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1 Introduction

Consider the multigrid method arising from the finite difference approximations to elliptic
equations with highly oscillatory coefficients of the following type

(1-1) Lcut(x) = 444
i

where a\-(x) = dij(x, f),a,j(x, y) = ajt(:r, y), strictly positive, continuous and 1-periodic in
each component of y. Also, the operator L€ is uniformly elliptic. That is, there exist two
positive constants q and Q independent of e such that

(1.2) 0<£
t = l t',j = l 1 = 1

for any non-zero £ = (&) G 3?n. Here, e represents the length of the oscillations, and
is assumed to be very small. Equations of the above type have important practical ap-
plications, examples including the study of elasticity and heat conduction for composite
materials. One major mathematical technique to deal with these equations is the homog-
enization theory. The theory associates the original equation with its microstructure to
some macrostructure effective equation that does not have oscillatory coefficients [3]. By
homogenization, as e approaches zero, the solution uc(x) of (1.1) converges to the solution
u(x) of the following homogenized equation,

(1.3) Z.uOr) = l ^ ! ^ =/(z),

where Aij is a constant given by

(1.4) Aii

Here xj{y) *s 1-periodic in y such that

|:(««(y)^)xfc = - E

and the homogenized operator L^ retains the ellipticity property of the operator Lc. We
are interested in cases where the microstructure is important in itself. This means that



the oscillatory equation (1.1) must be solved and can not be replaced by its homogenized
equation (1.3), which only provides an average quantity. It could also be necessary to
compute the e-scale explicitly if the microstructure is not periodic and there is only an
approximative homogenized form. The regular elliptic problem (1.1) can be discretized in
many ways and typically the discretized solution uh

t converges as the stepsize h —> 0 for all
t > 0. Standard estimate alone for the five point discretization gives

>t — ut

which together with
llw.llw.oo = 0(e"4)

from [2] implies
\uh

t-ut\<Ch2CA

and converges if he"2 —• 0 as h —> 0, e —> 0. For various extensions of the estimate, see
[13]. Moreover the convergence theory in [1] guarantees the convergence for our problem
(1.1) with centered difference approximation under the condition that h/e is fixed to be
irrational and h —• 0, t —> 0.

Multigrid methods are usually not so effective when applied to equation (1.1). Standard
construction of coarse grid operators may generate operators with different properties from
those of the fine grid operators [2, 4, 10]. To restore the high efficiency of the multigrid
method, a new operator for the coarser grid operator is developed in [6, 7]. This new
operator is called a homogenized coarse grid operator and is based on the homogenized
form of the equation. For full multigrid or multigrid with more general coefficients, the
homogenized operator can be numerically calculated from the finer grids based on the local
solution of the so called cell problem [6]. For numerical examples on model problems and
on the approximation of heat conduction in composite materials, we refer the reader to [7].

One difficulty for these problems (1.1) is that the smaller eigenvalues do not correspond
to very smooth eigenfunctions. It is thus not easy to represent these eigenfunctions on the
coarser grids. Nevertheless, after classical smoothing iterations on the fine grid, we know
that the high frequency eigenmodes of the errors can be reduced and only the low frequency
eigenmodes are significant. Thus, following [11], one may realize that the low frequency
eigenmodes can be approximated by the corresponding homogenized eigenmodes. This is
the reason why effective or homogenized operators are useful when defining the coarse grid
operator.

In this paper, using the newly developed homogenized coarse grid operators, we analyze
the convergence of the two-level multigrid method, applied to two classes of two dimensional



problems as (1.1) with Dirichlet boundary conditions. In section 2, we consider equations
with coefficients oscillatory along one coordinate direction only. In section 3, we consider
equations with coefficients oscillatory diagonally. We show that as both t and h go to zero,
our two-level multigrid method converges when the number of smoothing iteration 7 as
a function of h is large enough and the ratio h/e is not in a small resonance set. More
precisely the convergence is proved under the following conditions:

• For the first case in section 2,

7 > C / T 4 / 3 In h;

• For the second case in section 3,

7 > C / T 5 / 3 l n / i ,

if h belongs to the set 5(e, h0) of Diophantine numbers,

kh r
S(tM) = {0<&<&oMT-i|>|p7j|,

kh
(1.6) for i = l ,2 , - - - , [—] + l , 0 ^ f c € Z } ,

where S(e,ho) C [0,/loK^o > 0) with measure |5(e, ho)\ > (1 — 3r)h0. Convergence under
this condition is termed the convergence essentially independent of e in [5]. Our analysis
provides a theoretical explanation for the computational results presented in [6, 7]. The
bounds on 7 given above are overly pessimistic compared to the numerical experiments, but
the dependence of 7 on h exists in the computations in [6, 7]. The effect of not requiring
h £ S is also reflected in the numerical tests in [6, 12].

The above convergence on 7 is quite modest but better than that for Jacobi and Gauss-
Seidel iterative methods, even for the constant coefficient model problem. The optimal
SOR iterative method gives an estimate 7 = O(/i-1) for the model problem. For our
oscillatory problem as presented in this paper, however the convergence rate under SOR
is substantially slower than that under the multigrid method (see Table 1 in [7]). The
SOR technique is efficient as a smoother for the oscillatory problem (see Figure 12 in
[7]). If the coarse grid operator is defined by a direct arithmetic averaging, the eigenmode
analysis considered in sections 2 and 3 generates an estimate 7 = O(/i"2) for the multigrid
method. The difference on the convergence between the correctly homogenized coarse grid
operators and other operators is qualitatively consistent with the computational results in



[6, 7]. The 0(h 2) estimate means that there is no multigrid effect and the convergence is
only produced by the smoothing iterations. As shown in [3], the I2 difference between the
inverse of the analytic operator Lc and that of the corresponding homogenized operator
LM is of the order O(e). What this implies is that the eigenmode analysis considered in
this paper cannot give estimates better than 7 = O(h~l), which is close to the estimate
for an one dimensional problem 7 > Ch"6^lnh in [12]. In special cases, it is possible to
design prolongation, restriction and coarse grid operators under which the resulting method
corresponds to a direct solver [8]. This type of algorithm and methods based on special
discretizations with built-in a priori knowledge of the oscillatory behavior is outside the
scope of this paper.

Since in the sequel of the paper the following lemma is often applied, we introduce it
here.

Lemma 1.1 [5] Suppose g(x, y) G C3([0,1] x [0,1]) and is 1-periodic in y. Let Xk = kh, k =
1, • • •, N and Nh = 1. IfhE S(e, ho), we have

(1.7) \i2g{xk,xk/e)h- I'3 C g(x,y)dydx\<C-, 0 < j < TV.

Throughout the paper, we denote the domain (0,1) x (0,1) by 0, and f)/ft by dQ. We
discretize the domain by the same number of grid points TV with equal step size h = jj
both in x- and t/-directions. The step size h is chosen to belong to 5(6, ho). And, the ratio
of h to the wavelength e is fixed to be a strictly irrational number. Clh denotes the set of
grid points (ihjh) G H, ilh for (ihjh) G fi, and dVth for (ihjh) G dtt. C and c represent
some constants that are independent of e and h. Dx+ and Dl__ are standard forward and
backward finite difference operators in the ^-direction; D\ and DL are similarly defined
for the j/-direction. || • \\h denotes the discrete Z2—norm, indexed by 1, • • •, N — 1.

2 Oscillation Along a Coordinate Direction

2.1 Model Equation
Consider as a special case of (1.1) a two-dimensional elliptic problem with coefficients
oscillatory in x-direction only

= 0,



where at{x) is a strictly positive continuous function, ae(x) = a(x/e) = a(x/t + 1), and
the operator on the left hand side of (2.1) satisfies the property of (1.2). From (1.3), the
corresponding homogenized equation of (2.1) is:

(2.2) ~

<f>(x,y) = 0, (z,t/)

where \i = (/Q1 l/a(x)dx)~1 and a = JQ a(x)dx are the harmonic and the arithmetical
averages of the coefficient a(x), respectively. As e goes to zero, the solution (f)c of (2.1)
converges to the solution <j> of (2.2).

Consider now a corresponding discretized equation of (2.1),

(2.3) Lt,hu
h

i3 = -DicuDiu^ - iy+btDluh
i3 = /* ,

where at- = ae(xt- — | ) , 6t- = ae(x t), i = 1, • • •, N. Denote the discretization of the homog-

enized operator — / / J^ — ajj-j in (2.2) by

(2.4) L^h = -iihD\D{_ - bhD{Dl,

where fih = (^S i l i i")" 1?^ = S i l l ^ - The operator of the two-level method with the
homogenized coarse grid operator [6, 7] can be expressed as

(2.5) M^il-lbLrflgL^Sr.

For simplicity, in the sequel of the paper, Iff and I-fr always denote the weighting restriction
and bilinear interpolation, respectively. The coarse grid operator LH is taken to be the
corresponding homogenized operator 2/M,/j, and the smoothing operator

S = J - a ,

where a is the inverse of the largest eigenvalue of the fine grid operator Lt^ has order of

2.2 Convergence Analysis

Consider a simplified operator M\ defined by

(2.6) Mx = (/ - I;JI«



Theorem 2.1 If the ratio ofh to e is fixed and h G S(e, ho), then there exist two constants
C and po such that
(2.7) | |M1 |U<^O<1,

whenever 7 > C/i'"1""1/3/n(/i).

The proof of Theorem 2.1 uses the following lemmas.

Lemma 2.1 Assume

c k=l

Then, Z{ is bounded and

L^hZi = — D \ a { , i = 1, • • •, TV - 1.

Proof By Lemma 1.1, taking j = N we have

-l f1 !
l/̂ /i "~ / ~~7—\dy\ ^ Ch.Jo a(y)

Hence,

h ,. ^ 1 x 1 A h .if1 1 , x - ^ 1 ,
ih I' -^-rdy) = 0(1).C ^dy

i ô a(y) y ti

Thus Z{ is bounded for i = 0, • • •, N and

ai(l-eDLZi) = fxh, i = 1, • • • ,7V - 1.

D

Lemma 2.2 Assume rji satisfies

-eDLrii = bi-bhj t = l,--.,JV,

Vo = 0.

Then, rji is bounded.

Proof. The proof follows directly from Lemma 1.1. •



Lemma 2.3 Assume Uij satisfies

(2-8) L^JJa = K+b (*\j)€ft
Uij = o, (i,j)ednh,

where (A£,<^) is a normalized eigenpair for Luh- That is,

4% = o,

Then,

(2.9) ?

(2.10) ^ ( ( ^ i ^ - ^ i ) 2 + (DLDLUij)2 + {DiDLUiifth2 = O(A?).

Proof. Multiplying by C/tj on both sides of

^hUij = LCih<f>ij,

and then summing by parts implies (2.9).
For (2.10), note first for any grid function Uij vanishing on dtth we have

Yi{Di
+Di.Uij)(D

i
+DLUii) = JTiDiDlU^iDiDLUtj)

(2.11) - JT(DlDlUtj)
2>0.

Multiply on both sides of (2.8) by D\Dx_Uij and then sum over z, j ,



Thus

(2.12)

for some constant C. Similarly

(2.13) ^

The rest of the proof follows easily from (2.11), (2.12) and (2.13).

Lemma 2.4 Assume <f>^j,Uij satisfies conditions in Lemma 2.3. Then,

(2.14) Uh-U\\h = O(tK).

Proof. Introduce the following discrete function

Gn = Uij - eZiDiUi, - ^ - , (i,j) € fifc,

where Z, is denned as in Lemma 2.1. Such dj vanishes at boundary, i.e.,

Gij = 0, (ij) e dilh.

Simple calculation then implies

= -Dlieai+xZiD^DlUij) - tb&V+DlD'jJi, + (bh - b^DLU^

= -Dlieai+iZiDiDLUij) - ebiZiD^DlDlUij + tD^m^DilJ^

where (i,j) € 0^ and 7/,- is as in Lemma 2.2. Multiply Gij on both sides and then sum over

N-l N-l N-l

e( 23 ai+1ZiD
i
+Di_UijD

i
+Gij + E E

i,j=l «=1 i=0

- ]T mDiDLUiiD^Gii -



J V - 1 N-lN-1

ZiD^DlUijD^Gij + Y, J2
t=l j=0

+
t=i j=o

<
N - l A T - 1

+ + £ (DLDLUijh)*)

By Lemma 2.3,

(2.15) E 1

Hence,

h2 < Ce\(

y.Gijh)2 +

N

?tjft)
2 < O(eA£)•

By Poincare inequality,
\\G\U = 0(cA«),

and by Lemma 2.1 and Lemma 2.3,

\\tZDlU\\h <

Hence,
c?

D

which implies
(2.16)

The proof of lemma is completed.
We are now ready to prove Theorem 2.1.

Proof of Theorem 2.1. Denote the eigenvalues of LCih and A/, (Laplacian operator) by A^
and Atj, respectively, for ij = 1, • • •, Â  - 1. Then, by dividing the set of eigenvalues into

10



two subsets, say {At̂ , i2 + j 2 < k%} and {A-̂ , (N — I)2 > i2 + j 2 > k%} for some A:o, we
can split the eigenspace of L€jh into two orthogonal subspaces. Namely, the space of low
frequency expanded by the eigenfunctions whose corresponding eigenvalues belong to the
first set, and that of high frequency expanded by the eigenfunctions whose corresponding
eigenvalues belong to the second set. By minimax principle of eigenvalues, it follows easily

for some constants c and C.
For any normalized vector £ such that

where ^'J^fj = 1, we have

Thus,
(2.17) HAf̂ lU < W^+P&faMitijWk + W^+p^aMi^aWk.
For the rest of the proof, we want to show ||Mif ||/i < 1. To do this, we show that the two
terms on the right hand side of (2.17) are both less than 1/2 in two separate steps.

Step 1: The low frequency subspace.

h = IIE

By Lemma 2.4,
(2-19) ||(/ - L - U a ^ l U < CeXb < CeKj.
The corresponding eigenvalues of the Laplacian operator A/^can be explicitly expressed as

j ^ ^ i h ) + sin2(^jh)), ij = 1, • • •, N - 1.

It follows from Taylor expansion,

n



Hence,

/i <

By the constraint Tii2^rp<k2^f- < 1,

h< Cek*.

Since the ratio of h to e is fixed to be an irrational number, h has the same order as e. We
thus have
(2.20) h < Chkl

Therefore, in order to make /i < | , it's sufficient to have

(2.21) k0 < Ch~1/3.

Step 2: The high frequency subspace.

h = ||E,,+J,>fc2ftJM1^.|U

< \\LJ(I - LlhLl\Llh)\\h\\Llh{\

Since \\L-J\\h < C and ||/ - L^L^L^U < C,

h < <

(2.22) < C max

Assume 1 + 2 7 > ^ = A<lf-^-' (> C^). Then

(2.23) 72 < Cko{l -

For 72 < x, it is sufficient to have

(2.24) 7 >

Combining (2.21) and (2.24), we have

The proof is completed.
We now present our main result.

12



Theorem 2.2 There exists a constant C such that the operator M defined by (2.5) satisfies

p(M) < p0 < 1,

whenever h belongs to 5(e, ho) and

/y > Ch~^~~^ Inh.

Before we carry out the proof, we need to establish the following lemma. Let

M2 = (I,;* - Ih
HL-Jl»)Lt,hS\

Lemma 2.5 For some constant C,

\\M2\\h < - .
7

Proof. Since L^h and LH = L^H are the homogenized operators defined respectively on fine
and coarse grid with constant coefficients, they are well behaved and satisfy the following
approximate property [9, 10],

(2-25) Hi;)

for some constant C. Therefore,

\\M2\\k <

(2.26) < - .
7

Proof of Theorem 2.2. Note that

M = Mi + M2.

Therefore,

Since p(M) < \\M\\h, the rest of the proof follows easily from Theorem 2.1 and Lemma 2.5.
D

13



3 Oscillation Along the Diagonal Direction

3.1 Model Equation
Consider as another special case of (1.1) a two-dimensional elliptic problem with coefficients
oscillatory diagonally

(3.1) -^ae(x-y)^-^ae(x-y)^ = /(*,„), (*,y) € ft,

where a€(x) is a strictly positive continuous function, a€(x) = a(x/e) = a(x/e+ 1), and the
operator on the left hand side of (3.1) satisfies the property of (1.2). It follows from (1.3)
that the corresponding homogenized equation of (3.1) is

a + ixd2<i> d V a + pd2*
(3'2) ~

<t>(x,y) = 0,

where a = JQ a(x)dx, and \i = (/o
x l/a(a;)dx)~1. As e goes to zero, the solution <f>t of (3.1)

converges to the solution <f> of (3.2).
Now, consider a corresponding discretized equation of (3.1),

(3.3) I a u £ = -DXaijDLul - D^DLu^ = /£, (i,i) € Slh

where
Xi- h/2-yj Xi-yj + h/2 =•

ciij = a( ), bij = a( ), ( t , j ) 6 i l / i .

Here, we assume the discretized coefficients have the following property,

cijo = fcoN-j+i, i = 0, • • •, N.

Denote the discretization of the homogenized operator

a + fi d2 _ d2 a + fid2

2
firt*^t /t HP/ill / flU*1

in (3.2) by

(3.4) L^H = - ^±^ (£»VZ?L + D{Dj_) + ^-^{D\D>+ + D\_Dl),

14



where fxh = (h Y^^=i ~~) 1 a n d ah = h J2^=i ako- Note also that the operator of the two-level
method can be expressed as

(3.5) M = (I- Ih
HL-H

llHLc

where a is the inverse of the largest eigenvalue of Lt^ has order of h~2 and LJJ = L^H-

3-2 Convergence Analysis

For the simplified operator Mi defined in (2.6) we prove:

Theorem 3.1 If the ratio of h to e is strictly irrational and h is in S(e,h0), then there
exist two constants C and po such that

(3.6)

whenever 7 > Ch~l~2/3ln(h).

Before proving Theorem 3.1, we establish some lemmas and a theorem.

Lemma 3.1 Let two discrete functions on Clh be defined by

(3.7) *j_*(i_,--w£

(3.8) ^ = £ y - ' +

Then, Z}^Zf- are bounded and

(3.9) Le,hzy = -^D\aij, Lc,hZf3 = —

for(i,j) € ftfc.

Proof. Notice that by the assumption of the coefficients,

15



applying the operator Ltih to Z]- implies the first part of (3.9). Rewrite Z}- as follows

By Lemma 1.1,

Hence, Z}- is bounded for (i,j) £ Qh and

* 71aij {1 - e ^ L z>i3) , - ebijV- Z{j ^ •

The result can be deduced similarly for Zfj. We can also show that Zf- = —Z}^ and

6tj(l - ei;_Z t j) = , -eaijD_Zij = .

This proves the lemma. D

Remark. The explicit forms of Z}- and Zf- depend on at being a function of x — y. For the
general angular dependences, these forms would not be possible.

Lemma 3.2 Let a discrete function rjij be defined by

h * h J

Vij = -(X) a*i " ia/ l) + ~~(Jah "" IZ ^ ) ' (^i) G ^ *
e fc=l e Jb=l

Then, rjij is bounded and

trjij = ah- 6tj, (ij) € ton-

Proof Using the symmetry properties of the coefficients, proof of Lemma 3.2 is similar to
the proof of Lemma 3.1. D

Lemma 3.3 Assume Uij satisfies

(3.10) L^Uij = A c^, M 6 ^ ,
u^ = 0, (ij)

16



where (Ae,<^) {5 a normalized eigenpair of L^. Then,

(3.11) \\U\\l = Y^KD^hf + (DiUijh)2} = 0(A£);

and

N-l

Yi {{D^DlUij)2 + (DiDiUij)2 + (DXDiUn)2 +

(3.12)
Proof. First, we observe that

Multiplying both sides of (3.10) by Uij and then summing over i, j = 1, • • •, N — 1

N-l N- l

which implies (3.11). Since t/y vanishes at the boundary,

* t,i=i t,i=i

(3.13) = J2(Di-D-U^)2 = IliD^DiUrf.

Multiplying (3.10) by D^DlUij,

+ 2^^(DLDiUij)(D
i
+Di_Utj) + {DlDlU^

17



By the uniform ellipticity property of the homogenized operator (3.4),

(3.14) E(iD+D-Vii)2 + (D+D+Uij)2 + (DlDLUa)2)^ = O{\\).

A similar argument shows

(3.15) EdDi&.Urf + (DXDiUitf + (DlDiU^h2 = O(X2
e).

tj=i

The rest of the proof follows from (3.13), (3.14) and (3.15). •

Lemma 3.4 Let Uij be as in Lemma 3.3 and assume it satisfies the following boundary
condition,
(3.16) D\Un + DiUij = DiUij + DLUij = 0, (ij) e d£lh.

Then,

(3.17)

Proof. Since

we have

\\u\\l =
N

t,i=o

Y,{D^D{Uijh

DLUNj = £>fJ

) 2 + £ ( £

Thus,

j=i t,j=i t,i=i

The rest of the proof follows from combining (3.12) with the following relation

D*+D*_UNj = - j - I V

D

18



Theorem 3.2 Suppose <f>^ and Uij satisfy assumptions in Lemma 3.3 and Lemma 3.4>
Then,
(3.18) Uh-U\\h

Proof. Consider first the following discrete functions

Gij = G}j + Gfjj,

for (i,j) G flh- By the assumption (3.16), Gij vanishes at boundary. That is,

For Gjj, we have

2Di_G}J = DLUa - tiDiizyi^Uij) + DLiZiDiUtj)) - Dl^
= (DiUi, - eDLzyir+Ui-u) - eZljDiD^Uij

2DIG}} = DLUij - tiDLiZyDiUij) + DLiZlDiUij)) - DL

Thus

-eDiia^DiDiUij +

baZlDLDiUii +
(3.19) ^

19



Similarly

= (D\Ui3-

-eDiZljDiUij - eZj^DiDlUij -

Thus,

Dl_D\Uij +

(3.20) +Lc<i>hiy

Define operators L\ and L by

U = ai' + bi^2ah(D\Dl + D\D{ + DIDL

and

Observe that

(3.21) L^htfj = L^hUij =

20



which together with (3.19) and (3.20) implies

IL^Gn = 2LtthG)3 + 2L€,hGl = -2LxUi}

bijZfjDLDiUii + bijZ^DiD^Uij)

(3.22) - tDLiba+tZlDLDi+Uij +

By Lemma 3.2 and summing by parts,

X > 0 - ah)(DiDlUi3)Gh = e £

= -e 2 m-iiDUDiDLUijGii)

-c E Vi-uDLDJ
+DLUijGi.lj - e fi Vi-i

DLDiUijGij - e ^ rj^D^

e E DLirmG^lf+DiUij-i - e f ) ^D'+DlUijDlG

c E 0ifoo-G<,-)£;£iE>o- - « E Vi-ijDiDiUijDLGij

e E DiwDiDiUijGii + c

E K - fty+i)^i^-^G« + e E thj+1D'+GiiD
i
+D'+Uii

-e E Vi-isDiDLUijBLGij.

21



By the symmetry property of the coefficients, atJ = 6tJ+i, we get

£ (an - ah)(D>+DL + D\Di)UX3Gi3

(3.23) = e f) f
Proceeding in the same way as before, we obtain

N-l

(3-24)

(3.25) f= e

i?L + DLDLWa

tj=O

(3.26) = e iUij - c

Together with (3.23), (3.24), (3.25) and (3.26) imply

< C7e||l/||2
i V - 1

+

(3.27)
A

N - l

i,j=O

22



Furthermore,

= e

N - l 7 V - 1

(3.28) = Cyft\t

\

7 V - 1

The exactly same order can be similarly established for the last three terms in (3.22).
Consequently, from (3.27) and (3.28) it follows

N

\

By Poincare inequality,
\\G\\H =

By Lemma 3.1 and Lemma 3.3,

\\eZ\D\p - DJ
0U)\\h < t max |Zj|||£/||i = 0(eA€),

which implies,
(3.29)

The proof is therefore completed. •
Remark. Theorem 3.2 is consistent with the result for the continuous case established in

Proof of Theorem 3.1. Replacing inequalities (2.20) and (2.21) by (3.30) and (3.31) below,
the proof follows exactly the same procedure as in the proof of Theorem 2.1.

By Theorem 3.2, we have
(3.30) h <
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Therefore, h <\ whenever
(3.31) k0 < ChT1'*.

For 72 < | , it is sufficient to have

(3.32) 7 > C ^ > ).

Combining (3.31) and (3.32), we have

7> Ch-^hnh.

D
We conclude this section with the following theorem.

Theorem 3.3 There exists a constant C such that the operator M defined by (2.5) satisfies

p(M) <Po<h

whenever the step size h belongs to 5(e, h0) and

7 > Ch-'-^lnh.

4 Conclusion

The results of this paper strongly indicate the role which homogenization plays in the con-
vergence analysis. If, for example, the coarse grid operator is replaced by the averaged
operator in an one dimensional problem [6], the direct estimate for the multigrid con-
vergence rate is not asymptotically better than just using the damped Jacobi smoothing
operator. This follows from the effect of the oscillations on the low eigenmodes. The ho-
mogenized coarse grid operator reduces the number of smoothing operation from O(h~~2)
to O(h~e/S ln/i), when the step size h belongs to the set S(e,ho) of Diophantine numbers.
In [12], it has also been shown that the number of smoothing iteration needed for the
convergence of the multigrid method with the averaged coarse grid operator dominates the
one with the homogenized coarse grid operator.

There are some inequalities in the implementation of the proof, which potentially could
be improved so that a sharper convergence rate is possible. One such improvement is to
enlarge the space of low eigenmodes, which can be approximated by the corresponding
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homogenized eigenmodes. It might be possible to improve (3.18) to (2.14), which we think
is the sharpest inequality one can establish. We established the same inequality (2.14) for
the space of low eigenmodes both for an one dimensional problem and for a two dimensional
problem with coefficients oscillatory along a coordinate direction [12]. However, the portion
of the eigenmodes that can be approximated by the homogenized ones in the latter case
is relatively much smaller than in the former. That's why we need O(h~4/3 In h) for the
number of smoothing iterations for the two dimensional case instead of O(h~6^5 In h) for
the one dimensional case.

Nevertheless, from the homogenization analysis, we understand that there always exists
a boundary layer [3, 14], which makes it hard to get the first lower order correction of the
eigenfunctions. The case discussed in section 2 of this paper, which is equivalent to an one
dimensional problem, doesn't have such a boundary layer. We hence get an estimate as in
(2.14). For the case discussed in section 3, all we can establish is (3.18), which consists of the
result established in [11] for the continuous case. It hence defines a smaller low eigenspace.
Numerical examples also tell us that there are some differences between these two cases. A
complete understanding of the first lower order correction for the eigenfunctions is required
in order to further improve the estimates.
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