NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:

The copyright law of the United States (title 17, U.S. Code) governs the making

of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.



NAMT
Q- o1

Convergence of a Multigrid Method
for Elliptic Equations with Highly
Oscillatory Coefficients

Bjorn Engquist
University of California

Erding Luo
Carnegie Mellon University

Research Report No. 96-NA-014

August 1996

Sponsors

U.S. Army Research Office
Research Triangle Park
NC 27709

National Science Foundation
1800 G Street, N.W.
Washington, DC 20550






Convergence of a Multigrid Method for Elliptic
Equations with Highly Oscillatory Coefficients

Bjorn Engquist * Erding Luo ¥

First version: January, 1995 This version: January, 1996

Abstract

Standard multigrid methods are not so effective for equations with highly oscil-
latory coefficients. New coarse grid operators based on homogenized operators are
introduced to restore the fast convergence rate of multigrid methods. Finite difference
approximations are used for the discretization of the equations. Convergence analy-
sis is based on the homogenization theory. Proofs are given for a two-level multigrid
method with the homogenized coarse grid operator for two classes of two dimensional
elliptic equations with Dirichlet boundary conditions.

Key Words. elliptic equation, oscillation, finite difference, multigrid method, homog-
enization theory, convergence

AMS subject classifications. 65N06, 65N12, 65N55

*Department of Mathematics, University of California at Los Angeles, LA, CA90024. Research sup-
ported by ARPA/ONR N00014-92-J-1890 and NSF DMS91-03104.
tDepartment of Mathematics, Carnegie Mellon University, Pittsburgh, PA 15213. Research supported

by the NSF through grants to IMA and by the ARO and the NSF through grants to the Center for
Nonlinear Analysis.




1 Introduction

Consider the multigrid method arising from the finite difference approximations to elliptic
equations with highly oscillatory coefficients of the following type

(1) Laui(a) = 25 o4(e) gmuele) = £(z),

where af;(z) = a;;(z, 2), a:;(z,y) = a;i(z,y), strictly positive, continuous and 1-periodic in
each component of y. Also, the operator L. is uniformly elliptic. That is, there exist two
positive constants ¢ and @) independent of € such that

n

(1.2) 0< qif? < Z a;;&€ < an:f?,

=1 1,7=1 i=1

for any non-zero ¢ = ({;) € R". Here, € represents the length of the oscillations, and
is assumed to be very small. Equations of the above type have important practical ap-
plications, examples including the study of elasticity and heat conduction for composite
materials. One major mathematical technique to deal with these equations is the homog-
enization theory. The theory associates the original equation with its microstructure to
some macrostructure effective equation that does not have oscillatory coefficients [3]. By
homogenization, as € approaches zero, the solution u(z) of (1.1) converges to the solution
u(z) of the following homogenized equation,

62u(:1:)
(1.3 =T g = o)
where A;; is a constant given by
o5 M — 0 IXW)
(1.4) Aij _; /0 (a1 = aix g )y,

Here x’(y) is 1-periodic in y such that

(15) o - (as(0) ot = = X gals),

and the homogenized operator L, retains the ellipticity property of the operator L.. We
are interested in cases where the microstructure is important in itself. This means that
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the oscillatory equation (1.1) must be solved and can not be replaced by its homogenized
equation (1.3), which only provides an average quantity. It could also be necessary to
compute the e-scale explicitly if the microstructure is not periodic and there is only an
approximative homogenized form. The regular elliptic problem (1.1) can be discretized in
many ways and typically the discretized solution u" converges as the stepsize A — 0 for all
€ > 0. Standard estimate alone for the five point discretization gives

lu¢ = ue| < CR*|Jucllwass,

which together with
lucllwae = O(e™)

from [2] implies
luf — u| < ChZe*

and converges if he™2 — 0 as h — 0, ¢ — 0. For various extensions of the estimate, see
[13]. Moreover the convergence theory in [1] guarantees the convergence for our problem
(1.1) with centered difference approximation under the condition that h/e is fixed to be
irrational and h — 0, ¢ — 0.

Multigrid methods are usually not so effective when applied to equation (1.1). Standard
construction of coarse grid operators may generate operators with different properties from
those of the fine grid operators [2, 4, 10]. To restore the high efficiency of the multigrid
method, a new operator for the coarser grid operator is developed in [6, 7]. This new
operator is called a homogenized coarse grid operator and is based on the homogenized
form of the equation. For full multigrid or multigrid with more general coefficients, the
homogenized operator can be numerically calculated from the finer grids based on the local
solution of the so called cell problem [6]. For numerical examples on model problems and
on the approximation of heat conduction in composite materials, we refer the reader to [7].

One difficulty for these problems (1.1) is that the smaller eigenvalues do not correspond
to very smooth eigenfunctions. It is thus not easy to represent these eigenfunctions on the
coarser grids. Nevertheless, after classical smoothing iterations on the fine grid, we know
that the high frequency eigenmodes of the errors can be reduced and only the low frequency
eigenmodes are significant. Thus, following [11], one may realize that the low frequency
eigenmodes can be approximated by the corresponding homogenized eigenmodes. This is
the reason why effective or homogenized operators are useful when defining the coarse grid
operator.

In this paper, using the newly developed homogenized coarse grid operators, we analyze
the convergence of the two-level multigrid method, applied to two classes of two dimensional



problems as (1.1) with Dirichlet boundary conditions. In section 2, we consider equations
with coeflicients oscillatory along one coordinate direction only. In section 3, we consider
equations with coefficients oscillatory diagonally. We show that as both € and h go to zero,
our two-level multigrid method converges when the number of smoothing iteration 7 as
a function of A is large enough and the ratio h/e is not in a small resonance set. More
precisely the convergence is proved under the following conditions:

e For the first case in section 2,

~ > Ch~*lnh;

e For the second case in section 3,

4> Ch™51nh,
if h belongs to the set S(e, ho) of Diophantine numbers,

kh . T
S(eho) = {0<h<ho||—~—1l2 l|k|3/2|’
kho

€
where S(¢, ho) C [0, ho](ho > 0) with measure |S(e, ho)| > (1 — 37)ho. Convergence under
this condition is termed the convergence essentially independent of € in [5]. Our analysis
provides a theoretical explanation for the computational results presented in [6, 7]. The
bounds on v given above are overly pessimistic compared to the numerical experiments, but
the dependence of 4 on h exists in the computations in [6, 7]. The effect of not requiring
h € S is also reflected in the numerical tests in [6, 12].

The above convergence on « is quite modest but better than that for Jacobi and Gauss-
Seidel iterative methods, even for the constant coefficient model problem. The optimal
SOR iterative method gives an estimate v = O(h™') for the model problem. For our
oscillatory problem as presented in this paper, however the convergence rate under SOR -
is substantially slower than that under the multigrid method (see Table 1 in [7]). The
SOR technique is efficient as a smoother for the oscillatory problem (see Figure 12 in
[7]). If the coarse grid operator is defined by a direct arithmetic averaging, the eigenmode
analysis considered in sections 2 and 3 generates an estimate v = O(h~?) for the multigrid
method. The difference on the convergence between the correctly homogenized coarse grid
operators and other operators is qualitatively consistent with the computational results in

(1.6) for i=1,2---, [—2]+1,0£ke Z},
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[6, 7]. The O(h~?) estimate means that there is no multigrid effect and the convergence is
only produced by the smoothing iterations. As shown in [3], the I, difference between the
inverse of the analytic operator L. and that of the corresponding homogenized operator
L, is of the order O(¢). What this implies is that the eigenmode analysis considered in
this paper cannot give estimates better than v = O(h™!), which is close to the estimate
for an one dimensional problem v > Ch~%/®Inh in [12]. In special cases, it is possible to
design prolongation, restriction and coarse grid operators under which the resulting method
corresponds to a direct solver [8]. This type of algorithm and methods based on special
discretizations with built-in a priori knowledge of the oscillatory behavior is outside the
scope of this paper.

Since in the sequel of the paper the following lemma is often applied, we introduce it
here.

Lemma 1.1 [5] Suppose g(z,y) € C3([0,1]x[0,1]) and is I-periodic iny. Let zy = kh,k =
1,--,N and Nh=1. If h € S(¢, ho), we have

d h
(1.7) 1Y g(zk, zi/€)h / / z,y)dydz| <C=, 0<j<N.
k=1

Throughout the paper, we denote the domain (0,1) x (0,1) by ©, and Q/Q by 9. We
discretize the domain by the same number of grid points N with equal step size h = -]{,-
both in z- and y-directions. The step size k is chosen to belong to S(e, ho). And, the ratio
of h to the wavelength € is fixed to be a strictly irrational number. ; denotes the set of
grid points (ik,jh) € Q, Q4 for (ik, k) € Q, and 0Qy, for (ih, jh) € 0Q. C and c represent
some constants that are independent of ¢ and h. Df,_ and D! are standard forward and
backward finite difference operators in the z-direction; Di and D’ are similarly defined
for the y-direction. || - || denotes the discrete L;—norm, indexed by 1,---, N — 1.

2 Oscillation Along a Coordinate Direction

2.1 Model Equation

Consider as a special case of (1.1) a two-dimensional elliptic problem with coefficients
oscillatory in z-direction only

0 0¢. O 0.
(2.1) D) g~ D) G = f@y), @y)en,

¢€(z,y) = 0, (IL‘,y)EBQ,
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where ac(z) is a strictly positive continuous function, a.(z) = a(z/e) = a(z/e + 1), and
the operator on the left hand side of (2.1) satisfies the property of (1.2). From (1.3), the
corresponding homogenized equation of (2.1) is:

0*¢ _0%¢
—#W—aa—y? = f(z,y), (z,9)€Q,

¢(z,y) = 0, (z,y) €0,

where p = (fy 1/a(z)dz)~! and @ = [; a(z)dz are the harmonic and the arithmetical
averages of the coefficient a(z), respectively. As e goes to zero, the solution ¢, of (2.1)
converges to the solution ¢ of (2.2).

Consider now a corresponding discretized equation of (2.1),

(2.2)

(2.3) Lepuly = —Dia;D ul, — DYb D7 ul = i (i,7) € Qu

L
where a; = a.(z; — %), b; = ac(w,) 1=1,---,N. Denote the discretization of the homog-
. 32
enized operator —p &5 — a2 ‘7 in (2.2) by
(2.4) Lup = —usD\, D" — b, D, D

where p, = (RYXN, L - ~1 b, = =N, b;h. The operator of the two-level method with the
homogenized coarse grld operator [6, 7] can be expressed as

(2.5) M=(I-I5L5 I L.,)S".

For simplicity, in the sequel of the paper, I/ and I} always denote the weighting restriction
and bilinear interpolation, respectively. The coarse grid operator Ly is taken to be the
corresponding homogenized operator L, i, and the smoothing operator

S=1-alL.,
where a is the inverse of the largest eigenvalue of the fine grid operator L., has order of

h=2.

2.2 Convergence Analysis

Consider a simplified operator M; defined by
(2.6) M= -LLep)I—aLp)'=(I-L, YLep)S.



Theorem 2.1 If the ratio of h to € is fized and h € S(¢, ho), then there ezist two constants
C and po such that
(2.7) |Mi|ln < po <1,

whenever v > Ch~1"13In(h).
The proof of Theorem 2.1 uses the following lemmas.

Lemma 2.1 Assume .
: 1 .
(z—phi —), ¢=0,---,N.

k=1 ak

Z =

o>

Then, Z; is bounded and
1 :
Lc,hZ,'=—zD:_a,', Z=1,"',N—1.

Proof. By Lemma 1.1, taking 7 = N we have

-1 11
— ——dy| < Ch.
Hence,
h | 1 ik 1] | 1]
s — §_=_—-—'h ———d—E—h  h —dy) = O(1).
2€(l 'uhkzl ak) 26(#h ' o a(y) Y k=1 Ok e /0 a(y) v)=0Q)

Thus Z; is bounded for : = 0,---, N and

a,‘(l—EDi_Z,') =  HUh, i=1,---,N—1.

O
Lemma 2.2 Assume 7, satisfies
—eDim; = bi—by, i=1,--- N,
7o = 0.
Then, 1; is bounded.
Proof. The proof follows directly from Lemma 1.1. O
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Lemma 2.3 Assume U;; satisfies

(2.8) LunUi; = Aol (5,5) €
U; = 0, (i,j)eaﬂh,

where (A, 4%) is a normalized eigenpair for L.y. That is,

Le,h¢:‘3‘ = /\e¢?j) (i,j)EQh,
Lo=0, (i,7) € 0.

Then,
N
(2.9) [UIIT = > (DLU;h)* = O(Ae);
1,j=1
N_l - . . . . .
(2.10) Z ((D:,_Dl_U,'j)2 + (D'_D]_U,‘j)z + (DiDJ_U,'j)z)h2 = O()\f)
1,j=1

Proof. Multiplying by U;; on both sides of
L,vUi; = Le,hd)f},

and then summing by parts implies (2.9).
For (2.10), note first for any grid function U;; vanishing on 0§, we have

> (DLD U;)(DLDLU;) = > (DL D U;) (D} DLU;;)
i,j=1 =1
N . .
(2.11) = Y (DLDLU;)* > 0.

1,7=1
Multiply on both sides of (2.8) by D’ D U;; and then sum over i, j,

N—l . .

> #n(DyDLU;)?

1,7=1

N-1 N-1 ‘ o

> wa(DLDLU;)* + 3 bu(D4 DLUy;) (D% DLU;)
1,7=1 £,7=1

v

= Y A¢ij(DLD_Uy).

,5=1

IN



Thus N1
(2.12) > un(DyDLU;)? < CX2,

1,7=1

for some constant C. Similarly

N-1

(2.13) 3" un(DiDLU;)? < CAZL
1,7=1
The rest of the proof follows easily from (2.11), (2.12) and (2.13). O

Lemma 2.4 Assume d)flj, Uij satisfies conditions in Lemma 2.3. Then,
(2.14) 16" = Ulln = O(eA).

Proof. Introduce the following discrete function

Gij = Uyj — €Z:D Uy — ¢, (i,5) € O,

179
where Z; is defined as in Lemma 2.1. Such G;; vanishes at boundary, i.e.,
Gij = 07 (l,]) € 6Qh
Simple calculation then implies

L vGij
= —Di_(ea,-+1Zin+D"_U¢,-) - Eb,Z,DiDJ_Dl_ U,'J' + (bh - b,)DiDJ_U,J
= —D'(ea;41Z:D\ D Uy;) — 0,2, D%, D D' U;; + eD* 7, D), D' U,;,
where (z,7) € Q, and 7; is as in Lemma 2.2. Multiply G;; on both sides and then sum over
L, Js :

N
> LewGi;Gijh?

1,7=1
N-1 o ) N-1N-1 . .
= 3 @nZDiD U;D,Gij + Y. 3 b:Z:D, D  U;; D, Gy
i,5=1 =1 5=0
N-1 o , N L
— S wDiDIU;DLG; — 3 niea DL DL DLUG)h?
i,5=1 1,5=1

9



N=1 ) ) ) N-1N-1 . . .
= 6( Z a,'+1Z,‘D:_D1_U,'ij+_G,’j + Z Z b,‘Z,'DiD'_U,‘jDiG,’j

1,7=1 i=1 j=0
N-1 o _ N-1N-1 o .

= > mDLDLU;D Gy + 3 3~ mDy DyUi; D4 Gigij)h?
1,5=1 =1 ;=0

IN

N-1 N-1 N ‘
CG(J > (DiLDLU;R)? + > (DL D U;h)? + Y (D.D.U;;k)?)

1,5=1 1,7=1 1,7=1

xJ fj (DLGijh)? + (D.Gy;h)2.

i71=1

By Lemma 2.3,

i,j=1 i,j=1

N N _
(2.15) Z LC,hG,’jG,‘jhz < Cﬁ/\t\' Z (D’._G,'jh)2 + (D‘Z,G,'jh)z.

Hence,

,5=1

\] i (DLthP + (.D{.G',Jh)2 < 0(6/\5)

By Poincare inequality,

IGlln = O(eAe),
and by Lemma 2.1 and Lemma 2.3,

leZD Ul < € max 1ZIIUIh < Cer/Ae

Hence, .
I¢" = Ulla < Glla + eZDLU]In < CeA,

which implies

(2.16) (I = L% Len)d lIn < Cele.

The proof of lemma is completed. O
We are now ready to prove Theorem 2.1.

Proof of Theorem 2.1. Denote the eigenvalues of L, and A} (Laplacian operator) by A§;

and );;, respectively, for ¢,j = 1,--+, N — 1. Then, by dividing the set of eigenvalues into

10



two subsets, say {A;, 12472 < k3}and {)j;, (N —1)* 214457 > kj} for some ko, we
can split the eigenspace of L, into two orthogonal subspaces. Namely, the space of low
frequency expanded by the eigenfunctions whose corresponding eigenvalues belong to the
first set, and that of high frequency expanded by the eigenfunctions whose corresponding
eigenvalues belong to the second set. By minimax principle of eigenvalues, it follows easily

cAi; <A S Oy,

for some constants ¢ and C.
For any normalized vector ¢ such that

é‘ E,] lﬂij 179

where T} 8% = 1, we have

Mlé = 2N_1ﬂ1]M1¢IJ
= Z,2+12<k2,5,_7M1¢ +E,2+J-2>kgﬂ,'jM1¢:-j.
Thus,
(2.17) [Mi€lln < | Bigsocrz Bis Midjlln + | iy 2502 Bis M1 g -

For the rest of the proof, we want to show ||M;€]||, < 1. To do this, we show that the two
terms on the right hand side of (2.17) are both less than 1/2 in two separate steps.

Step 1: The low frequency subspace.

L = ||Bay2<i2Bii M1 |l
= Btz Bii(I = L Len)(I — aLe )" 551
(2.18) S Zayparl Bl = LijLen)dijlln-
By Lemma 2.4,
(2.19) (I = L7 Len)d5illn < Ceds; < Cehij.
The corresponding eigenvalues of the Laplacian operator Aj.can be explicitly expressed as
hij = :z(szn (%z’h)+sin2(gjh)), ij=1,-,N—1.

It follows from Taylor expansion,
Aij = (& +5°)(C + O((ih)* + (h)*)).

11



Hence,
I < CeZaypar3|Bii| (62 + 5%).
By the constraint Xz, ;22 B <1,
I; < C'ekg.

Since the ratio of & to € is fixed to be an irrational number, h has the same order as e. We
thus have

(2.20) I, < ChRE}.

Therefore, in order to make I; < -12;, it’s sufficient to have

(2.21) ko < Ch7Y/3,

Step 2: The high frequency subspace.

Iy = |ZaypsrBiiMidll
1
2

_ 1 1 1
< WL ZU = LG L L2l L2 5 (1 — aLep) (Biagjosi2 Bis 955 |-

-1 1 1
Since |\L_f[lx < C and |1 - L, LALE [l < C,

1
I < C\fSasmgBlILi( - oLy dgl

(2.22) < C _ max |AZ(1—a))|.

k§SASAN N1

AS -
Assume 1 + 2y > a‘}:g = N_—klgfL—_l(Z Ch—kgi) Then

(2.23) I, < Cko(1 — ak?).
For I, < %, it is sufficient to have
h—2? 1

Combining (2.21) and (2.24), we have
y> Ch "3 lnh.

The proof is completed. =]
We now present our main result.
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Theorem 2.2 There exists a constant C such that the operator M defined by (2.5) satisfies
p(M) < po <1,
whenever h belongs to S(e, ho) and
v > Ch~ 1713 nh,
Before we carry out the proof, we need to establish the following lemma. Let
My = (L} — INLF I LS.
Lemma 2.5 For some constant C,

C
[Mzln < —
Y

Proof. Since L, and Ly = L, g are the homogenized operators defined respectively on fine
and coarse grid with constant coefficients, they are well behaved and satisfy the following
approximate property [9, 10],

(2.25) L5 — IRLE I ||n < Ch%

for some constant C. Therefore,

IMalln < WLzh = IELE I IIn) LenS™ I
< Ch*h?/y

C
2.26 < =
(226) < 7

O

Proof of Theorem 2.2. Note that

M = Ml + Mg.

Therefore,

[Mlln < | Myl + || M|

Since p(M) < ||M||x, the rest of the proof follows easily from Theorem 2.1 and Lemma 2.5.
0O
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3 Oscillation Along the Diagonal Direction

3.1 Model Equation

Consider as another special case of (1.1) a two-dimensional elliptic problem with coefficients
oscillatory diagonally

9] d0¢. 0 0.
B —pale-n - a0 = @), @en,

¢e(z,y) = 0, (z,y) €09,

where a.(z) is a strictly positive continuous function, a.(z) = a(z/€) = a(z/e+1), and the
operator on the left hand side of (3.1) satisfies the property of (1.2). It follows from (1.3)
that the corresponding homogenized equation of (3.1) is

atpd¢ 0% a+ud¢ _
B 2 6.’1)2+(a 'u)aa;ay 2 6y2 - f(zay)v (:v,y)GQ,

¢(z,y) = 0, (z,y)€ 09,

where @ = [} a(z)dz, and g = () 1/a(z)dz)™!. As € goes to zero, the solution ¢ of (3.1)
converges to the solution ¢ of (3.2).
Now, consider a corresponding discretized equation of (3.1),

(3.2)

(3.3) Lepul = —Dia;;Diuly — Dib;Diul = f 0 (i,5) €

179
where
T; —yY; + h/2

zi—h/2 —y;
€ €

), bij = a( ), (1,5) € Q.

Here, we assume the discretized coeflicients have the following property,

aij = a(

ajO::bON—ji—l’ J=0”N

Denote the discretization of the homogenized operator

atpd 0 a+pd’
T2 9z? +(@ ﬂ)axay 2 0y?
in (3.2) by
(3.4) Lop=-P2E%pipi 4 DiDi)+ & —%(Di, D}, + DLDY),

14



where uj, = (RN, i;)'l and a, = k1| axo. Note also that the operator of the two-level
method can be expressed as

(3.5) M=I-ILFIEL)S = (I — INLF I Ly)(I — aLe ),

where « is the inverse of the largest eigenvalue of L, has order of A2 and Ly = L, g.

3.2 Convergence Analysis

For the simplified operator M, defined in (2.6) we prove:

Theorem 3.1 If the ratio of h to € is strictly irrational and h is in S(e, ho), then there
exist two constants C and py such that

(3.6) [Miflr < po <1
whenever v > Ch™1=%/3In(h).
Before proving Theorem 3.1, we establish some lemmas and a theorem.

Lemma 3.1 Let two discrete functions on Qy be defined by

h | i1 ~
3.7 ZL = —(i—j— -4 =), (1,7) € Q,
(3.7) =5 (1= uhgakj #h;b()k) (4,7) € M
(3.8) Z% = i(j —H—Mi R ﬂhi '1-)» (4,7) € Q.
! 26 k=1 ako k=1 bik

Then, Z};, Z}; are bounded and
3.9 LowZl = —2Diay, LeaZl=—1Dib
( . ) eh&i; = _’; +@ij, eh&y; "’_Z + Y%7

for (4,5) € Q.

Proof. Notice that by the assumption of the coefficients,



applying the operator L. to Z}j implies the first part of (3.9). Rewrite Z; as follows

Zym mi Y ) - - Y )
V2 & k1 Gk 2€ T i box
By Lemma 1.1,
h,. | h i1
5 (1 l‘hg::lakj) 0Q1), 3 uh; ) =00

Hence, Z}; is bounded for (¢,7) € 4 and

ij ' bij —
ai(1 — eDLZ}) = 9-1—;—@ —eb DL 7} =
The result can be deduced similarly for Z;‘; We can also show that ij = —Z}j and
. by o=
bij(1 — eDZ2) = —-’{-;ﬁ —ea DLz = S bt
This proves the lemma. a

Remark. The explicit forms of Z}; and Z7; depend on a. being a function of z — y. For the
general angular dependences, these forms would not be possible.

Lemma 3.2 Let a discrete function n;; be defined by

h . J =
Z akj — 1ap) ;(J‘lh = bo), (4,4) € .
k=1

€ k=1
Then, n;; is bounded and
eDinij = ai; —an, €Din=ar—by, (5,5) € M.

Proof. Using the symmetry properties of the coefficients, proof of Lemma 3.2 is similar to
the proof of Lemma 3.1. m]

Lemma 3.3 Assume U;; satisfies

(3.10) LowUs = Aol (5,5) € D,
Ui; 0, (Z,j) € Ny,

16



where (A, ¢Z) is a normalized eigenpair of L.y. Then,

N-1

(3.11) Ul = iX_:O[(DiUijhf + (D4UR)T = O(Ae);
and "

NZ—I((D‘ D' Uy;)? + (DLDU,;)? + (D DUy + (D3 DLU;)?) R
(3.12) :;(AZ).

Proof. First, we observe that

Z[Dl )+ (Dyglsh)" = O(A).

1,7=0

Multiplying both sides of (3.10) by U;; and then summing over i,j =1,---,

N-1 N-1
> LuwUiUi = 3 LeadisUsj,
i=1 i=1

which implies (3.11). Since U;; vanishes at the boundary,

N -1

1NV o Nop .
5 2 [(DyDLU)* + (DADLU,)" 2 37 (DY DLU,;)(D DLUs;)
z]— 1,7=1
N o N-1
(3.13) = > (DLDLU;)*= Y (D, D%U;)~
1,7=1 1,7=0

Multiplying (3.10) by D D' U,;,

(DnuﬁnﬁwaJMDHu)wwmﬁ+

(D\.D U, >+zh+”%wa.narD'q>+urD’
(D% DLU) (D} DL Uy) — (D', DLU;)?) +
(D% DLU)(Dy D U) — (DL DLU,;)?)

2 h Dt Nty <
P, Ad; DL D U, (4,7) € Q.

17
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By the uniform ellipticity property of the homogenized operator (3.4),
N-1 ‘ o

(3.14) S ((DLDEUy)? + (D, DAU)? + (D DLU))R2 = O(32).
1,j=1

A similar argument shows

N-1

(3.15) S (DDLU + (D, DU ) + (DDLU )2 = O032)
£,7=1
The rest of the proof follows from (3.13), (3.14) and (3.15). 0

Lemma 3.4 Let U;; be as in Lemma 3.3 and assume it satisfies the following boundary
condition,

(3.16) DiUi; + D'U;; = D4Ui; + D U; = 0, (3,5) € 0.
Then,
N . . . "
IUI; = > ((DyDLU;)* + (DiDLU;)*)h*

1,7=0

N-1 ) ) N ) )
(3.17) + S(DLDLU;R)? + S (DLDLU;R)? = O(M2/R).

1,7=0 1,7=1

Proof. Since
N-1

Di_UNj = Di_Uij +h Z Di,.Di_Ukj,
k=i
we have N_1
(D Un;)? < (DLU;)* + 3 (D, D U;;)*h.
i=1
Thus,
N . N . N .
S (DLUN;)?R < 3 (DLUGR) + 3 - (DyDU;h)* = O(X7).
j:] l,]=1 i,j:l

The rest of the proof follows from combining (3.12) with the following relation
2

DD Un; = —ED;UN_U.
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Theorem 3.2 Suppose ¢%; and Uy; satisfy assumptions in Lemma 3.3 and Lemma 38.4.
Then,

(3.18) 6" = Ulls = O(V/eX).
Proof. Consider first the following discrete functions

G,‘j = G,l-j+G?

19
1 € $ j 1
1 € { ] 1

for (i,7) € Qu. By the assumption (3.16), G;; vanishes at boundary. That is,
Gij =0, (i,7)€ 0.

For G};, we have

2DLG)Y, = DL Ui —e(D.(Z}D\Ui;) + DL(ZLD4Us;)) — DL gk
= (DLUi; — €D. Z;D} U;_y;) — €Z}; D D, U;;

—eDL ZEDLUyj — €Z2 ;DL D, Ui; — D' 4L,
2D'G}; = DLU; - e(D.(ZLD\Uy) + D.(ZE D} U;;)) — D2 gt
= (D Ui — €D ZE D\ Usj—1) — €225 D% D, Uy

—eD.ZLD\ U — €Z},_ D’ D\ U;; — D’ L.

ij—1

Thus
aij ; Fh i Uy, + D\ &_;__‘_‘i DiU;
-—eDi(aijZ,-ljDiD"_U,-j + aijZiz_ljDiDiUij)
b — . b .
+Dy 5 piy, 4 Dy ;L “ pi U,
*GDi(bijZ?jD'iDiUij + bijZ,'lj_lDJ;Di_Uij)
(3.19) +LdL.

2L.4Gl; = DY

19



Similarly

2D, G} = D.Uj;— (D, (ZD Uy) + D, (ZL D Uy;)) — D', ¢t
= (D:_U,J - CDi Z?.D U,’+1j) €Zl Dt D' U

—eDy ZL D U; — €2}, D\, D U;; — D', ¢,

2D} GY = DU — (DY (ZLDLU;;) + D (ZL D Us;)) — D ¢l
= (D+Uij - CDiZ?jD]_U;]'.{.l) - CZ%D?*_D{_U,]
—eD, ZLD Uy; — €2}, D4 D U;; — D, ¢

Thus,
2 Gl = DLEHLEE DLy, 4 pi ST g,
D bij+12— Fh i U, + DI bij+12+ Eh pi iU,
—eD (ai41;Z5 DL DL Usj + aign; 2241, D D2 UG)
—eD_(bi,»+1Z,-2jD]_DiUij + bij+IZ,'lj+1Dl7|-Df_ Uij)
(3.20) +Lgk.

Define operators L; and L by

A b —2 o o o o
Ly = S0 =S (pi Di 4 DYDY + DLDY + DLDY),

and

L=

; i 1 j bz
D:—aJ-zl-/‘Lth +Dta+1]2 /J'hDJ__I_D]_ J+12 #th +DJ

TIRE a;; bi; — . b;
+ DL—————“'*IJ;”"D’ + D 2”"0] +Di 2“"D;+DJ ——————”l;’“‘D ).

bz] + 193
DJ
2

Observe that

(3.21) Lc,h¢2j = L,wUi; = LU;; - LU, (ZvJ) € O,

20



which together with (3.19) and (3.20) implies

2Lc,hG,‘j = 2L(’hG}j + 2L£,hG?j = —2L1U,'j
— 6Df*_(a,JZ'1JD;_D‘_U,] + (I.,']'Z-2 Df_DiU,J)

=1
— €D} (b;ZED DL U;; + bi;ZL_ D2 DL Usj)
b eDi_(ai+1jZ,-1jDi_DiU¢j + a,'+1jZ:-2+1ij}_D]_U,‘j)
(3.22) - CD]_(b,'j.,.lZ?jD]_Di_Uij + b,‘j+1Zilj+lDiDi_U,'j).
By Lemma 3.2 and summing by parts,
N-1 o N-1 o
Z (a,'j - ah)(DiD{_U,‘j)G,'J’ =€ Z Dt_nij.DiDj_U,'jG,'j
1,5=1 1,j=1
= —e ) 71i-1;DL (D} DLU;Gy;)
1,7=1
= —€ Z n;_lij_DiDz.U,‘jG,'_lj — € E ni_ljDiD]_UijD'_G,'j
1,7=1 1,7=1

N o N . .
= —€ Z nijD:_Dz.DiU,'jG,’j — € Z n;_ljDiD]_UijDz_G,‘j

1,7=1 1,7=1
N . o N . _
= € Z Dj_(ij,‘j)D;DiUij_l — € Z n;_ljDﬁ_DJ_U,'jD'_Gij
1,7=1 ,7=1
N_l - . . N . . .
= € 2 Di(?]ijG;j)D;_DiUij — € Z T],'_ljDiDJ_UijDz_Gij
1,7=0 1,j=1
N-1 . . i N-1 . . .
= €Y Dini;DyDiU;Gi; + € 3 mij11 DGy Dy DU,
i,j=0 £,j=0

N L )
—€ Z ni_ljDiD’_U,-,-Df_ G,'j

1,5=1
N_l . . N—l . . .
= D (an=bij+1) Dy DIULGy; + € Y mija DLGi DDLU
1,7=0 t,7=0

—€ Z T],'_ljD'?,_DJ_ U;J‘D'_G,'j.

"‘J=1
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By the symmetry property of the coefficients, a;j = bij41, we get

N-1

> (ai — an)(DLD + DY D})U,Gi;
1,7=1
N-1
(3.23) = €Y nynDiGyDL DU, — € E mi1; D% D U;; D G5,
1,j=0 1,5=1

Proceeding in the same way as before, we obtain

N-1
Z (b,J 1)J l)‘7 + Dl l)‘7 )U;]’G,'j
1,5=1
N-=1
(3.24) = —¢ Z 1i; DL Gy D D Uiy + € S" 0;DL D Uij41 D% Gy
1,5=1 1,5=0
Z (ai; — ap) (D D% + D' D7 )U,,Gy;
1,7=1
N-1 ) ) ) N-1 ) ) )
(3.25) = € z 77,'j+1Df|.G,'jD:_Dl_U,‘J‘ — € Z nijD‘_D’_UiHjD;Gij.
i,5=0 1,7=0
N_l . . 3 .
Z (b,-j — ah)(Df,rD’_ + D:_Di)UijGij
1,5=1
N 4 . . N . . .
(3.26) = € Z T],’j..l.D]_G,'jD;_D'_U,']‘ — € Z nngf*_Di_Ui_lleG,'j.
i,j=1 t,j=1

Together with (3.23), (3.24), (3.25) and (3.26) imply

N a: o
S %t = 20 i pi 4 DU DI 4 DD 4 D, DL)U,Gih?

1,j=1 2

N-1 ,
< CfIlUllz\JZ [(DiGi;h)? + (DGi;h)?]

4,3=0

N-1

32 < c\/aeJE[(Di,ai,-h)u(Df;ijh)?].

1,5=0
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Furthermore,

N-1 .
€ Z [Di_(a,'jZiljDi_DiU,‘j + Cl,'jZ~2 -DiDiUij)]Gijh2

-1y
1,7=0
N_l . . . . .
=€ Z [ai+1jZ,‘1+1jD;.Dt_Ui+1j =+ a;+1jZ,~2jD'_DiU;+1j]D;_Gijh2
1,7=0
N-1 N-1 N-1
<O | S (LDl ke + | Y (DDLU H2) | Y (DiGiy)2h?
1,7=0 1,7=0 1,7=0
N-1 '
(3.28) =C\/E)\( Z(Df;,G,‘j)zhz.
1,7=0

The exactly same order can be similarly established for the last three terms in (3.22).
Consequently, from (3.27) and (3.28) it follows

t,5=1

\j f: (DLGi;h)? + (D'iGijh)2 = O(VeA,).

By Poincare inequality,
IGllr = O(VeX).
By Lemma 3.1 and Lemma 3.3,

1e2*(DoU = DUl < € max 1Z|U]ly = O(eXo),
LEVAS LY

which implies,
(3.29) 1T = LALen) el < OV,
The proof is therefore completed. O

Remark. Theorem 3.2 is consistent with the result for the continuous case established in
[11].

Proof of Theorem 3.1. Replacing inequalities (2.20) and (2.21) by (3.30) and (3.31) below,
the proof follows exactly the same procedure as in the proof of Theorem 2.1.

By Theorem 3.2, we have
(3.30) L < CVhE.
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Therefore, I; < 3 whenever
(3.31) ko < Ch7Y/S,

For I < 1, it is sufficient to have

h—2 1
3.32 > C— > —).

Combining (3.31) and (3.32), we have

v> Ch " %Inh.

We conclude this section with the following theorem.
Theorem 3.3 There exists a constant C such that the operator M defined by (2.5) satisfies
p(M) < po < 1,
whenever the step size h belongs to S(e, ho) and

v > Ch™1=2Bnh,

4 Conclusion

The results of this paper strongly indicate the role which homogenization plays in the con-
vergence analysis. If, for example, the coarse grid operator is replaced by the averaged
operator in an one dimensional problem [6], the direct estimate for the multigrid con-
vergence rate is not asymptotically better than just using the damped Jacobi smoothing
operator. This follows from the effect of the oscillations on the low eigenmodes. The ho-
mogenized coarse grid operator reduces the number of smoothing operation from O(h~?)
to O(h~%/51n k), when the step size h belongs to the set S(e, ho) of Diophantine numbers.
In [12], it has also been shown that the number of smoothing iteration needed for the
convergence of the multigrid method with the averaged coarse grid operator dominates the
one with the homogenized coarse grid operator.

There are some inequalities in the implementation of the proof, which potentially could
be improved so that a sharper convergence rate is possible. One such improvement is to
enlarge the space of low eigenmodes, which can be approximated by the corresponding
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homogenized eigenmodes. It might be possible to improve (3.18) to (2.14), which we think
is the sharpest inequality one can establish. We established the same inequality (2.14) for
the space of low eigenmodes both for an one dimensional problem and for a two dimensional
problem with coefficients oscillatory along a coordinate direction [12]. However, the portion
of the eigenmodes that can be approximated by the homogenized ones in the latter case
is relatively much smaller than in the former. That’s why we need O(h~*/31n &) for the
number of smoothing iterations for the two dimensional case instead of O(h~%/%In k) for
the one dimensional case.

Nevertheless, from the homogenization analysis, we understand that there always exists
a boundary layer [3, 14], which makes it hard to get the first lower order correction of the
eigenfunctions. The case discussed in section 2 of this paper, which is equivalent to an one
dimensional problem, doesn’t have such a boundary layer. We hence get an estimate as in
(2.14). For the case discussed in section 3, all we can establish is (3.18), which consists of the
result established in [11] for the continuous case. It hence defines a smaller low eigenspace.
Numerical examples also tell us that there are some differences between these two cases. A
complete understanding of the first lower order correction for the eigenfunctions is required
in order to further improve the estimates.

Acknowledgment. We thank the referees for their critical comments that have helped
to improve the paper.
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