
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

HYDRA USER DOCUMENTATION

Edited by David Alex Lamb

February 16, 1976

DEPARTMENT
of

COMPUTER SCIENCE

Carnegie-Mel Ion University

HYDRA USER DOCUMENTATION

Edited by David Alex Lamb

February 16, 1976

This work was supported by the Defence Advance Research Projects Agency
under contract number F44620-73-C-0074 and is monitored by the Air Force Office of
Scientific Research.

Contents

1. Introduction

7. Getting started with BLISS-11
7.1. An Overview
7.2. Steps to a running BLISS program
7.3. A convenience package for BLISS-11 users under Hydra
7.3.1. The BLISS source program
7.3.2. The Runtime Environment
7.3.2.1. Programming considerations
7.3.2.2. LNS slot allocations
7.3.2.3. Addressing and RELOC register considerations
7.3.3. Linking your program with the Hydra Linker
7.4. Executing the BLISS program on C.mmp (at last)

Part VI: General Information

16. Documenting User Routines

16.1. Conventions
16.2. Text Responses
16.3. Sectioning
16.4. Miscellaneous Macros
16.4.3. Cross References
16.4.4. Examples
16.4.5. Tables
16.4.6. Indexing and the Table of Contents
16.5. Module Documenting

17. FilSys ~ an Initial File System
17.1. The File Type
17.2. File Creation
17.3. File Opening
17.4. Transput Operations

Contents

17.5. FQuery 143
17.6. FSList 143

18. User Software Design Considerations 145

18.1. Runtime LNS Allocation 145
18.2. Internal Error Reporting 146
18.2.1. The Reporting Routine 146
18.2.2. The Information Reported 146
18.3. File Structure 147
18.4. User I/O Package 148
18.5. Channels in User 10 Routines 149
18.6. I/O Routine Control Information 149
18.7. Conversion and Formatting Routines 150

Part VII: The BLISS User Library for HYDRA

19. Introductory Material 151

19.1. Buffer Manipulation and Formatting 151
19.2. The I/O Library 154
19.3. Generalized Formatting — the FormString Convention 157
19.3.1. Introduction 157
19.3.2. Rough description of the routines 157
19.3.3. Formatting control strings 158
19.3.4. Simple Control Codes 159
19.3.5. Loops and Conditionals 160
19.3.6. Right Justification 161
19.3.7. Extensions to the control codes 162
19.3.8. Buffer flushing 162

20. Input, Output, and Formatting 163

20.1. Initiating and Terminating I/O 163
20.2. Basic I/O Initiation and Termination 165
20.3. Basic Buffer Functions 167
20.4. Numeric Output 171
20.5. Clock Manipulation and Output 173
20.6. IOBCB/FormString Interface 179

Contents

20.6.1. Special definitions
20.7. Integer Conversion

21. Higher Level Modules

21.1. Simple User Initialization
21.2. Standard Main Module
21.3. User Error Reporting
21.4. Hydra Directory Manipulation
21.5. Single Precision Floating Point
21.6. Unsigned 16-bit Divide
21.7. Four-word Integer Arithmetic
21.8. Multiple precision arithmetic
21.9. Dynamic LNS Slot Management
21.10. ASCIZ String Package
21.11. Capability Printout

22. Lower Level Modules

22.1. Interface to DAS
22.2. Line Printer Open and Close
22.3. Message Creation
22.4. Low-Level Port Interface
22.5. File Opening and Closing
22.6. Generalized Formatting — FrmStr
22.6.1. Special definitions
22.6.2. Differences, from the FormString standard
22.7. Unsigned Integer Conversion

23. Summaries

23.1. Summary of Calling Sequences
23.2. Internal Names
23.3. Summary of Module Sizes
23.4. Intermodule References by Calling Routine
23.5. Intermodule References by Called Routine

INDEX

Introduction 1

1. Introduction

This document is an addendum to the HYDRA Songbook. As a result, its page
numbering may be somewhat unexpected. Chapter 7 replaces the
corresponding chapter of the Songbook. The remainder is all new material. It is
numbered so that it can be taken apart and filed with the Songbook.

This document follows a certain conventions. If a file name is mentioned without
a PPN, it is to be found on N810HY97. All numbers are decimal unless preceded by a
hash mark (#), in which case they are octal.

If you have any routines you think are of general interest, write a brief (or
wordy, if you care to) description, preferably using the macros discussed in chapter
16. Then send mail to David Lamb and it will be included in an future version
of this document.

There is a committee whose responsibilities include supervision of user software
on HYDRA. It consists of Sam Harbison, David Lamb, Joe Newcomer, and George
Robertson. These are the people you should see about design issues if you are
writing software to be used by many people, or if you are using such software and
have suggestions.

Portions of this document were largely copied from the Songbook. Guy Almes
wrote the file system chapter. Rick Gumpertz documented the routines for which he is
the maintainer. Sam Harbison, Phil Karlton, and Joe Newcomer made many helpful
comments.

Getting started with BLISS-11 25

7. Getting started with BLISS-11

7.1. An Overview

BLISS-11 is a programming language for the PDP-11. It is specifically intended
to be used for implementing "System Software". As such, it differs from other
languages in several significant ways.

> Higher-level languages derive their suitability for a particular problem area:
FORTRAN or ALGOL for mathematics, SNOBOL for strings, GPSS for simulations,
etc., because they provide to the user a vocabulary and set of conventions
suitable to that problem area. The BLISS-11 authors view "Implementation
Languages" in a similar way; as application languages where the application is a
particular species of hardware. As such, an implementation language must reflect
the capabilities and architecture of its machine, and must not block the
programmer's use of these capabilities.

> I/O is not a part of BLISS-11. I/O can be done directly in the language much as
an assembly program might, or through subroutine calls.

> Every attempt has been made to give the user explicit control over the code his
program generates, while providing maximum convenience otherwise.

> There are no explicit or implicit data modes other than the 16-bit binary word.
Data modes are essentially user-defined via the STRUCTURE mechanism which
allows the user to set or compute an algorithm for data access.

7.2. Steps to a running BLISS program

There is a fairly complicated and hazard-filled path from a BLISS-11 source
program to its execution on C.mmp. Remember that BLISS-11 is a batch system, but
that you are running it in an environment which provides poor support of batch-mode
operation. In brief, the major steps are these:

> Build a BLISS-11 source program with your favorite editor. It should have an
extension of .Bl 1.

> Run the source program through the BLISS-11 compiler, producing an assembly
language program as output. This output file will have an extension of . P l l .

> Run the assembly-language program through the "MACN11" or "MACYH"
assemblers, producing a relocatable file as output. This file will have an
extension of .OBJ

7

Getting started with BLISS-11

> Alternately, you may compile your program by saying "LOAD/NOLINK filename";
this combines the BLISS11 and MACNll steps.

> Using the Hydra linker, produce a link-edited collection of C.mmp page images.
This page image file will be stored in your area on the PDP10 disk; it will have an
extension of .PAG. The Linker will also produce a storage map in a file with an
extension of .MAP.

> Using the special utility program "DTH" copy your page image file (the .PAG file)
to a DECtape.

> Carry that DECtape to C.mmp and mount it on a DECtape drive on a processor
that is up and configured into the system.

> At the Hydra command interpreter, invoke the command object which loads and
initializes BLISS programs. This command object is documented in a later section
of this chapter.

> Run widdershins around the switch three times.

7*3. A convenience package for BLISS-11 users under Hydra

A collection of compiler macros, command objects, and runtime routines has
recently been developed to ease the pain of writing and debugging BLISS programs
under Hydra. This package, HYDUSR, consists of three pieces: a file to require into
your source program, object files to link in with your object program, and Hydra
command objects to get things running on C.mmp.

7.3.1 The BLISS source program

The HYDUSR runtime routine is the 'main program'; i.e. it contains the starting
address for the program. For this reason, you should never include a MAIN or START
declaration in your module head if you are going to use the HYDUSR package. Your
routine will be called as a procedure from HYDUSR initialization, and HYDUSR will take
care of the wrapup after your routine has returned.

HYDUSR will pass control to you at a GLOBAL ROUTINE named HENTRY. You must
have a GLOBAL ROUTINE by this name. HYDUSR will work equally well with or without
SIX12, but it is suggested that you include SIX12 by compiling with the /D switch or
by specifying DEBUG in the module header.

Your program need observe no other conventions, or call any other routines or
invoke any other macros. It would in fact take the following general form:

MODULE myprog =
BEGIN

7.2

Getting started with BLISS-11 27

REQUIRE hydusr.reqtn810hy97]»
• • •

GLOBAL ROUTINE hentry * . . .

END
ELUDOH

HYDUSR.REQ requires the kernel call and base call definition files
KERKALREQ[N811HY97] and BASCALREQ[IM811HY97], If you do not wish to use kernel
calls or base calls in your program, you may use HYDLIB.REQ instead of HYDUSR.REQ.
This file declares all of the library routines and defines structures and macros you
would use in your programs.

7.3.2 The Runtime Environment

The BLISS programmer must be familiar with the general Hydra environment, and
should understand the significance of LNS slots, procedures and processes, Kernel
calls, etc. The HYDUSR compile-time require file invokes all of the standard Hydra
macro definitions and parameter definitions, so that a HYDUSR program may use any of
the kernel calls or base calls at will. The I/O routines in HYDIO and the rest of the
HYDLIB library are also included.

7.3.2.1 Programming considerations

When HYDUSR transfers conrol to the user program at the entry point HENTRY,
it will have set up various facilities and LNS slots for the user's convenience. When
HENTRY is called, the following conditions are met:

> SIX12 has been initialized if it is present; if not, it is ignored. The user may
explicitly enter SIX 12 by calling SIXCMD, or he may ignore its presence entirely.

> Buffer control blocks have been allocated for teletype input and output (see
19.1 and 19.2).

> SIGPC and ERRPC in the user's LNS have been set up to trap kernel signals into
HYDUSR. HYDUSR will, when it receives a signal, print a message and then return
the value returned by the kernel call which failed. Hardware errors will also trap
to HYDUSR. When one of these errors or signals ocurrs, HYDUSR will call SIXCMD
if SIX 12 is present.

^ D P T « , D M i S u S U g l e s t e d t K a t t h e u s e r r e t u r n * r o m HENTRY rather than executing a
performed ° r d 6 r t h a t ^ W r 3 P U P W h i ° h m i g h t b e n e c e s s a r y c a n b *

7.3.1

28 Getting started with BLISS-11

7.3.2.2 LNS slot allocations

HYDUSR allocates the first several LNS slots and puts useful things into them.
The compile-time require file includes BINDs to the following names, which match those
slots:

> SYSDIRECTORY : a capability for the system directory.
> USERDIRECTORY : a capability for the user directory.
> IOPORT : a capability for a port connecting to the TTY.
> HDUSELF : a capability for the procedure object from which the process was

created.
> HDUPARMS : the first of a range of slots intended for parameter templates
> HDURETCAP : a slot for a capability to be returned by the procedure
> HDUPAGES : the first of a range of slots containing capabilities for the code pages

of the procedure.

7.3.2.3 Addressing and RELOC register considerations

The canonical linker command file causes HYDUSR to use relocation registers 1,
2, and 3, so they should not be changed by a user program. Several CPS slots are
also used by HYDUSR. The variable FREECPS is set to the first free CPS slot that the
user may safely allocate. The Address Space Management (ASM) routines will be
included in HYDUSR when they exist.

7.3.3 Linking your program with the Hydra Linker

The Hydra linker is a big awful hairy complicated program, and everybody is
constantly making mistakes in their command files for it. So the HYDUSR package
includes, for your convenience and good fortune, a 'Linker Command File Template*,
which you can hack over with your favorite text editor to make your very own linker
command file. The file XXXXXX.LMD[N810HY10] is a ready-to-eat Linker command file:
all you have to do is go through with a text editor and change all occurrences of the
string XXXXXX into the name of your program. As long as your program will fit onto a
single Hydra page (4096 words) you need use no other command file. If you need
more than one page, you will have to modify this Linker command file slightly, putting
part of your code in other RPS slots besides slot 2,

To run the linker, give it the input ©XXXXXX8, where XXXXXX has been changed,
of course.

The canonical Linker command file looks like this:

&
P r i n t t rac ing Information while l inking

&
% / S
&

Getting started with BLISS-11 29

Send the load map to disk
&
%XXXXXX.MAP
XXXXXX
&

Put the process- local OWN and GLOBAL sections on the f i r s t
page in the CPS, page 2 of the I n i t i a l RPS. The s ta r tup
command object w i l l make a copy of th is page so that
d i f f e r e n t processes invoked from the same procedure w i l l
have t h e i r own copy of these var iables . This l i n e MUST
come f i r s t (o r e lse the C t l switch must be spec i f ied f o r
t h i s page)

&
/Ri #40000/G>XXXXXXt N810HY97] <0G), @HYD0MN[N810HY97]
&

Output the code and PLITS.
&

/R: #20000/Q«-XXXXXX[N810HY97] <CP),@BASIC[N810HY97]
/Rr#60000/Q4-@STDRTN[N810HY97] ,@0PENIT[N810HY97].

eOUTPUT[N810HY97].@REST[N810HY97]
&

Output the information used by SIX12
&
/R: #20000/S*XXXXXX[N810HY97] /S. @SIX12S[N810HY97]
/R: #40000/S*-@TESTS[N810HY97]
/R: 0/rW(XXXXX[N810HY97]^.eTESTN[N810HY97] .@SlXl2N[N810HY97]

The "8" symbol represents an altmode. Note to SOS users: yes, you can put an
altmode in your files; use the escape "?-"! The files TESTS.LMD and TESTN.LMD
provide SIX 12 symbol and name tables for the library modules. You may omit these if
you don't want to be able to see the library routines from SIX12. If any of the library
modules you load have debug linkages, you will get warnings from the linker about
CSECTs whose names are of the form XXXX.S; you can safely ignore these messages.

As an exercise, go over the Linker documentation and figure out what this file is
all about.

7.4. Executing the BLISS program on C.mmp (at last)

Sit down at a terminal connected to C.mmp and type

tK
LOGO

to the command interpreter. If it just sits there and. stares at you, the chances are

7.3.3

Getting started with BLISS-11

that Hydra is down, and you are so busy reading this manual that you forgot to notice.
Normally, however, it will either prompt you for a name, or say

E r r 151t D i rectory lookup fa i led
LOG

In the latter case, you are already logged in; type KJOB to kill that job and repeat the
operation. If you have never logged in before, hit carriage return in response to the
"Name:" question and it will as you if you want to create a user entry. Reply "y" and
it will prompt again for a name. You may chose any ten characters you like, but by
convention you should use your last name. When it's finished creating a user entry for
you, you have to go back and type LOG again (sigh!).

Now presumeably you are logged in.. Type

&SYSDI RECTORY.PUBLIC • KARLTON• PROF I LE()

This will run a command object that defines several macros that make life easier. In
particular, you can now type

READCprocessor, unit* f f l l n a m f)

where PROCESSOR and UNIT tell where your DECtape is and FILNAM is the name of
your file, without the ".PAG" extension; it can be either upper or lower case. This
macro runs a command object that reads in your file from tape, creates a Procedure
object, and enters the procedure in your user directory under PROCEDURES.filnam,
where "filnam" is the name of the DECtape file. You don't need to create a directory
called PROCEDURES; if it doesn't exist it will get created when the READ command
object tries to put something into it.

After this point, whenever you wish to run your program you may type

RUN(filnam)

and several things will happen.

> A copy of your procedure is made, so the command object can do things to the
copy without disturbing your original procedure. This copies only the procedure
object, and not the pages of your program, which are pointed to by the
procedure object. Thus every process you create from your procedure will share
the same pages.

> A copy of the own/global page is made and placed in the copied procedure,
replacing the original page (so that the original page remains untouched). Thus
each time you run your procedure you will get a fresh copy of this data page.

> A port is created and connected to the teletype, and a capability for it is placed

7.4

Getting started with BLISS-11

in the C-list of the procedure. A capability for the connection object is placed in
your user directory under the name TTY.

> A process is created from the procedure and a capability for it is placed in your
user directory under the name CURRENTPRO. You may use this capability to KILL,

' BLAST, or CONTROL your process (if you care to do any of these strange things).

> A TALK command is given to force the terminal to be talking to the newly-created
process. Anything you type will now be transmitted to the program.

> If SIX 12 is loaded, SIXCMD will be called. It will print "Pause 0 at:M followed by
an address, then wait for commands from your terminal. When you have set
whatever breakpoints you want, type "GO".

> Your HENTRY routine is called.

> At any point in the middle of your program you may type a TK to break the
connection to the process and return to the command interpreter. You may
resume talking to your process by typing TALK(TTY).

> At the end of execution, upon return to HYDUSR, the terribly corny message *End
of LNS execution' is printed. You should then type a TK to break the terminal
back to the command interpreter.

7.4

131

Part VI: General Information

16. Documenting User Routines

This chapter describes how to use a set of PUB macros in documenting user
routines for HYDRA. The macros are based on those used in the HYDRA Songbook (and
in fact are a superset of them). The Songbook macros are defined in
SBOOK.DFS[N810HD99]. The extensions are defined in R0UTIN.DFS[N810DL10]. This
document was produced with these macros.

Typically, the first few lines of a file using these macros will be

•require Msbook,dfs[n810hd99]M source*
•sourcef i !e<I rout in .d fs [n810dl l0]\)x

16.1. Conventions

The HYDRA library documentation generally follows a set of conventions of
usage. BLISS keywords are in lower case letters of the standard character set and
are underlined. Names of files, modules, and variables are usually capitalized, using the
standard character set. HYDRA kernel calls use the capital letters of NGB25, a
boldface character set. The MODULE and ROUTINE macros described below impose a
convention on the style of a section, though this is not followed throughout

More important are conventions about document maintenance. The MODULE
macro has a field naming the person responsible for the code; this is the person to
whom complaints and suggestions should be sent. For news about changes, experience
indicates that maintaining a news file in a standard place is the thing to do.

The MODULE macro forces each module definition to begin on an odd page, so
that small changes can be made without, having to recreate the whole document

16*2. Text Responses

The source files define text responses used to perform special
functions. A text line of the form

text l<und-TEXT>text2

will produce an underlined version of the enclosed text, namely

t e x t l I E X I t e x t 2

VI

132 Documenting User Routines

The response

<i ta l -TEXT>

switches to the B character set to print the enclosed text. Because of timing problems
in the XGP, you must have loaded the B character set at least one full output line
before you use the new character set.

16.3. Sectioning

These macros create section, subsection, (etc.) titles and make entries in the
table of contents. The easiest way to see their effect is to read the following section
with a copy of the Songbook.

All of these macros take a character string argument which provides the title for
the chapter, section, or whatever. For each of these macros there is a corresponding
one formed by prepending "eval!" to the front of the macro name; this form of the
macro takes an expression as an argument, rather than a string. Thus if the PUB
variable GORP contains the string "XXXX" then CHAP(GORP) produces a chapter titled
GORP, while EVAL!CHAP(GORP) produces a chapter titled XXXX.

Many of these macros have a tag argument which can be used to associate a
label with the division in question. The label can be used with the YON macro to
provide cross-references (see 16.4.3). If a label is provided it must end with a
colon; e.g.

chap(|The Hippopotamus I,hi ppoO

produces a chapter titled "The Hippopotamus", which can be referenced elsewhere as
{yon hippo}.

16.3.1 MAJORPART(TITLE)

Begins a new major part, that is, a division labelled "PART" in the Songbook.
Each major part begins on a new page. The part number and title are printed on the
teletype when the part is reached in pass one of PUB.

16.3.2 CHAP(TITLEJAG)

Begins a chapter. Chapters are numbered sequentially from 1, and are not
renumbered within each new major part. The first chapter of a major part begins on
the same page as the part title; all other chapters begin on a new page. The chapter
number and title are printed on the teletype when the chapter is reached in pass one
of PUB.

16.2

Documenting User Routines 133

16.3.3 SEC(TITLE,TAG)

Begins a section. Sections are numbered sequentially within chapters.

16.3.4 SUBSEC(TITLEJAG)

Begins a subsection. Subsections are numbered sequentially within sections.

16.3.5 PARA(TITLE fTAG)

Begins a paragraph. Paragraphs are numbered sequentially within subsections.

16.3.6 APPENDIX(TITLEJAG)

Begins an appendix. Appendices behave like chapters, except that their indices
print as upper case alphabetics rather than arabic numbers.

16 A Miscellaneous Macros

16.4.1 SOURCEFILE(FILENAME)

This macro is used to insert other sourcefiles into the text. It is essentially a
require FILENAME source, bracketed with a labelled begin - end pair.

16.4.2 CHGFONT(FONT.CHARSET)

This macro is used to change the A or the B character set; it should be used in
place of the standard GETFONT macro. CHARSET is the single letter A or B, either
upper or lower case. FONT is either a standard font name in quotes, such as "NGR25M,
or a special Songbook character set name without quotes. The Songbook character
sets are summarized in the following table, giving the Songbook name, the
corresponding actual character set, and a brief description of its purpose.

16.3.3

134 Documenting User Routines

TXFONT BKR25 standard text font
EXFONT LPT128 Font for examples
HIFONT NGB25 Subsection titles in the text; section title numbers in the

table of contents
H2FONT NGR30 Section titles in the text; chapter titles in table of contents
H3F0NT NGR40 Chapter titles in the text
H4F0NT BDR40 Part titles in text and table of contents.
HD1FONT NGB25 Light header font
HD2FONT NGB30 Intermediate header font
HD3F0NT NGR40B bold header font
HD4F0NT BDR40 Unit header font

Because of timeing problems in the XGP, a character set must be loaded at least
one full output text line before it is used. Thus you must place your CHGFONT
requests a reasonable distance before you use the character set, and you cannot use
more than two character sets on a line. Also, changing the A character set can cause
problems.

16.4.3 Cross References

As metioned in 16.3, most of the sectioning macros allow a tag to be attatched to
the division started by the macro. Elsewhere, the division number (e.g. 1 for a
chapter, 1.2 for a section, and so on) can be inserted at appropriate places in the text
by using the YON macro. Since the macro must be evaluated in command mode, its use
must be preceded by an open curly brace and terminated by a closing curly brace.
Thus for example in this document the section on the SUBSEC macro is labelled
XSUBSEC; the text "(see {yon xsubsec})" produces "(see 16.3.4)".

16.4.4 Examples

Two macros, EXAMPLE and ENDEXAMPLE, can be used to bracket sections of text
which give programming examples. EXAMPLE goes into NOFILL mode, sets the B
character set to EXFONT and selects the B character set, sets the paragraph
separation to 0, and indents the text seven spaces. ENDEXAMPLE restores things to
their previous state.

16.4.5 Tables

The macros STARTTABLE and ENDTABLE can be used to bracket tables.
STARTTABLE takes three numbers as arguments, giving the starting positions for each
of three columns in the table. It is assumed that the first three columns will be .short
enough to fit in the available space; the final column may extend across several lines,
and subsequent lines will be properly aligned. Each new entry in the table should be
separated from the previous one by a blank line. The STARTTABLE macro also goes
into GROUP mode, so that the table will appear all on a page if possible.

16.4.2

Documenting User Routines 135

16.4.6 Indexing and the Table of Contents

The macro BACK, placed at the end of your document, causes the table of
contents to be prepared and prints the index. Entries in the table of contents are
made by the sectioning macros (see 16.3), The table of contents will be placed
wherever you have said "insert CONTENTS".

The macros IX and EVALHX are used to make entries in the index. IX takes an
unevaluated string argument; EVALHX evaluates its argument. The macro PRINTINDEX
causes the index to be placed at the point of invocation; a PRINTINDEX is done by the
standard BACK macro.

16*5* Module Documenting

This section describes the macros in R0UTIN.DFS[N810DL10]. Their effect is
best understood by reading this section along with a sample section from the
description of BLISS routines under HYDRA (see part VII).

16.5.1 MODULE (TITLE,FILNAM,PGMERfCODE,DEBUG,DATA)

This macro begins the documentation for a module. It is on the same level as
the SEC macro (see 16.3.3), except that each module begins on a new odd page; this is
to ease maintenance of the documentation. FILNAM is the name of the module (source,
PI 1, object file). It is also used as a tag for cross-referencing. PGMER identifies the
last known maintainer of the code; if left blank, it prints as "No known maintainer".
CODE, DEBUG, and DATA are sizes in words of the code without debug linkages, the
code with debug linkages, and the data of the module.

16.5.2 ROUTINE(NAME,CALLSEQ,C0DElDEBUG,DATA,INNAME)

Begins the documentation for a routine; corresponds to the SUBSEC macro (see
16.3.4). NAME is the name of the routine, the identifier used to invoke the routine.
CALLSEQ is a list of identifiers naming arguments to the routine. For example,

rout lne(ATAN2 t |X t Y|)

would start the documentation for the FORTRAN two-argument routine ATAN2. If
CALLSEQ is omitted, it is presumed that the routine takes no arguments. CODE, DEBUG,
and DATA are as for the MODULE macro. INNAME is the internal name of the routine; it
is intended for cases where users invoke the routine via a long external name which is
a macro for the short internal name. This macro also makes an entry for the routine in
the calling sequence summary and the index.

16.4.6

136 Documenting User Routines

16.5.3 FILE(NAME.PPIN)

This macro makes entries in the index for the given file. A corresponding macro,
EVAL.FILE, takes expressions as arguments.

16.5.4 CROSSREF(REFFED.REFFER)

REFFED and REFFER are both string expressions. Makes an entries in the cross-
reference summaries, indicating that REFFED is called by REFFER.

16.5.5 REF(REFFED)

Calls CROSSREF to indicate that the current routine or module (the contents of
the variable CURRENTREF, set by the MODULE and ROUTINE macros) calls module
REFFED.

16.5.6 MODSIZE(MODNAME,CODE,DATAlDEBUG)

Makes an entry in the sizes summary for the module named MODNAME, with
code, debug, and data sizes given by the corresponding variables. The file name for
the module is taken from the variable FILENAME, set by the MODULE macro or by
explicit asignment. There is a corresponding EVALJMODSIZE macro which takes an
expression as an argument.

16.57 RTNS1ZE(RTNNAME.C0DE,DEBUG,DATA)

As with MODSIZE, except the entry is made for a routine rather than a module
(the format is slightly different).

16.5.8 NROUTINE(NAME,CALLSEQ,TAG)

This module is much like a stripped-down variant of ROUTINE, except that it does
not make any index entries or entries to the calling sequence summary.

16.5.9 RTIMCALL(NAME,CALLSEQ,MODULE)

This macro makes an entry into the calling sequence summary. NAME and
CALLSEQ are as for ROUTINE. MODULE is the name of the module containing the
routine.

16.5.3

Documenting User Routines 137

16.5.10

16.5.10 PRINTCALLO

This macro prints a summary of routine calling sequences. It should be the last
thing in the chapter which documents the routines.

16.5.11 PRIIMTFREFO

Print a summary of cross-references, ordered by calling routine.

16.5.12 PRINTBREFO

Print a summary of cross-references, ordered by called routine.

16.5.13 PRINTNAMEO

Print the summary of external name/internal name correspondences.

16.5.14 PRINTSIZEO

Print the summary of module and routine sizes.

138 FilSys — an Initial File System

17. FilSys an Initial File System

The FilSys subsystem implements a simple form of disk transput geared toward
the general needs of users of C.mmp. Objects of TYPE File are randomly addressable,
but sequential access is conveniently and efficiently provided. Transmissions may be
of variable length, but blocked transmissions do improve efficiency. They may be
accessed simultaneously by several sophisticated users, but the mutual exclusion used
by ordinary system utilities is also provided. While performance is rather modest, it is
hoped that these files will be usefu! until more sophisticated file systems are designed
and implemented.

17.1. The File Type

A File object has both a Data Part and a C-List. The Data Part includes the file
status and usage information listed in Table 17.1. These fields can be interrogated by
users through FQuery, but can be modified only by FilSys. The C-List has three
entries:

1. WSema, a SEMAPHORE that provides exclusive access among the
Writers of the File.

2. RPfile, an object that holds the data being accessed by current
Readers and Updaters.

3. WPfile, an object that holds the data being accessed by the current
Writer.

In the initial PAGE-based implementation, RPfile and WPfile are each UNIVERSAL
objects holding capabilities for the PAGEs of the File. Since each can hold 120
capabilities, PAGE-based Files are limited in size to 960K bytes, subject further to the
capacity of the Kernel paging system.

The data within a File is addressed with 32-bit byte addresses. In these long
integers, the first word is the least significant. Seek addresses, physical sizes, and
end-of-file addresses are all of this form. See 17.4 for the use of addresses in
transput operations.

Associated with the File type are four auxiliary rights listed in Table 17.2.
These rights control CALLs to the various PROCEDURES of the subsystem. These
procedures are described in 17.5 and 17.3.

17

FilSys — an Initial File System 139

Fields of the File Data Part

Field Name no. wds Meaning

FAcDat 4 64-bit clock on last open
FMoDat 4 64-bit clock on last modification
FCrDAt 4 64-bit clock on creation
FEoF 2 Byte address of first undefined byte
FPSiz 2 Number of bytes of physical storage
FRdCnt 2 Number of read operations '
FWrCnt 2 Number of write operations
FOpCnt 2 Number of opens
FDevTp 1 Device type code
FPName 10 File Print Name

Table 17.1

File Type Auxiliary Rights

Aux sRiRht octal PROCEDURE controlled

FSReadRts 100000 FOpnRd
FSWriteRts 40000 FOpnWr
FSUpdateRts 20000 FOpnUp
FSQueryRts 10000 FQuery

Table 17.2

17.2. File Creation

Files are CREATed by CALLing the FilSys PROCEDURE FCreat. FCreat takes a
single DATA parameter of eleven words. The first word is a Device Type code from
Table 17.3 (currently, the PAGE-based 'Disk' type is the only implemented Device
Type). Following this is an asciz print name of up to twenty characters. This name is
stored in the Data Part of the object and can be inspected, but is otherwise ignored by
FilSys. Upon a successful CALL, FCreat returns a 0 numeric value and a capability for
the new Fife object. This capability has all auxiliary rights and the Kernel rights
EMVRTS, MDFYRTS, DLTRTS, and UCNFRTS. Should the Device Type code be illegal or
unimplemented, the signal ErDev will result.

17.1

140 FilSys — an Initial File System

File Device Type Codes

Device Code Meaning

FSDevDisk
FSDevLinePtr
FSDevDECTape
FSDevMagTape
FSDevPipe

1
2
3
4
5

PAGE-based Disk File
Spooled Line Printer
DEC-Tape
Nine-track Mag Tape
UNIX-style pipe

Table 17.3

17.3. File Opening

To open a File for transput, one of the three PROCEDURES FOpnRd, FOpnWr, or
FOpnUp (denoted generically as FOpnxx in this document) is CALLed, depending on the
permissions desired. Each of these PROCEDURES requires three parameters. The first
is a File object with ENVRTS, MDFYRTS, UCNFRTS, and an auxiliary right peculiar to the
open PROCEDURE CALLed. The second is a PORT object with UCNFRTS and PCONNRTS;
this PORT will be CONNECTed to the FilSys PORT for all File transput. The third is a
DATA object containing two words. The first word, WaitV, is currently ignored;
eventually it will specify how long we may block on WSema on an FOpnWr CALL. The
second word, OChan, is the output channel of the PORT to be CONNECTed to the FilSys
PORT; since the CONNECT KALL will attempt to find a free output channel if a -1 is
passed, this value is allowed here and passed directly to the CONNECT. Upon a
successful CALL, FOpnxx returns only the.numeric value of the output channel used.
Transput messages can then be sent.

FilSys Signals and Error Minor Statuses

Symbol octal Meaning Source

FSErrFull 150101 File System Full FOpnxx
FSErrBusy 150102 File is Busy FOpnWr
FSErrDev 150103 Invalid Device Type FCreat
FSErrEoF 150104 End of File FilMon
FSErrPerm 150105 Invalid Permissions FilMon
FSErrOpCd 150106 Invalid MOpCod Field FilMon
FSErrMess 150107 Bad Message Buffer FilMon
FSErrNWrt 150110 File Not Yet Written FOpnRd
FSErrPort 150111 Bad Port or Chan Arg FOpnxx
FSErrRTim 150112 Insufficient RunTime FOpnxx

Table 17.4

To become a Reader of a File, FOpnRd is CALLed with a File parameter
containing FRdRts. The signal ErNWrt will result unless the File has either been

17.2

FilSys — an Initial File System 141

written and closed by a Writer or been opened by an Updater. The current RPfile is
then opened for read operations.

To become the Writer of a File, FOpnWr is CALLed with a File parameter
containing FWrRts. A 8PCONDITIONAL will be performed on WSema; should this fail, the
signal ErBusy will result (the parameter WaitV will eventually be used here). A new
WPfile is CREATed and opened for read and write operations. Upon an FCIose, this
WPfile will supercede the current RPfile for subsequent FOpnRd's and FOpnUp's.

To become an Updater of a File, FOpnUp is CALLed with a File parameter
containing FUpRts. The current RPfile is then opened for in-place read and write
operations. Updating is intended for sophisticated applications and no mutual exclusion
is provided; caution in its use is therefore suggested.

Several signals may result from any FOpnxx CALL: ErFull indicates that FilSys
capacity for open Files is temporarily exhausted; ErPort indicates that the CONNECT
operation failed due to a bad PORT or OChan specification; ErRTim indicates that a
RUNTIME, necessary for protection, failed.

Field

FilSys Message Header Format

Word Offset Meaning

FSMessOpCode
FSMessByteCount
FSMessAddress
FSMessActualCount
FSMessStatus

0 Message OpCode
1 Requested Byte Count
2 32-bit Byte Address
6 Actual Byte Count
7 Minor Error Status

Table 17.5

17.4. Transput Operations

Once a File is opened, transput can be performed by RSVPing requests to the
FilSys PORT. These messages are RECEIVEd by FilMon, the File Monitor PROCESS,
which checks the message for validity, performs the necessary transput, and REPLYs
the message. When the user RECEIVES the message again, the transput will have been
performed. The messages in this communication have two parts: a fixed length header
of eight words and a variable length buffer. The format of the header is given in
Table 17.5; the MOpCod values are given in Table 17.6. Upon a RECEIVE, the message
type holds a major status, given in Table 17.7. For EoF or Fatal major statuses, the
MAcCnt field indicates the actual number of bytes transferred and the MStats field
holds a minor status; these minor statuses are listed with the signal values in Table
17.4.

17.3

142 FilSys — an Initial File System

Valid MOpCod Values

FSMessOpCode octal Meaning

FSOpNoOp 0 No-Operation
FSOpSeek 1 Set Current Address •
FSOpSeqRead 2 Read Sequential
FSOpRanRead 3 Set Curr Addr and Read
FSOpSeqWrite 4 Write Sequential
FSOpRanWrite 5 Set Curr Addr and Write
FSOpClose 6 Close File

Table 17.6

Status

FSReplOKay
FSReplEoF
FSReplFatal

FilSys Major Statuses

octal Meaning

1 Normal Completion
2 ErEoF status
3 Clear Error Condition

Table 17.7

If an undefined MOpCod is used, an ErOpCd error results. If the MOpCod is
SWrite or RWrite and the File was opened with FOpnRd, an ErPerm error results.

For each connection from user to File, there is kept a current File address,
initially zero. Upon a request with an MOpCod of Seek, RRead, or RWrite, this current
address is set to the MAddr field of the message.

If the MOpCod is SRead, RRead, SWrite, or RWrite, a transmission is attempted
between the message buffer part and the File, beginning at the current address. If
MByCnt plus 16 exceeds either the Length of the message on an SWrite or RWrite or
the BuffLength of the message on an SRead or RRead, an ErMess error is given and no
bytes are transmitted; this error is considered Fatal. All SRead or RRead operations
are limited by the current end of file; all SWrite or RWrite operations are limited by
the physical end of file (octal 03600000 for PAGE-based Files). If the current address
is not within this limit, an ErEoF error occurs with no bytes transferred. If the current
address plus the MByCnt field exceeds this limit, transmission occurs up to the limit
and an ErEoF error is given. Otherwise, the full transmission of MByCnt bytes takes
place. If any bytes are transmitted, the current address of the File is set just past the
last byte transmitted.

If the MOpCod is an FCIose or a DISCONNECT is RECEIVEd, the File is closed. At
some future date a DISCONNECT will be detected by FilMon and signal the close; until
then, an FCIose message is needed. Usage and status information in the Data Part of
the File is refreshed. If the File was opened with FOpnWr, the WPfile just written
supercedes the RPfile of the File and the WSema is 8Ved.

17.4

FilSys — an Initial File System 143

17.5. FQuery

In order to inspect the usage and status stored in the Data Part of a File object,
a CALL can be made on the PROCEDURE FQuery. This PROCEDURE takes two
parameters. The first is a PORT prepared for output to a teletype-like device on
channel 1 (&TTYPORT is an obvious candidate). The second is a File with FQuRts. The
only action of the PROCEDURE is to print the fields of the Data Part in human-readable
format.

17.5. FSList ,

One important facility of the File system is provided by the PROCEDURE FSList
and the PROCESS FSpool. It happens that FSpool is started upon each boot and stands
ready to spool any text File onto the line printer. The PROCEDURE FSList is provided
to place an entry onto FSpooPs queue of Files to be printed. FSList is called with a
single File parameter which must have FRdRts. It attempts to place the current RPfile
on the FSpool queue. As with FOpnRd, .the ErIMWrtn signal will occur if the File has no
current RPFile. Also, since the FSpool queue is of finite length, the ErFull signal may
occur if there is no room in the FSpool queue. Otherwise, the current RPFile will be
listed eventually by FSpool. Some care has been taken, in fact, to delete the RPFile
from the FSpool queue only when it has been completely listed. Thus, a system crash
during the listing of the File will result in a fresh attempt to list it.

The form of the listing itself is conservative and simple. The listing is preceded
by a banner indicating the first 16 printable characters of the File's FPName and the
times of creation, last modification, and listing. Within the body of the File, the
following conventions are observed:

1. All normal printable ASCII characters are printed in the standard
way, except that the caret (octal 136) is printed as an up-arrow
and the underscore (octal 137) is printed as a left-arrow.

2. All characters with bit eight set are regarded as non-text characters.
They are denoted by a square box followed by whatever would be
printed for the low seven characters.

3. The characters HT, LF, VT, FF, and CR (octal 11 - 15) are given
their standard control functions. When nine CR's are given, however,
without a LF, a LF is printed automatically to avoid tearing of the
paper.

4. The characters DLE, DC1, DC2, DC3, and DC4 (octal 20 - 24) are
printer control characters. Thus they are passed uninterpreted to
the printer,' but only when immediately following a CR.

17.5

FilSys — an Initial File System

17.6

The characters down-arrow through lambda (octal 01 - 10) and
infinity through logical-or (octal 16 - 37; except when paragraph
four applies) of the Stanford extended ASCII set are printed just as
by the SOS text editor. That is, down-arrow through lambda are
printed "?!" through "?f and infinity through logical-or are printed
"?>- through "?8M.

Nulls are ignored.

The delete character (octal 177) is printed as "?".

User Software Design Considerations 145

18. User Software Design Considerations

This section contains a discussion of issues which have arisen in designing user
software for HYDRA. An attempt is made to discuss each problem, describe the
alternatives, and tell what decision was finally made. Some design issues are still open;
we welcome any comments or suggestions on any of these topics.

The purposes of this chapter are twofold: to make programmers aware of the
sort of problems that arise in writing user software for HYDRA, and to invite comments
on the issues that have already arisen. The HYDRA user standards committee,
consisting of Sam Harbison, David Lamb, Joe Newcomer, and George Robertson, is
responsible for overseeing user software design for HYDRA.

18.1. Runtime LNS Allocation
Arose: November 1975
Resolved: 1 December 1975

There often arise sitiations in which a running program needs an LNS slot for
some purpose, and doesn't care which slot it is. There is thus an obvious need for
some sort of routine that would manage LNS slots, providing free ones and returning
used ones to the free list. Moreover, there arise situations in which different parts of
a program need to use the same slot (again, not caring which one it is).

One proposal was to have named LNS slots. A user would call an allocator
passing it a string containing a name. If a slot by that name were already allocated,
the allocator would increment a reference count and return the number of the slot. If
there were no such slot, the allocator would fetch a free slot and remember the name
associated with it. Slots would be freed by name; when the last reference to a slot
went away, the slot would be returned to the free list.

This scheme was rejected as requiring too much overhead.

Another problem involves the addressibility of the tables used by the allocator.
On school of thought said that the allocator could never presume its page of data were
in core, or that the table should be kept out of core to be protected. A special page
could be loaded as the allocator needed it and removed when not needed. This leads
to CPS and RPS management troubles. Another possibility was to keep the information
in a data object in a particular slot, without IDELETERTS rights. This still leads to
unworkable overheads and complexity of programming. A lot of space is needed for
storing 120 16-byte names (the proposed length), and most space management
routines require rapid random-access memory for any kind of decent performance.

The current situation is that there is an allocator, the module
LNSL0T[N810HY97], that provides routines to allocate and free LNS slots without
names.

18

146 User Software Design Considerations

18.2. Internal Error Reporting
Arose: 30 November 1975
Updated: 20 January 1976

Situations arise in which library routines detect some situation they cannot
correct, and so the routine detecting the error must give some sort of diagnostic
message.

18.2.1 The Reporting Routine

Unfortunately, there is no guarantee of a teletype on which to report errors. If
there is no device on which to report errors, it seems that the only other way of
indicating an error is to do a JSUSPEND, giving some sort of negative value as an error
indication. This only returns a value to a calling procedure, if any existed; processes
do not return values.

Next, an error reporting routine called USERERROR was written. It took a 16-bit
value as an argument. It presumed a routine called TTYPRESENT which returned a
boolean which was TRUE (1) if there was a teletype on which errors could be printed.
If a teletype existed it printed a diagnostic message. If there was no teletype, it
checked to see if the user had a signal handling routine by checking the SIGPC address
from the LCB. If such a routine existed, it faked a HYDRA signal by calling this routine.
If neither of these could be tried, it did a BLISS signal in hopes that some higher level
routine could do something. It also took care to avoid recursive calls.

Finally it was decided that the only appropriate thing to do was to have the
user's signal handling routine take care of library errors. USERERROR was simplified to
just invoke the user's signal handler.

18.2.2 The Information Reported

Currently all the information about what error has occurred is contained in a
sixteen-bit integer, as with HYDRA signals. A proposed allocation of signal values was

7xxxx

6xxxx
5xxxx

4xxxx

71xxx
72xxx
73xxx

501xx

For the Policy Module, Command Interpreter,
Directory Subsystem, and command objects, etc.
Policy module
Command Interpreter
Directory subsystem
User Procedures
User Procedures
File System
Object modules

and

401xx HYDIO

Unfortunately the policy module has to be able to return any possible kernel

18.2

User Software Design Considerations 147

signal that could occur during LNS setup; the suggested range for policy module errors
is far too small (the policy module ORs #160000 into any kernel signal it receives).
The file system, HYDIO, and other modules continue to use the "object module signals"
and "user procedures" portion of this suggestion.

A more recent proposal is to reserve a ITYPECALL index for error reporting.
Given a signal number, the error reporting procedure would return a data object
containing an ASCII string describing the error.

18.3. File Structure
Arose: Many Moons Ago
Resolved: 9 December 1975

The file structure debate goes back a long way; this entry just describes the
most recent happenings. Currently there are two file formats on HYDRA.

FILE objects have a three-element C-list: an exclusion semaphore, a reader part,
and an optional writer part. The writer part is present only when someone is writing
the file. When the file is closed, the capability for the writer part is copied into the
reader part. Anyone who was reading the file keeps reading the old reader part, but
any new readers will get the new reader part. A reader part is a universal object
whose C-list is filled with pages which contain the data. Files are read and written by
sending messages to a File Monitor process.

An SOS file is a universal object with pages in its C-list. An SOS page
corresponds exactly to a HYDRA page; this leads to some waste space, but very fast
processing. The SOS editor knows this structure and manipulates the pages of an SOS
file directly. Each line in SOS is preceded by a one-byte record count and a three-
byte binary line number.

The proposal made on December 9 is that the universal object underneath the
3-part file object should be typed. There would be four subtypes initially: SOS files,
TECO files, GENERAL files, and MAIL files. The ITYPECALL mechanism would be used to
deal with these subfile types. All subtypes would have associated with them an EDIT
procedure, an "Open for sequantial ASCII read" procedure, and a "make my kind of file
from sequential ASCII text" procedure. If someone wishes to edit a file, by default he
gets the editor associated with that subtype. If he wishes to use a particular editor,
the command object for that editor opens the file for sequential ASCII read and calls
the procedure to convert sequential ASCII text to the appropriate subtype.

The "open for READ" procedure for subtype X would take a port as a parameter
and create a connection between that port and a File Monitor for type X files. The
program wishing to read a type X file makes requests for input via messages on the
Port System. In addition to the request for the ASCII text of a line, there would also
be a request for the "header information" associated with the previous line of text.
The header would be ASCII text; in the case of an SOS file the header would be the
line number in decimal as an ASCII string.

18.2.2

148 User Software Design Considerations

All of this is inadequate for Mary Shaw's program support project. For example,
in a highly structured file there may be more than one way of looking at it as a stream
of ASCII text. Joe Newcomer described the "read ASCII text" sequence as the way a
compiler would read a file; the program support project people cringe in horror at this
notion (a compiler might well know a lot more about the structure of the file in a
particular environment).

18.4. User I/O Package
Arose: Many Moons Ago
Resolved: 12 February 1976

The first set of I/O routines for HYDRA was Bill Corwin's PORTIO package. It
. was never intended for users; it did just what Bill needed. There was a corresponding
package for the line printer.

Phil Karlton wrote a package that provided virtual channels. One would call an
OPENCHAN routine, passing it a string containing the name of the device to be opened,
the address of a buffer into which text would be placed, the size of this buffer, and
the number of Port System messages to be created for use on that channel.
OPENCHAN would allocate a free channel and return its index. There were character
input and output routines, string output, numeric output, and routines to force buffers
to be written out. The only devices supported at first were "TTYIN" for teletype input
and "TTYOUT" for teletype output.

David Lamb took over the package to add file I/O and complete the handling of
the Line Printer. There were a separate set of file handling routines: file open, file
close, sequential block read, sequential block write. There were not incorporated into
HYDIO for several reasons. For one, HYDIO presumes to use only one port; the file
routines allow the use of several ports. Also, HYDIO is inherently sequential; it was
intended that the file package eventually provide random read and write and seek
operations.

On December 8, Paul Knueven, representing the ALG0L68 group, looked into the
possibility of using HYDIO or some variant within the ALG0L68 compiler. HYDIO turned
out to be far from desireable; built into it were far more routines than the compiler
needed. Also, Paul wanted to have the compiler's I/O connections set up by a
command object before the compiler ever began executing; he didn't have any use for
the OPEN routines or for all of the parameter checking that the routines performed.
Both Paul and George Robertson (who was interested in the file system interface for
L*) were concerned with the size of the package. George said that 300 words would
be too much; the file interface was over IK words, and HYDIO was over 800 more.

The next version of the I/O package was split into several modules, in the hopes
that users like ALG0L68 could use the lower levels and omit the undesireable ones.
There was a module which did block transfers to and from port messages, one to do
buffering, and one to open and close channels.

18.3

User Software Design Considerations 149

The current package deals with buffer control blocks. Like the previous version,
it is split into several modules in hope that special applications might be able to avoid
some of the routines.

18.5. Channels in User 10 Routines
Arose: 16 December 1975
Resolved: 19 January 1976

The December I/O library had each routine take a channel as a parameter. This
provided flexibility (and happens to be the way BLILIB and SAIL on the PDP10 does it),
but involves quite a bit of extra cost at runtime in pushing the same channel number
onto the stack many times. If a user is switching back and forth rapidly between
channels, he will prefer this setup. If he is largely referring to only one channel, he
would prefer a "set channel" routine to be invoked only as needed.

The current package uses buffer control blocks; all of the buffer manipulation
routines use a blissregl linkage convention. Thus the compiler can often realize that
register 1 already contains the desired control block address, and save code space.

18.6. I/O Routine Control Information
Arose: 16 December 1975
Updated: 12 February 1976

The December I/O library maintained an own table to control its operations.
This table had to be local to the process using the routines, unless external
synchronization was imposed on the routines using the table. The full-blown version
required 12 bytes per channel for 16 channels, a total of 192 bytes.

An alternative to this is to reserve a few words at the head of the user-
supplied buffer for this information, keeping only a pointer to the start of each buffer
in the table. The table then becomes small enough (32 bytes, 2 per channel) to keep
in the user communications area of the stack page, locations #000 to #177. Also, the
header needed by the I/O devices could be kept in the buffer, thus requiring only a
single SWRITEMSG to fill the buffer. It also means the user has to be responsible for
reserving enough space for both his data and the header information, and has to be
sure not to clobber the header.

In the present scheme, the I/O control information is kept in I/O buffer control
blocks (see 19.2). The I/O header is kept in the few words preceding the
buffer in core. A set of macros is provided to hide details from the user.

18.4

150 User Software Design Considerations

18.7. Conversion and Formatting Routines
Arose: 7 January 1976
Resolved: 14 January 1976

From time to time people write I/O formatting and conversion routines.
Typically these routines are intended for output, and call the character output routine
for each character they generate. For example, NUMOUT (see 22.7) and HYDTIM
(see) behave this way. At some later time someone decides he needs to
do the same conversion, but needs the output to go to an in-core string rather than an
I/O channel.

One approach to solving this problem is to provide a pseudo-device for core-to-
core "I/O"; this is the approach used by WATFIV. This usually involves kludging the
I/O routines somehow. Another approach, that used by FdrmString (see 22.6) is
for the formatting routines to take as a parameter the address of a routine to call for
each character output. This has the disadvantage of clumsiness and excessive
overhead.

Guy Almes suggested another approach. A formatting routine would have one
parameter giving the address of a block of core where it should place its characters.
It would return the address of the byte following the last character it output. Output
to a channel, if desired, could be done by one call to a string output routine.

This has several advantages. It is clean and potentially quite efficient if the
string output routine can be optimised; the conversion routines can use autoincrement
mode on some register for outputting characters and thus could be quite efficient.
Calls to formatting routines could be nested, the previous formatter providing and
address for its successor. The disadvantages are that there is no way short of a
BLISS signal to report errors, and no provision is made for buffer overflow.

The approach which has been adopted is to direct all formatting via buffer
control blocks. The scheme is described elsewhere; see 19.1 and 19.2.

18.7

151

Part VII: The BLISS User Library for HYDRA

This section describes the HYDRA user library modules that are currently
available. Each module describtion includes the name of the object file and the name
of the programmer responsible for maintaining the module. The modules can be
assumed to be independent of each other unless dependencies are explicitly
mentioned.

The functions described in this section may be implemented as routines, macros,
or a combination of the two. Those functions described in the module size and cross-
reference summaries in chapter 23 are routines; anything not mentioned there
is likely to be a macro.

The require file HYDUSR.REQ provides most of the symbols a user would need in
a BLISS program. It requires the kernel call and base call macros and includes
externals for most of the routines described in this document. The file HYDLIB.REQ is a
subset of HYDUSR.REQ, omitting the kernel and base call macros.

The file XXXXXX.LMD is a sample linker command file which loads all of these
modules. To use it, you need only change all occurences of XXXXXX to the name of
your object file. HYDLIB.LMD on the same account points to the various object files.
Certain of the routines have own variables which should be local to the LNS using the
routines; HYDOWN points to these object modules. The standard example loads SIX12
with your program. If you omit SIX12 the linker will give warning messages about
unresolved external references to the SIX 12 modules; these may be safely ignored.

19. Introductory Material

19.1. Buffer Manipulation and Formatting

All formatting routines take as a parameter the address of a buffer control block
which directs where they put or get characters. A buffer control block is an eight-
word block of storage containing the fields

VII

152 Introductory Materia!

BCBminpointer
BCBmaxpointer

BCBputpointer

BCBgetpointer

BCBroutine

BCBptrASM

BCBrtnASM

BCBextra

The address of the first character position in the buffer
An address which is one greater than the address of the last
character position in the buffer
The address where the next character will be output; this
ranges between the MIN pointer and the MAX pointer.
The address from which the next character will be fetched; this
ranges between the MIN pointer and the PUT pointer.
The address of a routine to call when end-of-buffer is
reached. This field may be zero if it is expected that the
buffer will never overflow. If the end of the buffer is reached
and this field is zero, the error reporting routine USERERROR
(see 21.3) is called and a BLISS signal is generated.
A word of information about the buffer for the address space
management routines.
A word of information about the end-of-buffer routine for the
address space management routines.
An eighth word reserved for future expansion (and to round
things out to 8 words).

The address fields (BCBROUTINE and the fields whose names end in POINTER)
are all 16-bit absolute addresses. The ASM fields are currently irrelevant; they will
become meaningful when the Address Space Management routines are implemented.
The phrase "end-of-buffer" is intended to include both the "no more room to output
characters" and "no more characters left to read" situations.

The MIN and MAX pointers describe the physical limits of the buffer. The PUT
pointer points past the last meaningful character in the buffer. The GET pointer
indicates where characters should be fetched. Output formatting routines place
characters beginning at the PUT pointer until they place a character just before the
spot pointed to by the MAX pointer. Input conversion routines fetch characters from
the GET pointer until they attempt to read the character pointed to by the PUT
pointer. At these points they call the end-of-buffer routine, passing it the address of
the buffer control block. By convention, the end-of-buffer routine will either reset the
pointers so that more information can be output or input, or give a BLISS signal to
blast out of the formatting routine. The latter is done so that formatting routines need
not check for errors detected by the end-of-buffer routine. As noted above, if the
end-of-buffer routine address is zero, a call to USERERROR and a BLISS signal are
performed. At end-of-input, an input buffer flush routine will typically fill or partially
fill the buffer with characters, set the GET pointer to the beginning of the buffer, and
set the PUT pointer just pass the last character it placed in the buffer (this is why we
need four different pointers, since on input the text may not fill the buffer). At end-
of-output, an output buffer flush routine will typically reset both the PUT and the GET
pointers to the beginning of the buffer.

To simplify the coding of routines which manipulate buffers and buffer control
blocks, all routines manipulating BCBs assume that they need only make one call to the
ASM make-addrressable function in order to be able to access the entire buffer
throughout the rest of the routine. Thus one of two things must be true of your
buffer when you call a BCB-manipulating routine. If the page containing the buffer is

19.1

Introductory Material 153

not in the RPS when such a routine is entered, then the buffer must not cross a page
boundary. If the pages containing the buffer are in the RPS, then the buffer may
cross page boundaries. Because of this restriction, only one ASM field is needed to
describe the buffer, and the end-of-buffer check can therefore be made by a
comparison of two addresses. Both signed and unsigned comparisons will work equally
well if the buffers do not cross page boundaries and do not abut the end of page 3
(for signed comparison) or page 7 (for unsigned comparisons). The library routines all
use unsigned comparisons; thus the only difficulty arises if the last byte of a buffer is
the last byte of page 7.

A user can declare a BCB by saying

LOCAL bcb X I Y I Z I
OWN bcb W;

which will declare BCBs X, Y, and Z on the stack and W as an own BCB. Alternately,
you can allocate a BCB from any eight word block of storage you have available. Note
that BCBs are word-oriented; it makes no sense to declare a bvte local BCB, although
nothing will go wrong if you do so.

Each of the above fields may be accessed by name via a structure access. Thus

•X[BCBputpointer]

is the contents of the PUT pointer field of a BCB whose name is X (such as the X
declared in the above local declaration). In addition there are macros to initialize BCBs
and compute related information such as the length of the buffer. If you have some
arbitrary expression which evaluates to the address of a BCB, you may access its
fields by saying

•BCBCexpr* BCBfieldname]

where EXPR is the expression and BCBFIELDNAME is one of the names given in the
above table.

If you wish to build a more complicated structure on top of this mechanism, you
may do so by appending extra control information to the end of the BCB. For example,
the I/O system has its own port and channel information following an associated BCB.
The end-of-buffer routine for an I/O BCB is either the input-from-channel or output-
to-channel routine. OPENCHAN takes care of setting up this information (see
20.2). If you wish to declare a BCB with extra words for your own purposes,
you may do so by saying

LOCAL bcb x[N+l]$

where N is the number of extra words you wish to allocate. The "+1" is needed for
reasons to do with BLISS default values for omitted incarnation actuals (take my word
for it, you don't want to know). You may access fields in your extension by saying

19,1

154 Introductory Material

• X [B C B e x t r a (i , j t k)]

where I is the index of the extra field (your first extra word is 1, your second is 2,
and so on), and J and K are BLISS position-and-size field specifiers.

The basic formatting routines (see 20.3), numeric output (see
22.7), and date/time conversion (see 20.5) are described in later
sections of this chapter. All BCB-related routines are called with the blissregl calling
convention: the first parameter, the BCB, is passed in register 1. You need not
normally be overly upset by this, as the require file HYDLIB.REQ has all the necessary
declarations. HYDLIB.REQ is required by the standard file HYDUSR.REQ.

19-2. The I/O Library

The modules IOTRAN (22.4), MAKMSG (22.3), OPENCH (20.2),
and OPENIT (20.1) form a preliminary input/output library, referred to
collectively as HYDIO. The lowest level, IOTRAN, does not care how I/O connections
were established so that in fact the connections could have been set up before the
procedure began execution. (No other support for this possibility is implemented yet,
however; it is still necessary to use OPENCHAN.)

Bufferring of I/O is done using the standard BCB manipulation package (see
19.1). I/O is controlled by I/O buffer control blocks, the first eight words of which are
a buffer control block as described in 19.1. You may declare an I/O control block by
saying

LOCAL IOBCB X iY ; OWN IOBCB ZiW*

or

LOCAL X[IOBCBSIZE],Y[IOBCBSIZE]*
OWN Z[IOBCBSIZE],W[IOBCBSIZE];

both of which are equivalent. You must then use BCBINIT to point your IOBCB at a
buffer. The I/O routines assume they can use a few words immediately preceding the
buffer for their own purposes. The number of words needed varies with the device to
which the buffer is being sent, but is never more than the number of words specified
by the symbol MAXBUFFER. Thus you can set up a buffer for input by saying

LOCAL lobcb x* LOCAL bu f[MAXBUFFER+mybu f fe rs I ze]*
bob I n 11(x,bu f C MAXBUFFER],wybu f fersIze>BCBlnput > 0) l
9 9 •

Alternately, if you wish to skip the messy details and just allocate a buffer for I/O, you
may say

LOCAL t x b u f f e r mybuffer[parml.parm2];

19.1

Introductory Materia! 155

t x b i n i t (w y b u f f e r) *

PARM1 is the number of words in the buffer; PARM2 is the number of words
immediately preceding the buffer needed by routines manipulating the buffer. This
parameter varies depending on the use to which you will put the buffer. Symbolic
names for various sizes, and their intended purpose, are described below.

textbuffer 0 The buffer is intended purely for manipulating text and will
never be used for I/O.

shortbuffer 2 The buffer is intended purely for the teletype, the physical
line printer, or other devices requiring a two-word header.
In particular, it will not be used for files,

filebuffer 8 The buffer is intended for I/O to line printer; teletype,
spooler, or files,

maxbuffer 8 , This is the largest header needed.

Thus one can declare a buffer intended for files via

LOCAL t x b u f f e r fbuf [StdBufSlze,F I leBuffer]*
t x b i n i t (f b u f)

Note that TXBINIT is a macro that depends upon being able to get at the incarnation
actuals of the TXBUFFER (i.e., STDBUFSIZE and FILEBUFFER in the above example). Its
argument must therefore be the name you used for your variable in the TXBUFFER
declaration, and CANNOT be an expression. It is provided to hide the details of buffer
and BCB setup. You must call OPENCHAN to associate an I/O channel with the IOBCB
or TXBUFFER. At this point you may use all of the bufferring and formatting routines,
passing them the address of the IOBCB or TXBUFFER as the first parameter.

Many of the routines indicate errors by returning negative numbers as status
indicators. All the error codes have #140100 as a base; the bottom two octal digits
indicate the error. The following table describes the errors briefly. All numbers are
octal.

19.2

156 Introductory Material

BadChannel #20

NotOpen #21

ChanStop#22 An

BadDirection #23

BadMode #24

NoSlot #25

TooManyMsg #26

BadPort #27

NoSuchDev #30
BadDev #31
ChanEOF #32
NoSuchFile #33

ProcLookUp #34

LookUp #35

CantList #36
NoFlushRtn #37

The channel was outside the range 0-15 (or sometimes -1
to 15; the range should be clear from context)
The port/channel combination is not connected to any
device.
error or end-of-file has occurred on the port/channel; no
further activity may take'place. CLOSE is the only valid
operation.
An input operation has been attempted on an output
device, or vice versa.
This message comes from OPENFILE. The MODE parameter
to this routine was not 0, 1, or 2 (read, write, update).
A routine was unable to allocate an LNS slot for internal
use.
An attempt was made to create too many (or too large)
port messages; the port had insufficient resources.
The port parameter was outside the range of valid LNS
slots.
The DEV parameter to OPENCHAN was illegal.
Invalid operation for this device.
End-of-file has been reached.
OPENIT was unable to find an input file or create an output
file.
A routine was unable to get a Procedure object it needed
from SYSDIRECTORY.
A routine was unable to get some object (other than a
procedure) from SYSDIRECTORY.
CLOSECHAN was unable to list a spooled file.
An attempt was made to call a nonexistent buffer flush
routine.

Error numbers less than #20 are reply types issued by the I/O devices to
indicate error conditions. These error codes are defined in UI0.REQ[N810HY97] and
described in the HYDRA reference manual.

19.2.1 IOSTATUS(IOBCB)

Returns the status of the I/O connection associated with the IOBCB. The return
codes are

IOnormstat 0 Normal status
IOBCBbad • 1 Not a valid IOBCB
IOeof 2 End-of-file has been reached
IOerr 3 A nonstandard error has occurred

19.2

Introductory Material 157

19.3. Generalized Formatting — the FormString Convention

Defined below is a convention for producing character strings. Routines which
implement this convention have been implemented for many PDP-11 environments and
may be easily adapted to almost any PDP-11 application. A source require file
(FORMST.R11[N810RG02]/A) is available for helping in other implementations. In
addition, a module (FrmStr) which may be used in almost any environment with the
addition of a small interface routine is documented below (cf. 22.6).

19.3.1 Introduction

• Many programs require a facility for generating character strings from other
character strings, integers, and other sorts of data which can be converted to a
character string representation. A good example of this is output, where results must
be represented in a form easily understood by a human. Although this is not the only
useful application of a string production facility, it is so common that speaking of string
production as "printing" can make documentation much easier to follow. For this
reason, the remainder of this document will refer to "printing" a string, when in fact
the facility has been found useful in applications which in no way resemble output.

Several different modules, documented elsewhere, use a specific convention for
producing character strings. We shall attempt here to define that convention, known
as the "FormString" convention. Reasons for using this convention include easily read
source code, compact object code, and consistency with a single standard thereby
easing learning time.

19.3.2 Rough description of the routines

Routines which meet the FormString convention may take any arguments. It is
essential, however, that the following be included:

1) a formatting control string (which we shall call simply a "format"), which
is a string of characters which act as a skeleton or format for the string
produced. (Although all existing routines define the format to be a
BLISS-11 asciz string, the method of delimiting the string is not so
constrained by this standard.) The format contains literal text and
"control codes" which are described below (cf. 19.3.3).

2) optional extra arguments (referred to as ARGs) of arbitrary type. The
number and type of thses arguments will depend on the control codes
present in the format. This standard makes no attempt to define what
happens if the wrong type or number of ARGs is provided. So far, the
BLISS-11 implementations have obviously been blind to t/pe errors
(other than causing NXM errors or such). They ignore extra ARGs and
simply pick up whatever is next in memory it too few are provided.

19.3

158 Introductory Material

Since we do not here specify the exact calling sequence of routines, we shall
denote calling sequences as:

"Format S t r i n g " , A r g l , A r g 2 , . . . , A r g Q

Actual calling sequences will generally include some other arguments, such as
some sort of destination for the characters produced.

Since the effect of such an argument list is usually clear from the effect of its
components, it will usually be sufficient to document each component separately. For
this reason,

. . f o o . • . % A r g l , A r g 2 , . . . , A r g i , • • •,Argo

(where ARG[is used by a control code in MfooM) will be abbreviated to just

" f o o % A r g i

Any routine which implements the FormString convention must be recursively
reentrant (e.g. callable from an &*@ routine as defined in section 19.3.7) and
must return as its value (in the BLISS-11 sense) the number of characters printed.

19.3.3 Formatting control strings

As mentioned above, a format is a character string comprised of literal text and
control codes. All of the characters are assumed to be literal text unless they match
the syntax of a legal control code. Literal text is printed as it is encountered.

The left end of a control code is always delimited by the "escape" character
(currently "&"); the right end is determined by the syntax of control codes, which is:

&<char> or &<#><char>

where <char> is a single character and <#> is a string of digits forming an unsigned
decimal number (or the letter V) . The character <char> determines the action taken
when the control code is encountered in the format string. If alphabetic, <char> may
be either upper or lower case with no change in meaning.

An example of a simple format is "foo * &D, bar • *&0M, which contains two
control codes. The former prints its ARG in decimal, the latter in octal. Thus,

"foo^&D , J>ar^=J*&0%47 ,33 prints " foo^=JI7, J j a r ^ J / 4 1 "

19.3.2

Introductory Material 159

Control codes of the form &<*><char> allow one to pass some extra information
to the routine which performs the function indicated by that control code. For
example, "&3D" will cause a number to be printed using at least 3 digits. If fewer are
required, leading zeroes will be added. If more than 3 are required to express the
number, however, none of those digits will be truncated — they will all be printed.

Control codes are divided into two groups: those which expect a <#> and those
which do not. If a <#> is included with a code which does not expect one, the entire
control code will go unrecognized. If, on the other hand, a control code expects a <#>
and one is not provided, a default value of 1 will be assumed. This means that our
previous use of &D was really equivalent to "&1DH.

Sometimes we do not know at the time we create the format control string (e.g.
compile time if it is a plit) what value we would like to give to <#>. In this case we
use the letter V for <#>. This will cause the extra information to be fetched from the
argument list. Thus,

, f&n<char>% 3+6, 22 is equivalent to "&9<char>% 22

Obviously the 3+6 in this example may be replaced with any arbitrary expression
whose value is desired for <#>.

19.3.4 Simple Control Codes

In the following list of the available control codes we will differentiate those
codes which expect a <*> by listing them as &*<char>. Remember that the default

• value, if omitted, is 1.

&& causes a single "&" to be printed.

&*D prints ARG as a decimal integer using at least <#> digits, padding with zeroes
if needed. (For blank padding see 19.3.6.) Note that a if produced, is
considered a digit for purposes of counting the digits.

&*UD is like &*D except that the number printed is considered to be unsigned, i.e.
in the range 0-65535. Note that in this case <char> is actually two characters
CUD") rather than one as specified in the syntax.

&*0 is like &*D but octal.

&*UO is like &*UD but octal. Note that &6U0 is a commonly used control code.

&wB is like &*D but binary.

&*UB is like &*UD but binary.

&*H is like &*D but hexadecimal.

19.3.3

160 Introductory Material

&*UH is like &#UD but hexadecimal.

&L • is currently equivalent to &6U0 in all implementations, but is intended to be
used to print ARG as a symbolic location (using some sort of symbol table or
such). For instance, in a BLISS-11 error trap routine one might use "Error at
PC * &L", .OldPC to type out where the trap occurred.

&C prints the character with the code (ARG and #377). E.g. "AC", #445 prints
••r.

&P is like &C, but if the character is not a printing character a "." is substituted.
(The ASCII values #40 through #176 are considered printing characters.) In
addition, the mask used is #177 rather than #377. This control code is
principally useful in debugging output, such as dumps, where it is not known
whether the character being printed is a printing character.

&*A prints the <#> characters pointed to by ARG. Note that &1A (or &A, since <#>
defaults to 1) is similar to &C, except that ARG is a pointer to the character
rather than the character itself.

&Z prints an asciz string pointed to by ARG. It is thus like &#A except that
instead of taking a character count it prints until it finds a null (0) character.

&#/ (slash) prints <#> CarriageReturn-LineFeed combinations. Note that &/, even
without a count, can be useful in a BLISS-11 string (instead of ?M?J) since it is
a little easier to read (and to type in SOS!!).

&#X ' prints <#> space characters.

&#N null operation — prints nothing. Note that &nN may be used to skip over one
ARG in the argument list. (This is marginally useful in conditionals and such —
see 19.3.5.) Note also that &N (without an explicit <#>) cannot be used.
This is because &n<text> will be seen as a control code with <#> fetched from
the argument list and the first character of <text> treated as <char>.

19.3.5 Loops and Conditionals

A primitive looping facility has been provided in FormString. There are actually
two types of loops:

&#<*..&> and &#(. . .&)

These constructs, or any mixture thereof, must be well balanced in the usual
manner.

The loop constructs provide that everything inside the loop will be interpreted
<#> times.

19.3.4

Introductory Material 161

"&7<^&0D&>", 5,4,3,2,1,0,1 p r i n t s "JSJIJIJLJL^JL "

& # (# • t &) differs from t • •&> in that the argument list pointer will be reset
at the beginning of each iteration. Thus,

"&7C&Od&)%5,4 ,3 ,2 , l ,0 , l prints " JSJSJSJSJSJiJS"

and the other six arguments will be "left over" for any future control codes which may
follow. Furthermore, if <#> is zero, &0<...&> will cause the intervening control codes
and text to be completely ignored while &()(•••&) will cause the arguments to be
skipped which would have been used had <#> been non-zero. In other words,
&#<•••&> will use up <#>*n arguments and & # (t t » &) will use up l*n arguments
(where n is the number of arguments which are used by the loop body).

It should be noted that if one only passes 0 and 1 as values for the loop count,
&rt(* • •&) and &n<. • •&> may be used effectively as conditional constructs.

To make this even more convenient, &l (vertical bar) may be used as an "else".
That is, " & l " is equivalent to "&>&#<" or "&)&#<" (depending on which type of
conditional it is in) where <n> is given the value:

(i f <ff> of current loop eql 0 then 1 else 0)

If more than &{ appears in the text, each one will effectively cause complementation of
the condition. That is,

"&n<x&|y&|z&>%l prints "xz"
"&n<x&|y&|z&>",0 prints "y"

19.3.6 Right Justification

An obvious question on encountering the definition of &*D above is, "What if I
want my number padded with blanks, not zeroes?" This has been answered by a
general right justification mechanism which may be used on any combination of literal
text and control codes, rather than just numbers. The construct "&*W" indicates that
the following text should be right justified in a field <#> characters wide. The text
which follows is delimited by the next control code after the &#W (inclusively). Note,
however, that for this purpose "&&" is not considered a control code. In addition, the
sequences "&#<•. #&)" and "&#(#••&)" are considered to be a single delimiter. That
is, the right justified text includes any text produced inside the loop. Thus "&(•••&)"
and "&<•••&>" (with <#> defaulting to 1) may be used simply to bracket text to be
right justified which includes several control codes. If the text to be right justified is
wider than the field, it will be printed with no extra leading space characters.
Otherwise enough leading space characters will be printed ahead of the text to cause
it to be appropriately right justified. Some examples are:

"&5W&D%-3 prints M _ - 3 "

19.3.5

162 Introductory Material

&5W&3D%-3 prints " ^ - 0 3 "
&5W&(&D, $D&) % 1,2 prints " « J r 2"

19.3.7 Extensions to the control codes

The control code "&*©" is used to provide extensions to the control codes. ARG
is interpreted as the address of a routine to be called. The exact calling sequence is
not defined by the FormString convention. As a minimum, however, two other
arguments will be required: a count of how many characters have been printed so far,
and the value <#> (which still defaults to 1 if missing).

The calling sequence must provide some way for the called routine to fetch
successive ARGs from the list of extra arguments. A typical way to do this is to pass
an argument which is the address of a pointer to the argument list. This means an
extra dot is needed when accessing elememts from the argument list. If the routine
needs any ARGs from the-argument list, it should do the following:

value «- • • .ArgListPtr*
• A r g L i s t P t r «• ••ArgLIstPtr + 2;

where ARGLISTPTR is the name of the argument containing the pointer to the
argument list pointer.

It is important that the routine not randomly clobber the argument list pointer
since it will be used to fetch any remaining arguments needed from the argument list.
The only side effects of the routine should be the bumping of the location pointed to
by ARGLISTPTR or the printing of characters; its value should be the number of
characters that it prints. Any other side effects may cause improper operation of zero
iteration loops and right justification.

19.3.8 Buffer flushing

When used for producing output to a device such as a terminal, it may be
desirable to cause any buffered characters to be forced out to the terminal. The
control code "&$" is reserved for this purpose. It does not affect the number of
characters printed so far and is not considered a delimiter by &*W. If encountered in
a zero iteration loop, it, like all other text and control codes in the loop, will have no
effect.

In situations not oriented to output, this control code probably has no meaning
and so should be ignored.

19.3.6

Input, Output, and Formatting 163

20

20. Input Output and Formatting

20. L Initiating and Terminating I/O
Module OPENIT Maintainer: David Lamb

The module OPENIT provides routines somewhat higher-level than those of
OPENCH. It is part of the HYDIO package. LNS slot 3, given the symbolic name
USERDIRECTORY, must contain a capability for the directory to be searched for files.

The routines in this module use the blissregl linkage convention, as do all
routines taking a buffer control block as a parameter (see 19.1). You need not
normally be aware of this convention, since the require file HYDLIB.REQ, which is part
of HYDUSR.REQ, contains all of the necessary declarations.

20.1.1 OPENrT(IOBCB,PORT,CHAN,DEV,INFLAG,NUM)
Internal name CHA003

IOBCB is the address of an input/output buffer control block (see 19.2). DEV is
the address of an asciz string containing an I/O device specification. INFLAG is odd to
open for input and even for output. NUM is a small integer, the number of port
messages to be created for I/O to or from this device. The parameters PORT, CHAN,
INFLAG, and NUM are passed untouched to OPENCHAN. DEV is interpreted by OPENIT
to provide the DEV and FSLOT parameters of OPENCHAN.

OPENIT calls the string library routines EQU, STRINDEX , and GETARG, the I/O
initialization routine OPENCHAN, the directory routines DIRNAMES, GETDIRECTORY, and
PUTDIRECTORY, the LNS allocation routines ALLOSLOT and FREESLOT, and the routines
USERERROR, SETSIGNAL, and MAKEFILE.

The principal use of OPENIT is to open files. If DEV points to. a string which
does not contain the character OPENIT will interpret the string as a directory name
and will look up the file in USERDIRECTORY and call OPENCHAN to open the file. If the
file does not exist, and the file is to be opened for writing, OPENIT will call MAKEFILE
to create a file and will place the result in the named directory position.

Alternately, DEV may contain the string "TTY:M, "LPT:", or "PRN:". These three
strings represent the teletype, spooled printer output, and the physical printer.

20.1.2 CLOSEIT(IOBCB)
Internal name CHA004

Closes a device opened by OPENIT. CLOSEIT calls CLOSECHAN and FREESLOT.

Input, Output, and Formatting

This page intentionally left blank

blank page

Input, Output, and Formatting 165

20.2. Basic I/O Initiation and Termination
Module OPENCH Maintainer: David Lamb

The module OPENCH contains routines for opening and closing channels for input
and output. It is part of HYDIO. The routines in this module are fairly low-level,
suitable only for the teletype and line printer. Files generally require more
complicated routines, although files can be opened with OPENCHAN. See 20.1 for a
description of the higher-level open.

The routines in this module use the blissregl linkage convention, as do all
routines taking a buffer control block as a parameter (see 19.1). You need not
normally be aware of this convention, since the require file HYDLIB.REQ, which is part
of HYDUSR.REQ, contains all of the necessary declarations.

20.2.1 OPENCHANdOBCBjPORTjCHANjDEVJNjNUM^LOT)
Internal name CHA001

IOBCB is the address of an input/output buffer control block which has already
been initialized with BCBINIT or TXBINIT (see 19.2). PORT is the index of an LNS slot
containing a port capability. CHAN is an integer in the range 0-15, naming a free
channel on the port through which I/O will take place, or is -1 in which case
OPENCHAN will find a free channel. DEV and NUM are small positive integers. IN is a
boolean value. SLOT is the LNS slot index of a file capability, indicating the file to be
opened, if DEV indicates that a file is to be opened; otherwise it is ignored. This
routine creates a connection to a device of type DEV through the indicated port and
channel and creates NUM port messages for I/O for this device. If IN is odd (for true)
the device is opened for input; otherwise it is opened for output. You may use the
symbols OPENINPUT and OPENOUTPUT to specify the mode in which you wish to do the
open. The block of storage described by the buffer control block portion of IOBCB will
be used for internal buffering for the device. On normal exit, all the information
needed to do I/O to the device is stored in the IOBCB. You may proceed to use any of
the string routines to read or write information to the device (see 19.1). OPENCHAN
normally returns the number of the channel; a negative value indicates an error.

Up to 16 channels may be opened simultaneously on a single port. The most
common use for multiple open connections is probably to have several files open for
various purposes.

Users of the HYDUSR package should use the symbol , IOPORT to specify the
PORT parameter, and -1 for the CHAN. IOPORT is defined in the require file
HYDLNS.REQ, which is part of the standard file HYDUSR.REQ. Bear in mind that for
HYDUSR, channels 0 and 1 are pre-allocated to the teletype and may not be otherwise
used.

Symbolic names for the device indices are provided as binds in the standard
require file, HYDLIB.REQ. The devices currently supported are

20.2

166 Input, Output, and Formatting

DevTTY
DevLPT
DevFile
DevPRN

1 teletype
2 spooled line printer
3 sequential file
4 physical line printer

OPENCHAN calls the LNS slot allocation routines ALLOSLOT and FREESLOT, the
I/O initiation routines OPENFILE and OPENLPT, the low-level port routines INMESSAGE,
OUTMESSAGE, and MAKEMESSAGE, and the error reporting routine USERERROR.

20.2.2 CLOSECHAN(IOBCB)
Internal name CHA002

IOBCB is the address of an input/output buffer control block (see 19.2).
Terminates I/O on the specified channel, deletes the associated messages, and
disconnects the channel. It returns negative number if an error occurs and zero or a
positive number under normal circumstances. It calls the routines CLOSELPT,
CLOSEFILE, LISTF1LE, FREESLOT, ACCEPT, and KILLMESSAGE.

20.2.3 OPENTTYflOBCBjPORT.CHAN.DEVJN.NUMjSLOT)
Internal name CHA001

This is a version of OPENCHAN in which only the teletype may be opened. If
one loads OPENTTY instead of OPENCHAN, one can acheive a reasonable saving in code
space by eliminating the routines called by OPENCHAN and not by OPENTTY.

OPENTTY calls MAKEMESSAGE and USERERROR.

20.2.4 CLOSETTY(IOBCB)
Internal name CHA002

This is a version of CLOSECHAN in which only the teletype may be closed. It
calls KILLMESSAGE.

20.2.1

Input, Output, and Formatting 167

20.3. Basic Buffer Functions
Module BUFFER Maintainer: David Lamb

The module BUFFER contains the basic routines for manipulating buffer control
blocks. All of the routines in this module take the address of a buffer control block or
I/O BCB as the first parameter, and use the blissregl linkage convention, as do all
routines taking a buffer control block as a parameter (see 19.1). You need not
normally be aware of this convention, since the require file HYDLIB.REQ, which is part
of HYDUSR.REQ, contains all of the necessary declarations.

A number of functions described herein are implemented via macros rather than
routines, as they involve only a few instructions. The macros are defined in BCB.REQ,
which is part of HYDLIB.REQ.

20.3.1 BCBINIT(BCB,BUFFER,SIZE.FLAG,ROUTINE)

Initializes the BCB to point to a block of SIZE bytes beginning at location
BUFFER. If FLAG is odd, the buffer is intended for input; otherwise the buffer is
intended for output. ROUTINE will be called when the end of the buffer is reached, if
ROUTINE is nonzero. Otherwise, a call to USERERROR and a BLISS signal will occur. If
the buffer is intended for I/O, the ROUTINE parameter may be zero, as OPENCHAN will
initialize the ROUTINE parameter (see 20.2).

20.3.2 BCBFLUSH(BCB)

Calls the end-of-buffer routine associated with the BCB. If the end-of-buffer
routine is zero, calls USERERROR and generates a BLISS signal.

20.3.3 BCBRESET(BCB.FLAG)

Resets pointers in the BCB. If FLAG is odd, performs an input reset: the GET
pointer is set back to the start of the buffer. If FLAG is even, performs an output
reset: both the GET and the PUT pointers are set back to the start of the buffer.

20.3,4 BCBINCOUNT(BCB)

Returns the number of characters between the MIN and GET pointers, i.e. the
number of characters which have already been read.

20.3

168 Input, Output, and Formatting

20.3.5 BCBOUTCOUNT(BCB)

Returns the number of characters between the MIN and PUT pointers, i.e. the
number of characters which have already been written.

20.3.6 BCBINLEFT(BCB)

Returns the number of characters between the GET and PUT pointers, i.e. the
number of characters left to be read in the buffer.

20.3.7 BCBOUTLEFT(BCB)

Returns the number of characters between the PUT and the MAX pointers, i.e.
the number of characters which may be output before end-of-buffer is reached.

20.3.8 BCBINMOVE(BCB.OFFSET)

Moves the GET pointer forward or backward OFFSET positions, provided that the
result is a valid input position. The direction is determined by the sign of OFFSET,
forward if positive and backward if negative. Attempting to move the GET pointer
below the MIN pointer sets the GET pointer to the MIN pointer; attempting to move it
beyond the PUT pointer sets it to the PUT pointer.

. 20.3.9 BCBOUTMOVE(BCB.OFFSET)

Moves the PUT pointer forward or backward OFFSET positions, provided that the
result is a valid output position. The direction is determined by the sign of OFFSET,
forward if positive and backward if negative. Attempting to move the PUT pointer
below the MIN pointer sets the PUT pointer to the MIN pointer; attempting to move
above the MAX pointer sets it to the MAX pointer.

20.3.10 BCBINSET(BCB,COLUMN)

Set the GET pointer to the named column (the first column being numbered
zero), provided it is a valid input column. Attempting to move the GET pointer below
the MIN pointer sets the GET pointer to the MIN pointer; attempting to move it beyond
the PUT pointer sets it to the PUT pointer.

20.3.5

Input, Output, and Formatting 169

20.3.11 BCBOUTSET(BCB,COLUMN)

Set the current output position to the named column (the first column being
numbered zero), provided it is a valid output column. Attempting to move the PUT
pointer below the MIN pointer sets the PUT pointer to the MIN pointer; attempting to
move above the MAX pointer sets it to the MAX pointer.

20.3.12 OUTCHR(BCB,BYTE)

Appends the byte to the buffer. If the buffer is full after it appends the byte, it
calls BCBFLUSH.

20.3.13 INCHR(BCB)

Reads a byte from the buffer. If there are no bytes left in the buffer when
INCHR tries to fetch one, it calls BCBFLUSH

20.3.14 OUTSTR(BCB,STR)

STR is the address of an asciz string. Copies the string to the buffer. The high
order bit of each byte is copied untouched. Note that BCBFLUSH might be called at
arbitrary points in the middle of the transfer.

20.3.15 0UTBL0CK(BCB,BL0CK,C0UNT)

BLOCK is the address of a storage area of COUNT bytes. Copies the COUNT
bytes from BLOCK to the buffer. The high order bit of each byte is copied untouched.
Note that BCBFLUSH might be called at arbitrary points in the middle of the transfer.

20.3.16 GETLINE(BCB,BL0CK,C0UNT)

BLOCK is the address of a storage area of at least COUNT bytes. Copies
characters from the buffer to the block until a linefeed is seen or COUNT-1 bytes have
been transferred (The linefeed, if present, is also copied). A trailing null is written at
the end of the transferred string. The high order bit of each byte is copied
untouched. Note that BCBFLUSH might be called at arbitrary points in the middle of
the transfer.

20.3.11

170 Input, Output, and Formatting

20.3.17

20.3.17 OUTCRLF(BCB)

Write a carriage return and linefeed to the indicated buffer. Calls OUTCHR.

Input, Output, and Formatting 171

20.4. Numeric Output
Module NUMFMT Maintainer: David Lamb

The module NUMFMT contains functions for numeric output. The functions in this
module, except NUMSTRING, use the blissregl linkage convention, as do all functions
taking a buffer control block as a parameter (see 19.1). You need not normally be
aware of this convention, since the require file HYDLIB.REQ, which is part of
HYDUSR.REQ, contains all of the necessary declarations.

20.4.1 NUMSTRING(BUFFER,VAL,BASE)
Internal name NUM001

BUFFER is the address of a block of storage (NOT a BCB!). VAL is an arbitrary
16-bit integer. BASE is a number assumed to be in the range 2-36. Converts the
given value, considered to be an unsigned 16-bit integer, to a character string
representing the number in the given base. Characters are placed starting at BUFFER

• in the order the digits are generated, which is the REVERSE of the order they should
be printed. Character placement stops before the generation of the first leading zero;
thus the number zero will output no digits. Returns the position where the leading
zero would have been placed; thus <value returned> minus BUFFER gives the number
of characters generated.

This routine is not intended for the average user; it does the hard part of
number conversion, and is intended to be called by higher level conversion routines. It
calls the unsigned divide routine DIVUNS.

20.4.2 OUTNUM(BCB,VAL,BASE,WIDTH)

A routine for general purpose output of integers in arbitrary bases (2 to 36
inclusive). The integer VAL is converted to ASCII characters in base BASE and written
to the buffer. The absolute value of WIDTH is the minimum size of the number in
characters. A WIDTH of less than zero will add leading zeros if necessary; a WIDTH
greater than zero adds leading blanks; a WIDTH of zero is equivalent to a WIDTH of
one. For bases larger than 10, the letters "A" through "Z" are used for the extra
digits. If the number is negative, a minus sign is written just preceding the first
nonblank position; the minus sign consumes one place of the required WIDTH Calls
NUMSTRING and OUTCHR.

20.4.3 OUTOU(BCB.VAL)

VAL is written to the buffer as an unsigned six-digit octal number with leading
zeroes. This is especially useful for writing out addresses, signal values and bit masks.
It calls NUMSTRING and OUTCHR.

20.4

Input, Output, and Formatting

This page intentionally left blank

blank page

Input, Output, and Formatting 173

20.5. Clock Manipulation and Output
Module TIME Maintainer: David Lamb

The module TIME contains routines for manipulating four-word clock values. In
particular, there are routines for outputting the clock values as date and time. There
is also a lower-level routine for doing the computation needed to convert clock values
to date and time.

Two time scales are used with these routines: the master clock time scale
followed by the hardware, and a scale where midnight (00:00) the morning of January
1, 1964 is the zero clock value. The routines CALCTIME, ZCALCTIME, GETCLK, and
ZGETCLK can be remembered thus: GETCLK does a IGETCL0CK kernel call to fetch a
clock value; ZGETCLK calls GETCLK and the adjusts the result to the January 1, 1964
time scale. CALCTIME takes a clock value as its argument; ZCALCTIME takes a
corrected clock value. GETCLK should be remembered by its similarity to the kernel
call. One calls CALCTIME with the result of GETCLK, and ZCALCTIME with the result of
ZGETCLK.

Those routines which format dates and times for output take the address of a
Buffer Control Block as their first parameter. They follow the blissregl linkage
convention, wherein the first argument is passed in register 1. The standard require
file HYDUSR.REQ has all the declarations necessary to accomplish the proper linkage.

20.5.1 CALCTTME(RESULT.CLOCK)

CLOCK is the address of a four-word uncorrected clock value. RESULT is the
address of a vector large enough to hold all the fields of the result computation. The
file TIME.REQ contains definitions of symbols to be used in accessing fields of the
result. The field names are summarized in the following table.

As conventions for printout of dates and time vary greatly, this low-level
routine is provided for users who wish to dispense with the standard output routines
and write their own.

TimeYear
TimeLeapYear
TimeDayOfWeek
TimeDayOfMonth
TimeDayOfYear
TimeMonth
TimeHour
TimeMinute
TimeSecond
TimeSixtieth
TimeMicrosecond
TimeMillisecond
TimeVecSize

0-30
0-365
0-11
0-23
0-59
0-59
0-59
0-999
0-999
Number of words needed for this vector

number of years since the base year
true if the year is a leap year
Sunday - 0, Saturday - 6

20.5

174 Input, Output, and Formatting

CALCTIME calls ZCALCTIME and CLOCKADJUST .

20.5.2 ZCALCTIME(RESULT,CLOCK)

CLOCK is the address of a four-word block containing a' corrected clock value.
RESULT is as for CALCTIME. Behaves exactly as does CALCTIME, save for its
convention for the clock argument (in fact, it is called by CALCTIME). ZCALCTIME calls
the four-word arithmetic package and DIVUNS.

20.5.3 CLOCKADJUST(CLOCK)

CLOCK is the address of a four-word master clock value. Corrects the clock
value to the January 1, 1964 scale.

20.5.4 GETCLK(CLOCK)

CLOCK is the address of a four word block. Places in the addressed block the
current time in master clock format (least significant word first), with the processor
bits zeroed.

20.5.5 ZGETCLK(CLOCK)

CLOCK is the address of a four word block. Places in CLOCK the current time,
adjusted for the January 1, 1964 time scale. ZGETCLK calls GETCLK.

20.5.6 OUTMS(BCB.CLOCK)

BCB is the address of a buffer control block. CLOCK is the address of a four-
word clock value. CLOCK is interpreted as a number of microseconds, and printed as
seconds in the form "s.mmm" (three places after the decimal point). It is assumed there
are less than 32768 seconds. This routine is intended for printing the differences
between two clock values.

OUTMS calls OUTNUM, OUTCHR, and the four-word arithmetic package.

20.5.7 OUTDATE(BCB.CLOCKVEC)

BCB is the address of a buffer control block. CLOCKVEC is the address of a
vector holding the result of a call to CALCTIME. Prints the date in the form "DD MMM
YY" with no extra leading or trailing blanks. If the year should happen to be less than
10, it is given a leading zero. If the day should be less than 10, it is given a leading
blank. Months are abbreviated to the first three letters. OUTDATE calls TIMEDATE.

20.5.1

Input, Output, and Formatting 175

20.5.8 OUTTIME(BCB,CLOCKVEC)

BCB is the address of a buffer control block. CLOCKVEC is the address of a
vector holding the result of a call to CALCTIME. Prints the time in the form
"HH:MM:SS" with ho extra leading or trailing blanks. HH is printed as a 24-hour clock
time. A leading zero is provided for each of HH, MM, or SS that is less than 10 in
value. OUTTIME calls TIMEOATE.

20.5.9 OUTDT(BCB,CLOCKVEC)

BCB is the address of a buffer control block. CLOCKVEC is the address of a
vector holding the result of a call to CALCTIME. Outputs time and date, in that order,
in the format used by OUTTIME and OUTDATE, separated by a blank. OUTDT calls
TIMEOATE.

20.5.10 OUTGDT(BCB,CLOCK)

BCB is the address of a buffer control block. CLOCK is the address of a four-
word uncorrected clock value. Outputs the time and date derived from this clock value
via OUTDT.

20.5.11 OUTCDT(BCB)

BCB is the address of a buffer control block. Outputs the current date and time
in the form used by OUTDT. Calls OUTGDT.

20.5.12 TIMEOATE(BCB,dLOCKVEC,MASK)
Internal name TIM004

BCB is the address of a buffer control block. CLOCKVEC is the address of a
vector set by CALCTIME. MASK is a 16-bit mask specifying control information.
TIMEDATE prints the date and time information held in CLOCKVEC as directed by MASK.

MASK consists of a number of one- and two-bit fields. The file TIME.REQ
provides symbolic names for these fields and for values which can be held in these
fields. The following table summarizes the field names and values they may hold.

OTimeOrder Specifies the order of the time and date portions
SetDateFirst
SetTimeFirst
SetNoDate
SetNoTime

20.5.8

176 Input, Output, and Formatting

OTimeWeekday
SetNoWeekday
Set3Weekday

SetFullWeekday

SetCommaWeekday

OTimeMonth
Set3Month
SetFullMonth
SetArabicMonth
SetRomanMonth

OTimeMZero
SetMZero
SetMNoZero

OTimeDZero

SetDZero
SetDNoZero

OTime2Year
Set2Year

Set4Year
OTimeSeparator

SetSepBlank
SetSepDash
SetSepSlash
SetSepComma

OTimeDayFirst
SetDayFirst
SetMonthFirst

OTimel2Hour

Setl2Hour

Set24Hour
OTimeColon

SetColon
SetNoColon

OTimeSecond
SetNoSecond
SetSecond
SetMillisecond
SetMicrosecond

Direct printing of the day of the week.

print the first three letters of the day of the week,
followed by a blank.
print the full name of the day of the week, followed
by a blank
print the full name of the day of the week, followed
by a comma and a blank.
Direct printing of the month
print the first three letters of the name of the month.
print the full name of the month.
print the month as an arabic number
print the month as a Roman numeral
Directs whether a numeric month has a leading zero
print a leading zero if the month is less than 10
print a leading blank if the month is less than 10.
Directs whether the day of the month has a leading
zero
print a leading zero if the day is less than 10.
print a leading blank if the day is less than 10.
Directs whether the year is printed as YY or 19YY,
print the year as YY, with a leading zero if less than
10.
print the year as 19YY.
Directs how the day, month, and year are separated,
separate the three fields with blanks
separate the fields with dashes
separate the fields with slashes
separate the fields with blanks, following the day-
month pair with a comma.
Directs whether the day or month gets printed first.

Directs whether the 24-hour clock or 12-hour clock is
used
print times on the 12-hour clock, followed with A.M.
or P.M. Noon prints as 12:00 N, midnight as 12:00 M.
print times on the 24-hour clock.
Directs whether the hour and minute fields are
separated by a colon

Directs printing of the seconds

print seconds, preceded by a colon.
in addition, print milliseconds preceded by a period
in addition, print microseconds

20.5.12

Input, Output, and Formatting 177

20.5.13 OUTCLOCK(BCB,CLOCK,MASK)
Internal name TIM005

BCB is the address of a buffer control block. CLOCK is the address of a four-
word uncorrected clock value. MASK is as for TIMEOATE. This routine is a version of
TIMEDATE that takes a clock value instead of a CALCTIME vector as input. It calls
CALCTIME and TIMEOATE.

20.5.13

Input, Output, and Formatting

This page intentionally left blank

blank page

Input, Output, and Formatting 179

20.6- IOBCB/FormString Interface
Module BCBTYP Maintainer: Richard K Gumpertz

The routine BCBTYP.M11[N810RG02]/A is used together with the BLISS-11
macro package called BCBTYP.R11[N810RG02]/A, These macros provide a convenient
way of doing ASCII output on Hydra from BLISS-11 routines using the FormString
convention (cf. 19.3). It is assumed that they will be used with the IOBCB package (cf.
19.2) and that any appropriate initialization has already been done.

The BCB arguments listed below are passed in register 1, via a BlissRegl
linkage. This should be of no concern to the user, however, if he uses the suggested
require file. There is a linker command file called BCBTYP.LMD[IM810RG02] which
includes the necessary object files.

Wherever the macros described below have a parameter named FORMAT, that
parameter must be a literal string (in single or double quotes).

20.6.1 Special definitions

Routines called via the H&*®" escape mechanism are invoked by a call that looks
like

Bl issReql(Arq^BCB,CharsPrIntedSoFar>ArgLlstPtr>Pref I xVa l)

where the arguments are like those defined in section 19.3.7. ARG is the address of
the routine being cafled; it must be a blissregl routine, taking arguments BCB,
CHARSPRINTEDSOFAR, and so on.

The control code "&$" simply causes the BCB flush routine to be invoked.

20.6.2 Type(BCBfFormat,Argl,... lArgn)

This macro will output to the buffer the string resulting from conversion by
FormString of the rest of the arguments. FORMAT should be a legal BLISS-11 string.
The macro will automatically create the necessary uplit including a CarriageReturn-
LineFeed and "&$" at the end. Like FormString, Type has as its value the number of
characters outputted.

20.6.3 TypeNoNewLine(BCB,Format,Argi,...,Argn)

This macro is identical to Type, except that no CarriageReturn-LineFeed or
w.ll be appended to the format string. This is useful for input cue messages and for
output which must go on one line but is generated by several different output calls.

20.6

180 Input, Output, and Formatting

20.6.4 FormattedType(BCB,FmtAddrlArgl,...,Argn)

This macro takes the address of the format string rather than the literal
character string. This can be used either when the format is not a constant or to save
plit space when the same format is used more than once. Since BLISS-11 currently
does not "pool" plits, this facility can be used to avoid the generation of multiple
identical format string plits when the same format is used in several different places.
Code for this might look like:

bind MyFormat = up l ! t<asc!z $str lng(. . . > "&/&**))*
» » »
FormattedType(BCBl t MyFormat* •••)*
• • •
Format tedType(BCB2 t MyFormat *)*

20.6.5 BCBTyArray{BCB,FormatAndArgsArray)

FormatAndArgsArray is the address of a block of storage. The first word of the
block contains a pointer to the asciz format string, and the succeeding words contain
the values Argl,...,Argn,

20.6.6 BCBTyStack(BCB,Argn,..,.Argl .FmtAddr)

This routine probably will never be called directly — it is used by the macros
above. It is listed here only for completeness.

20.6.4

Input, Output, and Formatting 181

20.7. Integer Conversion
Module BCBNUM Maintainer: Richard H. Gumpertz

The module BCBNUM.M11[IM810RG02] contains two routines for converting 16-
bit integers to strings.

The routine DivUns must be loaded with BCBNUM.

20.7.1 BCBNum(BCBfNumber,Radix,MinDigits)

BCB is a pointer to the Buffer Control Block to which output is to be done. Note
that BCBNum uses a BlissRegl linkage; therefore this argument is passed in Rl .
NUMBER is the number to be converted. It is assumed to be unsigned (i.e. in the range
0-65535). RADIX is the radix into which the number is to be converted. The
characters "A" through "Z" are used for radices between 11 and 36. Note that
BCBNUM will recur infinitely (causing who knows what havoc) if the radix is 1!
MINDIGITS is the minimum number of digits to be produced. If the number requires
more digits than MINDIGITS, however, none will get lost.

The value of a call to BCBNUM is the number of digits output.

20.7.2 BCBSNm(BCB,NumberfRadixfMinDigit8)

This entry is identical to BCBNum except that signed integers are printed. For
negative numbers, the is counted as a digit when considering MINDIGITS.

. 20.7

182 Higher Level Modules

21. Higher Level Modules

The modules described in this section contain functions the user is likely to wish
to call. Chapter 22 describes lower level modules that may be called by the
ones described here.

21.1. Simple User Initialization
Module HYDUSR Maintainer: David Lamb

The modules HYDUSR and HMAIN provide fairly simple initialization for user
programs. HYDUSR consists of a set of subroutines. HMAIN is a standard main module
which calls routines in HYDUSR, and expects the user's main entry point to be a global
routine named HENTRY. Thus HMAIN corresponds to the old HYDUSR module. It uses
the I/O package (see 19.2).

This package expects certain LNS slots to contain certain capabilities. The LNS
slots are specified in the file HYDLNS.REQ. The only one that is truly critical is the 10
port slot used by HYDINIT: slot 4, which is given the symbolic name I0P0RT. Certain
other routines uses slots 2 and 3, which should point to &SYSDIRECTORY and
&USERDIRECTORY, respectively. The standard command objects place the appropriate
capabilities in the appropriate slots (see 7.4).

Certain own variables in this module must be local to the process. The standard
command objects for running programs loaded with HYDUSR ensure that this happens.

The "debug" and "code" sizes for routines in this module may not differ; this is
becauses certain routines must be surrounded by SWITCHES NODEBUG declarations.

The use of this package is described in greater detail in chapter 7 on "getting
started with BLISS I T .

21.1.1 HARDERRORO

This routine is invoked via an interrupt linkage and is not intended to be called
explicitly; it traps all errors that go through JERRPC. It prints a diagnostic message on
the teletype, including the PC and SP where the error occurred. If SIX12 is present it
calls SIXCMD with argument #1000; otherwise it does a ^SUSPEND with all zeroes as
arguments. It calls OUTSTR, OUTCRLF, OUTOU, and BCBFLUSK

21.1.2 HSIGNALO

This routine is invoked via an interrupt linkage and is not intended to be called
explicitly; it traps HYDRA signals. It prints the signal value (after stripping the high
order bit), the PC and SP at the place of the error, and the top eight words of the
stack. If SIGDATA is nonzero, it is also printed. If SIX12 is present, SIXCMD is called
with argument #1001. In all cases, HSIGNAL returns the signal value. It calls OUTSTR,
OUTCRLF, OUTOU, OUTCHR, and BCBFLUSK

21

Higher Level Modules 183

21.1.3 SETSIGNAL(FLAG)

This routine sets an internal flag used by HSIGNAL. If FLAG is nonzero, signals
will print out a message on the teletype; otherwise no message will be printed. It
returns the old value of the flag. This is intended for situations in which signals are
sometimes errors and sometimes expected. Sections of code which expect signals can
be bracketed with code like

LOCAL temp;
temp «- s e t s i g n a l (l) *

code which might cause a signal •••
sets igna l (. temp)

The flag is turned on by default.

21.1.4 HYDINITO

This routine should normally be the first thing called from the user's program. It
sets up $ERRPC and 8SIGPC to trap to routines HARDERROR and HSIGNAL, respectively.
If SIX 12 is loaded it calls INIT612 to do appropriate setup.*

HYDINIT calls OPENCHAN.

Note that HYDINIT is called by HMAIN, so user programs making use of HMAIN
need not call it.

21.1.5 HYDFINISH(RETVAL,RETCAPA,RESTRICT)

This routine should be the last one called. If SIX12 is present it calls RET612;
otherwise it does a ISUSPEND. The three parameters are passed to RET612 or the
$SUSPEND, whichever is appropriate. Note that HYDFINISH is called by HMAIN, so user
programs making use of HMAIN need not call it if they exit by returning to HMAIN.

21.1.3

Higher Level Modules

This page intentionally left blank

blank page

Higher Level Modules 185

21.2, Standard Main Module
Module HMAIN Maintainer: David Lamb

HMAIN is not a callable routine, but a main program that calls HYDINIT, provides
input/output control blocks for teletype input and teletype output, calls the user's
HENTRY routine, then calls HYDFINISK

The "debug" and "code" sizes for routines in this module may not differ; this is
becauses certain routines are surrounded by SWITCHES NODEBUG declarations.

21.2.1 MAINCALLERO

The sole purpose of this routine is to provide an entry point with debug
linkages set. It calls SIXCMD with argument 0 if SIX12 is loaded with the program. It
then calls HENTRY, the user's entry point. It contains an enable block to trap any
signals that the user does not trap himself; this block prints a diagnostic message and
calls SIXCMD with argument #1002.

21.2

Higher Level Modules

This page intentionally left blank

blank page

Higher Level Modules 187

21.3. User Error Reporting
Module USRERR Maintainer: David Lamb

21.3.1 USERERROR(SIGVAL)
Internal name USR001

SIGVAL is a 16-bit integer. This routine provides an interface between routines
which wish to report errors and the user's Hydra signal handler. It examines the
SSIGPC field of the LCB and calls the addressed routine (if it exists), faking a Hydra
signal with value SIGVAL. It then returns SIGVAL as its value (provided, of course,
that the signal handler returns). If no signal handler is provided, it simply returns its
argument.

21.3

Higher Level Modules

This page intentionally left blank

blank page

Higher Level Modules* 189

2 L 4 . Hydra Directory Manipulation
Module DIRLIB Maintainor: David Lamb

The module DIRLIB contains routines for performing directory operations under
HYDRA PMO. It uses GETARG from the string manipulation package . Each of these
routines except DIRNAMES and DIRWORD corresponds to a directory base call; it is
possible that the base calls will cause HYDRA signals.

The routines all take as a parameter an asciz string which contains a directory
path. A directory path is a sequence of identifiers separated by dots. There may be
up to ten identifiers in a path. Each identifier is truncated to ten characters if it is
longer.

21.4.1 GETDIRECTORY(SLOT,DIRECT,STRING)

SLOT is the index of an empty LNS slot. DIRECT is the index of an LNS slot
containing a directory capability. STRING is the address of an asciz string. Place into
LNS slot SLOT a capability for the entry named in STRING, accessed through the
directory in slot DIRECT. Returns the value returned by the DIRGET base call. Calls
DIRNAMES.

21.4.2 PUTDIRECTORY(DIRECT,SLOT,STRING)

DIRECT is the index of an LNS slot containing a directory capability. SLOT is the
index of a non-empty LNS slot. STRING is the address of an asciz string. Create an
entry with a name given in STRING, accessed via the directory DIRECT, and copy the
capability in SLOT into it. If an entry of the same name already exists, it will be
replaced. Any directories in the path which do not exist will be created automatically.
Returns the value returned by the DIRPUT base call. Calls DIRNAMES.

21.4.3 DELDIRECTORY(DIRECT.STRING)

DIRECT is the index of an LNS slot containing a directory capability. STRING is
the address of an asciz string. Delete the entry named in STRING from DIRECT.
Returns the value returned by the DIRDELETE base call. Calls DIRNAMES.

21.4.4 RENDIRECTORY(DIRECT,OLDNAME,NEWNAME)

DIRECT is the index of an LNS slot containing a directory capability. OLDNAME
and NEWNAME are addresses of asciz strings. OLDNAME contains a full directory path;
NEWNAME contains a single ten (or fewer) character name. Renames the bottommost
level of the old name to the new name. Calls DIRNAMES.

21.4

190 Higher Level Modules

21.4.5 DIRNAMES(DE$T,SOURCE,MAX)

DEST is the address of a block of storage. SOURCE is the address of an asciz
string. MAX is an integer, the number of bytes in the block addressed by DEST.
Moves the directory path from SOURCE to DEST, formatting it as desired by the
directory procedures. The routine returns the number of words in the resulting
packed block, or -MAX if there were too many levels of directory path in the given
string. This routine is probably not too useful for general users; it is called by all of
the directory routines. It calls DIRWORD.

21.4.6 DIRWORD(DEST,SOURCE,LEN)

DEST is the address of a block of storage. SOURCE is the address of an asciz
string. LEN is an integer, the number of bytes in the block addressed by DEST. Moves
up to LEN characters from SOURCE to DEST, terminating when it reaches a null
character or "." in SOURCE. If less than LEN characters are moved, pads the rest of
the destination block with nulls. This routine is probably not too useful for general
users; it is called by DIRNAMES. It calls GETARGL

21.4.5

Higher Level Modules 191

21.5. Single Precision Floating Point
Module BLFP Maintainer: Bill Dietz

BLFP, the BLISS/11 compatible floating point software package, contains
routines for doing floating point arithmetic, I/O, and conversion in the BLISS/11
environment. The routines are written in PDP11 assembly code and were primarily
converted from routines contained in FPMP (Floating Point Math Package) a DEC
package. The routines now available include only single precision (2 word) add,
subtract, multiply, divide, square root, sine, cosine, comparison conversion, and I/O
Standard DEC Floating Point format is used.

The file CBLFP.R1 l[N830PO06] defines all the symbols needed to use BLFP. The
files BLFP.OBJ[N810PO06] and CFPIO[N810P006] should be included in the load module.
Note that BLFP is not yet fully integrated with the current I/O package; it uses an old
I/O system, PORTIO.

BLFP uses two pseudo Floating Point Registers. These are called the FLAC
(Floating Point accumulator) and the OPRD (Operand). They are currently bound to
locations *100-*106 and *110-*116 respectively. These locations are compatible
with current C.mmp policy system software. The double operand routines use the
contents of these two "Registers" as operands and return the result in the FLAC

FLAC <- FLAC operation OPRD

The single operand routines use the contents of the FLAC and return the result
to the FLAC.

FLAC 4- operat ion FLAC

A set of BLISS macros have also been written to make the use of the package
easier. The macro calls take the form Op(A,B,C), or Op(A,B) or Op(A). Op is a floating
point operation and A, B and C are the addresses of the operands. The form is always

A * B op C
or

A «• op B

Addresses are used in the macros due to the BLISS stack usage.

The macro set also contains a group of six comparison macros. These macros
return either 1 for true or 0 for false depending on the result of the comparison. For
example FNEQ(A,B) will return 1 if the operand at address A is not equal to the
operand at address B.

The functions currently implemented in the macro set are:

21.5

192 Higher Level Modules

Operations:
FADD<A,B,C)
FSUB{A,B,C>
FMULT(A,B,C)
FDIV(A,B,C)
FSQRT(A,B)
FSIN(A,B>
FCOS<A,B)
FNGT(A)

Addition A «- B + C
Subtraction A <~ B - C
Multiplication A <~ B * C
Division A ^ - B / C
Square Root A «- Sqrt B
Sine A <~ Sin B
Cosine A *- Cos B
Negation A <- - A

INTR(A.B) Greatest Integer Function

Comparisons:
FEQL(A,B)
FNEQ(A,B)
FGTR(A,B)
FLSS(A,B)
FGEQ(A,B)
FLEQ(A,B>

There are no real I/O routines in the Basic package. There are however,
routines which convert an ASCII string to a floating point number and convert a
floating point number to an ASCII string. Three BLISS routines have been written to
make these conversion routines work as I/O routines. One routine, CONV<X,Y), takes a
plit (X) and converts the ASCII to a floating point number and places it at Y. The
second routine FIN{X) waits for input at the tty, converts it and places it at X. The last
routine FOUTf\KX) converts the number located at X and prints it on the tty. For C.mmp
users, LFOUTN(X) has been included. LFOUTINKX) uses the line printer as the output
device. These I/O routines along with a package error routine are included in a
separately compiled BLISS/11 module. These routines are not compatible with HYDIO
at this time; they may eventually be replaced by a variant of the ALG0L68 runtime
package.

. Conversion:
FLOAT(A,B)
FIX(A) Returns integer

21.5

Higher Level Modules 193

21.6. Unsigned 16-bit Divide
Module DIVUNS Maintainer: Richard H Gumpertz

The module DIVUNS.M11 ([N810RG02]/A and [E130H00]/B) is a highly optimized
divide routine which works with 16-bit unsigned numbers. (The standard BLISS-11
divide operation is signed, which yields different results.)

Division by 0 yields quotient 0, remainder«dividend. One may, if one wishes,
thus consider a 0 divisor to be equivalent to #200000 (1 bigger than the biggest
unsigned 16 bit number). If one is more concerned with division by 0, one should
check the divisor explicitly in the calling routine.

21.6.1 DivUnsigned(R0"Divridend,R2«Divi8or)

This call cannot be exactly described in BLISS-11. Arguments are passed in in
RO and R2; values are returned in RO and Rl. The quotient is returned as the "value"
of the call (in RO) and the remainder is returned in Rl. Since BLISS-11 assumes no
registers are changed by a routine other than RO, it is not really "kosher" to call
DivUnsigned from a BLISS-11 program. Therefore a group of macros have been
written which do this call safely from a BLISS-11 program; they may be found in
DIVUNS.R11 ([N810RG02]/A and [E130II00]/B> and are documented below.

21.6.2 UnsignedQuotientJDividend.Divisor)

This macro returns the unsigned quotient DIVIDEND/DIVISOR as its value.

21.6.3 UnsignedR«mainder(Dividend,Divisor)

This macro returns the unsigned remainder of DIVIDEND/DIVISOR as its value.

21.6.4 UnBignedDivide(Dividend,Divisor,Remainder)

REMAINDER is the name of a register variable or the address of a storage
location. This macro returns the unsigned quotient DIVIDEND/DIVISOR as its value. In
addition, it has the side-effect of setting REMAINDER to the remainder of the same
division.

21.6

Higher Level Modules

This page intentionally left blank

blank page

Higher Level Modules 195

21.7. Four-word Integer Arithmetic
Module FOURWD Maintainer: Tom Lane

The routines in the module F0URWD[N810PM99] do arithmetic on four-word
unsigned integers, such as clock values. Generally they take two arguments, both
being addresses of four-word blocks of storage, perform some binary operation and
leave the result in the block pointed to by the first argument Thus

behaves very much like

A .A operation .B

The four-word block has the least significant bits in the first word (the word with
lowest address) and the most significant in the fourth. If you use these routines on
clock values, you must zero the processor number field in the fourth word. None of
these routines returns any useful value.

The routines are summarized in the following table

RTN(A,B)

ADD4(A,B)
SUB4(A,B>
DIV4(A,B)
MOD4(A,B)
MUL41(A,B1)

Add B to A
Subtract B from A
Divide A by B
Replace A with its remainder when divided by B
Multiply A by the one-word quantity (not address) Bl
Divide A by B, leaving the quotient in A and the

remainder in C
DVM0D4(C,A,B)

21.7

Higher Levei Modules

This page intentionally left blank

blank page

Higher Level Modules 197

21.8. Multiple precision arithmetic
Module ARITH Maintainer: Richard K Gumpertz

The module ARITH ([N810RG02]/A and [E130II00J/B) and the require file
ARITKR11 comprise a small package of macros and routines which produce efficient
code for manipulating multiple precision integers. It is anticipated that more calls will
be added to this package as the need arises. Please submit requests for such
additions to the author.

In keeping with the basic PDP-11 architecture, and unlike the PDP-11 floating
point operations, It is assumed that multiple precision values are stored low order byte
first. For example, a 19 bit integer at location X has .X<0,1> as its low order bit and
.(X+2)<2,1> as its high order bit.

The routines are called via BLISS register linkages and so are fairly fast. Note
that the Compare macros produce inline code and so do not require that ARITKOBJ be
loaded. Because of the strange linkage types used by the other routines and the
possibilty of change to inline code, it is strongly suggested that the user use the
require file provided.

21.8.1 Compare64(relation, X, Y)

This macro returns as its value either true (1) or false (0) as determined by the
pseudo-BLISSll expression

.X<0,63> r e l a t i o n .Y<0,63>

where r e I at i on is one of the keywords egl, neq, Issu. lequ, gtru. gequ, eqlu. or nequ.
Note that X and Y are the addresses of 64 bit values, not the values themselves. If X
and Y are complex expressions, they may get evaluated more than once because the
macro refers to each of them in several places. The signed relations |s§, leg, gtr, and
geq will not be treated properly and so should be avoided. If there is sufficient
demand, this may be fixed.

21.8.2 Compare60(relation, X, Y)

This macro is identical to Compare64, except that 60 bit values are compared.
This is useful for comparing Hydra microsecond clock values without including the
processor number in the comparison.

21.8.3 Compare32(relation, X, Y)

This macro is like Compare64 but for double word (32 bit) integers.

21.8

198 Higher Level Modules •

21.8.4 Add32(Src, Dst)

This routine adds the 32 bit integer at location SRC to that at DST and stores
the result in location DST. The value of the call is either 0 or 1 reflecting the carry
out of the high order bit of the result.

21.8.5 Sub32(Src(Dst)

This routine subtracts the 32 bit integer at location SRC from that at DST and
stores the result in location DST. The value of the call is either 0 or 1 reflecting the
carry (borrow) out of the high order bit of the result.

21.8.6 Bump64(n, Dst)

This routine adds the 16 bit unsigned integer N to the 64 bit value stored at
location DST. The value of the call is either 0 or 1 reflecting the carry out of the high
order bit of the result.

21.8.7 Bump32(n, Dst)

This routine adds the 16 bit unsigned integer N to the 32 bit value stored at
location DST. The value of the call is either 0 or 1 reflecting the carry out of the high
order bit of the result.

21.8.8 Down32(n, Dst)

This routine subtracts the 16 bit unsigned integer N from the 32 bit value
stored at location DST. The value of the call is either 0 or 1 reflecting the carry
(borrow) out of the high order bit of the result.

21.8.9 Dif32Limited(X, Y)

This routine computes the value

,X<0,31> - .Y<0,31>

and returns this as the; 16 bit value of the call. If the result was negative (i.e.
.Y<0*31> gt ru .X<0>31>), however, the value returned is 0. Similarly, if the result
would exceed 65535 (i.e. #177777, the greatest 16 bit unsigned integer), then the
value returned is 65535. In other words, the result is forced to be inside the range 0-
65535.

21.8.4

Higher Level Modules 199

21.9. Dynamic LNS Slot Management
Module LNSLOT Maintainer: David Lamb

The set of routines in the module LNSLOT implement a runtime LNS slot allocator
for programs running under HYDRA. The routines maintain an own table describing
which slots are in use and how many times each is referenced (see SHRSLOT below).
This table must be addressable whenever an LNS allocation routine is called, called,
and which is not shared by any other LNS which will be making use of the routines.

21.9.1 INJTSLOTO

This routine initializes the LNS slot allocator. Initialization involves finding the
ILNSLENGTH of the LNS, marking all slots below that point as having one reference,
and marking all slots above that point as free.

In some cases it may not be necessary to call INITSLOT. If the page containing
the owns for the allocator is local to the running LNS and each invocation starts with a
fresh copy of this page, then the first call to any allocation routine will call INITSLOT
(the routines check a flag in the own page). Explicitly calling the initialization routine
is intended for situations where there will be only one active copy of the procedure at
a time but each copy uses the same page without copying. It is not necessary to call
INITSLOT if you are using the standard HYDUSR command objects to run your program.

21.9.2 ALLOSLOTO

If there are any free LNS slots, one is selected and marked as "in use" with a
reference count of 1; its index is then returned. If no free slot exists, a 0 is returned.

21.9.3 FREESLOT(SLOTNUMBER)

SLOTNUMBER is the index of a slot in the LNS. • FREESLOT decrements the
reference count for slot SLOTNUMBER. When the count reaches zero, it does a
IDELETE(SLOTNUMBER) to clear the slot. It returns no value.

21.9.4 SHRSLOT(SLOTNUMBER,NUMBER)

SLOTNUMBER is the index of a slot in the LNS. NUMBER is a small integer. If
SLOTNUMBER is in use, this routine increments its reference count by NUMBER and
returns 1 (for TRUE). If SLOTNUMBER is out of the range of valid slots, or is free, or if
adding NUMBER to the reference count would overflow the field used to hold the count
(8 bits), this routine returns 0 (for FALSE).

The principal use of this routine is to share a slot between moderately
independent sections of a program. Your initialization code can call ALLOSLOT and

21.9

200 Higher Level Modules

save the value returned in some global variable. It can then call SHRSLOT to tell it
how many sections of code will be using the slot. This allows each section to free the
slot independently. When the last of the places sharing a slot frees it, the slot is
deleted and marked as free. It is most useful when it is not clear a priori which
section will finish with the slot first.

21.9.5 TRYSLOT(SLOTNUMBER)

SLOTNUMBER is the index of a slot in the LNS. Returns FALSE if SLOTNUMBER is
out of range or in use. Otherwise it selects the indicated slot and allocates it as in
ALLOSLOT.

21.9.6 NUMSLOTO

Returns the number of free LNS slots. Useful for finding if there are enough •
slots for the sequence of requests you are about to make.

21.9.4

Higher Level Modules 201

21.10. ASCIZ String Package
Module STRLIB Maintainer: David Lamb

The module STRLIB contains a number of routines for use with asciz strings.

21.10.1 STRINDEX(CHAR.STRING)

CHAR is an ASCII character. STRING is the address of an asciz string. Return
the 0-origin index of the first occurrence of CHAR in the STRING, or -1 if none is
found.

21.10.2 STRLENGTH(STRING)

Return the number of characters in the asciz string.

21.10.3 COPYSTR(DEST,SOURCE,MAX)

DEST is the address of a block of storage, of length at least MAX bytes. SOURCE
is the address of an asciz string. Copy characters from SOURCE to DEST, stopping
with the first null in SOURCE, or when MAX characters have been transferred. The
high order bit of each byte is left untouched. If less than MAX characters are

• transferred, a trailing null is written. Returns the number of characters copied.

21.10.4 GETARG(DEST,SOURCE,DELIM,MAX)

DEST is the address of a block of storage, of length at least MAX bytes. SOURCE
and DELIM are the addresses of asciz strings. Copy characters from SOURCE to DEST,
stopping with the first null in SOURCE, the first occurrence of one of the characters in
DELIM, or when MAX characters have been transferred. If copying was stopped by a
delimiter, the delimiting character is not copied. If less than MAX characters are
transferred, a trailing null is written. Returns the number of characters copied.

GETARG calls STRINDEX.

21.10.5 UPPER(DEST,SOURCE,MAX)

DEST is the address of a block of storage, of length at least MAX bytes. SOURCE
is the address of an asciz string. Copy characters from SOURCE to DEST, converting
lower case letters to upper case, stopping at the first null in SOURCE or when MAX
characters have been transferred. The high-order bit of each byte of the result is
turned off. If less than MAX characers are copied, a trailing null is written. Returns
the number of characters copied. UPPER(str,str,STRLENGTH(str)) will convert STR to
upper case in place.

21.10

202 Higher Level Modules

2LI0.6 LOWER(DE$T,SOURCE,MAX)

DEST is the address of a block of storage, of length at least MAX bytes. SOURCE
is the address of an asciz string. Copy characters from SOURCE to DEST, converting
upper case letters to lower case, stopping at the first null in SOURCE or when MAX
characters have been transferred. The high-order bit of each byte of the result is
turned off. If less than MAX characers are copied, a trailing null is written. Returns
the number of characters copied. LOWER(str,str,STRLENGTH(str)) will convert STR to
lower case in place.

21.107 EQU(STR1,STR2)

STR1 and STR2 are addresses of asciz strings. Compares STR1 and STR2,
ignoring distinctions between case. Differences in the high order bit of a character
are significant; thus #301 and #101 ("A") are not equivalent. Returns 1 (for TRUE) if
they match and 0 otherwise.

2U0.6

Higher Level Modules 203

21.11. Capability Printout
Module WHATS Maintainer: Guy Almes

The routines in the module WHATS format information about capabilities into the
given buffer. These routines use the blissregl linkage convention. That is, the first
argument is passed in register 1. Users need not normally be aware of this, as the
standard require file HYDUSR.REQ has all of the necessary definitions.

21.11.1 WHATS(BCB,SL0T1,SL0T2)

SL0T1 is zero or the index of an LNS slot containing a capability with LOAD
rights. SL0T2 is a C-list index. This routine formats information about a capability
into the given buffer. If SL0T1 is zero, information is printed about the SL0T2th slot
of the running LNS. Otherwise, the SL0T2th slot of the object in the SLOTlst slot of
the LNS is examined. WHATS prints the number SL0T2, the auxiliary and Kernel rights
of the object, its global name, and its printname. If the capability is null, in place of
the global name WHATS prints "TEMPLATE" for a true null and "PARAMETER" for a
parameter template.

WHATS calls OUTCHR, OUTSTR, OUTOU, and OUTCRLF.

21.11.2 WHATSIT(BCB,SLOT,MSG)

SLOT is zero or the index of an LNS slot. MSG is the address of an asciz string.
WHATSIT prints the contents of MSG followed by a carriage return and linefeed, then
calls WHATS to print information about SLOT if SLOT is nonzero. It then walks through
the C-list of the object in slot SLOT (or the current LNS, if SLOT is 0) calling WHATS
for each item. It calls WHATS, OUTSTR, and OUTCRLF.

21.11

204 Lower Level Modules

22. Lower Level Modules

The modules described in this section are not intended to be used directly by
the average user. They are called by modules described in chapters 20 21.

22.1. Interface to DAS
Module DASOPN Maintainer: David Lamb

The routines in DASOPN provide an interface to Sam Harbison's device allocation
system. They can be used to establish and destroy connections to devices such as the
line printer or DECtape drives. Slot 2 of the LNS, given the symbolic name
SYSDIRECTORY, must contain a capability for the system directory (the command
interpreter variable & SYSDIRECTORY).

22.1.1 OPENDAS(SLOT,PORT,CHAN,DEV)
. Internal name DAS001

PORT is the LNS index of a port capability. DEV is the LNS index of an 10 device
capability, obtained from the PUBLIC.DAS.DEVICES under &SYSDIRECTORY. CHAN is an
integer in the range 0-15, or -1 in which case DAS will find a free channel, SLOT is
the index of a free LNS slot. This routine calls the DASCONN procedure to establish a
connection with the indicated device via the given port and channel. The object
returned by the DAS Procedure is placed in SLOT. If DAS gives an error, OPENDAS
will return the negative number indicating the error status. Otherwise it will return
the number of the channel used for the connection.

OPENDAS calls GETDIRECTORY, ALLOSLOT, FREESLOT, and USERERROR.

22.1.2 CLOSEOAS(SLOT)
Internal name DAS002

SLOT is the index of the slot used in the call to OPENDAS, which should contain
the object returned by DAS. This routine calls the DASDISCONN procedure to break
the connection to the device allocated by DASCONN.

CLOSEDAS calls GETDIRECTORY, ALLOSLOT, FREESLOT, and USERERROR.

22

Lower Level Modules 205

22*2* Line Printer Open and Close
Module LPTOPN Maintainer: David Lamb

The module LPTOPN provides routines to establish and destroy connections to
the line printer. Slot 2 of the LNS must contain a capability for &SYSDIRECTORY, so
that a capability for the line printer 10 device object can be found.

22.2.1 OPENLPT(SLOT.PORT.CHAN)
Internal name LPT001

PORT is the index of a slot containing a port capability. CHAN is an integer in
the range 0-15, or -1 in which case a free channel will be found. SLOT is the index of
a free slot which will be used to hold the capability returned by the DAS procedure.
Establishes a connection to the line printer on the given port and channel} returns the
channel number returned by the request to DAS.

OPENLPT calls ALLOSLOT, FREESLOT, GETDIRECTORY, and USERERROR.

22.2.2 CLOSELPT(SLOT)
Internal name LPT002

SLOT is the slot you passed to OPENLPT. Closes the line printer. Calls
CLOSEDAS.

22.2

Lower Level Modules

This page intentionally left blank

blank page

Lower Level Modules 207

22.3* Message Creation
Module MAKMSG Maintainer: David Lamb

The routines in the module MAKMSG create and destroy port messages. They
are called by the higher level portions of HYDIO. Like all routines taking a buffer
control block as a parameter, they use the blissregl linkage convention. Users need
not normally be aware of this, as the standard definition file HYDLIB.REQ, a part of
HYDUSR.REQ, contains the necessary declarations.

22.3.1 MAKEMESSAGE(BCB)
Internal name MSG001

BCB is the address of an initialized input/output buffer control. Creates the
number of messages specified by the IOBCBWUMMSG field of the control block, on the
port and channel specified by the I0BCBPORT and IOBCBCHAN fields, large enough to
hold the buffer accociated with the IOBCB plus the header required for the device
specified by the IOBCBDEVICE field, For input channels, all messages but the last are
sent to the connected device via the IRSVPMSG kernel call. For output channels, all
messages are queued at the local port with an M0KW status via the IREQUEUEMSG
kernel call.

22.3.2 KILLMESSAGE(BCB)
Internal name MSG001

BCB is the address of a fully initialized input/output buffer control block. The
IOBCBINPUT field is odd (for true) if the first of the messages is being held at the port;
this is normally the case for input channels. If this field is even, then all the messages
must be received by the $RECEIVEMSG kernel call before being destroyed.

22.3

Lower Level Modules

This page intentionally left blank

blank page

Lower Level Modules 209

22 A Low-Level Port Interface
Module IOTRAN Maintainer: David Lamb

The module IOTRAN contains routines which perform very low-level input and
output, dealing directly with the Port subsystem. These routines assume that all
necessary connections have been set up; for instance, OPENCHAN will set up
connections (see 20.2).

The routines in this module use the blissregl linkage convention, as do all
routines taking a buffer control block as a parameter (see 19.1). You need not
normally be aware of this convention, since the require file HYDLIB.REQ, which is part
of HYDUSR.REQ, contains all of the necessary declarations.

In addition to the routines described below, this module defines the global
symbols READOP, WRITEOP, and HDRSIZE, which contain information peculiar to each of
the devices which might be connected to the port.

INMESSAGE and OUTMESSAGE may return a negative number indicating a bad
message status. This number consists of #140100 as a base, plus the four bit reply
type of the received message. The meanings of these reply types are described in
UI0.REQ[N810HY97]. In the case of an error, information describing the error is also
placed in the IOBCB; this may be retrieved by calling the IOSTATUS function (see
19.2.1).

22.4.1 ACCEPT(IOBCB,RCVER)

IOBCB is the address of an input/output buffer control block. RCVER is the
address of a block of storage at least six words in length. ACCEPT does a
JRECEIVEMSG of the next message from the channel and port associated with IOBCB,
placing the header returned by IRECEIVEMSG in the block pointed to by RCVER. It
translates nonstandard error status codes such as those from the file system to a
common form as described in UI0.REQ[N810HY97].

ACCEPT is not intended to be called by the average user; it is called by
INMESSAGE and OUTMESSAGE and some I/O routines in other modules. It normally
returns the reply type of the received message. In the case of a file system message
containing an error code it returns the bottom five bits of the code plus #40.

22.4.2 INMESSAGE(IOBCB)
Internal name I0T002

IOBCB is the address of an input/output buffer control block. Requests a record
large enough to fill the buffer, from the port and channel with which the IOBCB is
associated.

If multiple buffering is going on (that is, if there are several Port messages

22.4

210 Lower Level Modules

associated with the channel), the message copied into the buffer will not be the one
requested. Its length may therefore be the length specified by a previous request.
Thus if you wish to do things like requesting single characters from the terminal, you
must ensure that only one message is created for the channel. The principal effect of
this will be that any error status returned will refer to the status of the received
message, which is likely to have been requested previously.

INMESSAGE returns either the value returned by the fREADMSG call used to
read the data into core, or a negative number indicating that an error has occurred.
An attempt to read after an end-of-file has occurred is considered an error. On exit
the BCB portion of the IOBCB correctly describes the information read in.

INMESSAGE calls ACCEPT.

22.4.3 OUTMESSAGE(IOBCB)
Internal name I0T001

IOBCB is the address of an input/output buffer control block. Writes the buffer
to the port/channel combination with which the buffer is associated. Returns the value
returned by the fRSVPMSG call used to send the data, or a negative status indicator.
On exit the BCB describes an empty buffer. Calls ACCEPT.

22.4.2

Lower Level Modules 211

22.5. File Opening and Closing
Module FILOPN ' Maintainer: David Lamb

This module references the directory package. This will disappear when
1TYPECALL works. LNS slot 2, given the symbolic name SYSDIRECTORY, must contain a
capability for the system directory (the command interpreter variable
&SYSDIRECTORY), so the routines can find the file system procedures.

22.5.1 OPENFILE(PORT,CHAN,SL0T,MODE)
Internal name FIL001

PORT is the index of an LNS slot containing a port capability. SLOT is the index
of an LNS slot containinga file capability. CHAN is an integer in the range 0-15, or is
-1 in which case any free channel will be used. MODE is an integer indicating the type
of opening desired: 0 for sequential read, 1 for sequential write, 2 for update.
HYDLIB.REQ defines the symbols SEQREAD and SEQWRITE which may be used to specify
this parameter. Sequential update and random I/O are not yet supported. Invokes the
appropriate file system procedure to connect the indicated channel of the indicated
port to the file monitor, and open the indicated file object in the indicated mode.
Returns the channel number.

0PENF1LE calls GETDIRECTORY, USERERROR, ALLOSLOT, and FREESLOT.

22.5.2 CLOSEFILE(PORT,CHAN.LNAME)
Internal name FIL002

PORT and CHAN are as for OPENFILE. LNAME is a local name associated with the
port containing a message which is at least eight words long; the message will be used
to tell the file monitor to close the file. Upon return from CLOSFILE the message will
have been sent to the file monitor via IRSVPMSG.

22.5.3 MAKEFILE(SLOT,TYPE,NAME)
Internal name FIL003

SLOT is the index of a free LNS slot. TYPE is a small integer; it will provide the
file type parmeter, and should be 1 for the current file system. NAME is the address
of an asciz string, and will provide the 10-character file name for FCREAT. This
routine calls the file system FCREAT procedure, supplying it the given type and name
fields. A capability for the created file is placed in slot SLOT. Returns whatever value
is returned by the ICALL to FCREAT.

MAKEFILE calls ALLOSLOT, FREESLOT, GETDIRECTORY, DIRWORD, and USERERROR.

22.5

212 Lower Level Modules

22.5.4 LISTFILE(SLOT)
Internal name FIL004

SLOT is the index of an LNS slot containing a file capability. Submits the file to
the spoooler.

LISTFILE calls ALLOSLOT, FREESLOT, GETDIRECTORY, and USERERROR.

22.5.4

Lower Level Modules 213

22.6. Generalized Formatting ~ FrmStr
Module FRMSTR Maintainer: Richard H. Gumpertz

FrmStr (FRMSTR[N810RG02]/A and FRMSTR[E130II00]/B) is a BLISS-11 package
(useable on any PDP-11) for formatting strings. It is particularly helpful when used
with output routines to produce formatted output using the FormString convention (cf.
19.3),

The modules NUMOUT.OBJ and DIVUNS.OBJ must also be loaded from the same
PPN. There are no owns in any of these routines so they may be put in a pure (read
only) page when memory protection is available (as on C.mmp). For the convenience of
C.mmp users, there is a linker command file called FRMSTR.LMD[N810RG02] which
includes the necessary .obj files.

The module FrmStr implements the FormString convention in a manner which
may be easily adapted to almost any PDP-11 environment without having to change
the sourec code of the conversion routines. It does this by taking a routine as the
destination for the characters. It does successive calls on this routine for each
character produced. The calling sequence is as follows:

OutRtn (Ex t ra t Character)

To allow the routine to be recursively reentrant but still be able to retain some
information between calls, the EXTRA argument is simply passed along by FormString.
It may be considered to be analagous to the display pointer (used in most
implementations of Algol, PL/I, or BLISS-10) which is missing in BLISS-11. Obviously if
only a single 16 bit value (which does not change between successive calls to OUTRTN)
is needed to be passed around, EXTRA need not be literally a display pointer, which
points to the information in question, but rather may be the datum itself. If the routine
does not need any such data, it can take advantage of the way BLISS-11 passes
arguments and simply assume it has one argument, CHARACTER.

22.6.1 Special definitions

The definition of the calling sequence for is:

ArgCCharsPr I ntedSoFar, ArgLI s tPtr ,OutRtn ,Ext ra ,Pref i xVal)

where the arguments are like those defined in section 19.3.7. The routine so called
should either make calls directly on OUTRTN or call FrmStr recursively.

The control code causes OUTRTN to be invoked with the argument -1
instead of a character. This may be distinguished because in all other cases the high
byte of the character will be zero.

22.6

214 Lower Level Modules

22.6.2 Differences from the FormString standard

FrmStr does not currently support the &*H, &#UH, and &*W control codes.
t Right justification may be accomplished using the sequence "&#[•• • &]", which behaves
exactly like "&#W&(». .&)" should according to the standard.

22.6.3 FormString(OutRtn,Extra,FmtAddr,Argl ,...,Argn)

This macro causes the format pointed to by FMTADDR to be converted to a
string which is handed to OUTRTN with successive calls for each character. The value
of the call is the number of characters produced.

22.6.4 FmStrArray(FormatAndArgsArray,Extra,OutRtn)

FormatAndArgsArray is the address of a block of storage. The first word of the
block contains a pointer to the asciz format string, and the succeeding words contain
the values Argl,..,,Argn.

22.6.5 FmStrStack(Argn,...,Argi ,FmtAddr,Extra,OutRtn)

This routine probably will never be called directly — it is used by the
FormString macro above. It is listed here only for completeness.

22.6.2

Lower Level Modules 215

22.7* Unsigned Integer Conversion
Module NUMOUT Maintainer: Richard H. Gumpertz

The module NUMOUT.M11 ([N810RG02]/A and [E130II00]/B) is an unsigned
integer to string conversion routine. It converts a 16-bit unsigned integer to a series
of characters.

The routine DivUns must be loaded with NUMOUT,

22.7.1 NumOut(Extra,OutRtn,MinDigits,Radix,Number)

EXTRA is an optional argument to be passed to the user-supplied routine. Since
this is the first argument on the stack, it may be omitted if the user-supplied OUTRTN
does not use it.

OUTRTN is the address of the user-supplied routine. It is called as:

(•OutRtn) (.Ex t raArg t Character) ;

which may be considered as simply:

(•OutRtn) (Character)x

if the EXTRA value is not needed by OUTRTN. MINDIGITS is the minimum number of
digits to be produced. If the number requires more digits than MINDIGITS, however,
none will get lost. RADIX is the radix into which the number is to be converted. Note
that radices greater than 10 do not cause letters to be used for the digits, but rather
the ASCII codes following M9M (i . e . " < " " , w = % . . .) . . Note also that
NumOut will recur infinitely (causing who knows what havoc) if the radix is 1! NUMBER
is the number to be converted. It is assumed to be unsigned. .

The value of a call to NumOut is the number of digits produced.

22.7

216 Summaries

23. Summaries

This chapter contains a number of tables which summarize various pieces of
information needed by users of the modules described earlier. Most beginning users
will simply use the standard command files, in a manner illustrated by the standard
template file XXXXXX.LMD. However, more spohisticated users will want to load only
those routines they actually need, and eliminate the space wasted by unwanted
routines. This becomes even more necessary as a user's programs grow to overflow
page boundaries and it becomes necessary to re-arrange routines to fit onto pages.

For each routine, the intermodule reference sections tell which other routines it
calls, and which routines call it. You can then look up the routines you wish to use in
these tables, find what routines they call, then repeat the process for any new
routines discovered in this fashion until no new routines are added. You can then look
in the summary of module sizes to find out how big each routine is, and the name of
the object file which contains it

23

Summaries 217

23.1. Summary of Calling Sequences

Routine Page Module

ACCEPT(IOBCB.RCVER) 209 IOTRAN
Add32<Src. Dst) 198 ARITH
ADD4(A.B) 195 FOURWD
ALL0SL0TO 199 LNSLOT
BCBFLUSH(BCB) 167 BUFFER
BCBINCOUNT(BCB) 167 BUFFER
BCB INI T (BCB. BUFFER. SIZE, FLAG. ROUTINE) 167 BUFFER
BCBINLEFT(BCB) 168 BUFFER
BCBINMOVEC BCB. OFFSET) 168 BUFFER
BCBINSET(BCB.COLUMN) 168 BUFFER
BCBNUM (BCB. Nu mber. Rad! x , M1 nD 1 g i t s) 181 BCBNUM
BCBOUTCOUNT (BCB) 168 BUFFER
B C B O U T L E F T (B C B) 168 BUFFER
B C B O U T M O V E C B C B . O F F S E T) 168 BUFFER
BCBOUTSET(BCB.COLUMN) 169 BUFFER
BCBRESET(BCB. FLAG) 167 BUFFER
BCBSNm(BCB.Nufflber .Radix .Mi nDi g i t s) 181 BCBNUM
BCBTyArray(BCB. Format AndArgsArray) 180 BCBTYP
BCBTyStackCBCB.Argn, , , , .Argl.FmtAddr) 180 BCBTYP
Buntp32(n. Dst) 198 A R I T H
Bump64(n. Dst) 198 A R I T H
C A L C T I M E (R E S U L T , C L O C K) 173 , T I M E
CLOCKADJUST(CLOCK) 174 T I M E
CLOSECHAN(IOBCB) 166 OPENCH
CLOSEOAS(SLOT) 204 DASOPN
CLOSEFILE(PORT. CHAN. LNAME) 211 FILOPN
C L O S E I T (I O B C B) 163 OPENIT
CLOSELPT(SLOT) • 205 LPTOPN
CLOSETTY(IOBCB) 166 OPENCH
Compare32(relat ion, X. Y) 197 A R I T H
Compare60(relat lon. X, Y) 197 A R I T H
Compare64(relat ion. X, Y) 197 A R I T H
C O P Y S T R (O E S T , S O U R C E . M A X) 201 STRLIB
D E L D I R E C T O R Y (D I R E C T . STRING) 189 DIRLIB
Di f32L imi ted(X , Y) 198 A R I T H
DIRNAMES(DEST.SOURCE.MAX) 190 DIRLIB
DIRWORD(DEST.SOURCEtLEN) 190 DIRLIB
DIV4CA.B) 195 FOURWD
D i vUns i gned(R0=Di v i dend.R2=Di v i sor) 193 DIVUNS
Dowr»32(n. Dst) 198 A R I T H

23.1

218 Summaries

DVM0D4(C,B,A) 195 FOURWD
EQU(STR1,STR2) 202 STRLIB
FADD(A ,B ,C) 192 BLFP
FCOS(A ,B) 192 BLFP
FDIV<A ,B ,C) 192 BLFP
FEQL(A ,B) 192 BLFP
FGEQ(A ,B) 192 BLFP •
FGTR(A .B) 192 BLFP
F I X (A) 192 BLFP
FLEQ(A .B) 192 BLFP
FLOAT(A .B) 192 , BLFP
FLSS(A.B) 192 BLFP
FmStrArray(FormatAndArgsArray,Extra,OutRtn) 214 FRMSTR
FmStrStack(Argn , , . , ,Argl ,FmtAddr,Extra,OutRtn) 214 FRMSTR
FMULT(A ,B ,C) 192 .BLFP
FNEQ(A ,B) 192 BLFP
FNGT(A) 192 BLFP
Format t edType(BCB, Fmt A d d r , A r g l , . . . , Argn) 180 BCBTYP
FormStri ng(OutRtn,Ext ra ,FmtAddr ,Arg l , , .• .Argn) 214 FRMSTR
FREESLOK SLOTNUMBER) 199 LNSLOT
FSIN(A .B) 192 BLFP
FSQRT(A .B) 192 BLFP
FSUB(A .B .C) 192 BLFP
GETARG(DEST,SOURCE,DELIH. MAX) 201 STRLIB
GETCLK(CLOCK) 174 TIME
GETDI RECT0RY(SLOT. DIRECT. STRING) 189 DIRLIB
GETLINE(BCB. BLOCK,COUNT) 169 BUFFER
HARDERRORO 182 HYDUSR
HSIGNALO 182 HYDUSR
H YDFINISH (RET VAL, RETC APA, RESTRICT) 183 HYDUSR
HYDINITO 183 HYDUSR
INCHR(BCB) 169 BUFFER
IN ITSLOTO 199 LNSLOT
INMESSAGE(IOBCB) 209 IOTRAN
INTR(A ,B) 192 BLFP
IOSTATUS<IOBCB) 156 HYDIO
KILLMESSAGE < BCB) 207 MAKMSG
LISTFILE(SLOT) 212 FILOPN
LOWER(DEST,SOURCE,MAX) 202 STRLIB
MAINCALLERO 185 HMAIN
MAKEFILE(SLOT,TYPE,NAME) 211 FILOPN
MAKEMESSAGE(BCB) 207 MAKMSG
MUL41(A,B1) 195 FOURWD
NumOut (Extra,OutRtn,MinDi gits,Radix,Number) 215 NUMOUT
NUMSLOTO 200 LNSLOT

23.1

Summaries 219

NUMSTRINGCBUFFER,VAL,BASE) 171 NUMFMT
OPENCHAN< IOBCB, PORT, CHAN,DEV, IN,NUM, SLOT) 165 OPENCH
OPENDAS(SLOT,PORT,CHAN,DEV) 204 DASOPN
OPENFILECPORT,CHAN,SLOT, MODE) 211 FILOPN
OPEN I T (I OBCB, PORT, CHAN, DEV, INFLAG, NUM) 163 OPENIT
OPENLPT(SLOT,PORT,CHAN) 205 LPTOPN
OPENTTY(I OBCB, PORT, CHAN, DEV, IN, NUM, SLOT) 166 OPENCH
OUTBLOCK(BCB,BLOCK,COUNT) 169 BUFFER
OUTCDT(BCB) 175 TIME
OUTCHR(BCB,BYTE) 169 BUFFER
OUTCLOCKCBCB,CLOCK,MASK) 177 TIME
OUTCRLF(BCB) 170 BUFFER
OUTDATE<BCB,CLOCKVEC) 174 TIME
OUTDKBCB, CLOCKVEC) 175 TIME
OUTGDT(BCB,CLOCK) 175 TIME
OUTMESSAGECIOBCB) 210 IOTRAN
OUTMS(BCB,CLOCK) 174 TIME
OUTNUM(BCB,VAL,BASE,WIDTH) 171 NUMFMT
OUTOU(BCB,VAL) 171 NUMFMT
OUTSTR(BCB,STR) 169 BUFFER
OUTTIMECBCB,CLOCKVEC) 175 TIME
PUTDIRECTORY(DIRECT, SLOT, STRING) 189 DIRLIB
RENDIRECTORY(DIRECT,OLDNAME,NEHNAME) 189 DIRLIB
SETSIGNAL(FLAG) 183 HYDUSR
SHRSLOTCSLOTNUMBER,NUMBER) 199 LNSLOT
STRINDEX(CHAR,STRING) 201 STRLIB
STRLENGTH(STRING) 201 STRLIB
Sub32(Src, Dst) 198 ARITH
SUB4(A,B) 195 FOURWD
TIMEDATECBCB, CLOCKVEC,MASK) 175 TIME
TRYSLOT(SLOTNUMBER) 200 LNSLOT
Type(BCB, Format • A r g l , . . . , Argn) 179 BCBTYP
TypeNoNewLi ne(BCB, Format, A r g l , . . . ,Argn) 179 BCBTYP
Uns i gnedDi v i de(Di v i dend,Di vi sor,Remai nder) 193 DIVUNS
Ur»s i gnedQuot i ent (D? vi dend,Di v i sor) 193 DIVUNS
Uns i gnedRema i nder(Di v i dend,Di v i sor) 193 DIVUNS
UPPER(DEST,SOURCE,MAX) 201 STRLIB
U SERERROR(SIGVAL) 187 USRERR
WHATS(BCB,SL0T1,SL0T2) 203 WHATS
WHATSIT(BCB,SLOT,MSG) 203 WHATS
ZCALCTIME(RESULT,CLOCK) 174 TIME
ZGETCLK(CLOCK) 174 TIME

23.1

220 Summaries

23.2. Internal Names

Many of the routines described in this document have names longer than the six
characters of uniqueness allowed by the current assemblers and loaders. To resolve
this, critical routines are given six-character internal names. The routines are
referenced everywhere via their long names. The file NAMES.REQ provides macros
that define the long names as macros for the short names. This section summarizes
the short names.

Long Name Short Name

CLOSECHAN
CLOSEDAS
CLOSEFILE
CLOSEIT
CLOSELPT
CLOSETTY
INMESSAGE

CHA002
DAS002
FIL002
CHA004
LPT002
CHA002
I0T002
MSG001
FIL004
FIL003
MSG001
NUM001
CHA001
DAS001
FIL001
CHA003
LPT001
CHA001
TIM005
I0T001
TIM004
USR001

KILLMESSAGE
LISTFILE
MAKEFILE
MAKEMESSAGE
NUMSTRING
OPENCHAN
OPENDAS
OPENFILE
OPENIT
OPENLPT
OPENTTY
OUTCLOCK
OUTMESSAGE
TIMEOATE
USERERROR

23.2

Summaries 221

23.3* Summary of Module Sizes

Following is a table of modules and their sizes. Sizes are decimal numbers, and
give the number of words of code and data. Data consists of owns, plits, and globals.
Included with each routine is the name of the file containing its source; the default
extension is " .B IT .

Module Routine Code Debug Data File

ARITH 44

BCBNUM 67

BCBTYP 579

BLFP 1663 0

BUFFER 128 172
BCBFLUSH 11 16 BUFFER
GETL1NE 43 54 BUFF05
INCUR 16 20 BUFFO1
OUTBLOCK 20 28 BUFF04
OUTCHR 10 14 BUFF02
OUTCRLF 10 14 BUFF06
OUTSTR 18 26 BUFF03

DASOPN 108 122 21
CLOSEOAS 49 56 DASOPN
OPENDAS 59 66 DASOPN

DIRLIB 252 290 1
DELDIRECTORY 40 45 DIRL05
DIRNAMES 39 49 DIRL02
DIRWORO 25 33 1 DIRL01
GETDIRECTORY 41 46 DIRL03
PUTDIRECTORY 42 47 DIRL04
RENDIRECTORY 65 70 DIRL06

DIVUN5 34

FILOPN 243 270 55
CLOSEFILE 36 42 FILOPN
LISTFILE 49 56 11 FILE02
MAKEFILE 71 78 11 FILE01
OPENFILE 87 94 33 FILOPN

23.3

222 Summaries

FOURWD 209 0

FRMSTR 544

HMAIN 107 122 131
MAINCALLER 55 69 HMAIN

HYDUSR 334 349 134
HARDERROR 108 114 HYDUSR
HSIGNAL 101 106 HYDUSR
HYDFINISH 31 31 HYDUSR
HYDINIT 88 88 HYDUSR
SETSIGNAL 6 10 HYDUSR

IOTRAN 399 439 12
ACCEPT 115 126 IOTRAN
INMESSAGE 149 164 IOTRAN
OUTMESSAGE 135 149 IOTRAN

LNSLOT 157 192 62
ALLOSLOT 25 31 LNSLOT
FREESLOT 31 36 LNSLOT
INITSLOT 15 20 LNSLOT
NUMSLOT 14 18 LNSL01
SHRSLOT 39 49 LNSL02
TRYSLOT 33 38 LNSL03

LPTOPN 52 62 12
CLOSELPT 6 10 LPTOPN
OPENLPT 46 52 LPTOPN

MAKMSG 201 217
KILLMESSAGE 53 59 MAKMSG
MAKEMESSAGE 148 158 MAKMSG

NUMFMT 175 204
NUMSTRING 25 35 NUMFMT
OUTNUM 114 127 BUFFO1
OUTOU 36 42 BUFFO1

NUMOUT 40

OPENCH 315 338 4
CLOSECHAN 130 141 OPENCH
CLOSETTY 21 26 OPENOO
OPENCHAN 185 197 OPENCH
OPENTTY 63 71 OPENOO

23.3

Summaries

OPENIT
CLOSEIT
OPENIT

. STRLIB
COPYSTR
EQU
GETARG
LOWER
STRINDEX
STRLENGTH
UPPER

TIME
CALCTIME
CLOCKADJUST
GETCLK
OUTCDT
OUTCLOCK
OUTDATE
OUTDT
OUTGDT
OUTMS
OUTTIME
TIMEOATE
ZCALCTIME
ZGETCLK

USRERR
USERERROR

WHATS
WHATS
WHATSIT

206 222 7
18 22 OPENIT

188 200 OPENIT

174 222
19 25 STRI04
42 50 STRI02
29 39 STRI03
29 37 STRI06
18 22 STRI01
8 12 STRI07

29. 37 STRI05

833 937 199
24 28 TIME
65 74 TIME
27 32 TIME04
15 19 TIME02
19 23 TIME03
8 12 TIME02
8 12 TIME02

17 21 TIME02
57 63 4 TIME01

8 12 TIME02
386 428 154 TIME03
190 200 41 TIME

9 13 TIME04

29 34
29 34 USRERR

156 178 20
114 126 WHATS
42 52 WHATS

23.3

224 Summaries

23.4. Intermodule References by Calling Routine

This section is an alphabetic list of modules or routines, together with modules
or routines they call.

BCBFLUSH
BCBNUM
BUFFER
CALCTIME
CLOSECHAN
CLOSEDAS
CLOSEIT
CLOSELPT
CLOSETTY
DELDIRECTORY
DIRLIB
DIRNAMES
DIRWORD
GETARG
GETDIRECTORY
GETLINE
HARDERROR
HMAIN
HSIGNAL
HYDINIT
INCUR
INMESSAGE
LISTFILE
MAKEFILE
NUMOUT
NUMSTRING
OPENCHAN

OPENDAS
OPENFILE
OPENIT

OPENLPT
OPENTTY
OUTBLOCK
OUTCDT
OUTCHR
OUTCLOCK
OUTCRLF
OUTDATE
OUTDT

USERERROR
DIVUNS
USRERR
ZCALCTIME, CLOCKADJUST
CLOSELPT, CLOSEFILE, LISTFILE, FREESLOT, ACCEPT, KILLMESSAGE
GETDIRECTORY, ALLOSLOT, FREESLOT, USERERROR
CLOSECHAN, FREESLOT
CLOSEDAS
KILLMESSAGE
DIRNAMES
GETARG
DIRWORD
GETARG
STRINDEX
DIRNAMES
BCBFLUSH
OUTSTR, OUTCRLF, OUTOU, BCBFLUSH
HYDINIT, HYDFINISH
OUTSTR, OUTCRLF, OUTOU, OUTCHR, BCBFLUSH
OPENCHAN
BCBFLUSH
ACCEPT
ALLOSLOT, FREESLOT, GETDIRECTORY, USERERROR
ALLOSLOT, FREESLOT, GETDIRECTORY, DIRWORD, USERERROR
DIVUNS
DIVUNS
ALLOSLOT, FREESLOT, OPENFILE, OPENLPT, INMESSAGE, OUTMESSAGE,
MAKEMESSAGE, USERERROR
GETDIRECTORY, ALLOSLOT, FREESLOT, USERERROR
GETDIRECTORY, USERERROR, ALLOSLOT, FREESLOT
EQU, STRINDEX, GETARG, OPENCHAN, DIRNAMES, GETDIRECTORY,
PUTD1RECTORY, ALLOSLOT, FREESLOT, USERERROR, SETSIGNAL,
MAKEFILE
ALLOSLOT, FREESLOT, GETDIRECTORY, USERERROR
MAKEMESSAGE, USERERROR
BCBFLUSH
OUTGDT
BCBFLUSH
CALCTIME, TIMEOATE
OUTCHR
TIMEOATE
TIMEOATE

23.4

Summaries

OUTGDT
OUTMESSAGE
OUTMS
OUTNUM
OUTOU
OUTSTR
OUTTIME
PUTDIRECTORY
RENDIRECTORY
WHATS
WHATSIT
ZCALCTIME

OUTDT
ACCEPT
OUTNUM, OUTCHR, FOURWD
NUMSTRING, OUTCHR
NUMSTRING, OUTCHR
BCBFLUSH
TIMEOATE
DIRNAMES
DIRNAMES
OUTCHR, OUTSTR, OUTOU, OUTCRLF
WHATS, OUTSTR, OUTCRLF
FOURWD, DIVUNS

23.4

226 Summaries

23.5. Intermodule References by Called Routine

This section is an alphabetic list of modules or routines, together with modules
or routines which reference them.

CLOSECHAN, INMESSAGE, OUTMESSAGE
OPENIT, OPENCHAN, OPENDAS, CLOSEOAS, OPENLPT, OPENFILE,
MAKEFILE, LISTFILE
OUTCHR, INCHR, OUTSTR, OUTBLOCK, GETLINE, HARDERROR, HSIGNAL
OUTCLOCK
CALCTIME
CLOSEIT
CLOSELPT
CLOSECHAN
CLOSECHAN
OPENIT, GETDIRECTORY, PUTOIRECTORY, DELDIRECTORY,
"REND1RECTORY
DIRNAMES, MAKEFILE
NUMSTRING, ZCALCTIME, BCBNUM, NUMOUT
OPENIT
ZCALCTIME, OUTMS
OPENIT, CLOSEIT, OPENCHAN, CLOSECHAN, OPENDAS, CLOSEDAS,
OPENLPT, OPENFILE, MAKEFILE, LISTFILE
OPENIT, DIRLIB, DIRWORD
ZGETCLK
OPENIT, OPENDAS, CLOSEDAS, OPENLPT, OPENFILE, MAKEFILE,
LISTFILE
HMAIN
HMAIN
OPENCHAN
CLOSECHAN, CLOSETTY
CLOSECHAN
OPENIT
OPENCHAN, OPENTTY
OUTNUM, OUTOU
OPENIT, HYDINIT
OPENCHAN
OPENCHAN
OUTCRLF, OUTNUM, OUTOU, OUTMS, HSIGNAL, WHATS
HARDERROR, HSIGNAL, WHATS, WHATSIT
OUTGDT
OUTCDT
OPENCHAN
OUTMS
HARDERROR, HSIGNAL, WHATS
HARDERROR, HSIGNAL, WHATS, WHATSIT
OPENIT

ACCEPT
ALLOSLOT

BCBFLUSH
CALCTIME
CLOCKADJUST
CLOSECHAN
CLOSEDAS
CLOSEFILE
CLOSELPT
DIRNAMES

DIRWORD
DIVUNS
EQU
FOURWD
FREESLOT

GETARG
GETCLK
GETDIRECTORY

HYDFINISH
HYDINIT
INMESSAGE
KILLMESSAGE
LISTFILE
MAKEFILE
MAKEMESSAGE
NUMSTRING
OPENCHAN
OPENFILE
OPENLPT
OUTCHR
OUTCRLF

.OUTDT
OUTGDT
OUTMESSAGE
OUTNUM
OUTOU
OUTSTR
PUTOIRECTORY

23.5

Summaries 227

SETSIGNAL OPENIT
STRINDEX OPENIT, GETARG
TIMEDATE OUTDATE, OUTTIME, OUTDT, OUTCLOCK
USERERROR OPENIT, OPENCHAN, OPENTTY, BCBFLUSH, OPENDAS, CLOSEOAS,

OPENLPT, OPENFILE, MAKEFILE, LISTFILE
USRERR BUFFER
WHATS WHATSIT

23.5

2 2 8 INDEX

FormString escape character 158

ACCEPT, global routine in JOTRAN 209
Add32, global routine in ARITH 198
ADD4, global routino in FOURWD 195
Address spnce management 28, 1.52
ALLOSLOT, global routino in LNSLOT 199
ARITH, library moduto 197
ARITH.OBJ(N810RG02] 197
ARJTH.Rll[N810RG02) 197
Arithmetic 191, 193, 197

BASCAL.REQ[N811HY97) 27
BCB 179, 181
BCB,REQ[N810HV97] 167
BCBFLUSH, global routino in BUFFER 167
BCBNum, global routino in BCBNUM 181
BCBNUM, library module 181
BCBNUM.MllfN810RG02] 181
BCBSNm, global routino in BCBNUM 181
BCBTyArray, global routino in BCBTYP 180
BCBTYP, library module 179
BCBTYP.M11[N810RG02) 179
BCBTYP.OBJ[N810RG02] 179
BCBTYP.R11[N810RG02] 179
BCBTyStack, global routino in BCBTYP 180
BLFP, library modulo 191
BLFPOBJ[N810P006] 191
BLISS macros for Hydra 26
Buffer control block 151, 154, 163, 165, 167, 179
BUFFER, library modulo 167
BUFFER.OBJ[N810HY97] 167
Bump32, global routino in ARITH 198
Bump64, global routino in ARITH 198

CALCTIME, global routino in TIME 173
CBLFP.R11[N830P008J 191
CHA001, internal name for OPENCHAN 165
CHA001, internal name for OPENTTY 166
CHA0O2, internal name for CLOSECHAN 168
CHA0O2, internal name for CLOSETTY 166
CHA003, internal name for OPENIT 163
CHA004, internal name for CLOSEIT 163
CLOCKADJUST. global routino in TIME 174
CLOSECHAN, global routino in OPENCH 166
CLOSEDAS, global routino in DASOPN 204
CLOSEFILE, global routino in FILOPN 211
CLOSEIT, global routino in OPENIT 163
CLOSELPT, global routino in LPTOPN 205
CLOSETTY, global routino in OPENCH 166
Compare32, macro in ARITH 197
CompareSO, macro in ARITH 197
Compare64, macro in ARITH 197
Convention 30, 131
COPYSTR, global routine in STRLIB 201

D, BLISS-11 Bwitch 26

DAS001, internal name for OPENDAS 204
DAS002, internal name for CLOSEDAS 204
DASOPN, library module 204
DASOPN 0BJ[N810HY97) 204
DEBUG, BLISS-11 switch 26
DELDIRECTORV, global routine in DIRLIB 189
Device allocation system 204, 205
Dif32Limitod, global routino in ARITH 198
DIRLIB, library modulo 189
DIRLIB0BJ[N810HY97] 189
DIRNAMES, global routine in DIRLIB 190
DIRWORD, global routino in DIRLIB 190
DIV4, global routine in FOURWD 195
Division, unD»gned 193
DIVUNS, library module 193
DIVUNS Ml 1[N810RG02] 193
DIVUNS 0BJ[N810RG02] 213
DIVUNSRH[N810RG02] 193
DivUnsigrted, global routine in DIVUNS 193
Down32, global routino in ARITH 198
DVM0D4, global routino in FOURWD 195

EQU, global routino in STRLIB 202
Error reporting 146, 187
Escape character (&) 158

FIL001, internal name for OPENFILE 211
FIL002, internal name for CLOSEFILE 211
FIL003, internal name for MAKEFILE 211
FIL004, internal name for LISTFILE 212
File system 138
Files 138, 163, 165, 211
FILOPN, library module 211
FILOPN 0BJ[N810HY97) 211
Floating point 191
FmStrArray, global routine in FRMSTR 214
FmStrStack, global routine in FRMSTR 214
Format 213
Formating 157
FormattedType, macro in BCBTYP 180
Formatting 151, 171, 173, 179
F0RMSTR11[N810RG02] 157
FormString 157, 179, 213
FormString, macro in FRMSTR 214
FOURWD, library module 195
F0URW00BJ[N810HV97J 195
F0URWDP11[N810PM99] 195
FREECPS, HYDUSR symbol 28
FREESLOT, global routino in LNSLOT 199
FRMSTR, library module 213
FRMSTRLMD[N810RG02] 213
FRMSTR0BJ[N810RG02J 213

GETARG, global routine in STRLIB 201
GETCLK, global routine in TIME 174
GETDIRECTORY, global routine in DIRLIB 189
GETLINE, global routine in BUFFER 169

INDEX 229

HARDERROR, global routine* in HYDUSR 182
HDRSIZE, global symbol in IOTRAN 209
HDUPAGES, HYDUSR symbol 28
HDUPARMS, HYDUSR tymbol 28
HDURETCAP, HYDUSR tymbol 28
HDUSELF, HYDUSR symbol 28
HENTRY, global routine* for HYDUSR 26
HMAIN, library module 185
HMAIN.OBJ(N810HY97] 185
HSIGNAL, global routine in HYDUSR 182
HYDFINISH, global routine in HYDUSR 183
HYDINIT, global routine in HYDUSR 183
HYDIO 163, 165, 207
HYDLIB.LMD[N810HV97] 151
HYDL1B.REQ[N810DL10] 154
HYDLIB.REQ[N810HY97] 27, 151, 163, 165, 167,

171, 207, 209, 211
HYDLNS.REQ[N810HY97] 165, 182
HYDUSR 26
HYDUSR macros 26
HYDUSR, library module 182
HYDUSR.0BJ[N810HY97) 182
HYDUSR.REQ[N810DL10] 154
HYDUSR.REQ[N810HY97] 27, 151, 163, 165, 167,

171, 173, 203, 207, 209

I/O 153, 154, 163, 165, 179, 203, 204, 205, 207,
209, 211

INCHR, global routine in BUFFER 169
INIT612, global routine in SIX12 183
INITSLOT, global routine in LNSLOT 199
INMESSAGE, global routine in IOTRAN 209

. IOPORT, HYDUSR symbol 28, 165, 182
IOSTATUS, macro in HYDIO 156
IOTO01, internal name for OUTMESSAGE 210
IOT002, internal name for INMESSAGE 209
IOTRAN, library module 209
IOTRAN.OBJ[N810HY97] 209

KERKALREQ[N811HV97] 27
KILLMF.SSAGE, global routine in MAKMSG 207

Line printer 143, 163, 165, 205
Line printer spooler 143
Linker 26, 28
Linker command file 28, 151
LISTFILE, global routine in FILOPN 212
LNS slot 28, 145, 163, 182, 199, 203, 211
LNSLOT, library module 199
LNSLOT.OBJ(N810HY97] 145, 199
LOWER, global routine in STRLIB 202
LPT001, infernal name for OPENLPT 205
LPT002, internal name for CLOSELPT 205
LPTOPN, library module 205
LPTOPN.PUB[N810HY97] 205

MAINCALLER, global routine in HMAIN 185

MAKEFILE, global routine in FILOPN 211
MAKEMESSAGE, global routine in MAKMSG 207
MAKMSG, library module 207
MAKMSG.0BJ[N810HY97] 207
M0D4, global routine in FOURWD 195 .
MSG001, internal name for KILLMESSAGE 207
MSG001, internal name for MAKEMESSAGE 207
MUL41, global routine in FOURWD 195
Multiple precision arithmetic 197

N810DL10 HYDLIB.REQ 154
N810DL10 HYDUSR.REQ 154
N810DL10 ROUTIN.DFS 131, 135
N810HD99 SB00K.DFS 131
N810HY97 1
N810HY97 BCB.REQ 167
N810HY97 BUFFER.OBJ 167
N810HY97 DASOPN.OBJ 204
N810HY97 DIRLIB.OBJ 189
N810HY97 FILOPN.OBJ 211
N810HV97 FOURWD.OBJ 195
N810HY97 HMAIN OBJ 185
N810HV97 HYDLIB.LMD 151
N810HY97 HYDLIB.REQ 27, 151, 163, 165, 167,

171, 207, 209, 211
N810HV97 HYDLNS.REQ 165, 182
N810HY97 HYDUSR.OBJ 182
N810HY97 HYDUSR.REQ 27, 151, 163, 165, 167,

171, 173,203, 207,209
N810HY97 IOTRAN.OBJ 209
N810HY97 LNSLOT.OBJ 145, 199
N810HY97 LPTOPN.PUB 205
N810HY97 MAKMSG.OBJ 207
N810HY97 NAMES.REQ 220
N810HY97 NUMF01.0BJ 171
N810HV97 NUMFMT.OBJ 171
N810HY97 OPENCH.OBJ 165
N810HV97 OPENIT.OBJ 163
N810HY97 STRLIB.OBJ 201
N810HY97 TESTN.LMO 29
N810HY97 TESTS.LMD 29
N810HY97 TIME.REQ 173
N810HY97 UIO.REQ 156, 209
N810HY97 WHATS.OBJ 203
N810HV97 XXXXXX.LMO 28, 151, 216
N810PM99FOURWD.P11 195
N810P006 BLFP.OBJ 191
N810RG02 ARITH.OBJ 197
N810RG02ARITH.R11 197
N810RG02 BCBNUM M i l 181
N810RG02 BCBTYP.M11 179
N810RG02 BCBTYP.OBJ 179
N810RG02 BCBTYP.R11 179
N810RG02 DIVUNS.M11 193
N810RG02 DIVUNS.OBJ 213
N810RG02 DIVUNS.R11 193
N810RG02F0RMST.RU 157

2 3 0 INDEX

N810RG02 FRMSTR.LMD 213
N810RG02 FRMSTR.OBJ 213
N810RG02 NUMOUT.Mll 215
N810RG02 NUMOUT.OBJ 213
N811HV97 BASCALREQ 27
N8UHY97 KERKALREQ 27
N830P006 CBLFP.R11 191
NAMES.REQ(N810HV97] 220
N0DE8UG, switch in BLISS-ii 182, 185
NUM001, internal name for NUMSTRING 171
Numeric conversion 158, 181, 215
Numeric output 171
NUMF01.0BJ[N810HY97] 171
NUMFMT, library module 171
NUMFMT.OBJ[N810HY97] 171
NumOut, global routine in NUMOUT 215
NUMOUT, library module 215
NUMOUT.Mll[N810RG02] 215
NUMOUT.OBJ[N810RG02] 213
NUMSLOT, global routine in LNSLOT 200
NUMSTRING, global routine in NUMFMT 171

OPENCH, library modulo 165
OPENCH.OBJ[N810HY97J 165
OPENCHAN, global routine in OPENCH 165
OPENDAS,-global routine in DASOPN 204
OPENFILE, global routine in FILOPN 211
OPENIT, global routine in OPENIT 163
OPENIT, library module 163
OPENIT OBJ[N810HY97] 163
OPENLPT, global routine in LPTOPN 205
OPENTTY, global routine in OPENCH 166
OUTBLOCK, global routine in BUFFER 169
OUTCDT, global routine in TIME 175
OUTCHR, global routine in BUFFER 169
OUTCLOCK, global routine in TIME 177
OUTCRLF, global routine in BUFFER 170
OUTDATE, global routine in TIME 174
OUTDT, global routine in TIME 175
OUTGDT, global routine in TIME 175
OUTMESSAGE, global routine in I0TRAN 210
OUTMS, global routine in TIME 174
OUTNUM, global routine in NUMFMT 171
OUTOU, global routine in NUMFMT 171
OUTSTR, glohal routine in BUFFER 169
OUTTIME, global routine in TIME 175
Own variables 151

Process locals 151, 182
PUTDIRECTORY, global routine in DIRLIB 189

READOP, global symbol in I0TRAN 209
REND1RECTORY, global routine in DIRLIB 189
RET612, global routine in SIX12 183
ROUTIN.DFS[N810DL10] 131, 135
RPS 28, 153

SB00K.DFS[N810HD99] 131
SEQREAD, HYDLI8 symbol 211
SEQWRITE, HYDLI8 symbol 211
SETSIGNAL, global routine in HYDUSR 183
SHRSLOT, global routine in LNSLOT 199
SIX 12 debugging package 26, 27, 29, 151, 182,

183, 185
SIX 12 symbol table 29
SIXCMD, global routine in SD<12 27, 182, 185
Spooler 143, 163, 165, 212
STRINDEX, global routine in STRLIB 201
String conversion 157, 171, 173
String manipulation 201
STRLENGTH, global routine in STRLIB 201
STRLIB, library module 201
STRLIB.0BJ[N810HY97] 201
Sub32, global routine in ARITH 198
SUB4, global routine in FOURWD 195
SYSOIRECTORY, HYDUSR symbol 28, 204, 211

TESTN.t.MD[N810HV97] 29
TESTS.LM0[N81OHV97] 29
TIM004, internal name for TIMEOATE 175
TIM005, internal name for OUTCLOCK 177
TIME, library module 173
TIME.REQ[N810HV97] 173
TIMEOATE, global routine in TIME 175
TRYSLOT, global routine irv LNSLOT 200
TXBIN1T, macro in HYDIO 155
Type, macro in BCBTYP 179
TypeNoNewLine, macro in BCBTYP 179

UIO.RE0[N81OHY97] 156, 209
Unsrgned arithmetic 193, 197
UneignedDivkle, macro in DIVUNS 193 .
UnsignedQuotient, macro in DIVUNS 193
UnFignedRemainder, macro in DIVUNS 193
UPPER, global routine in STRLIB 201
USERDIRECTORY, HYDUSR symbol 28, 163
USERERROR, global routine in USRERR 187
USR001, internal name for USERERROR 187
USRERR, library module 187

WHATS, global routine in WHATS 203
WHATS, library module 203
WHATS.0BJIN810HY97] 203
WHATSIT, global routine in WHATS 203
WRITEOP, global symbol in IOTRAN 209

XXXXXX.LMD[N810HY97] 28, 151, 216

ZCALCTIME, global routine in TIME 174

