
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.



0\6

New Coarse Grid Operators for
Highly Oscillatory Coefficient

Elliptic Problems
Bjorn Engquist

University of California

Erding Luo
Carnegie Mellon University

Research Report No. 96-NA-015

August 1996

Sponsors

U.S. Army Research Office
Research Triangle Park

NC 27709

National Science Foundation
1800 G Street, N.W.

Washington, DC 20550



?



NEW COARSE GRID OPERATORS FOR HIGHLY OSCILLATORY
COEFFICIENT ELLIPTIC PROBLEMS

Bjorn Engquist*
Dept. of Math., UCLA

LA, CA 90024

Erding Luo t
Math. Dept.

Carnegie Mellon University

Pittsburgh, PA 15213

First version: December, 1994 This version: December, 1995

Subject Classification: 65 & P05.
Key Words: multigrid method, finite difference, homogenization theory.

Abstract

New coarse grid operators are developed for elliptic problems with highly oscilla-
tory coefficients. The new coarse grid operators are constructed directly based on the
homogenized differential operators or hierarchically computed from the finest grid. A
detailed description of this construction is provided. Numerical calculations for a two
dimensional elliptic model problem show that the homogenized form of the equations
is very useful in the design of coarse grid operators for the multigrid method. A more
realistic problem of heat conduction in a composite structure is also considered.

1 INTRODUCTION
The multigrid method is usually not effective when applied to problems for which the stan-
dard coarse grid operators have significantly different properties from those of the fine grid
operators [1,3,6,9,10]. For some of these problems, in order to restore the high efficiency of
the multigrid method, the coarse grid operators must be constructed upon other principles
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than just simply restricting from the finest grid. Elliptic and parabolic equations with
strongly variable coefficients and some hyperbolic equations are such problems. A common
feature of these problems is that the smallest eigenvalues in absolute value do not corre-
spond to very smooth eigenfunctions. It is thus not easy to represent these eigenfunctions
on the coarser grids.

We consider two dimensional elliptic equations with oscillatory coefficients,

- V - a £ ( x , y ) V u £ = /(x,t/) , (z,y) € ft = [0,1] x [0,1]. (1.1)

Here, ae(x,y) = a(x/e,y/e) is strictly positive. Because of the small parameter e, the
coefficients oscillate. The parameter e represents the length of oscillation. A generalization
of this type of equations to high dimensional space is given by

£*<*.!)£«•<•>-/<*>. (L2)

with aj(x,rj) strictly positive, continuous and 1-periodic in each component of 77. For these
equations, there exists a fairly complete analytic theory, known as the homogenization
theory, such that a rigorous treatment is possible. The homogenization theory describes
the dependence of the large scale features in the solutions from the smaller scales in the
coefficients [2]. We consider problems on the form (1.1) and there are important practical
applications of similar equations in the study of elasticity and heat conduction for composite
materials.

By introducing new coarse grid operators, we analyze the multigrid method for an equa-
tion of type (1.1). These new operators are based on either local or analytic homogenized
operators of the equation, and can be numerically calculated from the finest grid operator
by solving a so-called cell problem [2]. This approach can be applied in principle to more
general cases.

The rest of the paper is organized as follows. The model problem and homogenization
theory are introduced in section 2. The multigrid method is briefly outlined and a detailed
description of how to construct our new coarse grid operators is provided in section 3.
Numerical experiments are given in section 4 and a general conclusion is given in section
5, where a short discussion about convergence theory is also presented.

2 Discretization

2.1 Partial Differential Equations
We consider two dimensional elliptic eqations (1.1) subject to Dirichlet boundary condition

Uelan = 0.



From the homogenization theory [2], it follows,

max \uc — u\ —» 0, as e —• 0,

where u satisfies the following homogenized equation that does not contain any oscillatory
coefficient,

f) H f i i (til

y ^ - A 2 2 — = f(x,y), (*,„)€ ft, (2.1)

subject to the same boundary condition. The constant coefficients in (2.1) can be calculated
from the following formula,

1 / dtf
AiJ = TrT\ a(siis2)(tij - -z-~)ds1ds2, ij = 1,2, (2.2)

\U\ JU OSi

where A\2 = ^21 [12], and the auxiliary periodic functions & are given by,

S2\ i = 1,2. (2.3)
j

Vsa(sus2)VsK =
OSj

Derivation of (2.1) is based on the asymptotic form

ut = u + eui + c2u2 + . . . ,

and followed by inserting this expansion to (1.1) and then equating the coefficients of equal
powers of e. The details are provided in [2]. For a model problem of type (1.1) with
diagonally oscillatory coefficient,

X y X = ! L (2.4){ , y ) { , ) g { ) ,

and the homogenized equation has the simple form,

(a + a) d2u , , d2u (a + a) d2u ^

- i VW ( "- i %9r y i 2v = / < * i ! ' ) ' ix-y)€a' (2-5)

where // = m(l/ac)~1 and a = m(ac) represent the harmonic average and the arithmetical
average of coefficient ae(x,y), respectively. Define the mean value m(g) of a e—periodic
function g(x) by

1 nm(g) = - / g(x)dx.
e Jo



2.2 Finite Difference Equation
We discretize the domain ft into N x N equal cells with (TV — 1) x (N — 1) grid points *
by taking grid step size h in both the x and y directions to be jj. N is chosen to make
h of the same order as e. Furthermore, as in [4,6,7,10], we assume that the ratio of e to
the grid size h is an irrational number. This assumption is needed in order to guarantee
convergence of the difference operator to the differential operator in (1.1) [4].

Denote X{ = ih^yj = jh, and

h c h

for z,j = 1,- • •, N. The standard 5-point finite difference equation of (1.1) at the ft-grid
level is

- D^Dlul - D^Dlul = /*., (2.6)
where D\ and D[_ are the standard forward and backward divided differences in x direction,
respectively. Similarly, D3+ and DL are ones in y direction.

For every j (j = 1, • • •, Ar — 1), define a tridiagonal matrix A1^ and a diagonal matrix
B* by

Expressed in vector notation, (2.6) can be rewritten as

LhUh = Fh, (2.7)

where
Uh = (w l , l» W2,l» " " ' WN-1,15 * - " > U1,N~1? u2,N-l-> ' " i % - l , J V - l ) »

77. / rh fh rh rh rh rh \T
£h = Ul,lW2,H # " # J/JV-1,1? " " " 1 Jl,N-H J2,N-1> ' ' ' »/AT-l,N-lJ ?

and Lk is a block-tridiagonal matrix given by

^ = ̂ [^i'4'5iL=i.-^-i- (2-8)



3 The Multigrid Method

3.1 The Algorithm
Applications of the two-level multigrid method to equation (2.7) at the n-th iteration
usually take the following three steps:

1. Pre-smoothing step: compute an approximation Uh * by applying 71 steps of a
given iteration method to (2.7) with initial value £/£ on the fine /i-grid level. For
convenience, we introduce the following notation:

2. Coarse grid correction step: introduce a coarse if—grid level and define a coarse grid
operator LH on this level, then

• restrict the residual to the coarse H-grid level: du = Iffifh — LhU^ 2) ;

• solve the correction e#:

• update the approximation by interpolating the correction back to the h—grid

level: U = U^ +

3. Post-smoothing step: repeat step 1 with the approximation from step 2 as the initial
value,

The iteration operator M of the two-level multigrid method is thus given by

/^ 1 / fXO^ 7 1 - (3-1)

For the full multigrid method, the correction in step 2 is solved by applying the two-level
multigrid method recursively. The same procedure can be repeated several times until the
coarsest level is reached, where the correction equation is solved exactly. We always take
the current coarse grid step size to be twice as big as the preceding one. Let ^(71,72)
denote the full multigrid cycle with 71 steps as the pre-smoothing and 72 steps as the
post-smoothing on all levels.

3.2 Construction of Coarse Grid Operators
By the homogenized equation and the asymptotic behavior of the associated eigenvalue
problem [1,2,7,9,10], one can show that the small eigenvalues of the original oscillatory
operator can be approximated by the corresponding homogenized eigenvalues. After a few
steps of fine grid smoothing, the error will be dominated by the low frequency modes and



these modes can be approximated by the corresponding homogenized ones at the coarser
grid level. Based on this idea, we construct the coarse grid operator directly from the
homogenized operator. Three different techniques are described below.

The analytic homogenized coarse grid operator is a discretization of the analytic form
(2.1) of the homogenized operator. This requires the analytic form to be known or to be
computed a prior. If the homogenized equation has a simple analytic form the effective
coefficients following this form can be approximated locally and therefore adjust better to
local variations. We denote this technique local homogenized coarse grid operator. Finally
we describe how to derive the local numerically homogenized coarse grid operator. This is
the most general approach and can, as a procedure, be applied to any elliptic problem,
compare [5]. The effective coefficients are computed locally based on the solution of a cell
problem and this can be seen as a direct extension of the local homogenized coarse grid
operator mentioned above.

3.2.1 Analytic Homogenized Coarse Grid Operator

If we construct the coarse grid operator directly from the discretization of the corresponding
homogenized operator in (2.1), we obtain an Analytic Homogenized Coarse Grid Operator
LH at H-grid level,

LH = [-A11D
i
+Dl - A22D\DL - 0(A12 + A21)D

i
0D

J
0]iJ=1^j__1, (3.2)

where Do denotes the standard center divided difference and 6 is a parameter. For (2.4),
can be simplified as,

(3.3)

where /i,a and 6 have constant values through the domain.

3.2.2 Local Homogenized Coarse Grid Operator

In order to better approximate the fine grid operator, we construct a Local Homogenized
Coarse Grid Operator using the homogenized operator with coefficients generated locally.
To do this, we first divide the entire domain into many cells. For instance, at point (i, j) on
the coarse if—grid level (see Figures 1 and 2) we may define 4 cells, denoted by EH, WH,
SH, NH. In each cell, we calculate a homogenized operator as in (2.1) with coefficients
determined in this cell. We then derive a coarse grid operator LH on H-gnd level that
maintains the form of the homogenized operator but with variable coefficients. LH is of
the following form,

LH = [-D\afjDL - D>+1%DL - OD^D^ - M&gl?*],.,imX,^.x. (3.4)

When the analytic homogenized operator has a simple form the coefficients can be directly
calculated from local values. For the model problem (2.4), the form is given by (2.5) and
the coefficients can be determined as follows.



The value of af- is the coefficient of |^r in the homogenized equation (2.1) generated
in a WH-ce\\ by (2.2). For (2.4),

a(WH)),

where a(WH) and fi(WH) denote the arithmetical average and the harmonic average of
all aj j , b^- in WH-cell, respectively.

The value of bfj is the coefficient of ~f in the homogenized equation (2.1) generated in
a 5ff-cell by (2.2).' For (2.4),

where a(SH) and fi(SH) denote the arithmetical average and the harmonic average of all
aij> tfj m a SH-cell, respectively.

The value of cfj is the coefficient of ^~- in the homogenized equation (2.1) generated
in cells EH,NH,SH,WHhy (2.2). For {2A)

, NH, SH, WH) + a(EH, NH, SH, WH)\

where a(EH,NH,SH,WH) and n(EH,NH,SH,WH) denote the arithmetical average
and the harmonic average of all a^-, b^- in EH, NH, SH, WH-ce\\§, respectively.

(i-l.j

Figure 1: Coefficients for #-grid level at (i, j).

The above locally discrete homogenization procedure is used for computations in this
paper. For other approximative homogenization techniques we refer the reader to papers
[8], [5] and the section below.



((i-l)LJL)

h: finest grid step

Figure 2: Construction of 4 cells on the coarse H—grid level at point (i,j) with respect to
the finest h—grid level at (iL,jL).

3.2.3 Local Numerically Homogenized Coarse Grid Operator

For equations of type (1.1), it is not always possible to obtain Aij in (2.2) explicitly,
and the derivation of A^ usually involves numerically solving /c-7 in (2.3). We extend the
construction of Local Homogenized Coarse Grid Operator as follows. Given a H—grid level,
let h now denote the fine grid level that immediately precedes H and let Lh denote the
operator for the correction at h—grid level defined by

Lh = [-D\al3Dl - D>+$jDL + D^Di + D^D^-^..^. (3.5)

For the coefficient af- in (3.4) at a point (i, j) on the coarse if—grid level, construct a cell
as in Figure 3. Next, define an auxiliary periodic function K over the cell such that it takes
values u,v and w on different grid points as indicated in Figure 3, and 0 at the center.
From the homogenization theory, we establish the discretized equation for AC at the center
point (2z — l,2j) on the h-grid level by

if2i- (3-6)

By assuming the periodicity for c^-x^j o v e r this cell, we solve (3.6) and get

« 2 j + 4 - i , 2 > + (&-i,«+i + bh
2i_h2j)v = « 2 i - ah

2i_li2])h. (3.7)

In order to establish two more relations among u,v and w, we construct two more cells
as in Figure 4. These two cells are based on the extension of the cell in Figure 3, and the
values of /c and coefficients in (3.6) at grid points are periodically taken as in Figure 4.
Similarly, from the equations for K at points (2i, 2j) and (2t - 1,2j - 1) on the h-grid level,
we obtain
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Figure 3: Cell for the construction of af- on the if-grid level at (i,j)
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Figure 4: Auxiliary cells for the construction of af^ on the H-gv'iA level at point (i,j).

~ (a2i-l,2j-l + a2i,2j-l + b2i-l,2j + b2i,2j)V + (a2,-l,2j-l + a2«,2i-l)^ = («2,\2j-l ~ a2i-l,2j-l)h-

(3.9)
From (3.7)-(3.9), we can solve u,v and w. Based on the analytic formula [2], we construct
the discrete coefficient afj on the H-grid level in the cell in Figure 3 as follows,

l< K-i 2j - 4 2j)
^— '

We can construct 6f̂  similarly using the cells and auxiliary parameters indicated in Figure
5,



by solving v from the following equations

(LhK)2i,2j = -Dj
+bh

2ii2j-Dl4i<2j,

For c^ at point (i,j) on the H-grid level, we first construct a cell consisting of 4 subcells

4

7VPV,

Figure 5: Cells for the construction of bf- on the i/-grid level at (i, j ) .

5W7; SE as indicated in Figure 6. In each subcell, we solve /c in the same way as

w

b' v

\ " " .
X

1 •
• Q

o^

r----V —-V--'

'' i y '• x' i

'\! >\\ \

! ! i JWB

(Ij-D

Figure 6: Cells for the construction of cfj on the £f-grid level at ( i , j) .

before. Based on the analytic formula [2] for cfj, we construct the discretized
entire cell in Figure 6 by

j over the

10



+4c2.\2j-l + (bk2j-l " b2i,2j)Vse + (4,2,-1 ~ 4

+4 c2t+l,2j + ("2t+l,2j ~~ ̂ 2t+l,2j+l)Vnit; + (a2*+l,2j "" a 2

+ 4 C 2 I , 2 J + 1 + (&2t,2j+l "" ̂ 2t,2i+2)vnc + (a2t',2j+l ~~ a 2

where t;stu is solved by the construction for af̂ -, and w5U, by the construction for bH_L . L

over cell 5IV. Similarly, vse>^se,^nti;,Urni;,^ne&^ne are solved on the different subcells, re-
spectively.

3.3 Construction of Interpolation
We consider a harmonic interpolation / # in this paper. By the continuity of ac(x,
and a e ( : r , y ) ^ , such an interpolation can be constructed as follows (see [1]). Set

a2t-l,2j'^-t/2t-l,2i = a2i,2jD-U2i,2j'>

' dx

h __ a2i-l,2ju2i-2,2j "T a2iy2ju2i,2j
ij ;

and then solve at points (2i — l,2j) & (2i, 2j — 1)

2ju2i-2,2j
2i-i,2j * , * ;

a2t-l,2j ' a2i,2j

h __ °2i,2j-lU2i12j-2 t °2i,2ju2i,2j
U2i,2j-l - ih , L/i

°2i,2j-l ^ °2i,2j
At point (2z — l ,2 j — 1), use the following weighted interpolation,

h _ a2i-l,2j-lU2i-2,2j-l + a2i,2j-lU2i,2j-l + °2i-l,2j-lU2i-l,2j-2 + °2i-l,2jU2i-l,2j .

a2t-l,2j-l + a2t,2j-l + ^2t-l,2j-l + ^2t-l,2j

where z,j = 1,- •• ,7V/2 - 1.
For the restriction operator / ^ , we take it to be the transpose / ^ = (///)T of the

prolongation.

4 Numerical Results

In this section, the multigrid method with the homogenized coarse grid operators and
harmonic interpolation constructed in last section is applied to two examples. We use
these examples to study convergence property of the V(7i,72)—cycle multigrid method.
For this purpose, we consider the mean rate p of convergence of the method, where p is
defined by (see [13])

where i is the smallest integer satisfying \\LhU% — fh\\h < l x 10"9 and || • ̂  denotes the
discrete I2 norm.
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.•points at H-grid level

O : points at h-grid level

• : coefficients

Figure 7: Interpolation from H-grid level to h-grid level.

4.1 Example 1: Model Problem
In the following numerical experiments, unless otherwise noted, we consider an equation
(1.1) with coefficient ac(x, y) = 2.1 + 2 sin(27r(x — J/)/e), where the harmonic average ji and
arithmetical average a are given by

p = 0.64, a = 2.1.

The smoothing iteration operator S is based on the following damped Jacobi iteration,

h. (4.2)

The finest grid points are on a 256 x 256 mesh and the step at the finest grid level h has an
irrational relation with e, i.e., e = y/2h. The step size of the coarsest level equals 1/2, and
uo in (4.2) is 0.095 which is tested numerically to be the best. In the numerical experiments,
we compare two cases corresponding to two different values for parameter 0 introduced in
(3.2) and (3.4). When 0 = 1, the coarse grid operator is the homogenized operator; when
0 = 0, the coarse grid operator is the operator in (3.2) and (3.4) without cross terms. In
the latter case, the coarse grid operator is no longer the homogenized operator.

For Figure 8, we apply the local homogenized coarse grid operator (3.4) to all coarse grid
levels. In this figure, the spectral radius p for ^(7 ,7) is ploted against the smoothing step
7. Notice that the rate of convergence for the multigrid method is faster for 6 = 1 than
that for 0 = 0. This observation becomes clearer as the smoothing step gets larger. In fact,
after a few coarse grid levels, the local homogenized coarse grid operator can be replaced
with the analytic homogenized coarse grid operator (3.2). This means that we only need to
apply the local homogenized coarse grid operator to a few first coarse grid levels, and then
apply the analytic homogenized coarse grid operator to the remaining coarse grid levels.
In Figure 9, we plot the spectral radius as a function of a level variable beyond which we
switch from the local homogenized coarse grid operator to the analytic homogenized coarse

12



grid operator. This figure shows roughly how the process of eigenmodes of error in the
multigrid method can be reduced. It is clear that, after the finest grid level smoothing,
there do exist many intermediate eigenmodes which are not quite close to the homogenized
ones. In Figure 10, we plot the spectral radius as a function of variable 9 for V(3,3). From
this figure, we can see as 6 goes to 1, the convergence of the multigrid method can be much
improved. In Figure 11, we plot the spectral radius as a function of jr for F(3,3), where h
is the grid step size of the finest level. As shown in this figure, the convergence rate of the
multigrid method does depend on the grid size h.

Figure 8: Spectral radius p a s a function of smoothing step 7.

level to switch

Figure 9: Spectral radius p as a function of a level variable for V(3,3).

Figure 10: Spectral radius p as a function of variable 6.

13
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Figure 12: Spectral radius p as a function of smoothing steps 7 for ^ (7 ,7 ) . Lines with
circle for SOR iteration; otherwise, for Jacobi.

To summarize, we have shown by numerical experiments in various aspects that the
rate of convergence of the multigrid method can be much improved with the homogenized
operator as the coarse grid operator. Up to this point, in order to isolate the influence of
the coarse grid approximation we have kept the smoothing operator fixed. If we use SOR
iteration method in (4.2), the convergence rate can be further improved. We compare the
convergence rate by choosing damped Jacobi iteration and SOR iteration in Figure 12.

4.2 Example 2: Application
To show the extension of using homogenized operator as the coarse grid operator in the
multigrid method to more general cases (e.g., ones involving discontinuous coefficients) we
consider a practical problem described in Figure 13 below. The problem can be viewed as
a wall with a composite material for insulation in the center. We are interested in the heat
conduction in such a composite structure. The governing equation has form (1.1) and is
given by

in a rectangular domain (z,y) 6 ft = (0,1) x (0,2). Here C(x,y) is the conductivity
parameter. Boundary conditions and other parameters are given in Figure 13. Although

14
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Figure 13: Model

the coefficient doesn't satisfy the periodic assumption which is needed in homogenization
theory, it preserves some essential property as before from a probablistic point of view.
Namely, it is highly oscillatory in the middle part of the domain. Standard discretization
of the equation contains almost randomly distributed magnitude coefficients by taking
e = y/2h. In such a case, the coarse grid operators can still be generated by a similar idea
as introduced in the previous section. Since the conductivity here is strongly varying in x
direction, and has two interfaces in y direction, the structure of the homogenized operator
approximately has the following form,

d2U
[dx2

d2U
ldyf

(4.3)

where An and A22 are harmonic average and arithmetical average of the coefficient, re-
spectively.

In Table 1, we calculate the mean rate p of the multigrid method V(2L,2L) with the
discrete coarse grid operator (4.3) and u> = 1.7 for SOR. This method is referred here as
Method 1. For comparison, the mean rate p is aslo calculated under the following two
different standard methods.

Method 2: Multigrid method with the discrete coarse grid operator (4.3) where both An
and A22 are generated by the local arithmetical average of the coefficients.

Method 3: Direct SOR iteration method without any coarse grid correction.

The number of grid points at finest level is chosen to be 2L and the grid step at coarsest
level for the multigrid methods is | .

15



L
Method
Method
Method

1
2
3

0
0
0

3
.1514
.1416
.4596

0
0
0

4
.3779
.3084
.7028

0
0
0

5
.4005
.5168
.8843

0
0
0

6
.3922
.5518
.9595

0
0

7
.4752
.6358

0
0

8
.4832
.7066

Table 1: Spectral radius p.

Among the above methods, Method 1 gives the fastest convergence rate as shown in
Table 1. This example shows that the multigrid method with homogenized operator as the
coarse grid operator is also quite applicable to problems with discontinuous coefficients.

5 Conclusion

In this paper we have presented three new types coarse grid operators for the multigrid
method. These new operators are called homogenized coarse grid operators. We have
given a detailed description about how to construct these operators for two dimensional
elliptic problems. The constructions can be applied to more general cases, as shown by the
practical example with discontinuous coefficients. The homogenized coarse grid operators
improve the convergence rate of the multigrid method for elliptic equations with oscillatory
coefficients. This conclusion is supported by the computations.

The convergence of the two-level multigrid method with the Analytic Homogenized
Coarse Grid Operator is analyzed in [7] for elliptic equations with Dirichlet boundary
conditions. Without requiring the ratio of h to e to be small, we prove that when both
t and h go to zero, as long as they satisfy a sampling condition, the two-level multigrid
method converges if the iteration number 7 > Ch~a In h. The exponent a = 1 + 1/3 or
1 + 2/3 depending on the problems.

The theoretical proof indicates the role of the homogenized operator in the convergence
analysis for the multigrid method. Results of numerical experiments show that faster
convergence rate in practice can be achieved than that guaranteed by theoretical results.
However, numerical results do indicate that the convergence rate depends on the grid size
h for equations with oscillatory coefficients.

Acknowledgment. We thank Barry Smith for helpful comments and suggestions. We
also thank the referees for their critical comments that have helped to improve the paper.
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