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ABSTRACT. A sharpened version of an important property of perfect
gases proved by MONLEON & PEDREGAL [1] is proved here by exploiting
fully the fact that every perfect gas has an entropy function. In this manner, the
more advanced machinery of weak convergence employed in the earlier version
is avoided, and a more elementary and accessible proof emerges.
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1. INTRODUCTION

In the article [1], the equivalence of Kelvin's version of the second law of thermo-
dynamics and the Clausius inequality was established. (We refer the reader to that
article for an extensive discussion of the background in both classical and modern
thermodynamics that supports this equivalence.) The main result on which the proof
of equivalence in [1] rests is the "fundamental property of a perfect gas": every right-
continuous, non-decreasing function on (0, oo) that is initially zero and ultimately
constant is the accumulation function of an absolutely continuous process of a pre-
assigned perfect gas. (See Section 2 for definitions of unfamiliar terms.) The proof
of the fundamental property of a perfect gas in [1] employs measure theory and the
machinery of weak convergence on Sobolev spaces. In the present paper, we present
an elementary proof of the sharpened version of this property that is obtained by
replacing absolutely continuous process by Lipschitz continuous process.

We are able to circumvent the use of more advanced tools in analysis by exploiting
the fact that each perfect gas has a smooth entropy function. First of all, we use the
fact that entropy and temperature, in place of volume and temperature, can be used
to describe the states and processes of a pefect gas. In this way we are able to give
a simpler description of the Carnot processes associated with accumulation functions
that are also step functions. The second important property of entropy that we
exploit is the fact that entropy is a potential for the vector field whose line integral
describes heating divided by temperature integrated along processes. This permits

£
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us to replace the problem of proving that line integrals converge, which necessitates
the use of weak convergence in [1], by the problem of proving that the potentials
converge.

Our proof of the fundamental property of a perfect gas gives some insight into the
question as to which special thermodynamical systems other than perfect gases might
also have this fundamental property. In fact, our proof shows that a thermodynamical
system will have the fundamental property if the system has a collection of processes
on which the accumulation function can be expressed in the form given in relation
(2) and on which the minimum and maximum temperatures can take on arbitrary
positive values.

2. P E R F E C T GASES AND ACCUMULATION FUNCTIONS

For present purposes, a perfect gas can be prescribed by giving the specific heat
function c G C°(R+ + ,R) , with R++ := {T G R | T > 0} , and the latent heat with
respect to volume A G R"1""1". The state space of a perfect gas is the set

,S)GR2
 | T G R + + } (1)

where T denotes the absolute temperature and S denotes the entropy. A process of
a perfect gas is defined to be a Lipschitz continuous curve (T,S) : [0,1] —» E, and
the heat gained by the gas in the process (T, S) is defined to be the line integral

f TdS = f c(T) dT+*£ dV, where the function V describes the volume of the
(f,5) (fy)
gas in the process and can be calculated from the following relation between entropy,
volume and temperature:

S = \lnV+

(This relation can be fully specified by requiring that the entropy vanish when the
temperature and volume have preassigned values, but we do not need this specification
here).

Not only the heat gained but also the distribution of heat gained with respect to
temperature are essential for expressing the content of the second law of thermody-
namics. Thus, following SERRIN [2], we define for each process (T, S) of a perfect gas
and each temperature T the net heat gained during (T, S) at or below the temperature

C((f,§),T) = J f(t)S(t)dt. (2)
{te [0,1] | f(t)<T}

The function C((T, 5),-) is called the accumulation function for the given process
(T, 5). The accumulation function has the following properties:
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Ace 1: C((T\ 5), •)• ̂ + + —> IR is right-continuous and satisfies

0 if 0 <T <minRngf
C({f,S),maxRngf) if maxRngf < T < oo.

Ace 2: The accumulation function satisfies the Clausius-Planck relation:

^_h_LrirT Q('\\ Q(n\ (^I
Proofs of these properties of the accumulation function may be found in references

cited by MONLEON & PEDREGAL [l]. In our analysis of perfect gases, we shall
use a third property of accumulation functions that rests on two types of "cutoff"
operations. For each mapping / : R++ —» R and To > 0, we define the function
fTo : R

++ -» R by the formula

fTo(T)=f(rmn{T,To}). (4)

A second kind of cutoff applies to a process (f,S), with T non-decreasing, and a
temperature To > 0 and yields the mapping (f, S)To : [0,1] -* R++ x R defined by

S)To =
(f(t),S(t)) if O^ (5)

if maxT-^lTo}) < t < 1" w

(f,S)

where the top formula in equation (5) applies when 0 < TQ < min RngT, the second
when To € RngT,and the third when max RngT < To < oo. Thus, the cutoff
(T, S)T0 follows the process (T, S) until the last time when the temperature equals
To and thereafter freezes the temperature and entropy at the values corresponding
to the cutoff time. It is an immediate consequence of the definition that the cutoff
of a process is itself a process. We now can state the third property of accumulation
functions needed in our analysis:

Ace 3: If (T, S) is a process for which the temperature function T is non-decreasing,
then for all To € R++

f§ f)2b,-). (6)
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In other words, the cutoff of the accumulation function of a process with
non-decreasing temperature is the accumulation function of the corre-
sponding cutoff of the process.

Proof. First, consider the case where 0 < TQ < min Rngf . Relations (5),
(4), (2), in which (f,S) is replaced by (f,S)To> along with Ace 1 tell us that both
members of (6) are zero. Next, for the case where max Rngf < To, relation (5)
implies that the right-hand side of (6) is C((f, S), •). To examine the left-hand
side of (6) when max Rngf < To, let T € (0,T0] be given and note by (4) that

C((T,S)yT), because C((T,5r),*) is constant on [maxRngT ^ oo). Hence, the left-
hand side of (6) also is C((f, S), •) when max Rngf < To. For the case To 6 Rngf,
we first let T € (0,7b] be given and note by (2), (5), and the monotonicty of T:

C((f,S)To,T) = J fTo(t)STo(t)dt
{te[o,i)\fTo(t)<T}

J f(t)S(t)dt
{te[O,maxf -1({TO}] | f ( t )<r}

I f(t)S{t)dt
{te[O,maxf ^({T}] | f(t)<T}

J f{t)S(t)dt
{t€[O,l] | f{t)<T)

= C((f,S),T) = C((f,S),-)To(T). (7)
(In (7) we have written TT0 for the first component of (T, S)T0 and STo for the deriva-
tive of the second component of (T, S)T0-) Finally, for T G (To,oc), the first two
relations in (7) and the monotonicity of T yield

C((f,S)To,T) = J f(t)S(t)dt
{te[O,maxf ^({To}] | f(t)<T}

J f(t)S(t)dt
{t€[O,inaxf-i({r0}] | f(t)<T0}

J f(t)S(t)dt
{t€[O,l]
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and we may conclude that (6) holds also when To G RngT. •

We close this section with another property of cutoffs that is essential to our
elementary proof of the fundamental property of perfect gases.

Proposition 1. Suppose that f : R++ —» R is right-continuous, of bounded vari-
ation, and is "initially zero and unltimately constant", i.e., there exist T^if) and
Tup{f) in R++ with Tlow(f) < Tup(f) such that for allTe R++

[ 0 if 0<T<Tlow{f)
f(T) ={ . (8)

I f(Tup(f)) if Tup(f) <T<oo.
Let D be a dense subset ofM+~*~with the property that for every To € D,

= 0. (9)
1 ~

0

Then / is the zero function.

Proof. By (4) and (8), the cutoff fTo also is right-continuous and of bounded
variation, and equation (9) may be written

0 =
0 To

so that for every To € D,
rjn

JJP (10)
0

Because f is integrable on bounded intervals, the right-hand side of (10) defines a
continuous function

g(f) = -f f
0

for all T G R+4". Thus, the right-continuous function / and the continuous function
g agree on the dense set D, and it follows that / = g, so that / is continuous.
Consequently, equation (10) holds for all To G R++ and, by the Fundamental Theorem
of Calculus, / is continuously differentiate. Differentiation of (10) with respect to
To yields the relation /(To) = 0 for all To € R++ and, by (8), / = 0. •
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3. T H E FUNDAMENTAL PROPERTY OF A P E R F E C T G A S

We are now in a position to establish that every right-continuous, non-decreasing
function on R"1""1" that is initially zero and is ultimately constant is the accumulation
function of a process of a given perfect gas. Our goal will be reached by proving the
following theorem.

Theorem 2. Let f : R + + —* R be right-continuous, non-decreasing, initially zero,
and ultimately constant. There exists a sequence n i—> sn of right-continuous, non-
decreasing step functions, initially zero and ultimately constant, and a sequence n i—>
(Tn, Sn) of processes of the perfect gas, with Tn and Sn both non-decreasing on [0,1]
for all n G N\ {0}, such that

(1) n i—> sn converges uniformly to / on R+ + ; for all To G R + + , n i—>
(snho converges uniformly to fTo on R+ + ; for all n G N\{0}, Tlow(sn) =
Tiow(f),Tup(sn) = Tup(f);

(2) n i—> (Tn, Sn) converges uniformly on [0,1] to a process (T, S); for every
point of continuity To of f, n i—> (Tn, Sn)T0 converges uniformly on [0,1]
to the process (T, S)TO'I

(3) f o r a U n f f

As will be apparent from the proof of Theorem 2, the processes (Tn,Sn) are
Carnot processes, i.e., consist only of adiabatic and isothermal segments. These
Carnot processes trace out "staircase" curves in the state-space E consisting only
of horizontal, adiabatic segments and vertical, isothermal segments, and, because
both Tn and Sn are non-decreasing, the staircase curves move vertically upward and
horizontally to the right with respect to the vertical 5-axis and the horizontal T-
axis. The desired process (T, S) in the fundamental property then may be viewed
as a limit of such staircase curves. As was pointed out at length in [1], the idea
of approximating a process by Carnot processes emerged early in the mathematical
development of thermodynamics. The refinements of this idea that have evolved in
recent years have dealt with the delicate issue of matching mathematical choices of
collections of processes and collections of candidates for accumulation functions in
order to achieve the relation C((T,S),-) = / in item (3) of Theorem 2. Because
our goal has been to provide an elementary and essentially self-contained argument,
the proof of Theorem 2 that follows is rather long. Nevertheless, the structure of the
proof is easily discerned by reading items (1) and (2) in the statement of the theorem
and relations (40) and (41) at the end of the proof.
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Proof. Let / satisfy the hypothesis of Theorem 2, choose Tlaw(f) < Tup(f) as
in (8), and let n G N\ {0} be given. First put

f 0 if 0<T<Tlc/w{f)
sn(T) := { (11)

{ f(Tup(f)) if Tup(f) <T<oo.

Because / is bounded and non-decreasing, the set

E (Tlow(f),Tup(f)) | f(T) - f(T-) > -

is finite, so we may list its elements T\ < • • • < TK . Put To := Tiauj(f)i

TUp(f)i and note that, since / is right-continuous and has a left-hand limit at 7*, we
may choose <5n > 0 such that for all k € {0,1, • • •, K + 1}

0 < f(T) - f(Tk) < - for all T G [TklTk + 6n) (12)
n

and
- ^ < /(T) - /(Tfc-) < 0 for all T e (Tk - «5n,rfc). (13)

Let k e {0,1, • • • , /C} be given. To define sn on [Tfc,Tfc+i), we note that / is right-
continuous on [Tfc, Tjfc+i) and, for each T G (T*, Tfc+1), there holds 0 < f(T)-f(T-) <

—, so we may choose fJ>n(T) such that
nn

| /(f) - f(T)\ < 1 for ail f e ( T - M r ) , r + M r ) ) - (14)

The collection of intervals {(T - tin(T),T + fj,n(T)) | T € (Tfc,Tfc+i)} together with
(Tjt - 6n, Tfc + <5n) and (Tfc+1 - 6n, Tfc+1 + <5n) form an open cover of [Tk, Tfc+1], so we may
choose Tj* < • • • < Tj,k^ in [Tfc,Tfc+i] such that the pairwise-disjoint half-open intevals

[Tk,T?), [Tj(fc),Tfc+1),and {[T*,T;+1) \ j € {1, • • •, J{k) - 1}} cover [Tk,Tk+1) and

0 < Tj* - Tk < 6n, 0 < Tk+1 - T*(k) < 6n

(15)
o < T ; + 1 - r ; < Mn(T*) for j e {1, • • •, j(fc) - 1 } .

We now put

f(Tk) if Tk<T< T;

sn(T) := f(Tk+1-) if r;(fc) < T < Tfc+1 (16)

T/<T<T;+1and j
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By (16) and (11), sn is a right-continuous step function that is initially zero and
ultimately constant and that agrees with / on (0,r io t t ;(/)) U (Tup(f), oo). Because /
is non-decreasing, so is sn, and, by relations (11)-(16)

K-/ | | := sup |Sn(r)-/(T)|<-, (17)
T6R++ n

so that n i—• sn converges uniformly to / on R + + . Moreover, for each To 6 R + + ,
relation(4), applied to / and to sn, and relation (17) yield for each T € R + +

\(sn)To(T) - fTo(T)\ = |Sn(min {T0,T}) - /(min {T0,T})\ < £,

and it follows that n i—> (sn)T0 converges uniformly to fTo on R + + . This completes
the proof of item (1) of Theorem 1.

We establish items (2) and (3) of Theorem 1 first for the case when T/
Tup(f) and / is not identically zero. Put:

t := 2(Tup(f) - Tlow(f) € R++ (18)

and

and let n i—> 5n be chosen as in item (1) of Theorem 1. Let n 6 N\{0} be
given. Choose To := Tiou,(/) < Ti < • • • < TN{n) := Tup(/) so that, for every
i € {0,1, • • •, A^(n) — 1}, sn is constant on each interval [Ti, Tt+i) and so that

AQ{ := sn(Tt) - Sn(Ti-) E R+ + . (20)

Moreover, we put

AS, : = ^ i f o r t 6 { 0 , l , . . . , J V ( n ) } , (21)

i : =Ti-Ti-1 f o r t € { l , - - - , W ( n ) } .

Next, we define 2A^(n) + 1 intervals {[tk,tk+1] \ k e {0,1, • • •, 2N(n)}} by putting
t0 := 0 and defining recursively

and

AC

r for i€{0, l , - - - ,7V(n)} (22)

AT
—£± fari€{O,l,...,JV(n)-l}. (23)
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By (22), (21), (20), (16), and (11) there hold

t = 0 t = 0

£> (an(Tf) - a^Tj-) ,2f(Tup(f))
Ti ' Tlow(f) ,

r4_i) ,2f(Ty*(f))\ + (sn(To)-sn(To-),2f(Tup(f)y

t = l

^ 2/(7U0) I S ( S n ( T i ) " Sn{Ti-l]) + Sn{TlUf))"Sn(

" 0 )

1.
2 '

and, by (23), (21), and (18),

t = O
E

J t= l

Therefore, by (24) and (25),

and we may now define the process (Tn,Sn) : [0,1] —* S by:

(25)

(26)

/o r «€[<2<+i,tw+2), * e {0,1,• • •,N(n) - 1} ,
(27)

(24)

E A 5 , + 5( t - t2i) for te[t2i>t2i+1), i € { O , l , . . - , J V ( n ) }

for

fn(i) := 7V(n) = Tup(f)

Sn(t) :=

and for t 6 [t2Ar(n)+i, 1] by
(28)

(29)
Sn(t) :=

t = 0
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(In (28) the sum £}lo AS, when i = 0 is defined to be zero.) Relations (22), (23),

(27)-(29) tell us that Tn and Sn are continuous, piecewise linear, non-decreasing, and
the derivatives fn and Sn satisfy for all but finitely many £ 6 [0,1]

fn(t)e{o,t}, Sn(t)e{o,s},
fn(t)Sn(t) = O,

and, for all t € [0,1],

< fn(t) < Tup(f)

N(n)

0< Sn(t)< E

In fact, the definition of fn tells us that Rngfn = [Tlaw(f), Tup(f}} for all . Relations
(30) and (31) mean that n i—> (Tn, Sn) is a uniformly bounded, equi(Lipschitz)continuous
sequence of functions. By the Arzela-Ascoli Theorem, we may choose a subsequence
k i—> (Tnk,Snk) that converges uniformly on [0,1] to a function (T,S) : [0,1] —>
R++ x R. By (30), (31), and the uniform convergence of k i—> (Tnfc, Snk) to (f, 5),
T and S are non-decreasing, and there holds for all £ € [0,1]

(32)
•*• low

0

and, for all t', t" € [0,1]

f(t')

\S(t')

(/) < T(t)

< S(t) < ±

-T{t")\<

-s(t")\<

< T
_ -*• up

I tip
•*• low

f

s

:/)

t'

t'-

(/)

-t"

-t"
(33)

Since Rngfn = [Tlow(f),Tup{f)} for all n € N\{0}, it follows that Rngf = [Tlow(f),Tup(f)}.
Moreover, (32) and (33) imply that (T, S) is a process for the perfect gas.

In order to verify the uniform convergence of cutoffs asserted in item (2) of Theo-
rem 1, we let To € (0,rainRngft) be given. By (5), (f,S)To(t) = (f(0),S(0)) for all
t 6 [0,1]. By the uniform convergence of k i—• (Tnk, Snk) to (T, S),/or k sufficiently
large, To € (0,jmnRngfnk), so that again by (5) (fnk, Snk)To(t) = \fnk(0),Snk(p)) for
all t e [0,1], and we conclude that k i—* (Tnfc, 5nfc)r0 converges uniformly to (T, S)T0.
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Next, let To G (max Rngf, oo) be given. Relation (5) tells us that (fyS)To = (T,S)
and, for k sufficiently large, (fnfc, Snk)To = (£* , &*), and the desired uniform conver-
gence of k i—> {fnk>Snk)To to (f, S)To is verified when To 6 (max Rngf, oo). Finally,
let To G Rngf be given, and put

t* := maxT" 1 ({To}) = maxT~1((0,To]). (34)

Because Rngf = [TU,(/),Tup(/)] = #npfn for all n G N\{0}, it follows that To G
Rngfnk for all A: G N\{0}, and we may put

t* *= maxT^flTn}) (35)

To complete the proof of item (2), it suffices to show that if TQ is a point of continuity
of the given mapping f, then

liminf t! = f . (36)

In fact, relation (36) implies that there is a subsequence j i—> n^. such that
t* =lim t*fc , j i—• (fnk ,Snk.) converges uniformly to (T,S) on [0,1], and, by (34)

and (35),
fn (t;fc>). (37)

If we apply the definition (5) to (Tn , Sn )T0 and to (T, 5)TO »then the cited properties

of the subsequence j i—• nfc. along with relation (37) imply that j i—• (Tn , 5 n )T0

converges uniformly on [0,1] to (T,S)T0- (In applying (5) one uses case by case the
relations Rngf = [Tlow(f),Tup(f)} = Rngfn for all n € N\{0}.) Thus, we need
only verify the italicized statement containing (36) or, equivalently, the statement:
if liminf t* ^ t*,then TQ is not a point of continuity of f. Suppose first that

k—»-oo k

t^ := liminf t* > £*, so that we may choose a subsequence j i—> n^. such that
k—>oo k 3

j i—> t*nk is convergent with limit too> t*, and j i—> (fnk., Snk.) converges uniformly

to (T,S) on [0,1]. Relations (35) and (34) imply
= T0= \imfnk.(t*nkj) = f (««,), (38)

so that T is constant on the non-trivial interval [ t * , ^ ] . Because the monotone,
continuous and piecewise linear functions Tnfc. converge uniformly on [£*,£oo] to the

constant function f |[t*5too]and because fnk(t) G ( 0 , 7 j for all but finitely many

t € [t*, too] and for all j € N\{0}, the total length of the intervals ^ ^ ( { T } ) tends to
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zero as j —» oo. Relations (27)-(29) then tell us that the total length of the intervals
S'n~

1(|Sr|) tends to t^ — t* > 0 as j —* oo, and it follows that

lim 0 V ( U - Snk.(t*)) = S^ - r ) > 0. (39)
J—>oo

Relations (20), (21), and (39) imply that for j sufficiently large, the oscillation in
snk at To is bounded below by the positive number ^(t^ — t*)Tiow(f)/2, and the
uniform covergence of j i—> sn/e. to / tells us that / is not continuous at To. A
similar argument applies when t^ < t* , and this completes the proof of item (2).

The first statement in item (3) of Theorem 1 is an immediate consequence of
relations (2), (20), (21), (27), and (28). This statement, Ace 2, and Ace 3 then tell
us that for every n € N\{0}and T0 > 0 there holds

(sn)To(T) JC((fn,Sn),.)To(T)= J
' C((fn ,&)!,,, T)

T2
0

dT

= (Sn)To(l)-(Sn)To(0)- (40)

Now, let To be a point of continuity of/, and note that by items (1) and (2) established
above, the first and last members of (40) converge. Upon letting n tend to infinity in
(40), we find

jHAJ.dT = 5ro(l)-5ro(0)

C((f,S)To,T)
dT

where Ace 2 and Ace 3 were used in the last two steps of the calculation. If we note
that the set of points of continuity of / form a dense subset of R++ and that the
function T i—> (f(T) - C((f, S), (T)))/T2 is right-continuous, of bounded variation,
and is initially zero and ultimately constant, then relation (41) and Proposition 1 tell
us that / = C((T, 5), •). The proofs of items (2) and (3) are completed by noting that
the assertions in these items also are valid in the trivial cases when Ticw^f) = Tup(f)
or when / is the zero function. •
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