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The Multigrid Method Based on a Wavelet
Transformation and Schur Complement

Bjorn Engquist * Erding Luo t

Abstract

A new interpolation for the two-level method based on the wavelet transformation
and the Schur complement is constructed. The new interpolation is useful for partial
differential equations with highly oscillatory coefficients to which the homogenization
theory is applicable. Convergence of the two-level method with the new interpolation
is studied and numerical experiments are conducted.

1 Introduction

The multigrid method is widely applied in approximating solutions for differential equa-
tions. A distinct property of the method is that the convergence rate is fast and independent
of the grid step. For differential equations with discontinuous coefficients or even oscilla-
tory coefficients, the property is no longer possessed by the multigrid method. Various
improvements to restore the fast convergence rate have been discussed in the literature.
For more recent development, we refer the reader to [1, 4, 5, 6, 8].

For differential equations with oscillatory coefficients to which the homogenization the-
ory is applicable, it is shown that directly applying homogenized coarse grid operator for
the multigrid method is not as efficient as one would expect it to be (see [4, 5, 6, 8]).
However, for the oscillatorily differental equations, numerical experiments show that the
use of the homogenized coarse grid operator can improve the performance of the multigrid
method. In this paper, we take a different approach. We study the two-level method with
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a new interpolation operator. This operator arises from the wavelet transformation and
the Schur complement. It is thus called here the wavelet interpolation operator. With
this interpolation, we construct a Garlerkin type coarse grid operator which we call the
wavelet coarse grid operator. The wavelet coarse grid operator is an approximation for
the corresponding homogenized operator. For oscillatorily differential equations, the idea
of using the wavelet coarse grid operator for the multigrid method follows suggestions in
[4, 5, 6, 8]. An interesting property about these two operators is that they both can be
explicitly generated as a combination of the original operator and the operators between
the grid transformation. Therefore, applying these operators would enable us to apply the
projection theory in analyzing convergence of the multigrid method. Furthermore, using
the wavelet coarse grid operator instead of the homogenized operator directly can avoid a
large number of computation, which might be needed for the generation of the homogenized
operators [6]. We prove with these two operators that the spectral radius of the two-level
method is less than that of the classic one under the Richardson smoothing iteration.

The wavelet operator and the Schur complement are introduced in Section 2. Section
3 discusses the two-level method and the wavelet operators for the multigrid method.
Convergence of the two-level method with wavelet operators is analyzed in Section 4 and
numerical illustrations are presented in Section 5.

2 Wavelet and Schur Complement
Consider an algebraic equation arising from the discretization of a partial differential equa-
tion on a grid level with equal step /i,

(2.1) AU = / ,

where A is a N x N symmetric positive definite matrix, U and / are vectors in $lN. As for
one dimensional case with domain [0,1], Nh = 1. To solve equation (2.1) we first introduce
wavelet transformation,

(2.2)

where
WTW = WWT = LTL + HTH = I,

and
LLT = HHT = / , LHT = HLT = 0.



For the one dimensional case, L and H can be given by

/ 1 1 0 0 ••• \
(2.3) J U - U 0 0 1 1 0 0

v ; '•• /

and
/ 1 - 1 0 0 •••

(2.4) H = -j=\0 0 1 - 1 0 0 ••

H and L play the roles of separating the high and low frequency components (see [9]).
Applying W to equation (2.1), we get

AWU = WAWTWU = Wf,

where A = WAWT. The above equation can be decomposed as

( LALT LAHT\( LU\_( Lf\
{ ] \ HALT HAHT ]\HU ) ~ \ H f ) '

For brevity, set
T = LALT, B = LAHT, D = HAHT,
UL = LU, UA = HU,

The Schur complement of A is

(26) A-( l A l l A f l \ ( T B

_ ( I B D ' 1 \ ( T - B D - X B T 0 \ ( I 0\
~ \0 I ){ 0 D ){ D~lBT I ) •

Thus, the inverse of A and its Schur complement are given by

(2 7) A-1 - WA~lWT - ( . .
[ZJ) A -WA W - ^ H A - 1 L T HA-1HT

_ ( I O W I T - B ^ B V 0 \(I -
(2-8) " -D-W I [ 0 D"1 j 0 /



Rewrite (2.1) as
(2.9) U = A'1/,

and by applying wavelet transformation we have

(2.10) WU= (yL}= WA~1WTWf = A~lWf.

Now, Ui can be solved from (2.5) and (2.10), and by (2.7) C/̂ , c a n be expressed as

(2.11) UL = {LA-'LT)fL + LA-'HTfk.

By (2.8), Ui can be alternatively expressed as

(2.12) UL = (T- BD-lBT)-\ft - l

With (2.11) and (2.12), we establish

Lemma 2.1

Proof.

{T-BD-lBT)(LA-lLT)

= LALTLA-lLT - BD-1BTLA~1LT

= LA(I - HTH)A~lLT - BD-1BTLA-1LT

= I - LAHTHA-lLT - LAHT{HAHT)-xHALTLA-lLT

= I - LAHTHA-lLT - LAHT(HAHT)-lHA(I - ^

= / .

U can be solved from (2.9) and by (2.8), it can be written as

(2,3) ^ ( i

Denote
L\T)(2.14) Ih

H = V2(LT - HTD~lBT) = V2(LT - L\T),



where Lx = BD~lH and

(2-15) \

We can thus decompose U into two parts,

(2.16) U = Ih
H{T - BD-lBTYlI%f + HTD~lHf

or, equivalently

{ ) U {
/ ( (

( 2 1 7 ) {D-*HA)U-{ 0 D-^Ji H

We end this section with the following lemma.

Lemma 2.2

(2.18) A"1 = I^T - BD~lBT)-lI% + HTD~lH

(2.19) = LTLA^HTH + HTHA~lHTH + HTHA~lLTL + L

Proof. The proof can be completed by noticing that (T - BD~lBT)-1 = L ^ - 1 ^ . •

3 Two-level Method
For equation (2.1), the approximation £/£+1 at the n + 1-th iteration with an initial value
U% is obtained from the two-level method. The associated algorithm typically consists of
the following three steps.

1. Pre-smoothing step: apply 71 steps of a classical iteration S to (2.1) to obtain an

approximation U^ 2. For convenience, we introduce the following notation:

2. Coarse grid correction step: introduce a coarse H—grid level on which a coarse grid

operator AH is defined, and then restrict the residual r = / — AU^+1 to the H-grid level
by a restriction 7/f. Solve the correction equation AH en = Ij*r and interpolate en by 1\

back to h-grid level to update the approximation U = U^* + /#e#.
3. Post-smoothing step: repeat step 1 beginning with the approximation J7,



The iteration operator M of the two-level method is thus given by

(3.1) M =

The correction equation in step 2 may be solved by recursively applying the two-level
method, which coincides with the multigrid method.

Remark. We use subscript H in all the operators defined on the H-grid level, in order to
distinguish from the operators defined on the h-grid level.

3,1 Smoothing Iteration

By (2.7), A can be decomposed as

Based on this decomposition, the Richardson iterative method can be used as the smoothing
iteration in the two-level method to obtain an approximation of (2.1). The procedure can
be illustrated as follows. Since

( 0 D ) WUnew *~ ( 0 D ) WUold " A

we hence have

unew <- suM + u\vT ( T^ £ J
where
(3.3) 5 = / - CJ{LTT-1L + HTD-lH)A,

and a; is a parameter.

3.2 Correction Equations

Consider (2.16) as an error correction equation by replacing / with the residuel r and U
with the error correction e. We thus have

(3.4) e = I%(T - BD~lBT)-lI%r + JFD

The right hand side of (3.4) consists of two parts r^ and r# where



rfj = HTD~lHr.

Assume that the term r# is very small or, equivlently r is almost in Range(LT), so that it
can be negligible. Then, we obtain an approximate error correction equation of (3.4),

(3.5) e = Ih
H{T - BD~lBT)-lI%r.

By the structure of /#(T — BD~lBT)~llff and by introducing a coarse H-grid level, we
construct the error correction equation on the level as

(3.6) AHeH = I*r,

where AH is chosen to be
(3.7) AH=T- BD~lBT.

It follows that
AH = I»AIh

H,

and thus AH is a Garlerkin type coarse grid operator with Iff as the interpolation and J#
as the prolongation. Furthermore, when the residuel r is also in ARange(LT), from (2.17)
and (3.5),

e = I*(T Tff T

which implies
LAe = Lr = LALTr\ for some r'.

Based on the above equation, an error correction equation (3.6) on the coarse H-grid level
can be simplified with a coarse grid operator defined as

(3.8) AH = LALT = T,

where AH becomes the standard Garlerkin type coarse grid operator when the operator
4-L is as the interpolation and 2LT is as the prolongation.

Classical iterative methods, such as Jacobi, Gauss-Seidel, usually derive the residuel
r with smoothing components in Range(LT). When A is a smooth operator, such as
laplacian, it is also true that the residuel r is almost in ARange(LT). When A is not
smooth, this claim is no longer valid, and in this case, the construction of AH as in (3.8) is
not apprioprate. Consequently, form (3.7) will be suggested.



Now consider the one dimensional case with L and H defined as in (2.3) and (2.4),
respectively, and with A as the Laplacian operator. That is,

\2
- 1

- 1
2

*

- 1

- 1 2
- 1

- 1
2 / NxN

By calculation, the corresponding A has the following components

2 - 1

T =
Ah?

- 1 2 - 1

- 1 2
- 1

1

B =

and

4/i2

( 6
1

- 1
0 - 1

- 1
2

\

0
1

- 1

£> =
4/i2

1
6

6
1

= —I-Th?

2 X 2

The following properties can be established.

1. The eigenvalues of D are inside ( p , ^ ) . Hence, \\HTD~^H\[2 = O(/i2) which is quite
small. For general cases where the operator A is derived from elliptic operators with
coefficients having lower and upper bounds, A is spectrally equivelent to the Laplacian
operator. The eigenvalues of the corresponding D are inside (^, j^) , where c\ and c^
are positive constants independent of h.

2. D is a relatively sparse matrix. Hence, the computation of D is usually not too large.



4 Convergent Analysis
Consider projectors P^ and P^, such that

Pt =

which are A~x orthogonal to each other. Define a new interpolation operator If?(5) with
parameter S by

(4.1) I*(5) = ^(L~ SBD~lH) = ±={L - 5L,) =

By taking its transpose, we define a new prolongation operator

(4.2) Ih
H(S) = 2( / f (6)f.

Note that when 5=1, (4.1) and (4.2) are consistent with (2.15) and (2.14). We now
construct a coarse grid opeartor AH(S) by

= LALT - S(BD^HALT + LAHTD-lBT) + 62BD~lBT

(4.3) = LALT - 25LAl'2PfjA
ll2LT + S2LAl/2PAA1/2LT.

In this section, we study the two-level method with the interpolation operator 1^(8) in (4.1),
the prolongation operator /#(£) in (4.2) and AH(S) in (4.3) as the coarse grid operator.
Denote the smoothing iteration operator for the two-level method by S. Then, the operator
for the two-level method with 7 steps of pre- and post- smoothing iteration in the energy
form is given by
(4.4) M(S, 7) = G2 - GAll2Ih

H{5)A-H\5)I»(5)A"2G,

where G = Al/2S1A~lt2. Two auxiliary operators M\(6,7) and M2(S, 7) are needed to
study properties of M(5,7). They are defined by

M1(6,1) = G2 -
= G2-GPtG-5G{PilPt

(4.5) +2



and

(4.6) M2(<5,7) = G2 -
= G2 -

Properties of M(5,7) can now be presented:

1. Since A#(5) is decreasing in S over [0, 1],

2. Assuming ||G||2 < 1, we have

3. For 0 < S < 1,
(,7) <Mi(5,7) <G2.

4. When 5 = 0,

(4-7) Jjf(O) = -L i ,

and
(4.8) AH{0) = LALT = T.

Hence, M(0,7) is an operator for the standard two-level method with an interpolation (4.7)
and a Garlerkin type coarse grid operator (4.8). When 5 = 1,

(4.9) I*(1) = -L(L - SD- 1

and
(4.10) AH{\) = (LA-1!71)"1 = T -

Hence, M(l,7) becomes an operator for our new two-level method with the wavelet inter-
polation (4.9) and the wavelet coarse grid operator (4.10). On the other hand, Mi (1,7) is
an operator of the two-level method with the wavelet interpolation (4.9) and the coarse grid
operator (4.8), and M2(l,7) is an operator of the two-level method with the interpolation
(4.7) and the wavelet coarse grid operator (4.10). Prom the constructions,

(4.11) M(l,7) = GPkG,
(4.12) M!(l>7) = G ( I - ( I - P
(4.13) M(0,7) = G(I-PL)G.
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5. If S = I - HTD~lHA = A-1'2{I - PH)A112, then

(7 - J* ( 1 ) ^ ( 1 ) ^ ( 1 ) ^ ) * S = {HTD~'HA) * 5 = 0,

which implies that the combination of the smoothing operator S and the coarse grid oper-
ator / — I^{\)A^{1)I^{\)A gives rise to an exact solver. On the other hand,

(I-Ih
H(0)A-H\0)I»(0)A)*S

= A'1/2(A1/2^T-1 LA1/2(I - All2HTD-lHA1/2)) * A1'2

6. If S is taken to be the Jacobi iterative method, i.e., S = I — ah2A with parameter
a, then

Therefore, for the one dimensional case, since

^HTH < HTD-lH < h2HTH,

we have

With p 5 7 | | 2 = O(^), we have

= O(-).
7

When A is smooth, similar result for M(0,7)

= O(-),
7

can be established by the fact that

(4.14) \\A-l-LTT-lL\\2 = O(h2).

However, when A is nonsmooth (see [4, 5, 6, 8]), the order of the approximation property
[11] is O(h) instead of (4.14). Hence, using M(0,7) as the operator for the multigrid method
will not be as efficient as for the smooth case. Thus, for the nonsmooth case, M(l,7) is
recommended to replace M(0,7) in order to restore all the properties that the standard
multigrid method possesses, one of which is that the convergent rate is independent of the
grid size.

11



Theorem 4.1 Assume the Richardson smoothing iteration

(4.15) S = I - \{LTT-lL + HTD-lH)A = \A

for the two-level method is used. Then, we have

where M(5,7) is as in (4-4) and p(-) denotes the spectral radius.

Proof. We first show that the spectral radius of 5 defined as (4.15) is less than 1. For this,
note that the two subspaces Range(LT) and Range(HT) are complement to each other
in 5RN. Thus, by HTH + LTL = / , a nontrival vector can not be simultaneously in both
spaces Range(I — P#) and Range(I — Pi). Therefore,

This implies
p(S)

Set G = Al'2SA-ll2. Then,

By calculation,

,1) = \(2-PA)(I-Pt)(2-P6).

Since / - P^ > 0 and PL > 0,

- P6)(I - PL)(2 - Pfj)} = p(M(0,1)).

•
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To compare M2(5,7) with M(0,7), decompose $lN into two A-orthogonal subspaces Si
and 52 where

5i = A~l/2Range{R), S2 = A~l/2Null(R).

Here i? = LTL which is idempotent and symmetric. For any x €

Gx = Xi + x2

with x\ € 5i and 2:2 E 52, and thus, M2(l,7)x2 = x2, M(0,7)x2 = 3?25 #1^2(1,7)2:1 = 0,
and xfM(0,7)xi > 0. Since ( L ^ - 1 ^ ) " 1 < LALT,

> 2(Gx)Tx2 - x%x2

and
(4.16) |^rM2(l,7)a;|

Set
(4.17) P =

This is a A-orthogonal projector from $lN to 52 along 5i.

Theorem 4.2 Ze£ M2(l,7), M(0,7) and P be defined as before. Then,

||M2(l,7)||2<max{||M(0)7)||2,2||PG||2

Proof. Note that

||Pgjl|2
11 T* Irpl rp 11 T* I O T*

This completes the proof. D
The assumption that ||PG||2 is very small is similar to assumption (15) in Theorem 2 of

[14], which can be fulfilled by taking a large iterative number 7 (independent of h). From
Theorem 4.2 is that ||M2(1,7)||2 < ||M(0,7)||2 as 7 becomes bigger. This means that as
the smoothing iteration gets large, the multigrid method with only the wavelet coarse grid
operator converges faster than that with the standard coarse grid operator. The next sec-
tion provides numerical demonstrations of this result. For a small and practical smoothing
iteration number, both the wavelet coarse grid operator and the wavelet interpolation are
needed to improve the performance of the multigrid method.
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5 Numerical Results

We consider the one dimensional elliptical differential operator

where a(x/e) = 2.1 + 2sin(27rx/e). The corresponding homogenized operator is

A

Standard centered finite difference discreatization gives

,±
where CLJ-I/2 = a((xj — h/2)/e). Throughout the following numerical experiments, Har
interpolation 4=L in (2.3) is used. || • Ĥ  denotes the discrete L2 norm. We also calculate the
energy norm for the multigrid method with operator M^(j). This operator is constructed
using the homogenized coarse grid operator. It has exactly the same form as M2(5,7),
except that the coarse grid operator AH{S) is replaced by the homogenized operator A^.

In Figure 1, 6 is taken to be 1. This corresponds to the case where the operator A
is smooth. As we can see in this figure, no operator is significantly superior than the f
others. For a small number of smoothing iteration, all operators perform equally well. As
the smoothing iterative number increases, the performances of the operators M(l,7) and
Mi (1,7) become gradually better than others.

Now, consider the case where A is not smooth by taking e = y/2h. What we want to test
are two things. First, we want to show numerically that the wavelet operator AH(1) as in
(4.3) is an approximation of the corresponding homogenized operator A^. In Figure 2, the
ratio of norms by comparing different operators is plotted. In this figure, it is clear that the
wavelet operator is very close to the homogenized operator, while the Garlerkin operator
AH(0) is a bit far away from it as the grid size h decreases. Second, we compare the energy
norms of the operators for the two-level method in Figures 3 and 4. Both figures are the
same except the different iterative numbers for smoothing. We take small iterative steps
in the graph on the left-hand side of figure 3 and the norms of both operators ^2(1,7)
and Mpfa) are bigger than 1. Mi(l,7) is better than M(0,7). But, M(l,7) is the best
among all. As we increase the smoothing iteration number as in the graph on the right-
hand side, the wavelet operators M(l,7) becomes superior. This is also true for
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