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1. Introduction

In this note we consider a new model for one-dimensional phase transitions in elastic solids. The
governing equations are

ut-vx = 0, (1.1)

vt-ax = 0, (1.2)

a = c2 {u - D), (1.3)

where
0 < c, A, /?, and e and 0 < \i < 1. (1.5)

Here, u may be thought of as the strain, v the velocity, and a the stress at a material point x at
time t and D is a dimensionless order parameter which describes the phase of the solid at x at time
t.1 Equation (1.1) is merely the statement that u and v are derivable from a motion, </>, via

v = (j>t a n d u = <f>x

This research was partially supported by the Applied Mathematical Sciences Program, U.S. Department of
Energy and the Mathematics and Computer Science Division, Army Research Office.

xu like JD, is dimensionless; v has dimensions (length)/(time) as do the parameters c and A; a has dimensions
(length)2/(time)2; p and /JL are dimensionless; and finally e has dimensions (time).



and (1.2) is the balance of momentum.
In the formal limit where e -> 0+ (and the left hand side of (1.4) vanishes) the order parameter

D completely characterizes u and a through the limiting constitutive equations:

and a = [ic2D (D2 - l ) (1.6)

The constraint 0 < \i < 1 guarantees that (1.6)i is monotone increasing and thus in this limit
D and u are related in a 1-1 fashion. The separate phases of the material are the regions where
(1.6)2 is monotone increasing, here D < — 4= and D > 4^, and the spinodal region is the interval
— 4= < D < 4^ where (1.6)2 is decreasing.

The model proposed is similar to the better studied Landau-Ginzburg model where (1.1) - (1.3)
are maintained but (1.4) is replaced by the diffusion equation

(1.7)

A principle difference between the Landau-Ginzburg model and ours is that the former propagates
information about D at infinite speed whereas our model transmits such information at speeds ±A.
In fact our model can be written as a simple first order transport process with all fields propagating
information at finite speeds. To see this we first note that (1.4) may be written as the first order
system

Dt-Qx = *

Qt-\*DX = - 2 ,
and

Ct

(1.8)

2We shall see later that in the e = 0+ limit the left hand side of (1.4) may give a non zero contribution to a; in
fact, it is exactly in these situations that we see microstructure.

3For details see Caginalp[l-3].



Of course u, v and a satisfy (1.1) - (1.3). If we now introduce mi - m4 via

c2

u = mi + m2 + c2-A2 (m3 + m4),

Ac2

u = c (mi - m2) + 2 _ . 2 (m3 - m 4 ) ,

and
= 77I3 + 7TI4,

= A (m3 - m4)

(1.9)

or equivalently
c2

' 2 U c c2-A2 c2-A2J'

and

(1.10)

1 (n Q\
TTIA = — 11/ — r

2 V A/
we find that if u, v, a, D, Q, C satisfy (1.1) - (1.3) and (1.8), then m1-m4 and C satisfy the transport
equations

__ (3c2C Ac (ra3 - m4)
m u - c m i s = 2 6 ( c 2 _ A 2 ) + 26 (c2-A2) '

fi(?C Ac (m3 — ra4)
7712* + C77l2x = —

2e ( c 2 - A2) 2e ( c 2 - A 2 ) '

/3C
—

- m4)

m 3 - ra4

and

Am4 l = — H

a - iic?D (D2 - 1) - c?C _ (u - (1 - n) D - fiD3 - C)
ec2 6



where u and D are given by (1.9)i, and (1.9)3 and a = c2 (u — D). We will actually use (1.11) when
carrying out numerical simulations, for details see section 4.

Another difference between our model and the Landau-Ginzburg formulation is we find that for
0 < c < A our system is capable of supporting both dynamic phase transitions and strong shocks
in either phase of arbitrary strength whereas if 0 < A < c not all single phase strong shocks are
possible. This distinction is lost in the Landau-Ginzburg formulation. For details see section 2.

The model also has some features in common with the viscosity-capillarity models proposed and
studied by Slemrod, [4-6]. These models focus on the system (1.1) and (1.2) when the stress a is
given by the constitutive equation

a = GE (U) + evx - e2X2uxx

and GE (U) is the composite function defined by the relations (1.6). Such a model could be derived
formally from ours via a Chapman-Enskog expansion in e. This model, like the Landau-Ginzburg,
is not hyperbolic, and it also has the unpleasant feature that when considering boundary inputs
one is forced to prescribe not only state variables like u, cr, v, JD, or Q, but their derivatives.

The organization of the paper is as follows. In section 2 we examine the possible equilibrium
solutions of (1.1) - (1-4). Such solutions include ones exhibiting phase transitions and microstruc-
ture; the latter being oscillatory solutions to the equilibrium equations. In this section we also
explore travelling wave solutions to (1.1) - (1.4). These come in two flavors. The first represent
dynamic phase transitions. As e -> 0+ these converge to piecewise constant functions which satisfy
the reduced system (1.1) and (1.2) with u and G given by (1.6) and they have the additional prop-
erty that the state behind the wave, typically labeled with a minus subscript, is in one phase (say
D_ < —-T- ) and the state ahead of the wave, typically labeled with a plus subscript, is in the other
phase (say D+ > 4^). These limit solutions are undercompressive shocks of the reduced system
(1.1), (1.2), and (1.6). Specifically, when s is positive, the positive wave speeds, p±, of the reduced
system based on the states ahead and behind the shock

i l - 1
p± := 7 V * (1.12)

satisfy p+ > s > 0 and p_ > s > 0, whereas when s is negative, the negative wave speeds, n±, of
the reduced system based on the states ahead and behind the shock

i l - 1
n± := V ± (1.13)

satisfy n+ < s < 0 and n_ < s < 0. There are also travelling wave solutions which represent single
phase shocks. These profiles are not necessarily monotone, this latter property depends on the size



of (5 relative to the strength of the shock. These solutions exist so long as |s| < A and this condition
is guaranteed when c < A. In the limit e —>• 0+ , these travelling waves converge piece wise constant
solutions of the reduced system (1.1), (1.2), and (1.6) and they have the additional property that
the states on either side of the shock lie in a single phase; that is either LL and JD+ are both
less than —7= or both greater than 4^. These limit shocks also satisfy the Lax entropy or shock
conditions, that is:
when s > 0

p_ >s>p+, (1.14)

and when s < 0
n+ < 5 < n_. (1-15)

Here p± and n± are the positive and negative wave speeds defined in (1.12) and (1.13).
In section 3 we develop a set of "energy" identities for (1.1) - (1.4). These are insensitive to

the relative size of c and A. We use these estimates to obtain long time information about solutions
when e > 0 is fixed and either conservative or mildly dissipative boundary conditions are imposed
on the boundaries of a fixed domain which we take to be the interval 0 < x < 1. These identities are
not sufficient to yield convergence Theorems when e tends to zero for general initial and boundary
data.

In section 4 we present some numerical simulations. We run these with (3 = e = [i = \ = l
when c = 5, and we work with the transport formulation of the problem, namely equations (1.9) -
(1.11). Specific quarter plane problems with piece wise constant data are run and snapshots of the
solution are displayed at times t = 10,100, and 1000. All fields are plotted against the self similar
variable | . Since the solutions are constant in the region | > 1, we confine our displays to the
interval 0 < f < 1. These solutions exhibit both single phase and phase transitional shocks and also
rarefaction waves which lie in a single phase. As t tends to infinity these particular solutions to (1.9)
- (1.11), when regarded as functions of | and i, converge to solutions of the reduced system (1.1) -
(1.3) and (1.6) which are functions of | only, this point is driven home by looking at the snapshots
at time t = 1000.

2. Equilibrium Solutions and Travelling Waves.

We first turn to the equilibrium solutions of the system (1.1) - (1.4). Equations (1.1) and (1.2)
imply that the velocity v and stress a must be spatially constant; i.e.,

v = v0 and a = a0 := /xc2a0 (2.1)

and (1.4) reduces to
Dxx + Q2 (a0 + D (l - D2)) = 0 (2.2)
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where
fi* := -EJL > o. (2.3)

We concentrate first on the case c*o = 0. Here there are three constant solutions, namely D =
—1,0, and 1. There are also nonconstant solutions and these satisfy the energy identity

= Y ((& - O2 " E)
for constants E satisfying 0 < E < 1. When E = 0, the solutions of (2.4) represent equilibrium
phase transitions which monotonically connect —1 to 1 or 1 to —1 as x ranges over (—oo,oc).
When 0 < E < 1, the right hand side of (2.4) may be written as ^ {Dl - D2) {D\ - D2) where
D\ = 1 — JE11/2, D\ = 1 + Ell2, and D\ = 2 — D\. In this case the nonconstant equilibrium solutions
are periodic with half period, Zq/2, given by

L = t!l r> dp = ^! z ds
 (2 5)

1/2 " J-Di y/2-Dj- D*^Dl - D2 V Ji ^ 2 ^ ( 1 2 ) ^ 1 ^ 2 •

We note that L1/2 is monotone increasing in D\ on (0,1) and that

L1/2 (0+) = J and lim L1/2 = 00. (2.6)

The limit relation (2.6) implies that on a fixed interval, say 0 < x < 1, there are at most 2 x [^
nontrivial equilibrium solutions satisfying Dx (0) = Dx (1) = 0. 4 '5 Here [7] is the greatest integer
< 7. These oscillatory solutions are referred to as having equilibrium microstructure at zero stress.

We now look at the situation when c*o ¥" 0. If |c*o| > 5^5 the cubic ao + D (1 — D2) = 0 has only
one real root and this root is the unique bounded equilibrium solutions of (2.2). If ^ < a0 < ^
(and of0 7̂  0), there are three real roots of the cubic a0 + D (1 — D2) = 0 and each is a solution of
(2.2). In this situation there are no equilibrium phase transitions connecting the left (respectively
right) most root of the cubic to the right (respectively left) most root as x goes from minus to plus
infinity. For a$ in this parameter range there are nonconstant equilibrium solutions to (2.2) and
these satisfy the energy identity

aoD _ {1f)) = -tfE (2.7)

4 Note that this boundary condition is really a statement about the flux Q which evolves according to (1.8)2 and
at equilibrium satisfies Q = \2eDx.

5 The trivial equilibrium solutions are of course D = 1 and D = — 1.



for any E € [E\ (a 0 ) , E2 (a0)) . Here, E\ (ao) is the value of the unique positive local minimum of

— a0D and Dm[n (a0) is the location of this minima. E2 (a0) is the value of the unique local

maximum of ̂ —j—*—a0D. We note that if E\ (a0) < E < E2 (ao,), the quadratic
may be written as

(1 -
-a0D-E=-(D- D1) (D - D2) (D3 - D) (D4 - D)

—a0D-E

(2.8)

— E = 0. For
, the roots

where D\ < D2 < D$ < D4 are the four real roots of the equation ^
isk < ao < 0, the roots satisfy lim Z)34 (E) = Dm\n (a0) whereas for 0 < ao <
6 E\Ei(a0) '

satisfy lim D^2 (E) = Dm[n (a 0 ) . These last two observations imply that if a0 G (oi^-

is not equal to zero and if E = E\ (a 0) , then the nonconstant equilibrium solutions are standing
solitary waves satisfying

lim i>(*)-iWo,)
|x|-+oo [

or translates thereof. For E\ (ao) < E < E2 (ao), we get periodic equilibria which span the roots
£>2 and D3.



We now turn our attention to travelling wave solutions of (1.1) - (1.4). These are functions
of £ = £=*<. For definiteness we focus on the case where s > 0 though analogous results obtain
when s < 0. In what follows we adopt the convention that a minus subscript refers to the state at
£ = —oo and a plus the state at £ = +oo. The states at plus and minus infinity will be related via
the equilibrium relations (1.6); that is

and aT = iic2D^ [D2^ - 1J (2.9)

where 0 < \i < 1. It is easily checked that if (1.1) - (1.4) has solutions of the desired type, then for
every £ G (—oo, oo)

«(u(fl-«_) = -(«(£)-!;_) (2.10)
/ /<*\ \ / / £\ \ /O 1 1 \

a(Z) = c2(u(Z)-D((i)) (2.12)

and

(A — s ) Dtt + sD* = . (2.13)

Equations (2.10) and (2.11) are first integrals of the travelling wave version of (1.1) and (1.2) and
they imply that the states at £ = ±oc obey the Rankine-Hugoniot equations

5 (w+ — uJ) = — (v+ — V-), s (v+ — V-) = — (a+ — <7_), and s2 = — (2.14)

where, of course, u^cr^, and D^ satisfy (2.9). Equations (2.10) - (2.13) may be combined to yield

-D-). (2.15)

where D (•) satisfies

(A2 - s2) JD« + sDi = fa (D - D.) (D2 + D.D + DI-1- f ) (2.16)
v ' \ \x\cz — sl))

for all £ G (—00,00). In what follows we shall restrict our attention to the situation where

9 / S2 \i/2

-wAl + 7^^)) <D-^~1- (2-1?)
Exactly the same arguments apply to the situation where

. - 2 / s2 \ 1 / 2



We shall also assume that A > c. Since s satisfies

u+ — u_

this condition on A guarantees that A2 — s2 > 0.
We note that if (2.17) holds, then the quadratic D2 + D.D + Di - 1 -

roots

Dr := - - ^ -
\

D+ := —T"2 1 +
3D2.

/x (c2 - s2)

(2.19)

has two real

(2.20)

(2.21)

(2.22)

A variant of the theorem stated below may be found in Greenberg [7]. Once stated, the result
is a simple exercise to prove.

Theorem 2.1. For 0 < s there are travelling wave solutions of (2.21) of the desired type. These
solutions satisfy the reduced equation

Ds = K(D- D.) (D+ - D) (2.23)

provided

,(c2-s2) 4 ^ ~ + ' ~ 2 ^ \

and in this parameter range (2.16) reduces to

(\2 _ s
2\ D + SD = fly (£) _ £)_) (£) - D7) (£) - D+) .

The desired phase transitions are solutions of (2.21) satisfying
1

lim D (f) = D- when lim D (£) = £>+ > —=.

1/2

and -D_ is given parametrically in terms of s by

\
i +

(2.24)

(2.25)
, (c2 - s2) 6/?/x (A2 - s 2 ) '

The other roots Dj and D+ are computed by inserting (2.25) into (2.20). It is easily verified that
at s = 0+

dDj
r, and

ds

dD
.!/2ds 12A(2/fy)1/2 ds 12A(2/?/x)*

and thus for s positive and small enough the roots Di and D+ satisfy 0 < Dj and D+ < 1



The solutions characterized by the preceding theorem are only part of the story on elementary
phase change solutions when £L < — 1 and s > 0. Coexisting with these solutions is an additional
one parameter family of solutions which satisfy LL < - 1 and Z)+ = V{D.) > 1. For these solutions
5 is again given by

^ /((/n2 ±n n _ i\
(2.26)0< 5= -7=

yjl + ii (D% + D+D- + D1-1)

To establish the existence of these solutions one writes (2.21) as the first order system

= v and v$ = —sv
A2 - s 2 A2 - s 2 {D-D.) (D-DI)(D+-D) (2.27)

where Dj = — (D_ + D+) and s is given by (2.26). For a fixed value of D_ satisfying
—1 — S < D- < — 1 with 0 < 5 small enough we note that when D+ = — D_ the unstable manifold
of (2.27) through (£>_,0) with D > D_ connects to (D/,0) = (0,0), whereas when D+ = 1, the
unstable manifold through (D_,0), with D > £L satisfies v (•) > 0 and lim D(£) = +oo. These

two facts, together with an elementary continuity or shooting argument, guarantee the existence
of a D+ e (1,— DJ) such that the unstable manifolds through (£>-,0) with D > D- satisfies
lim (D(£),v(£)) = (D+,0). A picture of this manifold is shown below for the system (2.27) when

P = n = A = 1, c = \ and D_ = -1.2. In this case D+ = 1.02775... and s = .2282....

unstable manifold v vs. D

-1.5
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When D- > 1 and s > 0 we obtain two one parameter families of solutions representing change
of phase waves. One family satisfies - 1 < D+ < - ^ g and the other - L L < D+ < - 1 . We also
obtain analogous phase transitions when 5 < 0.

That all of these solutions represent undercompressive shocks of the type described in Section 1
follows from (1.12)and (2.26).

We now turn our attention to the existence of strong shocks which lie in a single phase. For
definiteness we take the phase to be the region D > ^ though analogous results are true for the
region D < — 4-. We let D+ and D- be two numbers satisfying

c D + < LL, (2.28)

u± and a± be as defined in (2.9), and let s be given by (2.26).

We again assume c < A. This guarantees A2 - s2 > 0. Finally we let D* < -JD_ be the third
root of the cubic equation

a. 4zl ( ) ^
c s

We next note that (2.13) and (2.15) may be written as the first order system

D, = v and v, = - ^ ? p y + p ^ y P " D.) (D - D+) (D - D.) (2.30)

where again D* < —D- and 4= < D+ < D-.
The critical points of (2.29) are given by

<)) , (Z?+,0), and (D.,0).

The first and third critical points are saddle points while the second is either a stable node or a stable
spiral point. The former situation is true if wA2_g2) > /?/i (-D- — D+) (D+ — D*) and the latter if

4(A2-S2) 5* /̂ M {P- ~" -D+) (-D+ — -D*). In either situation we shall now show there is a connecting
orbit from (£>_,0) to (D+,0). We let v = vu (D), D < £L be the unstable manifold through
(JD_,0) . It satisfies

vtt (D) ~ 7+(Z> - JD_), D+«D<D. (2.31)

where

11



and
^ < o (2.33)
dD2

so long as

^(D- D.) (D - D+) (D - D.) < vu (D) < 0, D < D.. (2.34)
s

The energy

^ (0 ~ n # - 2 T r ( ° P - - « ) ( « - ^+) (s " ̂ ) rfs + J«2 P (0) (2-35)

associated with any solution on this manifold satisfies

lim E ( 0 = .J* 2, [
D~ (D. - s ) ( s - D+) (s - £>.) dS (2.36)

and

and the right hand side of (2.37) is negative so long as (2.34) holds. Since both £L and D* <
are local maxima of the potential energy

flu rD

= ( A 2_ S 2) JD+JD+ ( ) ( +) ( )
satisfying

P(D.)>P(D-) (2.39)

the identities (2.36) and (2.37) imply that solutions on the unstable manifold v = vu (D) with
D < D- are in the basin of attraction of (D+, 0) and this guarantees the existence of the connecting
orbit. These orbits are the strong shock solutions when 4? < D+ < D_. The same argument yields
shocks with s given by (2.27) and £L < D+ < =fe as well as shocks in either phase when 5 < 0.

That the Lax conditions (1.14) and (1.15) hold for these strong shocks follows from (2.26) and

the fact that the function CM VSD2-I JS i n c r e a s i n g o n D > i This concludes Section 2.

3. Large Time Behavior of Solutions to (1.1) - (1*4)

In this section we consider the large time behavior of solutions to (1.1) - (1.4). We assume the
existence of sufficiently regular solutions to these equations defined on the domain

12



{(x,t) I 0 < x < 1 and 0 < t} . Initial conditions for D, Du v, and a are prescribed at t = 0 and at
the boundaries we assume

Dx(0
+,t)=Dx(l-,t)=06 (3.1)

and
a (o+,t) - tfou (0+,t) = a (l~,t) + Kit; ( l" , t ) = 0. (3.2)

The constants K^ i = 0 or 1, in (3.2) are non-negative. When 0 < K{ < oo these boundary
conditions are dissipative and they guarantee that a (0+,t), v (0+ ,t), a ( l~ , t ) , and v (l~,t) are
in L2[0, oo). The limiting cases where Ki = 0 or oo are referred to as energy conserving conditions
and when either holds they guarantee that the mechanical energy flux, av, vanishes at the point in
questions.

Our main result is if (3.1) and (3.2) hold, then as t tends to infinity a and v converge
to zero and D converges to a function DQQ (•) which satisfies

AVLU* + P^Doo (l-Dl)=0, 0 < x < 1 (3.3)

and the boundary conditions (3.1).
We shall first establish this result when the constants Ki satisfy 0 < Ki < oo. The same result

obtains when a vanishes at one of the endpoints and v vanishes at the other. When v vanishes at
both endpoints we obtain instead that a = (Too, a constant, and D^ satisfies

pan = JPfiDn (pi, - l) - cWAx,,,, 0 < x < 1

and (3.1).

If we insert (1.3) into (1.1) we see that the original system may be rewritten as

| - vx = - A , (3.4)

vt-ax = 0, (3.5)
and

c2e2 (A, - A2Dxx) + c2eDt + <?PnD (D2 - l) = /3a. (3.6)
We also note that the time derivatives dt, vt, and Dt satisfy the differentiated version of (3.4) -
(3.6), namely the system

^ - v^ = - A t , (3.7)

vtt - °tx = 0, (3.8)
6 Once again this boundary condition is equivalent to the condition that Q vanishes at x = 0+ and x = 1~.

13



and
c V (Dm - A2Dtxx) + chDtt = fa + c2/?/x (l - 3D2) Dt7 (3.9)

If we now multiply (3.4) by pa, (3.5) by 0v, and (3.6) by Dt and add the resulting expressions
we obtain the identity

(3.10)

ox

Similarly, multiplying (3.7) by f3at, (3.8) by 0vt, and (3.9) by Da and adding yields

' X ' ' (3.11)

- — {Paw + c2A2e2At Ax} + c2eDl = c2/3n (1 - 3D2) A At-

The identity (3.10), the boundary condition (3.1), and the fact that when 0 < K{ < oo equation
(3.2) implies that

ov (l-,«) = - i (jf,«» ( l- , t ) + ^ ^ ) , (3.12)

and

av (0+,t) = \

all combine to yield

av (0+,t) = \ [KQJ (0\t) + 2 - ^ J , (3.13)

7At t = 0 we prescribe a, i>, £> and Dt on 0 < x < 1 and we assume these data are compatible with the boundary
conditions (3.1) and (3.2). The data for the time differentiated system (3.7) - (3.9) is computed from the previously
assigned data and the equation (3.4) - (3.6). We also assume that the initial distributions of cr, v,D, and Dt are
compatible with the time differentiated version of the boundary conditions (3.1) and (3.2).

14



and

(3.15)

Assuming smooth enough initial data so that the right hand side of (3.15) is finite we see that for
all t > 0, D(-,t) is in L4 [0,1] with derivative Dx(-,t) in L2 [0,1] and that these quantities are
bounded independently of t. This observation in turn implies that for each t > 0, J9(-,t) is in
LQQ [0,1] with a bound which is independent of t.

We now turn our attention to the identity (3.11). We focus first on the right hand side of the
identity. We note that

DtDu < ^

where
1-3Z)2 = sup

locl o c 0<rr<l
0<t

2e

1-3L>2

A2 (3.16)

(3.17)

is, by our remark in the last paragraph, finite with a bound depending only on the right hand side
of (3.15) and the parameters 0 < c, 0 < A, 0 < /?, 0 < c, and 0 < /x < 1. If we now integrate (3.11)
over [0,1], make use of the fact that (3.1) and (3.2) (with 0 < K{ < oo) imply that

Dxt(0
+,t)=Dxt(l-,t)=0,

and

(3.18)

(3.19)

(3.20)

15



and exploit (3.16) we obtain

(3.21)

Integration of (3.21) also yields

HIKov
2

s(O
+,s)

Ko '])
(3.22)

We assume that the data at i = 0+ are such that the first integral on the right hand side
of (3.22) is finite and this assumption, together with the observation that (3.15) implies that
Dt € 1/2 ([0,1] x [0, oo)) guarantees the boundedness of the left hand side of (3.22) indepen-
dently of t > 0. Additionally, (3.15) and (3.22) along with (3.4) - (3.6) imply that for each
t > 0 a, v, ou vt, ax, vx, D, Dt, Dx, Dtu Dtx, and Dxx are bounded in L2 [0,1] independent of t.

For each n = 1,2,... we define the functions

(crn, vn, Dn) (x, t) := (a, v, D) (x, n +1), 0 < x < 1 and t > 0, (3.23)

and note that they satisfy (3.4) - (3.6) while their time derivatives satisfy (3.7) - (3.9). These
functions satisfy the same L<i [0,1] and L^ [0,1] bounds that obtain for a, t;,and D. Moreover,

16



(3.15) and (3.22) imply that as n -» oo L>n,t and Dn& converge strongly to zero in L2 ([0,1] x [0, oo))
while the traces of <7n,an>t, vn> and vnit evaluated at x = 0+ and x = 1~ converge strongly to zero
in L2[0, oo). We also have that the traces of an and vn at x = 0+ and x = 1" converge uniformly
to zero; i.e., limsup [\vn\ + \an\] (a,t) = 0 where a = 0+ or 1". These observations imply that we

may, without loss in generality, assume that for any T > 1 the functions (crn,vn) converge strongly
in L2 ([0,1] x [0,T]) to functions (aoo> VQO) which satisfy

c^oot - <W = 0 and voot-aoox = 0, 0 < x < 1 and 0 < t < T (3.24)

and the overdetermined boundary conditions

() ( ) = 0, 0 < * < T. (3.25)

The boundary conditions along with T > 1 and the fact that (3.24) is equivalent to the characteristic
system

(<7oo + Voo)t - (doc + Voo)x = 0 and ( a ^ - v o o) t + {a^ - Voo)^ = 0

imply that a^ and v^ must be zero at t = 0+ and this in turn guarantees that ((Joc^oo) = (0,0)
on L2 ([0,1] x [0,T]) where again T > 1 is arbitrary.

In like manner we may assume, without loss in generality, that for any T > 1 the functions Dn

converge strongly in £2 ([0,1] x [0,T]) to a function A ^ which satisfies the same bounds as our
base solution D and the additional relations:

Doot = Doou = 0, 0 < x < 1 and 0 < t < T (3.26)

V + /Wx> (! " - ° y = 0i 0 < x < 1 (3.27)
and

DooX (0+) = DooX ( r ) = 0. (3.28)

As noted previously, the conclusions about the large time behavior are valid if we replace the
dissipative boundary conditions by the limit cases where K{ = 0 or 00 and a vanishes at least one
boundary and v at the other. For definiteness, we shall illustrate this when

0. (3.29)

Again we take T > 1 to be arbitrary. The a priori information on the solution guarantees the
existence of limit functions CTQO, ̂ QO, and Doo which satisfy

Doo,t = 0, (3.30)
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- l) - cWDo,* , , (3.31)

and
^oot - ^oox = 0 and Uoot - o^x = 0 (3.32)

for 0 < x < 1 and 0 < t < T and boundary conditions

cTOo(0+,t)=voo(r,t)=0, 0<t<T (3.33)

and
DooX (0+ , t) = Doo, ( I" , t) = 0, 0 < t < T.

Equations (3.30) and (3.31) imply that - | ^ = 0, 0 < x < 1 and 0 < t < T and this, when

combined with (3.32) 1? guarantees that

(Too = Eoo (x), 0 < x < 1 (3.34)

and
Uoc = K o W , 0 < t < T . (3.35)

Additionally, (3.32)2, (3.34), and (3.35) imply that

Soo = Aoo + JBOOX and V^ = C^ + S^ t (3.36)

where A^, .Boo, Coo are constants. Finally, (3.33) and (3.36) imply that A^ = B ^ = C^ = 0 which
is the desired result. If instead of (3.33)i we impose v = 0 at x = 0+ we obtain C^ = £<x> = 0 and
that CFQO = AQO, an arbitrary constant.

Finally, we note that (3.14) implies that the energy

) q t ( y } ( x , t ) < l X (3.37)

is nonnegative and monotone decreasing and in the cases where a^ and ôo are zero the energy
converges as t —» oo to

where fi2 = J ^ and D^ is a solution of (3.27) and (3.28). The issue before us is the limiting value
of the integral

+ ^ (Dl - l)2^ (x) dx. (3.39)
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We note that if [-1 = 0, then E^ must be zero and D^ must be identically equal to either plus
r r l

or minus one, whereas if I ~ I is a positive integer, there are exactly I ^ I + 1 possible values for the

limit JBQOJ namely the numbers

0, if ifc = 0

2*'2nkDhk J^ ̂ 2-D?,, ( i + . v n r a . + — i ^ — • - + , i <*<[-]

where JDi^ G (0,1) is the unique positive solution of

o}l2k r1 d<?

LJl f as = i. (3.41)

The above identities follow from the observation that solutions of (3.27) and (3.28) have the
first integral

Dlx = ft2 (2 - Dlk - D2) (D2,, - D2) (3.42)

where D f̂c € (0,1). Solutions associated with (3.42) are periodic with half period, Li/2, given by

fDi t AT) O1/2 t\ fjq

and the identity (3.41) guarantees that Doox (1) = 0. Corresponding to the solution of (3.41), there
are exactly two equilibrium solutions of (3.27) and (3.28), one satisfying Doo (0) = D\^ and the
other satisfying D^ (0) = —Dijk, and each have exactly k interior zeros where k = 1,2,... [^1 . The
estimates available to us give no information on the basin of attraction of each of these possible
equilibria. This concludes section 3.

4. Numerical Simulations

In this section we present some numerical simulations for (1.1) - (1.3) and (1.8). All simulations
were run with the following parameter values:

/? = /x = 6 = A = l and c = - . (4.1)

With this choice, (1.6) becomes

u = D3 and a = .25D (D2 - l ) . (4.2)
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The algorithm we chose to integrate the equations was a split advection-reaction scheme. During
the first halfstep of the update we passively advect m\ — m4 and C according to

mu - - m l x = 0 and m2t + -m 2 x = 0, (4.3)

mto - m3x = 0 and m4t + m4x = 0 (4.4)

and

Ct = 0. (4.5)

Prom the updated fields m\ — ra4 and C we compute the intermediate updates for u,v,D, and
Q from (1.9). These serve as initial conditions for the second halfstep where we solve

ut = vt = 0 (4.6)

and

Dt = C, Qt = - Q , and Ct = u - D3 - C (4.7)

From this update we compute m\ — m4 using (1.10) and repeat the algorithm. We used second
order updates for both the advection and reaction stages and chose At = Ax = 0.1 throughout.
Both of the simulations we shall show involved solving the system in the quarter plane x > 0 and
t > 0 and both were run with the constant boundary conditions:

D (0+, t) = -1.2 and u (o+, t) = (-1.2)3 . (4.8)

These boundary conditions were imposed during the advection stage through the use of (1.9)i and
(1.9)3 which enables us to compute boundary updates for ra2 and m4 from those of mi and m3.

The first simulation was run with the initial conditions

D (x, 0+) = .6, u (x, 0+) = (.6)3 , and (V, Q, C) (x, 0+) = (0,0,0), 0 < x (4.9)

and the second was run with

= 2 , and (V,Q,C) = (0,0,0), 0 < x. (4.10)

Both simulations exhibit the same phase change under compressive shock spanning the states £L =
—1.2 and £>+ = 1.0609... and propagating with speed si = .2378. . . . In the first simulation, the
state D = 1.0609... is connected to D = .6 by a single phase shock which propagates at speed
s2 = .3636...
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It is worth noting that though the state D = .6 lies in the phase D > 4~, the shock connecting
D = 1.0609... to D = .6 is not monotone decreasing. This lack of monotonicity is because the
point (D, V) = (.6,0) is a spiral attractor of the system (2.30).

In the second simulation the state D = 1.0609... connects to D = 2 a via a rarefaction wave.
The local wave speeds activated by this wave comprise the interval [.4195, .4444]. All of the features
described above are easily seen in the snapshots at time = 1000.
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