « - r s f ; d<-rsf+c[31; r s f « - d ; d a d « l ; d a t i t
opcode : * case tos<14:12>8

1 6 - J a n - 7 6 Vec to r I n s t r u c t i o n Set Page 91

o d d b y t e
d e c o u n t
wr i tew
wr i t e b
n e x t d s t
c o u n t
cmpare
cksum

but 35; case tos<15>t68
d < - c o u n t - l ; count«-d8
d a t o ; c l k o f f S
da tob ; c l k o f f ; dad«18
ba« - rd f ; d<-rdf+c[33? rdf«-d? dad«18
r [1138
n . z . v . c ; s k i p z e r o ; goto vec58
n . z . v . c ; p rop ; sbc«10? opcode; goto 08

V e c 0 : p3; d « - r d f ; s k i p z e r o ; c l k o f f
i r , tos« -uni bus

s e t

v e c l :
t e s

! i n i t i a l z e r o count
c o u n t e d ; opcode
d« - rpc+2; rpc« -d ; goto vecG ! complete the i n s t r u c t i o n

s e t
v e c 2 :

t e s

! c a t c h i n t e r r u p t requests
noop
d « - r p c - 2 ; rpc«-d? goto vecG

! proceed
! suspend the i n s t r u c t i o n

s e t ! opcode decoding

I I l ega l ! 00 - u n d e f i n e d
I 1 ' © g a l ! 01 - u n d e f i n e d

s t a r t ! 02 - B l o c k T r a n s f e r
n e x t s r c
d e c o u n t ; s k i p z e r o ; c l k o f f
b « -un ibus ; oddbyte

s e t ! check f o r z e r o count
v e c 3 : n e x t d s t ; but 16; case vec2 ! count 0

n e x t d s t ; case v e c l ! count • 0
t e s

. -2067? d«-b ; w r i t e w ; opcode; goto 0

. - 2 1 6 7 ; d«-b. I I ; w r i t e b ; opcode; goto 0

. - 2 1 7 7 ; d « - b . h h ; w r i t e b ; opcode; goto 0
end ! B l o c k T r a n s f e r

s t a r t ! 03 - Compare
n e x t s r c
o d d b y t e ; c l k o f f
temp, b«-uni bus

word
even by te
odd by te

• - 2 4 6 7 ; n e x t d s t ? d a t i ; goto vec4
• - 2 5 6 7 ; d « - b . c l ; temped; goto 2467
. - 2 5 7 7 ; d « - b . c h ; temped; goto 2467

! word
! even b y t e
! odd by te

16-Jan~76 PDP-11/40E Microprogramming Reference Manual Page

v e c 4 : d e c o u n t ; c l k o f f ; oddbyte
b«-unibus? s k i p z e r o

. - 2 6 6 7 ; d«-temp-b ; cmpare

. « 2 7 G 7 ; d« - temp-b. c I ; cmpare

. « 2 7 7 7 ; d*-temp-b.ch; cmpare .

! word
! even by te
! odd by te

s e t ! check exhausted count
v e c 5 : but I B ! count 0

g o t o v e c l ! e x i t : count = 0
t e s
s e t ! check fo r disagreement on compare

g o t o v e c l ! e x i t : mismatch
g o t o vec2 ; opcode ! cont inue

t e s
end ! Compare

s t a r t
d e c o u n t ; s k i p z e r o
b « - r s f ; case tos<15>t6; goto vec3

end ! B r o a d c a s t

s t a r t
n e x t s r c
d e c o u n t ; s k i p z e r o ; c l k o f f
b « -un ibus ; oddbyte

s e t ! make note of count exhaust ion
case vec2 ; but 16 ! count 0
case v e c l ! count « 0

t e s

! 04 - B roadcas t

! 05 - Checksum

.=2267; d<-rdf+b ; r [d f] <-d; cksum

. - 2 3 G 7 ; d « - r d f + b . c l ; r t d f] . l « - d ; cksum

. » 2 3 7 7 ; d « - r d f + b . c h ; r [d f l . l « - d ; cksum
end ! checksum

word
even by te
odd by te

I I l ega l ! 06 - u n d e f i n e d

I I l ega l 07 - u n d e f i n e d

t e s ! opcode decode

v e c 6 : . -2007? d<-rdf; p rop ; rdf« -d
p3; i r « - r i r
d e c o u n t ; but 16
r d f « - d ; goto 16

r e s t o r e o l d i r
update the count
r e t u r n to the ROM

