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Abstract

An initial value problem with piecewise constant coefficients is considered. The ac-
curacies for both finite difference methods and the pseudospectral method are analyzed,
and a modification of the initial value problem is suggested. The modified problem is
shown to have the same temporal period as the original problem does, and a second
order accuracy is obtained for the pseudospectral method at integral multiples of the
temporal period.
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1 Introduction

The pseudospectral method is very powerful for periodic initial value problems with smooth
coefficients. Well known results include its convergence at a spectral rate, [2, 3, 4, 8, 9].
This is largely because the fourier modes of the pseudospectral method can be considered
as the limit of higher and higher order difference approximations. For equations with
discontinuous coefficients, the accuracy of the pseudospectral method is far from being
clear, even in the one dimensional case, [1, 4, 5, 6, 7].
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The purpose of this paper is to compare the pseudospectral method with finite difference
methods in this case. We will focus on the one dimensional scalar wave equation with
periodic boundary conditions. The coefficient of the problem is assumed to be piecewise
constant. We study the accuracies both for finite difference methods and the pseudospectral
method using eigenfunction analysis. Our approach is to determine how many eigenmodes
are needed to well represent the initial condition with a given accuracy, and to analyze
the accuracies of these eigenmodes. For finite difference methods, local truncation error
analysis is used to obtain a global error estimate. For the pseudospectral method, the error
estimate is generated by numerical computations. Since the coefficient is discontinuous,
the error depends on the relation of the grids to the points of discontinuity. If the points
of discontinuity align with the grid points, and we use an average harmonic values of
the coefficient, both finite difference methods and the pseudospectral method give us an
accuracy of order O(hVh) in I2 norm and O(h) in l^ norm. In general, the points of
discontinuity are not aligned with the meshes. Both finite difference methods and the
pseudospectral method give us an approximation with a shift, and we cannot expect more
than first order accuracy, [1], To improve this accuracy, we suggest a modified problem by
truncating the fourier expansion of the inverse of the coefficient. This modified problem
retains the same temporal period as the original one. It turns out that the pseudospectral
method still has O(h) accuracy in l^ norm, but O(hy/h) in I2 norm. Moreover, at integral
multiples of the temporal period, the pseudospectral method always has O(h2) accuracy in
Zoo norm.

The rest of the paper is organized as follows: our model problem is presented in section
2. In section 3, Numerical schemes are introduced. The accuracies of both numerical
methods are demonstrated in section 4 and some numerical results are presented in section
5.

2 Model Problem

Consider the following equation

(21) au|«) _ _a(l)*ffci>, X 6 (_M )

with periodic boundary condition, where the coefficient a(x) is also periodic with two
discontinuous points at x = —1/2,1/2, such that

(0 .5 , xG (-0.5,0.5),
( 2-2 ) < * ( * ) - | h x€[- l , l ] / [-0.5,0.5] .

The initial condition takes the following form,

(2.3) f(x) = exp(-Cx2) = exp{-{VCx)2), x € [-1,1],



where C » 1.

2.1 Analytic Solution

Denote the kth (A; G Z) eigenfunction of (2.1) by fa, which satisfies the periodic boundary
condition. Then,

Thus,

fa(x) = exp(-A

where

A = 27ri/j,k, /JL =
^Hs) **

Let
Â  = 27TzA:, A; G Z.

Then, <^ can be rewritten as

(2.4) ^ ( x ) =

The sequence {(f)k(x)} forms an orthogonal base with the weighing function ^ y in the
domain [—1,1]. The solution of (2.1) can thus be expanded in terms of the eigenfunctions
as
(2.5) u(x, t) ~ 2^ ck exP(^kfjl''f;)(f)k{x)j

k

where ck(k G Z) is a constant that is determined by the initial condition (2.3), i.e.,

k

2.2 Expansion of Initial Condition

Denote the eigenmodes by

(2.6) <pk(z) = exp( -A^) , k G Z.

The initial condition (2.3) can also be expanded in terms of a certain number of the fourier
eigenmodes (2.6) within a given accuracy.



For —\ < x < 5, the eigenmodes are of the form

4
</>k{x) = const exp(-7rix).

o

Thus they are the usual Fourier modes for the interval — | < x < | . Since C » 1, we can
assume that the initial data f(x) = 0 for 1 > |rrr| > i and therefore the eigen expansion
of / is nothing else but the Fourier expansion of a smooth periodic function. If ^ << 1,
then,

M

I/O*)- E Ck<t>k\<r,<l-
k=-M

Numerical calculations show that for C = 60, the error 77 < 0.01 for M > 32.

2.3 Modified Problem

We modify equation (2.1) as follows

where the coefficient b(x) is the truncated fourier series of ^ y . The fourier expansion of

where

Let
a;>N/2

RN(X) = E ^ exp(ia;7r(x + 1)),
a;<-7V/2

then 6(a:) is given by

(2.8) b{x)

The kth eigenfunction %l>k{x) of (2.7) is the solution of

uXN/2

b(x) dx

4



i.e.,

(2.9) M*) = exp(^\kfi J' b(£)dO, x e [-1,1].

Observe that
fl f1 1
/ b(x)dx = / —7-rdx.

J-i J-\ a(x)
Therefore the eigenvalues of the modified equation are the same as of (2.1). The sequence
{ipk(x)} forms an orthogonal base with the weighing function b(x) in the domain [—1,1].
Subtracting (2.4) from (2.9),

{x)-il>k{x) = 4>k{x)(l -exp(\knj* R

(2.10) =

Theorem 2.1 Assume T is the temporal period of equation (2.1). Then, the difference
between the solutions for equations (2.1) and (2.7) is of the following order,

' 1 0, for otherwise.

Proof. Since the eigenvalues do not change, we have that at t = fcT,

u(x, t) = TJ(X, t) = /(:r).

•

3 Numerical Scheme

Divide the domain [—1,1] with equal step size h by grid points {XJ}, and denote by Uj the
approximation of the solution of equation (2.1) at Xj for j = 0,1, • • •, N. Since the coefficient
in the equation is strictly positive, finite difference methods and the pseudospectral method
are stable, [7]. In this section, we add dissipations both to finite difference methods and
to the pseudospectral method, in order to reduce the high frequency modes caused by the
discontinuity of the coefficient.

3.1 Finite Difference Methods

The difference approximations of (2.1) are given by

(3 1 "H Ui — — n(r )O 7/ i - 0 1 . . . M — 1



where Qp is the centered diflFerence operator that approximates d/dx with accuracy of order
p. Thus,

p/2-1

(3.12) Qp = Do £ (~iya7(h
2D+D-.y,

7=0

with the coefficients determined as follows,

(3.13) a0 = 1,

(3.14) a7 = 4 7 ^ 2 a 7 - i . 7 = l , V - - , p / 2 - 2 .

Assuming the 4-th order Runge-Kutta method with artificial dissipation is used for time
discretization, we determine the approximation Uj + 1 at time level n + 1 from the previous
approximation w" in the following way,

u(-3) = tt» _ ^ a ( : c j ) Q p U M,

and

where QPiQ denotes the centered difference operator that approximates J~ with accuracy
of order q.

3.2 Pseudospectral Method

Let U denote the vector with components Uj,j = 0, • • •, JV — 1. Then, the pseudospectral
method has the form
(3.16) -T- = ASU.

Here S presents the standard FFT operator which approximates gj. A is the diagonal
matrix with entry a(xj), j = 0, • • •, N — 1. If the 4-th order Runge-Kutta method is used



for time discretization with artificial dissipation, then the approximation Un+1 at time level
n + 1 is determined from the approximation Un at time level n by

and

Un+1 - (1
U - U

(3.17) + —
6

4 Accuracy Analysis

4.1 Truncation Error for Finite Difference

In this section, we analyze the local truncation error of the eigenfunction for the 2nd order
finite difference method. We first establish

Theorem 4,1 Consider (2.1) with coefficient (2.2) and a partition of[—1,1] with equal step
h = jj by grid points Xj = -$• — 1, j = 0, • • • ,7V. Assume the two discontinuous points
— 1/2 and 1/2 align with two grid points, and at these two points, we use the harmonic
average a(—^) = a(^) = | a s coefficients. Then,

(4.18) T* = aixjXDo dx J \ O(\\h2), otherwise,

where (t>k{%) is defined in (2.4)-

Proof. Since

4>k(x) =

we have
x-h i rx-h

7̂



Simple calculation using Taylor expansion shows

2hDo4>k(*j) = 2h<fik(xj)(-— + O(\\h2)) = 2hc/>k(xj)(-^ + R)
aj aj

for a continuous point Xj of a(x), and for Xj = — ̂  or ^,

O(Xih)) =

where
/ O(A^), x ^ - l / 2 , 1 / 2 ,

J ~ \ O(A|/2) t/ Xj.

Denote now by ($£j,Afc) the kth eigenpair of the following discrete eigen problem

(4.19) -ajDotlj = Aktlj, k,j = l,---,N,

where the discrete eigenfunction is orthonormal with a discrete weighting function { l / a , } ^

We are ready to show the following

Theorem 4.2 Under the assumptions in Theorem 4-1, the L<i norm of the difference be-
tween the continuous and the discretized eigenfunction defined in (4-19) is bounded by that
of the corresponding truncation error. That is,

where C is a constant independent of /i, k.

Proof. Note first that

We then introduce by || • ||a a energy norm. For any vector u = (txi, • • •, 1

II lla 2LJ n . 3 J



Since {aj}jLx is bounded positive, ||u||a is equivalent to ||u||2- Recall that

. a { x ) ^ l = XkMx)
ax

with Afc = |TT2A;, <t>h{x) = exp(—%ftik f*x ^h\ds)^ we have

if = -ajDofaixj) + "j

Write into a matrix form,

where L^ is a matrix with entries generated from —CLJDO and / is the identical matrix, we
can establish the following

II / 110 i
I A \ I ^ II 11^ llT>fcll

|Afc - Afel < = ||T ||2.

Denote e

eh
kJ =Ake

h
kJ =

= (A* -

a,j

Taking inner product (denoted by < • , • > ) by <f^- on both sides,

< Doekj,<f>£j > = — A-k < — " J ^ J > ~(Afc — A^) < ~?0£,? > ~~ < "r~^4)e,i ^

Tha t is,

When £ ^ fc,



Since efc, = £ c < <,, & >

Note that

Therefore,

Without any other notation, C always denotes a constant independent of /i, k. Since Ah is
pure imaginary for all /c, and we can show that |Ai| < |A2I < • • • < |A^| for small /i,

min|Afc - A{| =min{|Ajfc - Ajb+i|,|Afc - Afc_i|}.

€^pk

Without loss of generality, we assume ||Tfc+1||2 > ||T*||2 and

min|Ajb-A€ | = |Afc -

> C - 2 | | T f c + 1 | | 2 > 0 .

Therefore,

Remark. If the discontinuous points align with grid points, we may take the harmonic
average values at those points. In so doing, the global error can be improved to be O(hy/h)
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in I2 norm. If the discontinuous points do not align with grid points, assigning the harmonic
average values at those points is not possible. By taking the exact point values, the global
error we can obtain is in general O(h). However, either one of them would give us an
accuracy O(h) in l^ norm.

The order of numerical methods are usually determined by the number of eigenfunctions
of the methods that can well approximate those of analytic ones. In our case, since we can
explicitly write all the operators of the numerical methods, we are able to evaluate all the
corresponding eigenpairs.

4.2 Eigenvalues

The positive eigenvalues of the analytic problem are

Xk = 2TTA:/3.

By taking N = 32 and N = 64 for the number of grid points, the eigenvalues of the different
approximations are calculated and presented in Table 11 and Table 12. Throughout the rest
of the paper, the notation "PS" stands for the pseudospectral method, "PS-mod" denotes
the pseudospectral method with the coefficient b(x). "FD2", •••, "FD12" denotes 2nd to
12th order finite difference method, respectively. The values in the tables are divided by
2TT/3. The values at points of discontinuity for coefficient a(x) are as in (5.22). From the
comparison of eigenvalues, the pseudospectral method is not better than finite difference
methods. And the higher order finite difference method is no longer superior to lower order
ones either. It is evident that if k « N then the eigenvalues A* of PS-mod are much closer
to the analytic ones than those of finite difference methods and PS. For a given required
accuracy and a given number of eigenvalues, PS-mod is the best. However, as the number
of the grid points increases, the accuracies of all the methods is seemingly the same.

Remark. In Table 11 and Table 12, we arrange the eigenvalues with respect to the fre-
quencies of the corresponding eigenfunctions. In the columns corresponding to the analytic
and pseudospectral methods, the number of the eigenvalues increases with the frequencies
of the corresponding eigenfunctions. For the finite difference methods, the case is totally
different. To illustrate this in more detail, consider an arbitrary fourier eigenmode denoted
by era;x and the operator of the 2nd order finite difference method. Then,

de^x . , „
dx

and

11



When the frequency u> goes from 0 to ?r//i, the eigenvalue of the finite difference method is
ism\£h) behaving exactly as a sin function. At u> = ^, the corresponding eigenvalue is 0.
However, the functions for the analytic and pseudospectral axe iuj increasing with a;.

4.3 Eigenvector

4.3.1 First Eigenvector

Our estimates tell us that the approximation error for the eigenfunctions is O{h). This is
confirmed by numerical experiments, using both 8th order finite difference method and the
pseudospectral method in Table 1, Table 2 and Table 3.

norm

2

oo

N=

FD8
PS

FD8
PS

16

0.1568
0.1246
0.2014
0.1367

32

0.0778
0.0639
0.0992
0.0709

64

0.0388
0.0323
0.0494
0.0361

128

0.0194
0.0163

0.0247
0.0182

256

0.0097

L 0.0082

0.0123
0.0091

Table 1: Accuracy of the first eigenfunction with (5.21)

| norm

2

I "

N=

FD8
PS

FD8
PS

16

0.0986
0.0570
0.1032
0.0868

32

0.0507
0.0282

0.0531
0.0476

64

0.0259
0.0141

0.0270
0.0248

128

0.0131
0.0070
0.0137
0.0126

256

0.0066
0.0035

0.0069
0.0064

Table 2: Accuracy of the first eigenfunction with (5.22)

The values of the coefficient at points of discontinuity in Table 1, Table 2 and Table 3
are as in (5.21), (5.22) and (5.23) respectively (see section 5). In all these tables, we
get O(h) accuracy in l^ norm. This is also true in I2 norm in Table 1 and Table 2. In
Table 3 where we take the harmonic values at the discontinuous points and consider the
pseudospectral method for the modified problem (2.7), the error in I2 norm is increased
from O(h) to O{hVh). But, the pseudospectral method for the modified problem still gives
us O(h) accuracy in l^ norm, due to the difference between the two analytic solutions in

12



| norm |

2

oo

r N = f
FD8
PS

PS-mod

FD8
PS

PS-mod

16

0.0287
0.0251
0.0144

0.0476
0.0498
0.0273

32

0.0089
0.0089
0.0049

0.0227
0.0249
0.0134

64

0.0029
0.0031
0.0017

0.0111
0.0124
0.0067

128

0.0010
0.0011

5.9968E-4

0.0055
0.0062
0.0033

256 |

3.4743E-4
3.9153E-4
2.1125E-4

0.0027
0.0031
0.0017

Table 3: Accuracy of the first eigenfunction with (5.23)

Lnorm j | N= || 16
2
oo

PS-mod
PS-mod

0.0039
0.0042

32

8.9968e-04
0.0011

64

2.1335e-04
2.9377e-04

128

5.1556e-05
8.0042e-05

256 |

1.2613e-05
2.1793e-05

Table 4: Accuracy of the first eigenfunction for modified problem

(2.1) and (2.7). But for points away from discontinuity, the accuracy should be O(h2). If
we only consider the accuracy of the approximation for (2.7) (instead of (2.1)), we can get
O(h2) both in l2 and l^ norms (see Table 4), which is determined by the construction of
b(x) for a(x).

4.3.2 Comparison of Other Eigenvectors

We now compare other eigenfunctions of finite difference methods and the pseudospectral
method with the analytic ones. To do so, we take N equal to 64, and the values at dis-
continuous points to be (5.22). The fc-th eigenfunction corresponds to the &-th eigenvalue,
for k = — JV/2, • • •, N/2 — 1. We define the kth eigenfunction of the numerical methods by
checking if its corresponding eigenvalue is the closest one to the kth analytic eigenvalue.
As we can see in Figures 1 to 4, the pseudospectral method gives a good representation of
the analytic eigenfunctions for large eigenvalues.

13



5 Numerical Tests

In this section approximations of the soution of equation (2.1) are determined with the
following initial value,

(5.20) u(x, 0) = f(x) = exp(-60z2), x € [-1,1].

The errors in fa and Zoo norms of the pseudospectral method, 2nd to 12th order finite
difference methods and Fourier Garlerkin methods are compared after 1 analytic temporal
period.

5.1 Jumps Not Aligning With Grid Points

When the jumps do not align with grid points, directly taking the values of the coefficient
at the grid points usually gives an accuracy of O(h). To see this, consider the original
problem (2.1) with a slightly shift e(less than h) for coefficient a(x)

, . __ J 0.5, x e (-0.5 - e,0.5 - e),

We have
(5.21) a(-0.5) = 0.5, a(0.5) = 1.

The error of the approximation is presented in Table 5 and Fourier Garlerkin method,
denoted by "Garlerkin", is also tested.

As shown in Table 5, the accuracy is O(h) for the finite difference methods and for
the Fourier Garlerkin method as well. FD6 is faster than FD8 here, which is caused by
the discontinuity of the coefficient a(x). Table 6 is obtained by adding dissipation to
the schemes. Faster convergence can be obtained by reducing the high frequency modes
coming from the discontinuity of a(x). Note that as the order of the finite difference method
increases, the accuracy converges to PS's. In Table 5 and 6, the pseudospectral method
has almost O{h2). We explain the result as the symmetric structure of a(x). In Table 7,
we test the pseudospectral method by considering the case where

, v J 0.5, x e (-0.5 + €, 0.5 - e),

Here
(5.22) a(-0.5) = 1, a(0.5) = 1.
In the calculations, we take e = 1/1600. Hence, the analytic period of time is 3 — 2e =
2.99875. The usual accuracy O(h) for the pseudospectral method holds under these new
values of the coefficient.

14



norm

2

oo

N=

FD2
FD4
FD6
FD8

FD10
FD12

PS
Galerkin

FD2
FD4
FD6
FD8
FD10
FD12

PS
Galerkin

32

0.2718
0.1161

4.6414E-02
4.7689E-02
6.7000E-02
6.5851E-02
3.1714E-03
1.5034E-02

0.5338
0.1792

8.3810E-02
7.9152E-02
8.7014E-02

0.1083
7.6521E-03
3.1276E-02

64

0.1196
3.0405E-02
8.8467E-03
2.4720E-02
3.1623E-02
2.8301E-02
5.0574E-04
6.7207E-03

0.2923
5.6035E-02
1.6688E-02
3.8458E-02
3.5695E-02
3.3149E-02
1.0566E-03
1.4339E-02

128

3.8801E-02
1.2286E-02
4.9821E-03
1.2522E-02
1.5444E-02
1.3816E-02
1.0228E-04
3.2234E-03

8.3895E-02
2.5319E-02
9.2034E-03
1.8202E-02
1.7159E-02
1.5119E-02
1.9869E-04
7.0307E-03

256

1.3454E-02
5.9391E-03
2.5456E-03
6.2406E-03
7.6833E-03
6.8813E-03
2.3101E-05
1.5855E-3

2.0928E-02
1.2245E-02
4.7101E-03
8.8561E-03
8.4787E-03
7.4288E-03
4.1411E-05
3.4195E-3

512

5.6908E-03
2.9510E-03
1.2763E-03
3.1101E-03
3.8386E-03
3.4397E-03
5.5019E-06
7.8779E-4

6.5619E-03
6.0712E-03
2.3550E-03
4.3748E-03
4.2285E-03
3.6909E-03
9.3782E-06
1.6858E-3

Table 5: At = 0.01/*, 7 = 0, final time equals 3.

5.2 Jumps Aligning With Grid Points

Consider now the case (2.2) where the discontinuous points align with grid points. For this
case we are able to assign the values of a(x) at the discontinuous points to be the harmonic
average. That is,

x = 0.5.2/3,

Prom Table 8, it's clear that the finite difference schemes has an accuracy of O(/i2), and
the accuracy for the pseudospectral method is even better. This happens partially because
of the specific structure of the coefficient and initial condition. We should also note that
some cancellations caused by the symmetric data occur here.

5.3 Pseudospectral Method With Coefficient b(x)

Under the pseudospectral method with coefficient b(x), the accuracy is improved from O(h)
to O(h2) as shown in Table 9. The approximation for (2.7) is calculated after 3 analytic

15



| norm |

2

0 0

1 N = J
FD2
FD4
FD6
FD8
FD10
FD12

PS

FD2
FD4
FD6
FD8
FD10
FD12

PS

[ 32
0.2077

6.0897E - 2
3.0626E - 2
2.9323E - 2
1.2623£ - 2
1.1173E-2
3.7246E - 3

0.4082
0.1377

7.1106E - 2
7.1813E-2
3.2796E - 2
2.9959.E - 2
8.0702£ - 3

64
0.1008

9.8626E - 3
5.7495E - 3
5.8767E - 3
1.7685£ - 3
1.6729E - 3
5.7748E - 4

0.2464
2.3232£ - 2
1.3652.E - 2
1.3604E - 2
4.0848E - 3
3.9670E - 3
1.3275.E - 3

128
2.8127.E - 2
4.8435£ - 3
2.7663E - 3
2.6648E - 3
6.9677E - 4
6.4647E - 4
1.3565E - 4
7.2503E - 2
1.0362S - 2
5.9420£ - 3
5.7510E - 3
1.5495E - 3
1.4437E - 3
2.9103£ - 4

256
7.0527E - 3
1.4237E - 3
4.0663E - 4
3.5896E - 4
8.4135E - 5
7.8288JE - 5
3.9678J5 - 5
1.7682E - 2
3.0188£; - 3
8.7226E - 4
7.7225JE - 4
2.4314E - 4
2.0535E - 4
8.2365S - 5

512 ||
1.8300E - 3
2.3856.E - 4
3.2385E - 5
2.7255-E1 - 5
5.4129E - 5
5.1680E - 5
1.3960£ - 5
4.5447E - 3
5.0795.E - 4
7.5566.E - 5
6.4344S - 5
1.1352£ - 4
8.4518S - 5
2.9038.E - 5

Table 6: Error with dissipations. A^ = O.Ol/i. Final time equals 3.

| norm
2

oo

N = |
PS
PS

32

9.7319E-2
0.2033

64

4.7086E-2
1.0021E-1

128

2.2470E-2
4.7921E-2

256

1.0241E-2
2.1838E-2

512 ||
4.1424E-3
8.8329E-3

Table 7: At = O.Ol/i, 7 = 0, final time equals 2.99875.

temporal period. There is no difference between the analytic solutions of (2.1) and (2.7),
since both have the same temporal period.

Acknowledgment, We want to express our gratitude to Bengt Fornberg, whose short
course given at IMA motivated our interest in finding an explanation for the problem
considered in this paper.
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Table 11: Positive Eigenvalues for N — 32.
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18.6546
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0
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12.3410
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3.0047
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1.0022

Table 12: Positive Eigenvalues for N = 64
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