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i 1 Introduction

Several models in phase transitions give rise to geometric equations relating the
i normal velocity of the interface to its curvature. The curvature term is related

to surface tension and the surface energy is often an anisotropic function of the
normal direction, indicating the prefered directions of the underlying crystal
structure.

When the surface energy is isotropic, the resulting equation is the mean
! curvature flow and a variety of techniques have been used to analyze this

flow. Gage & Hamilton [15] and Grayson [20] showed that a smooth planar
embedded curve first becomes convex and then smoothly shrinks to a point in
finite time. Huisken [23] generalized this result showing that any convex set,
in any space dimension, shrinks to a point smoothly. However, in general, in
dimensions higher than two, embedded hypersurfaces may develop singularities
and a weak formulation of the mean curvature flow is necessary to define the
subsequent evolution after the onset of singularities. Brakke [9] was the first
to study the mean curvature flow past the singularities. Using varifolds in
geometric measure theory, he constructed global generalized solutions that are
not necessarily unique. Almgren, Taylor & Wang [2] used a time-step energy
minimization approach together with geometric measure theory to analyze a
very general class of equations.

I An alternate approach, initially suggested in the physics literature by Ohta,
Jasnaw & Kawasaki [25], for numerical calculations by Sethian [27] and Osher
&; Sethian [26], represents the evolving surfaces as the level set of an auxiliary

| function solving an appropriate nonlinear differential equation. This level-set
' approach has been extensively developed by Chen, Giga & Goto [10] and Evans

& Spruck [13]. Evolution of hypersurfaces with codimension greater than one
! is studied by Ambrosio & Soner [3], and intrinsic definitions were developed

by Soner [28] and Barles, Soner & Souganidis [8]. Since the level set equations
. are degenarate parabolic, the theory of viscosity solutions by Crandall & Lions
[ [12] is used to define the level set solutions. For more information on viscosity

solutions see the survey by Crandall, Ishii & Lions [11] and the book by Fleming
i & Soner [14].

When the surface energy is convex, the evolution law is still degenerate
. parabolic and much of the above theory generalizes to these equations as well.

' Non-smooth energies are also of interest, and an interesting class of surface
energies - called crystalline energies - have level sets that are polygonal. For

f these energies, the corresponding solutions are also polygonal and the evolu-
tion law is a system of ordinary differential equations for the length of each
side of the solution (see equations (2.3) below). An excellent introduction to



crystalline motion is given in the recent book of Gurtin [22] and in the sur-
veys of Taylor [31] and Taylor, Cahn & Handwerker [33]. Short time existence
and the other properties of the planar solutions are proved by Angenent &
Gurtin [4, 5] and Taylor [32]. Almgren k Taylor [1] showed that the crys-
talline flow is consistent with the variational approach developed in [2]. In a
recent preprint, Giga, Gurtin & Mathias [17] studies the classical solutions in
three space dimensions and a deep viscosity theory for graph-like solutions of
very general geometric equations have been developed by Giga & Giga [16]
and the references therein.

In this paper, we consider a two dimensional problem with a crystalline
energy whose level sets are regular n-polygons and show the convergence of
these solutions to the unique smooth solution of the mean curvature flow. This
convergence has already been proved by Girao [18] for convex solutions and
by Girao & Kohn [19] for graph-like solutions. They also obtained the rate of
convergence. Here we generalize their convergence result to general curves that
are not necessarily convex. Our proof is a set theoretic analogue of the weak
viscosity approach of Barles & Perthame [6, 7]. To describe our approach, let
{^n(*)}te[o,T) be a sequence of open polygons each solving a crystalline flow.
We define two possible limits

fo := limsup fln(s),

, Q(t) := liminf SlJs),

(precise definitions are given in (4.2) below). Then, with only L°° estimates,
the Barles-Perthame approach enables us to show that fi is a viscosity subsolu-
tion of the mean curvature flow, and 0 is a viscosity supersolution of the mean
curvature flow. Since, in two space dimensions, there is a smooth solution to

! the mean curvature flow, we show that both of these sets are equal to the
* smooth solution. This yields the convergence of Qn in the Hausdorff topology.

J The paper is organized as follows: in the next section, we give the definition
{ of crystalline motion and prove the existence of a regular solution in §3. We

define the weak viscosity limits in §4 and prove their viscosity properties.
| Converegnce is proved in the final section. Some properties of the viscosity
• solutions are gathered in Appendix.



2 Crystalline motion and n-smooth polygons.

Here we recall several standard definitions and equations. Gurtin's book [22]
provides an excellent introduction to this subject. Also, see [30, 32].

2.1 Surface energy

All geometric flows that we consider are, formally, the gradient flows of the
surface energy functional

(2.1) I(T) := jv /(n) ds,

where T is a Jordan curve in 7£2, n is its outward unit normal vector and
/ : Sl —> [0, oo) is the surface energy function. It is customary to extend / to
the whole V? as a homogenous of degree one function:

f{x) = |s|/ (f) , Vz # 0,
\ I X I /

and define
:= / (cos0 ,s in0) .

Then the twice differentiability of / , on 7£2\{0}, is equivalent to the twice
differentiability of / , and / is convex if and only if /(0) + fo$(9) > 0 for all 0.

The Frank diagram of the surface energy / is simply the polar graph of f~l

or, equivalently, it is the one-level set of / , i.e.,

JF(/) : = {x e ft2
 : /(x) = l} = {r(cos0,sin0) : r /(0) = 1}.

When the surface tension / is smooth and convex, the gradient flow for the
functional I has the form:

(2.2) mV = (f(0) + fee(9))K,

where V, K, (cos 0, sin 0) are, respectively, the normal velocity, the curvature,
and the normal vector of the solution F(t), and the given non-negative function
(3 is the kinetic coefficient. The mean curvature flow corresponds to / = /3 = 1,
and the other cases with strictly convex surface energy are qualitatively very
similar to the mean curvature flow.

If / is not convex, we need to modify both of / and /? to obtain the correct
relaxed equation. This relaxation procedure and the analytical properties of
the relaxed equation was studied by Gurtin, Soner &; Souganidis [21] and,
independently, by Ohnuma &; Sato [24]. The common critical hypothesis in
these works is the continuous differentiablity of the relaxed surface energy
function.



2.2 Crystalline flow

Non-smooth energy functions are of interest in models for crystal growth, as it
is well known that solid crystals can exist in polygonal shapes. An interesting
class of non-smooth energies are the crystalline energies. The Prank diagram
of crystalline energies are polygons.

Although the crystalline energies are only Lipschitz continuous, an appropri-
ate weak formulation of (2.2) is possible and is called the crystalline flow; see
[22, §12.5] for the precise definition. The crystalline flow was derived by Taylor
[30] and, independently, from thermodynamical considerations by Angenent &
Gurtin [4].

Consider a crytalline energy function / and let G := { 0 I , . . . , 0 J V } be the
angles corresponding to the corner points of the Frank digram of / . Suppose
that the curve F is locally smooth around a point with a normal angle 9* $. ©,
say 9* € (0i, 92). We can, then, decrease the energy I(T) of F, by infinitesimally
alternating the normal angle between 9\ and 02- Therefore, for crystalline
energies, we only consider polygonal solutions with normal angles taking values
in 6 .

In this paper, for simplicity, we only consider crytalline energies whose Frank
diagrams are regular n-polygons, and kinetic coefficient (3=1. Then

and the evolution of side z, Li(t) is governed by

(2.3)

where Vi(t), /*(£), and Xu are, respectively, the normal velocity, the length, and
I the discrete curvature of Li(t). The discrete curvature x% G {—1,0, +1} and
i it is equal to +1 if both edges of Li(t) have positive curvature, and it is equal

to —1 if both edges of Li(t) have negative curvature, and it is equal to zero
f otherwise; see figure 1.

We close this subsection by stating the evolution rule for the length, /*(*), of
f the sides of a solution of the crystalline flow:

This equation follows from (2.3) and geometry; see [22, (12.39)].
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2-3 n-smooth polygons

We continue by defining the notion of a "good" solutions of (2.3). For a polygon
F, let N(T) be the total number of sides.

Definition 2.1 We say that a closed polygon F is n-smooth, if N(T) is finite
and

(1) F encloses a simply-connected, bounded, open subset oflZ2,

(2) for every i = 1, . . . , N(T), the normal angle Qi of the side i belongs to Qn,

(3) \$i - 0i_!| = 27r/n, for every i = 1,. . . , N(T).

The third condition is formally equivalent to the "discrete continuity" of the
normal angle, which explains the term "smooth".

By definition, any solution of (2.3) satisfies the second condition.

Let

N+(T) := { i 6 { l , . , J V ( r ) } : * = ! } ,

7V°(r) := { t € {

Then for any n-smooth polygon F,

(2.5) N+(T)-N-(T)=
1=1



is an identity which is the discrete version of

/ K ds = 2TT,
Jc

for a smooth Jordan curve C.

3 Regularity.

In this section, we will show that there is a unique n-smooth solution of (2.3)
which evolves smoothly in time (i.e. remains n-smooth) and shrinks to a point
in finite time. This is the discrete analogue of a theorem of Grayson [20]
and Gage & Hamilton [15]. A more general statement is proved by Taylor
[32, Theorem 3.1]. For reader's convenience, we provide all the details of this
result.

Theorem 3.1 (Taylor [32]) Let Fo be an n-smooth polygon enclosing an open
set QQ. Then there exist n-smooth polygons {F(i)}tG[o,T) solving (2.3) with the
initial condition F(0) = Fo. Moreover F(i) shrinks to a point, ast^T, and

(3.1) T = | f lo1

2ntan(7r/n)#

i

Remark 3.2 Uniqueness follows from Gurtin [22, §12] and Taylor [32].

We start with several results towards the proof of Theorem 3.1.

! Clearly, for a short time there is a solution F(i) satisfying initial data. Let
t\ > 0 be the first time this solution is no longer n-smooth. Since, by definition,

I the normal angles of any solution take values in 6 n (c.f. §2.2), there are two
| possibilities at t\\ either the length of one or more sides tend to zero, or the

solution self-intersects at t\. We will first show that the latter does not happen.
I Our proof is very similar to [32, Theorem 3.2(1)].
I
y Lemma 3.3 Let ti and {F(i) = #^(*)}t€[o,ti) be as above. Then

1 liminfinf {/*(*) : 5 € [0,t], t = 1,.. . ,N(F(0))} = 0.

r
1 Proof. Suppose to the contrary. Then,
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I
Then, by (2.4), each U(-) is smooth in (0,*i) and therefore

t\ti

I exists in the Hausdorff topology. By the definition of tl5 Tfa) self-intersects.
Moreover, for all t e [0,<i],

I 2TT

I (3.2) 10.-0.^ = —, i = i , . . . , jv(r(*)) = jv(r(o)),
n

\ so that at t\ there are two possibilities: either two sides or two corner points
| touch each other. Note that, by (3.2), if a corner point touches a side, then

necessarily two sides also touch each other.
S Case 1. Suppose that Li fa) intersects at Ljfa).

Then, a straightforward analysis argument shows that (xuXj) — (1> ""1) o r

! (XuXj) = (~~1>1)- Since the analysis of both cases are symmetric, we may
1 assume (x» Xj) = (h - ! ) • Then, Ufa) < Ijfa).

f Subcase (1). Ufa) < ljfa).

Then for some S > 0, U(t) < lj(t) in fa — <J,ti], and therefore,

I • But a(t) is equal to the time derivative of the distance between Li(t) and Lj(t)
and this distance is equal to zero at ti. Hence this case is not possible.

I Subcase (2). Ufa) = Ijfa).

Then, the sides adjacent to Li(t) and Lj(t) also touch each other at time

J ti, and therefore, there has to be two sides satisfying the assumptions of the
previous subcase, thus yielding a contradiction.

f Case 2. Two corner points touch each other.

* Let the intersection, Xi(t) of Li(t) and Li+i(t) be the same as the intersection
Xj(t) of the sides £j-i(i) and Lj(t). Then the angle between Li+i(t) and Lj(t)

I and the one between Li(t) and Lj-i(t) are equal to 27r/n. By rotation, we may
' assume that Li(t) and Lj(t) are parallel to the x-axis, and Li+1(t) is aligned

L
with the Lj-i(t) (c.f. Figure 2). Moreover, Xk > 0 for k = i,i + l,j,j — 1.
Let Vx.(t) and VXj(t) be the velocity vectors of the points Xi(t) and Xj(t),
respectively. Then,

F ' (0,l)-(Vx.-VXi)>0,

t and the inequality is strict unless Xk = 0 for all A: = z, z + 1, j , j — 1. Since
^i(*i) = Xjfa)> we conclude that Xk = 0 for all A: = z, i + 1, j , j — 1. But, then,

[ ^i(*) =
 ^ZJ(*)

 = 0 and this contradicts with the definition of t\. n



f

I

Jill
I I I I

Figure 2

Our next result is

Lemma 3.4 Lett\ and{T(t) = dfi(£)}^[o,t) be as above. Suppose t\ is strictly
less than the extinction time. Then as t —>t\} Q(t) converges to an n-smooth
polygon £l(ti) in the Hausdorff topology.

Proof. By the previous lemma, there is a side ?* such that

liminf/**(*) = 0.

The main step in this proof is to show Xi* = 0- So we suppose that it is equal
to +1 or — 1. Since the analysis of both cases are similar, we may assume that
Xi* = 1. Set 9 = 2TT/U.

1. In this step we will show that /$•(£) is continuous on [0,ii]. For future
references, we will show that, for any j , Ij(-) is continuous on [0,£i]. By (2.4),
all sides remain bounded and we set

B := limsupZj(t).

Suppose that
B > liminfZ^i) := A.

Since Zj(-) is continuous in [0,<i), it crosses (A + B)/2 infinitely many times
before t\. In particular, by the mean value theorem, there is a sequence tn

such that

However, by (2.4),

l'{tn) l ( ) He/2)
for some constant C independent of n. Hence A = B.
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1

2. The step, closely follows [32, Proposition 3.1].

Since t\ is strictly less than the extinction time, there are at least two sides
which have non-zero length at time t\. Hence there are two sides LPo and LPl

such that p0 < i* < pi, lPo(t) and lPl(t) are uniformly positive in (0, ti) and

limZ;(t) = 0, \/j = po + 1, •.. ,Pi - I-

For any j , let Cj(t) be the line extending Lj(t), Xj+i(t) be the intersection
between Lj(t) and LJ+i(t) and 6j be the angle between the outward normal
and the horizontal axis. Then, as 11 *i, all x P o + i ( i ) , . . . , xq(t) converge to the
same point x*.

We analyze several cases separately.

Case 1. Xj ¥" 0 for all j = p0 + 1 , . . . ,px - 1.

Since we have assumed that Xi* = 1, Xj = 1 f° r a ^ j = Po +1> • • • 5 Pi — 1 and

x* e p | P) {y G TZ2 : (y — Xj(t)) • (cos0j,sin0j) < O}.
0<t<ti j=p0

By geometry, |0Po - 0Pl\ < n.

Subcase 1. \9P0 - 0Pl\ < ?r.

Let y(i) be the intersection between CPo(t) and CPl(t). We define

Then dPo+1{t) < d(t) for all t € [0,ix) and dPo+i(*i) = d(ti) = 0. Moreover,
is Lipschitz continuous in t and

Hence,

< T 2 t a n ( ^ 2 ) d r = dpo+1(t) < d(t) < Uplift -t) Vi <0
Jt lpo+i

This contradicts the fact lPo+1(t) —f 0 as 1

5«6ca5e «. |5Po - 6q\ = TT.

We repeat the argument used in the previous case with

d(t) = dist(£P0(t),£Pl(t)),
dpo+1(t) = dist(LP0+1(*),£Pl(t)).

9



Case 2. Xq = 0 exactly for one q € {po + 1 , . . . ,pi - 1}.

Then, Xj = 1 for J = Po + 1, • • •,9 - 1 and Xj = - 1 for j = g + 1 , . . . ,pi - 1,
or Xj = - 1 for j = Po + 1, • • •, Q ~ 1 and Xj = 1 for 3 = g + 1 , . . . ,Pi - 1.
Since the arguments in both cases are similar, without loss of generality, we
only consider the first possibility.

If \9P0 — 6q\ < 7T, we argue as in Case 1, using side Lg(t) instead of LPl(t).
We also argue similarly, when \9q — 0Pl\ < TT. Therefore we may assume that
\8Po — 0g\ > 7T and that there is a side Lj(t) with q < j <pi, which is parallel
to LPo(t). Let £ be the line going through x* and parallel to both LPo(t) and
Lj(t). Set

d(t) = dist(LP0(t),C) - dist(Lj(t),£).

Then d(*i) = 0 and since \6Po - 0q\ > ir, d(t) > 0 for all (0, ti): see Figure 3.

Figure 3: Case 2

However, this contradicts the fact that d'(t) > 0 for all t sufficiently close to

Case 3. Xj = 0 f° r more than one side.

Suppose that Xq a n d Xj a r e equal to zero. Then x* belongs to both Lq(t) and
Lj(t) for all £, and therefore, j = q — 1 ov q+1. Since lq(t) converges to zero, at
least one side adjacent to Lq(t) has non-zero discrete curvature. Hence there
are two sides with zero discrete curvature and they are adjacent to each other.
As in Case i, all the other sides between LPo(t) and LPl(t) satisfy Xk = 1 and
we argue as in Case 1.

Therefore the case Xi* = 1 is not possible. An entirely similar argument
shows that the case x%* = ~~1 is n ° t possible neither. Hence Xi* = 0 and Li*_i
and Lp+i are parallel and the normal angle of the "new" side is equal to that
of these two ones. D

We are now in a position to prove Theorem 3.1.

Proof of Theorem 3.1.

10
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Since F(0) is n-smooth, for short time, there is an n-smooth solution T(t).
Moreover, by Lemma 3.4, this solution remains n-smooth until one side of T(t)
vanishes. Let t\ be the first time a side vanishes. Then, T(t) is n-smooth and
N(T(t)) = N(T(0)) for all t e [0,*i). By Lemma 3.3, Tfa) is also n-smooth
and N(T(ti)) < N(F(0)) - 2. We repeat this procedure starting from r(*i).
Since 7V(F(0)) is finite, we have only to repeat finitely many times.

Let t\ < £2 < - • - < ^N be the times at which a side vanishes. Let tjsr > 0 be
the time when N~(r(tN)) = N°(T(tN)) = 0. Then, by (2.5), N+(T(tN)) = n
and T(t) is convex for all t > £#.

We see that T(t) shrinks to a point at finite time. Indeed, by (2.5), we can
calculate the rate of change of

2 tan - + 2^ 2 tan -
n ieN-(r{t)) n

7T
= —2ntan—.

n

Prom the foregoing calculation, we conclude that the solution shrinks to a
point at some time T. Moreover, at time T

--r,
n

and (3.1) follows. D

i 4 Weak Viscosity Limits,
i
? In this section, we will study the properties of the set-theoretic analogue of

the weak viscosity limits of Barles & Perthame [6, 7]. Let {Tn(t)}te[o9T) be a
f sequence of n-smooth solutions of (2.3), and let £ln(t) be the open set enclosed
I by Tn(t). Assume that there is a constant R > 0, independent of n, satisfying

f (4.1) nn(t)cB(Q,R).

1 where B(x,r) = {y eH2 : \y - x\ < r}. Following [7, 28], for t € [0,T), we
I • define

(4.2) fi(t) := f| cl [ (J nn(s)
\ V

11



I
I
I

3
I
I

Q(t) := U int
r>0 \ \a-t\<rt 0<a<T
N>1 \ n>N

where cl A and int A are, respectively, the closure and the interior of the set
A. In view of (4.1), &(t) is a bounded closed set and Q(£) is a bounded open
set. We will show that, respectively, Q(t) is a weak subsolution and Q(i) is a
weak supersolution of the mean curvature flow.

This type of stability results are typical in the theory of viscosity solutions
and, in general, they are a simple consequence of the maximum principle.
However, the crystalline flow is not defined for smooth curves and this fact is
the major difficulty in the following analysis.

The notion of viscosity solutions we use is first introduced by the second au-
thor in [28] and further developed in [8, 29]. Here we only recall the definition;
other relevant definitions and results are gathered in Appendix.

We continue by recalling several definitions that will be used in the sub-
sequent analysis. For subsets {fi(i)}o<t<r in ̂ 2? the upper semi-continuous
envelope (u.s.c.) and, respectively, the lower semi-continous envelope (l.s.c.)
are defined by

I n*(t)=f)cl\ U "(*)]. SK(t)=\Jint\ f| "001. t€[0,T).
I r>0 \ |*-t|<r / r>0 I |»-t|<r /
I \0<«<T / \0<5<T /

I Then, it is clear that (0)* = Q and (Q)* = Q. For other properties of these
I envelopes, see [28, Lemma 3.1].

For a collection of closed subsets {O(t)}0<t<T with smooth boundary, Vo(x, t)
I is the normal velocity of dO(t) at x and /co(x, t) is the curvature of dO(t) at

x. We use the convention that the curvature of a convex curve is non-negative.

f We are now in a position to give the weak (viscosity) definition of the mean
I curvature flow we will use. This definition is very similar to the one given in

[28]; see Appendix for the connection between these two definitions.

[ Definition. Let {£}(£) }o<t<r be a collection of bounded subsets in 7l2 satis-
fying Q.(t) ^ 0 for every t G [0,T).

^ We say {fi(i)}o<t<r is a weak subsolution of the mean curvature flow, if for
any closed, smooth subsets

f (4.3) Vb(so,*o)<-Mxo,to),
at each t0 G (0,T) and x0 G dO(t0) satisfying,

[ (4.4) n*(t)ccO(t) V t # i

12
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1 = {x0}.

Similarly, we say {ti(t)}o<t<T is a weafc supersolution of the mean curvature
flow, if for any closed, smooth subsets {0(£)}o<t<T?

at each i0 € (0,T) and x0 G dO(t0) satisfying,

CC «»(*) V t ^ t0, 0(to) C fi,(t0), 9fl*(*o) n dO(t0) =

Condition (4.4) implies that (x0, to) G dO(t0) x (0, T) is the strict maximizer
: of — dist(x,dfi*(t)) over all (x,t) G dO(t) x (0,T). A similar conclusion also
i holds for supersolutions.

Following is the set theoretic analogue of the Barles & Perthame procedure
[6, 7], [14, §5], and it is the chief technical contribution of this paper.

Recall that Tn(t) = dnn(t).

Lemma 4.1 Q is a weak subsolution of the mean curvature flow, while Q is a
f weak supersolution.
i •

Before we give the proof of this lemma, we will first give a formal proof of
I . the subsolution property.

In view of our definition of a weak solution, we start with smooth sets
1 {0(t)}o<t<T and a point (xo,to) satisfying (4.4). Our goal is to verify (4.3).
* By (4.4) there are a subsequence nk and a sequence (xk,tk) —>• (x05t0) sat-

isfying Qnk(tk) C O(tk) and that xk G Tnk(tk). Although there are sev-
I eral other cases, assume that xk is the intersection of Li-i(tk) and Li(tk)
* of rnfc(tfc), and Xi = Xi-i = 1- We choose a coordinate system so that xk

is the origin and the Li(tk) side is included in the rri-axis. Let n\ = (0,1),
! n2 = (sin(27r/nfc),cos(27r/nfc)). Then, the unit normal vector of dO satisfies

no(xk, tk) = (sin a, cos a) for some 0 < a < 27r/nk. By the crystalline equation

2tan(7r/n.)

— Vi-.! —
H-l

and therefore,

(4.5) vw _ (

13



i (4.6) Vo(xkjtk) = VXk-no(xk,tk)

__ 1 /sin(27r/nfc — a)
~~ 2 ( / ) V UI cos2(7r/n*) V k k-\ J '

Since Vo(xk,tk) < 0, we may assume inikej^ K>o(xk^tk) > 0. This implies that,
as k —> oo, both U and U-i converge to zero. By elementary geometry, we
obtain a sharper estimate: for every e > 0,

2 sin a 2sin(27r/nfc — a)

for sufficiently large k. Substitute these into (4.6):

Ko{xk,tk) - e /sin(27r/nfc - a) sin a \
2cos2(7r/nfc)

In the foregoing argument, we crucially used the assumption that xk is a
"convex" corner point of Tnk. Although this is the most likely situation, other
cases may also arise, and for that we will perturb the test sets O in the pre-
ceeding proof.

Proof. We will only prove the subsolution property. Proof of the supersolution
case is similar.

Let {O(t)}0<t<T and (to,xo) be as in (4.4). Our goal is to verify (4.3), i.e.,

v := Vo{x0,t0) < -/c := -

If necessary, by perturbing O(-), we may assume that K ^ O . We analyze two
cases separately:

Case 1. K > 0.

For e > 0, x* e V? and a large constant K, let De(t : x*) be the disk with
center x* and radius

—J— + v(* - *0) + K(t -

Set
xe

0:=x0-

' By the smoothness of dO, for all sufficiently large K, there is a <5£ such that

[ (4.7) O(t) D 5(x0,2S£) C £>£(i : arg) D B(x0,25s),
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I
i.

« for all \t — io| < 25e. We fix K large enough, so that the above inequality
I holds.

f Next we approximate D£(t : x*) by regions with polygonal boundaries. Let

Cn:={xeTl2 : z-(cos(—),sin(—)) < 1, V Z = 0 ,1 , . . . , (n - 1) },
n n

\ and, for any x*, set
D£

n(t:x*)~{x*}®Re(t)Cn.

\ Since D£
n(- : XQ) approximates D£(- : XQ), by (4.4) and (4.7), there are a

subsequence nk and sequences (xk}tk) —> (xo,£o)5 2/fc ~^ ̂ o satisfying:

F), V | t - t o | < 6£.

A proof of this fact is given in Appendix; Lemma 6.2. To simplify the notations,
we assume that nk = k and write Dk(t) for De

nk{t: yk).

Let xk be on the i-th side of Tk(tk). Then, the normal velocity, VJ, of this
side is equal to the normal velocity of Dk at tk. Hence,

Vi = v + 2K(tk-t0)

Since Dk{tk) is a regular ^-polygon, Xi{tk) = 1 and, therefore, the length, /*(£*),
of side i of Tk(tk) is less than or equal to the length of any side of Dk(tk):

h(tk)<2Re(tk)sin^.

Then, by (2.3) and the foregoing discussion,

2 tan(7r/&) 1
2K{tk -10) = Vi =

(tk) - R£(tk)cos(7r/k)'

6 k —> oo and then £ J, 0.
Since R£(tk) converges to l//s and tk -> t0) we obtain (4.3) by first letting
k —> oo and the

? Case 2. K < 0.

For small e > 0 and any z*, let xg := x0 + R£(t0)no(x0, to) and let £>£(t: x*)
| be the complement of the disk with center x*, radius

v(t - t0) - Kit - t0)
2.

As in the previous case, there is a S£ such that

(4.8) O(t) n B(x0,26£) C J5£(i : xg) n B(z0,26£),

15



for all \t — t01 < 28£, and for any #*, we set

D£
n(t:x*):=n2\{x*}@R£(t)Cn.

Then, D£
n(- : xo) approximates D£(- : XQ) and, by (4.4) and (4.8), there are a

subsequence n*, and sequences (xk,tk) —> 0EO?*O)> Vk —> #o satisfying:

xkernk(tk)ndD£
nk(tk:yk),

Qnk(t) n B(x0, S
£) C D£

nk(t: yk) n B(s 0 , <H? V |* - *0| < «c.
Again, we assume that nk = A:, write Dk(t) for D^k(t : yk), and let xk belong
to the z-th side of Tk(tk). Since, in this case, the normal velocity of Dk at tk

is equal to v — 2K(tk — t0),

1 If v < 0, (4.3) is immediately satisfied. Hence, we may assume that v > 0. So,
for small e > 0, VJ > 0 and, by (2.3), ^ = — 1. Consequently, /*(£*) is greater
than or equal to the length of any side of Dk(tk):

i

and therefore,

j We first let k —» oo and then e | 0. Since Re(tk) converges to 1/|«| = —1/K,
the result is (4.3).

i
5 Convergence.

!
Let To = dtlo be a twice differentiate Jordan curve and F n 0 = dQno be an

f n-smooth approximation of Fo satisfying
I

(5.1) nlirn dtf(aio,fio) = O,

i where d^ is the Hausdorff distance. For each n, there is a unique n-smooth
solution {Fn(i)}t€[o,rn) of (2.3) satisfying the initial condition Fn(0) = F n 0 by

[ Theorem 3.1. Moreover,
i

16



I
I
1 (5.2) Tn = — — -* To := ——, n -» +oo.

2ntan(7r/n) 2?r
I Let Q and 0 be as in §4 so that, by construction,

(5.3) dfi(t) c fi(t), we[o,ro) .
II
t Moreover, $7 is a weak subsolution of the mean curvature flow, and Q is a weak

supersolution of the mean curvature flow. In general space dimension, there is
f no comparison between weak sub- and supersolutions, however, in dimension
* two, there is always a smooth solution of the mean curvature flow, T(t) = dQ(t)

and we will show that,
4 (5.4) Q{t) C c\Q(t) C clQ(t), Vi € [0,T0).

? Combining (5.3) and (5.4), we will then obtain the convergence of fin to Q in
4 Hausdorff topology, thus generalizing the previous convergence results of Girao

and Kohn & Girao [19, 18].

I The foregoing outline of our convergence result is entirely analogous to the
Barles & Perthame procedure of proving convergence with very weak L°° es-

f timates [6, 7].

Theorem 5.1 Let Tn(t) = dttn(t) be the solution of (2.3) with initial data
r n 0 , and let T(t) = dQ(t) be the smooth solution of the mean curvature flow
with initial data £V Assume (5.1), then

(5.5) Jim d

locally uniformly in t € [O,To).

We begin with

Lemma 5-2 fi(0) C clft0 C clfl(0).

Proof. We will only prove the first inclusion. Proof of the second inclusion is
similar.

Since dH(^n^o) -* 0, for any x0 G fi0 there are So > 0 and n0 e Af
satisfying

B(x0, So) CC fln Vn > n0.

Let 7n be the regular n-polygon enclosing B(xo,So). If necessary, by taking
n0 larger, we may assume that 7n CC £ln for all n > n0. Let 7n(i) be the

17



solution of the crystalline flow (2.3) with initial data 7n(0) = j n and un(t)
be the open set enclosed by 7n(*)- Then, by the containment principle for
crystalline motions (cf. Gurtin [22, §12]),

* B (xo, So/2) C ujJt) C SlJt) Vn > n0, 0 < t < -81.
4

| Let n —> +00 and t 4 0 to conclude that B(XQ,8Q/2) C 12(0) and therefore
i- o:o€0(0). D

; In our second step, we will show that the smooth mean curvature flow yields

* a viscosity sub- and super-solution of the following equation:

J ut + F(Du, D2u) = 0 Tl2 x (0, T),

where
(5.6) F(p, X) = —tr((I — p ® p)X)

4 and p = p/\p\. This step is very similar to Ambrosio &; Soner [3, §3].

J We refer to Crandall, Ishii & Lions [11] and Fleming & Soner [14] for infor-
t mation on viscosity solutions and to Chen, Giga & Goto [10], and Evans &

Spruck [13] for the properties of the level set equations.

I • Let {r(i)}o<*<To be a unique smooth mean curvature flow satisfying F(0) =
Fo and let d(x,t) be the signed distance function to F(t), i.e.,

H(rrtl
a{X> l ) ~ \ -d i s t fo T(t)) otherwise,

where fi(i) is the open set enclosed by F(i). For a scalar d, d A 0 = min{d, 0}
and d V 0

Lemma 5.3 For any 5 > 0, i/iere are constants a = a(5) > 0 and if =
K(6) > 0 so that the function u(x,t) := e~Kt[(d V 0)(x, t) A a] w a viscosity
subsolution of

ut + F{Du, Dzu) = 0 in Tl2 x (0, To).

Proof. For 8 > 0, there exists a a = a(J) > 0 such that d is smooth in
{ 1 6 K 2 : |d(x, t)| < 2a} x [0, To - 8] and in this tubular set,

(5.7) Ad(x, *) = £^41—7,
K J K J 1-K(y,t)d(x,ty
where ?/ € F(i) is a unique point satisfying \d(x, t)\ = \x — y\ and /c(y, i) is the
curvature of T(t) at t/. Since {T(t)}o<t<To is a smooth mean curvature flow,

(5.8) dt - Ad = 0 in F(t) x (0, To).
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m Since
J C{8) := sup{|/c(M)| • OM) 6 dft(*) x [0,T0 - 5]} < oo,

by (5.7) and (5.8), d is a classical subsolution of

I dt-Ad-Kd<0 on {x : 0 < d(z,i) < 2a} x (0, To - S]

for some K > C(6). Since |£>d| = 1, d is also a classical subsolution of

d* + F(Dd, D2d) -Kd = 0 on {x : 0 < d(x, i) < 2a} x (0, T0-6\.

Let /ic be a bounded smooth function satisfying: h€(r) = 0 for r < 0, /ic(r) = a
for r > a, and, as e 4 0, /ic(r) converges to (r V 0) A a. Since F is geometric,
i.e.,

by calculus, we conclude that u€ = e"Kthe{d) is a classical subsolution of

, D V ) < 0 , on 7e2x (O,To-<5].

r
~ We now let e ^ 0, S I 0 and use the celebrated stability property of viscosity

solutions. D

I An entirely similar argument yields

| Lemma 5.4 For any S > 0, there are constants a = a((J) > 0 and if =
* K{8) > 0 so that the function w(x, t) := eKt[(d A 0)(x, t) V (—a)] is a viscosity
f supersolution of

* ut + F{Du,D2u) = 0 in ft2 x (0,T0).

F
I We are now in a position to complete

f the proof of Theorem 5.1. For the notational convenience, we set fln(t) = 0
I for all n > 1, t > Tn. Let Q and £2 be as in §4, and let T, T be, respectively,

the extinction time of Q(t) and Q(t). Set T = min{T, To, T}.

! By Lemma 5.3, u(x, t) = e~Kt[(d V 0)(x, t) A a] is a viscosity subsolution of
I

(5.9) ut + F(Du,D2u) = 0 in 7 e 2 x ( 0 , f - 5 ) ,

I and by Lemma 4.1 and Proposition 6.1, v(x, t) = dist(x, Tl2\Q(t)) is a viscosity
supersolution of (5.9). Moreover, by Lemma 5.2, u(-,0) < v(-,0) in 7£2, and

] : therefore the comparison principle for solutions of (5.9) (c.f. Chen, Giga &

Goto [10], Evans & Spruck [13]) yields
| u<v in K2 x[0,f-6).
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I

We claim that this inequality implies that

V<€[O,f -6).

Indeed, for (x,t) € Q(t) x [0,f - 5), 0 < u(x,t). Then, by the previous
inequality, 0 < v(x,t) and, therefore, x £

Similarly, we show that Q(i) C c\Q(t) for al l t € [0,T — £) and then, we let
<5 -> 0 to obtain (5.4) on [0, f).

A lengthy elementary argument shows that (5.4) is equivalent to (5.5).
Hence, (5.5) holds on [0,T).

By (5.2) and the construction, T < T < To. The uniform convergence of Qn

to fi implies that f = To. D

6 Appendix.

In this section we gather several properties of the weak solutions.

Let {Qn(t)}o<t<Tn, {ft(t)}o<t<T and {Q(t)}0<t<T be as in §4, and let dn(x,i)
(resp., d(x,t) and rf(x,i)) be the signed distance function for {ft>n(t)}o<t<Tn

(resp., for {^(£)}o<t<r and {O(i)}o<i<r)- Then, the definitions of tl\t) and
O(*)5 are equivalent to

(d A 0)(x, *) = lim sup (dn A
(y,«)-f(x,t)

n—*+oo

(dV0)(x,t) = Umiinf ( 4 V
n—f+00

The following weak regularity result in £ follows from an attendant modifi-
cation of [28, Lemma 7.3].

(6.1) limsup(<iA0)(y,s) = (dA0)(i , t ) (x,t) e U2 x (0,T),

(6.2) liminf(c[V0)(j/,s) = (dV0)(x,i) (x,t) ell2 x

These identities and the techniques of [28, §14] yield the equivalence between
the weak solutions defined in §4 and the distance solutions defined by the
second author in [28]. Let F be as in (5.6).

Proposition 6.1 {Q(t)}o<t<T is a weak subsolution of the mean curvature
flow satisfying (6.1) if and only if dn*(x,t) A 0 is a viscosity subsolution of

(6.3) ut + F(Du, D2u) = 0 in H2 x (0, T).
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is a weak supersolution of the mean curvature flow satisfying
(6-2) if and only if dn.(x,t) V 0 is a viscosity supersolution of (6.3).

We close the appendix by proving an approximation result used in §4.

Lemma 6,2 Let {0(t)}o<t<T be a family of closed smooth sets and let to G
(0,T), x0 G 0O(t0) satisfy (44). Let D£(t) and D£

n(t: x*) be the same sets as
in the proof of Lemma 4-1- Assume that De(t : XQ) satisfies (4-V- Then there
are a subsequence nk and sequences (xk,tk) -> (xo,to), yk -> XQ as k -> +oo
satisfying

xkeTnk(tk)DdD£
nk(tk:yk),

£) C D£
nk(t: yk)DB(x0,6

e), V |t - to\ < 6s.

Proof. Fix e > 0 and recall (Q)* = fi. Let dn(x,t) be the signed distance to
D£

n{t: xe
0), d(x,t) be the signed distance to D£(t: x£

0) and let

an := inf inf{dn(z, t) : x e Qn(t) n B(z0, *c)}-
|**|<*e

Choose tn E [t0 - 6s, t0 + 5£], xn G Qn(tn) n B(x 0 , ^ ) and ^ n G dD£
n(tn : x§)

such that
\wn -xn\ = \an\.

Set

* " so that
Vn = ^ o -

e) C Z£( t : yn) n B(xOi S£) V |i - to\ < 5£.

Since XQ G fi(io)5 by the definition of fi, there are a subsequence n* and
sequences (zk,sk) -> (xo,to) such that

Then
lim sup ank < lim supdnfc (zki sk) = d(x0, t0) = 0.

A A

A similar argument, using (4.7), shows that liminfanife > 0. Hence ank -> 0
and therefore, ynk -> XQ.

It remains to show that (xnk,tnk) -» (xo,to)- Suppose that on a further
subsequence, denoted by nk again,

(xnu,tnh) - » (£ ,« )€ 5(x0,25£) x [i0 - 6£, t0 + 5e].

Since dn converges to d uniformly,

d(x,t) = lim ank = 0 < lim dnk(zk,sk) = d(xo,*o).
/c^-oo AcKx>Ac—Kx>

Since (XQ, to) is the strict minimizer of rf, this imples that (5, i) = (xo, <o)-
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