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We construct an example confirming that the interfacial energy
density of the T-limit of a family of nonconvex functional, can-
not be computed, in general, by assuming that the local behavior
of a sequence of vector-valued minimizers near the interface is
unidirectional.

1. Introduction.

Consider the nonconvex energy functional

E[u}:= f W(u(x))dx, (1)
Jn

where Q € HN is an open, bounded, and strongly Lipschitz
domain, u : Q —> Rp, and W supports two phases. Depending
on the constraints placed on u, in general there are more than
one solution of the minimization problem for (1). In order to
identify a selection criterion for resolving this non-uniqueness,
one can study the properties of the limits of minimizers for the
family of perturbed and rescaled energies

Fe[u] :=- [ W(u) dx + e [ h2(x, Vw) dx .eJn Jn
(2)
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The relevant type of convergence in this context is the F — con-
vergence, as introduced by De Giorgi [6] (see also [1] or [5]).

The characterization of the F-limit of the sequence Fe was
studied under the assumption that h = \ | • 11 in the scalar-valued
case by Modica ([10]), and in the vector-valued case by Baldo
([2]), Fonseca and Tartar ([8]), Kohn and Sternberg ([9]), and
Sternberg ([12]). In the former case it was found that {Fe} F —
converges to the functional given by

F\u-\ . = j KPern{u = a}, if u G {a, 6} a.e., ,^\
\ +oc, otherwise,

where

K :=2ins(J y/W(g(s))\gr(8)\ds : g is

piecewise C \ g{-l) = a, #(1) = b > . (4)

Here Pern{u = a} denotes the perimeter of A in Q (see, for
example, [7] for the definition). Notice that the interfacial energy
density K is constant and is defined as an infimum of the integral
in (4) over the curves connecting the points a and b.

A more general choice of h was considered in the vector-
valued case by Barroso and Fonseca in [3]. They found that the
F(L1(Q))-limit of the family of functionals in (2) is given by

I T I if II G— 1/ L

IP r 1 J JQnd*(u=a) " V~> ^5 VJ "7 ""t" v x ; 7 */ " ^ y o,6? /^N

[ +oo, otherwise.

Here W satisfies a certain growth condition and attains its min-
imum value of zero at exactly two points a and 6, while h grows
at most linearly in the last argument and satisfies some techni-
cal continuity conditions. The symbol HN~l denotes the JV—1 —
dimensional Hausdorff measure, the set Vaj> is defined by

Vaib :={feBV(Q)\f(x)e{a,b} a.e. in Q} ,
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the vector u(x) is normal to the interface fi n d*{u = a} at the
point x, where d*{u = a} is the reduced boundary of the set
{u = a} (see, for example, [7] for the definition). In addition

inf <M^], (6)
a,b,i/(x))
L>0

2 (7)

= b if y - v = | , and £ is periodic (8)

with period one in the directions of 1/1,..., VN-I} •

Here, the vectors i/1?..., VN-I, /̂  form an orthonormal basis of
R^, the open unit cube Q^ is centered at the origin with two of
its faces normal to v and the recession function h°° is given by

h°°(x,B) :=]imsaph(X'tB\ (9)
t—>oo t

Remark: Following the discussion at the beginning of this sec-
tion, we note that the requirement of minimality of

-\x) (10)

represents the selection criterion for resolving the possible non-
uniqueness of the minimizers of (1).

We conclude this introduction by mentioning that the scalar
versions of the problem considered in [3] were studied by Bou-
chitte ([4]) and Owen and Sternberg ([11]).

From the definition of the interfacial energy density K one
can see that it is determined by the local structure of the se-
quence of minimizers of (2) near the interface fi fl 9*{u = a}.
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In particular, in the scalar-valued case the methods of convex
analysis allow one to conclude that for a small e the minimizers
of (2) are essentially locally constant along the boundary of the
set ft n d*{u = a} (see, for example, [4]). This implies that the
functions f in (8) can be taken as depending on a single variable
in the direction of the vector v. However, the same property
might not hold, in general, in a vector-valued case, as the local
behavior of minimizers near the interface can be more complex.

This conclusion is confirmed in this note as we provide an
example of functions W and h in (2) for which the functions f in
(8) cannot be restricted to changing only in the direction normal
to the boundary. The example is based on studying the behavior
of the minimizers for the "blown-up" problem (6).

2. Main Results.

From now on, we will suppose for simplicity that (xi, X2) G
Q C R2 and that u : ft —> R2. In this section we will use
boldface letters to represent both vectors in R2 and R2 — valued
functions. Assume that the function h in (2) is independent of
x, positively homogeneous of degree one, convex, and satisfies
the coercivity condition

where C > 0 is constant. Also suppose that the function W in
(2) has a superlinear growth, while its minimum is equal to 0
and is achieved at exactly two vectors, a and b. Observe that
since h is positively homogeneous of degree one, it is equal to its
own recession function, that is

for every p G M 2 x 2 .
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Let
) = \divu\ , (12)

and

W(vt) = (1 - u\f. (13)

It is trivial to verify that both W and h satisfy only some of the
restrictions imposed in the previous paragraph. In particular, W
attains its minimum value on the set {(̂ 1,1^2) € R2 | ̂ 2 = ±1}
and /i, while being convex and positively homogeneous of degree
one, does not satisfy (11). Later we will, however, use the small
perturbations of W and h in order to extend our results to the
required classes of functions.

Suppose that i is the unit vector in the direction of X\—axis
and j is the unit vector in the direction of x2—axis. Let

/ := IzxeRI \xi\ <
while

and

Define

A~{&, b,v) : = { C : Qj - • R2 I 3 f G A(a, b , i/) such that

C(xi,x2) =t(xi,x2) a.e. inQ} , (14)

to be the set of restrictions to Qj of functions from A(a, b, i/)
(see (8)).

Fix a function u2 : Qj -> R such that tt2(xi, •) € C2(J) for
every xx G / , while <0,u2> € ^4(—j,jJ), and
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Now consider any U\ : Qj —> R that satisfies

H du2 du2=L
(17)

It is easy to verify that u\ is a local minimizer of the functional

2

where <w,u2(0,-)> G C^Q^R2) n A(- j , j , j ) . By evaluating
I1U2 at Ui, we obtain that

CLX2

Choose (j> G C2(R) to be monotone increasing and such that
4>(x) - sgn(x) = 1, whenever |x| > | . For every x 6 Qj and every
small e > 0 set

(18)

ui{xux2) = xi —^(s,x2)ds- / —^(5,x2)d5. (19)
7-i ox2 Jo ox2

Then the function u = < U\,U2 > satisfies the conditions (15-
17) and u e A(— j , j , j ) . Hence we can extend u periodically
with period one in the direction of the X\ — axis to obtain U €

One can calculate both u\ and div u explicitly in terms of <f>.
In particular, for every x £ Qj we have
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Then, by definition of 0,

\div u| < 8. (20)

Next, define

/c(-j,j,j) = inf * J K , L ] , (21)
€e.A(-j,j,j)

L>0

where $j is as defined in (7) and

*4(a, b, v) := {£ G A(a, b, i/) | V^ x v = 0 a.e. m

consists of those functions in A (a, b, z/) that remain constant in
any direction, perpendicular to the vector v. Then, following [8]
one can find that

y/W(8)ds,

which implies that K(— j , j , j) = | for our choice of W.

Proposition 1: The inequality

K(-j,j,j) > ^ ( - j , j , j ) (22)

holds for the functions h and W defined in (12) and (13).

Proof: In order to prove (22) we will use the following lower
bound in L on $j [U,Z/] :

(23)

a \ 1/2

f f \

/ \ 1/2
f f h2(Vu)dx\ ,
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and verify that K(-<j, j , j) > A[u] for a particular value of the
parameter e in (18). Indeed, by (20)

A[u] = 2 (/Q. W(u2) dx) V2 (/Q. (div u)2 dx) V2

/ \ V2

<16[JQ.W(u2)dx) . (24)

Then, by the definition of W and 0, the right-hand side of (24)
can be made arbitrarily small by chosing e > 0 small enough in
the definition (18) of U2- Hence there exists a u such that

This example can be extended to a more general choice of
the functions W and h. In particular, by considering

W(u) := OLU\ + (1 - u2
2)\

fc(Vu) := \div u\

for small a > 6 and /3 > 0, we obtain W and h that satisfy the
requirements imposed at the beginning of this section. That is,
W attains its minimum at exactly two vectors a and b and has
a superlinear growth, while h is convex, positively homogeneous
of degree one, and coercive. The inequality (22) can be proven
for this new set of functions W and h by using Proposition 1,
the continuity of A[u] with respect to a and /?, the boundedness
of the function u, and the easily verifiable fact that K(— j , j , j ) =
|(1 + p). Here A, u, and K are as defined in (23), (18-19), and
(21).

Therefore, when the family of functional in (2) is defined
over a set of the vector-valued functions, the interfacial energy
density K cannot be computed, in general, by restricting the set
A in (8) to its proper subset A of the functions that are indepen-
dent of #1-variable. In other words, unlike in the scalar-valued
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case, it is not, in general, optimal for an element of a sequence of
the vector-valued minimizers of (2) to be locally constant along
the interface fin9*{u = a} (The isotropic case (3-4) can be
considered here as one of the exceptions). Hence, we conclude
that the local behavior of such vector-valued minimizers near the
interface can be significantly more complex when compared to
the behavior of the minimizers that are scalar-valued.
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