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The purpose of the present paper is to point out a subtle and little
known consequence of assuming a common ordering of principal
stretches and principal stresses for an isotropic hyperelastic
material [i.e., of assuming the Baker-Ericksen inequalities] . Now, as
was shown by Ball [B1][B2], the condition of polyconvexity on a
stored-energy function, together with appropriate growth
hypotheses,ensures the existence of equilibrium solutions for the
partial differential equations associated with appropriate boundary
value problems in nonlinear elasticity. An incentive for adopting the
polyconvexity requirement is the observation [Mo1],[B1] that the
notion of quasiconvexity , which is essentially equivalent to the
existence of smooth weak solutions, is very hard to verify
explicitly; polyconvexity is not subject to this difficulty. What is,
however, also special about polyconvexity and quasiconvexity for an
isotropic material is that these properties [even the Baker-Ericksen
inequalities alone] necessarily privilege those affine deformations
which are dilatations: the stored-energy associated with a
dilatation is smaller than the stored energy associated with any
other affine deformation possessing the same determinant. We will
demonstrate this fact in §3 and then point out in §4 certain fracture
related consequences of this property which arise in those cases
where the stored-energy function assigns to the dilatation of
determinant 6 > 0 a value A(8) which is not an everywhere convex
function of 8c (0,«>).

In §2 below we introduce appropriate notation and terminology
with which we can describe the equilibrium behavior of isotropic
nonlinearly hyperelastic materials. Then in §3 we formulate as
Theorem A the result informally described above. Finally, in §4 we
point out [Theorem B] that in general the Baker-Ericksen inequalities
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lead, for certain ranges of the average density of the deformed
material, to the existence of equilibria which are idealized
fractured deformations. Moreover, we find that for fluids (and
some other materials) such fractured minimizers are energy limits
of minimizing sequences of continuous deformations in a manner
analogous to deformations encountered in the study of twinned
elastic crystals such as martensite (cf. e.g., [B&J], [J&K]).

It is worth pointing out that the idealized fracture deformations
discussed here are not related to the deformations of cavitation
type discussed by Ball [B3]. The presence of the latter depends on
the asymptotic behavior of the stored-energy function for large
deformation gradients, while the presence of our deformations
depends only on the existence of intervals on which A is nonconvex.

§2. We shall consider a nonlinear elastic material which is
isotropic in a reference configuration Q consisting of a domain in

[Rn. Putting x for the displacement vector to a point in the reference
configuration and u = u(x) for the displacement vector to the
corresponding point in the deformed configuration, we know that in
the absence of body forces the total stored energy associated with
an orientation preserving and locally invertible displacement field
u €W1'1,0C(Q;[Rn) is given by

E[u]=JQW(x,gradu(x))dx, (1)

where W: Qxlin+-^ IR is the stored energy function and lin+=lin+([Rn)
denotes the set of tensors with positive determinant. Moreover,
because of isotropy and objectivity it is known ([T&N], [B1],[A],[C])

that W(x,F) = ^(x;v-|,...,vn), VF£lin+,

where for each x eQ ^(x\ •,...,•) is a function symmetric in its n
arguments and v-|,...,vn are the singular values associated with F,

namely, the eigenvalues of V(F T F). Hereafter we shall take n=3 and
refer to v-j ,V2,V3 as the principal stretches associated with the
tensor F, and we shall eventually suppose for convenience that the
material is homogeneous, so that W is independent of location and
the total stored energy associated with u is given by

i v 2 ( x ) , v 3 ( x ) ) d x , (2)
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with Vj(x) the principal stretches associated with F=(gradu)(x),X£Q.
The eigenvalues of the Cauchy stress tensor associated with F, i.e.
T=F(W,F)T, are called the principal stresses.

In a fundamental 1977 article [B1] (cf. also [B2]) John Ball
succeeded in combining advances in existence theory for nonlinear
partial differential equations due to Morrey [Mo1],[Mo2] with the
requirements of nonlinear elasticity to provide an important
existence theory for the latter discipline. Morrey had shown that
lower semicontinuity of a variational functional such as (1) is
essentially equivalent to the requirement that the integrand have
the property he termed quasiconvexity [Mo1],[Mo2],[B1],[B2]. This is
the requirement that for each bounded open set D c [R3, for each

F clin+ and for each test field c €C0°°(D;[R3) the following inequality

hold:
JDW(y, F + grade(x))dx > JDW(y, F)dx , VycQ. (3)

Roughly speaking "each affine displacement u = Fx + z, xcD, is a
minimizer for total energy E, relative to its own boundary data on D".

In view of the difficulty involved in directly verifying (3),
Morrey [Mo1],[Mo2] and Ball [B1],[B3] presented two other, more
easily verifiable, properties which could ensure some features of
quasiconvexity.

The weaker of these is rank 1 convexity [E],[B1],[B3]. This is

the requirement that W be convex on all closed line segments in lin+
whose endpoints differ by a tensor of rank 1 :

W(x,F + (1-x)a®b) < X W(x,F) + (1-x)W(x,F+a®b) , VXc(0,1), (4)

for all F €lin+ and a,b e [R3 for which F+a <8>b €lin+. Strict rank 1
convexity is the requirement that (4) hold with strict inequality.
Ball demonstrated [B1],[B3] that rank 1 convexity is a consequence
of quasiconvexity while strict rank 1 convexity is equivalent to the

requirement that every W1'1|OC(Q;[R3) weak solution of the elasticity
[Euler-Lagrange] equations for E[u]= J\A/(x,gradu(x))dx fail to exhibit
jump discontinuities in gradient across any smooth 2-surface. The
stronger of these conditions is polyconvexity [Mo1], [Mo2],[B1],[B2].
This is the requirement that for all xcQ

W(x,») = GxoZ, where Z:lin +-+lin+ x|jn+ x (0,oo) is defined by Z(F) =
(F,adjF,detF), V Fe lin+,and Gx: conv(range Z)—> IR is convex, so that:
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GX(XF+(1-X)H, XadjF+(1-X)adjH,XdetF+(1-x)detH) (5)
< xGx(F,adjF,detF) + (1-X)Gx(H,adjH,detH), VX€ [0,1],

for each F,H €lin+. Here adjF denotes the adjugate of F, which is
the tensor associated with the transposed matrix of minors of the
standard matrix of F. Morrey proved [Mo1],[Mo2] that when W is
polyconvex it is necessarily quasiconvex, as well. Consequently
Ball's existence theorem for nonlinear elasticity applies to cases in
which W is polyconvex and satisfies appropriate growth conditions.
We note that objectivity and isotropy of W ensure that polyconvexity
of W is equivalent to the following constraint on the function ^ [B1]
vKx;v-, ,v2,v3) = cpx(v-| ,v2,v3;v-| v2, v2v3, v3v-, ;v-, v2v3) (6)

where the function cpx is convex and cpx(w-| ,w2,w3;y-| ,y2,y3;z) is
symmetric in the w's and in the y's and is nondecreasing in each Wj
and each yj.
§3. We are now in a position to present the major result of this

paper. In what follows we will utilize the following norm on lin([R )

[hereafter denoted by lin]: |F|2 = tr(F F), and we will continue to use

lin+ to denote the set of tensors with strictly positive determinant.

THEOREM A Suppose that the homogeneous isotropic stored-energy

function WcC (lin*) always provides the same ordering for the
principal stresses as for the principal stretches
[VJ > v;=Mj > t;, where {t^} are eigenvalues of the Cauchy stress T]
and satisfies the following growth condition

O W(F) -^oo as |F|->oo or det F ^ 0 + ,
while the function ^ appearing in (2) is continuous on (0,oo)3.
Then for each 8£(0,oo) the dilatation ug with det(grad u5) = 8 has the

least energy of all affine displacements with gradient having
determinant 8:

W(81/3I) < W(F), VFclin4" s.t. detF= 8, V 8c(0,oo). (7)
3

That is, the function ^€C((0,°o) ) appearing in (2) satisfies for each
8€(0,oo):

1/3, 81/3, S1/3)< ^ ( v 1 > v 2 , v 3 ) ) V Vj€(0,oo) s.t. v-|V2V3=8. (8)



Proof: For fixed 8 > 0, the condition (*) ensures that the continuous
function ^ attains its infimum on the smooth closed surface

Co= {(a,b,c)€(0,oo)3| abc = 8} at some triple (w-j ,W2,w3)€C Initially
O O

we shall restrict attention to the case in which \\> is C1 and the
assumed ordering inequalities hold with > replaced by >. Since

1 3
^ c C ((0,OO) ) and C is nowhere degenerate it follows that there is a
scalar ["Lagrange multiplier"] |i€ [R such that

,w2,w3) = )igradp(w-| ,w2 ,w3),
3

where p(a,b,c)=abc, V(a,b,c)€(0,oo) . That is,
,w2 ,w3 )=^iw2w3 , ^

^,3(w-| ,W2,W3)=JJ,W-| w 2 .

It follows that
w-| ^ i ( w 1 ,w2 ,w3) = w2^,2(w-| ,w2 ,w3) = W34J,3(W-| , W 2 , W 3 ) (9f)

Now it was proved by Baker and Ericksen [Ba&E] that our hypothesis

on W, with > strengthened to >, implies the following inequalities:
[vjqj,.(v1,v2,v3) - Vj^,.(v1 ,v2 ,v3)]/(v i -VJ) > 0 whenever VJ*VJ (10)

Taken together (9f) and (10) imply w-|=w2=w3 = 81/3, as asserted.

Note that this argument ensures the uniqueness of the minimizer
(w-| ,w2 >w3 ) .

To deal with the case in which W only satisfies the weakened
Baker-Ericksen inequalities where > 0 is replaced by > 0, consider
for each e > 0 the function W8 defined by

WC(F) = W(F) + s|F|, VFc l i n + . (11)
It is well known that the norm term in (11) is a strictly convex

3

function on lin([R ). Consequently by the argument in the preceding

paragraph the infimum of the function ^ 8 = \\> + e(v-|2 +v 2
2 +v3

2 )1 7 2

1/3 1/3 1/3
on C is attained at the (unique) minimizer (8 ,8 ,8 ) for each
s > 0. In view of (*) it follows that the infimum of \\> (i.e. W) is
attained there, as well.

Finally, we shall remove the condition that ^ c C 1 . Let p be a C°°
nonnegative function on lin vanishing outside the unit ball B-| (0) =
{Fclin | |F| < 1} and satisfying (+)Jpdm =1, where m denotes 5



Lebesgue measure, i.e., the translation invariant Haar measure on lin,
normalized so that the set of those tensors F for which the standard
matrix consists solely of entries ajjc [0,1 ] has measure unity. For

example, p(F) = cexp 1/(1-|F|2), |F|<1, p(F)=0 otherwise, with c chosen
so that (+) holds, is of this type. Now it follows from (*) that for
some n = T)(8) > 0 sufficiently small the infimum of W on C5 is

attained only at points (v-|,V2,v3) with all Vj £ [n, 1/ri]. For each h>0

sufficiently small let the regularized function W be defined by

Wh(F) = ^h(v-,,V2,v3)= h"9jp((F-G)/h)W(G) dm

for all Fc lin satisfying |F| c [TI,1/T)]. Then each \\)^ is clearly a C°°

rank one function and ^ h converges to ^ uniformly on C5 as h-»0. By

our previous reasoning, each ^^ attains its minimum at the point
(81/3,81/3,81/3) whence the same is true for ty, as well. This
completes the proof.

Remark: I am indebted to John Ball for supplying the above much
improved replacement for an argument I had initially developed in the
case of polyconvexity.

COROLLARY Suppose that the isotropic stored-energy function

W c C^ (lin+) satisfies the following growth condition
O W(F) -*oo as |F|->ooor det F->0+,

and is polyconvex. Then the dilatation U5 satisfying det(grad ug) = 8

has the least energy of all affine displacements with gradient
having determinant 8:

1/0 4.

W(8 I)<W(F), VFclin s.t. detF-8, V 8€(0,oo).
3

That is, the function 4 J € C ( ( 0 , ~ ) ) appearing in (2) satisfies for each
8€(0,oo):

,8 ,8 )< ^(v-j ,V2,V3), V Vj€(O,°°) s.t. ViV2V3 = 8. (8)

This result follows from the fact that a polyconvex function is
necessarily rank 1 convex and hence satisfies the weakened Baker-
Ericksen inequalities [B3].
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§4. It will be shown next that, in general, property (8) leads to
fracture-like features for certain equilibria of a hyperelastic
material, as was mentioned in the Introduction. In view of (8) it will
be convenient to introduce the notation

4 /Q -I /O f /Q -I/O

A(8) := W(8 I) = ^ (8 ,6 ,5 ), V8€(0,oo). In general the
function A need not be everywhere convex; we will describe below
even polyconvex materials for which convexity of A fails. However
by (*) A does tend to oo as 8—> 0 or 8->°o. Thus there are in general
one or more intervals [8O,8-|] on which the graph of A lies above the
chord joining (8O,A(8O)) and (S-j,A(S-|)). Given a point 8*€(8O,8-|) for
one such (maximal) interval assume for definiteness that A(8-|)>A(8O)
[otherwise interchange 80 and 8-j]. We seek an equilibrium solution
for the following problem: Take as reference configuration Q the

closed unit ball of IR with the requirement that Q consist of the
homogeneous and isotropic material under consideration, and require
that the deformed configuration u(Q) be such that its volume is 8*
times the volume of the unit ball, i.e. the average density in the
deformed configuration is 1/8* times the density in the reference
configuration. Now there is a unique O£(0,1) such that
8* = e80+(1-e)8-|. This leads to an idealized "equilibrium solution"

which possesses a crack (cf. [N]) in the form of a spherical shell in
the deformed configuration. Namely,

u(x) = 80
1/3x, |x|€[0,e1/3), (13)

= 81
1/3x, |x|c(e1 /3,1],

so that the deformed configuration consists of the ball of radius
ro= (8 0 e) 1 / 3 together with the spherical shell of inner radius
r-| =(8-|e)1/3 and outer radius r2=(8-|)1/3. It is easily seen by an
elementary comparison argument that this deformation u does indeed
supply the smallest stored energy consistent with the conditions of
the problem. On the other hand, when the material is a fluid so that
W is a function of det F alone, one can obtain approximate
equilibrium solutions without fracture [for which the deformed
configuration Uh(ft) is not a ball] as follows. Given a positive integer
h, consider first the (discontinuous) deformation v^ of Q defined by
vh(-x) = -vh(x), with vh defined on the hemisphere Q+={xcQ| x-|>0} by
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1 / 3((x-yM) + vh(y i.1). x i € [ r M , s M )S

where rj=j/h,yj=(rj,O,O) and Zj«(Sj,O,O) with ^ ( r ^ r ^ ) determined by
the condition that vol(fin{x|x €(rj,Sj)})=evol(Qn{x|x €(rj,rj+1)}).Note

that vn(Q) is a connected set. Setting

C'j:= &n{x|x €(rj,Sj)},C"j:=Qn{x|x €(Sj,rj+1)} it is readily seen that

gradvn is a dilatation with determinant 80 in C'j and with
determinant 81 in C";, V j€{O,n-1}. Next we construct a continuous
deformation un ^ which approximates v ,̂ appropriately, and we show

that E [u h T ) ] ^E [v h ] = eW(80
1/3I)+(1-9)W(61

1/3I) = E[u] as n-*0. Let

« 1/h denote a number to be specified later and consider the

function un defined as follows:

uh)T](x) = vh(x) • X€BJ:={XCQ| x1 € [rj+n.Sj-Ti] or x1 e [Sj+ri,rj+1-n]}

= Xnj(x1)(x-z l
j) x1 €

= A*hj(x1)(X-Z*j) + Uh(z*p, X€D*j:={X€Q| X1 € (Sj-Tl,Sj

where z'j = ( r - r i , 0 ,0 ) , z*j = (SJ-TI, 0 ,0 ) . Here x ^ j , and X * n j denote

smooth strictly monotone funct ions satisfying
I / O -j /o

^ ( r r ) x " ( S r ) = 6 1 ( 1 4 a )
as well as the constraints

voluh>Tj(Dj) = JD [(Xh j j)
3(x1)+(x1-r j +n)(Xh) j)

2(x1)(Xh) jV(x1)]

=volvh(D|),
(14b)

voluh | T l (D* j ) -JD_[(X*h j )3(x l )+(x r r j +Ti) (X*h | j )2(x1 ) (x*h i j r (x1 ) ]

=volvh(D*j).
The above integrands occur because for a deformation of the form
Y(x) = x(x1)(x-Z) + Z*. gradY(x) = x(x,)I + (x-ZJ^x^x^e-j whence

det[gradY](x)=(x(x1))3
+(x l-Z1)(x(x1))2x'(x1).

It is readily seen by integration by parts in x-| that the integrals in
(14b) do tend to zero with rate 0(1) as r\/h -* 0. Consequently by our
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assumption W[u h | T 1 ] - W[vh]=eW(80
1/3I)+(1-e)W(8-|1/3I) whenever

Tih/h - 0 .
To summarize, the isoperimetric problem [/ denotes the integral

mean]:

J W(gradu)dx —> inf s.t. j^det(gradu)dx = 8* (15)

has infimum ©W(80
1/3I)+(1-e)W(8-| 1 /3I), but solutions corresponding

to this value consist of discontinuous [BV] deformations. On the other
hand, if W is a function of det F alone or is separately sublinear at <*>
[limsupv.— +oo ^/Vj< oo] there are continuous deformations with

energy arbitrarily close to the infimum. We state matters more
precisely as:

THEOREM B Consider the isoperimetric problem (14) with
8* = e80+(1-e)81 , ec(0,1), where [8O,8-|] is a maximal interval in

which the graph of A lies above its chord. Then there is no minimizer
for (15) in the class of continuous fields vc W1'1,0C(Q;[R3). However if

the material is a fluid or is separately sublinear at oo, the infimum
in (15) is that attained by the idealized fractured deformation (13):

E i n f = eA(80)+(1-e)A(81).

Proof: We observe that for any field v satisfying the given
isoperimetric constraint in (15) one has by use of (8):
E[v]=J W(gradv(x))dx > J A(8(x))dx = J A(8)dco(8), (16a)

where 8(x) = det(gradv(x)) and GO denotes the distribution function
for 8(-)= 8V. Correspondingly, the constraint can be written as
j 8dco(8) = 8*. (16b)

(0,oo)

It is easily verified that any minimizer co for the last integral in
(16a) subject to (16b) must be supported on [So,6-j], so that the set
of x for which 8(x)€ [60,8-j ] must be of full measure. Furthermore by
an elementary application of Jensen's inequality,
inf J A(8)doo(8) = eA(80)+(1-e)A(81) (17)

(0,oo)

and is attained only for measures co supported by points 6c [60,6-j]
at which the graph of A coincides with the graph of its convex hull
A**, while the latter includes the line segment joining (8O,A(8O)) to
(S-| ,A(8-|)). This completes the argument. 9



REMARK C Although the deformation (13) involving a single fracture
is the simplest deformation giving the minimal energy Ejnf, it is
readily seen that for every partition of Q into regular subregions
{Q;} there is a deformation of energy Ejnf, with image in the ball of

radius 8.,173, consisting of regions u(Q;) each of which involves a

fractured portion of the dilation of Q\ by 8^/3\ analogous to that

produced by (13). Thus there are minimizers involving fractures
throughout the material, giving an alternative meaning to "ubiquity".

REMARK D Replacing the isoperimetric problem (15) by the
Dirichlet type problem

J W(gradu)dx -> inf s.t. u(x) = S^73 x, Vxc3Q, (18)J
for continuous deformations ucW1'P,0C(Q;[R3), p>3, leads to the
following observation. In contrast to (15b) all such deformations
satisfy the isoperimetric constraint

iQdet(gradu)dx = 8V (19)

(cf.[M&M]). The Jensen inequality again shows that the deformation in
(13) gives a stored energy E[u] strictly dominated by the infimum
value in (17), but the "fractured" deformation in question belongs to
the larger space BV(Q;[R3) rather than W1«P | 0C(Q;[R3), SO that we have
here a gap somewhat analogous to those encountered in the context
of the Lavrentiev phenomenon [B&M],[H&M],[Bu&M1],[Bu&M2].

We now provide an example of a polyconvex stored energy
function for which the hypotheses of Theorem A apply. Namely,

consider the function W(F) = (detF)"a+ (detF)b + ktr(adjF), a>1,b>1

so that A(8) = ^(81 / 3 ,81 / 3 ,S1/3 ) = 8'a + 8b + 3k82/3 . It is easily
verified that if k>0 is sufficiently large then the above stored energy
function is of the desired type. For b=1, Theorem B's 2nd result holds.
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